JP2009058442A - Eluted element sampling device from rock - Google Patents

Eluted element sampling device from rock Download PDF

Info

Publication number
JP2009058442A
JP2009058442A JP2007227053A JP2007227053A JP2009058442A JP 2009058442 A JP2009058442 A JP 2009058442A JP 2007227053 A JP2007227053 A JP 2007227053A JP 2007227053 A JP2007227053 A JP 2007227053A JP 2009058442 A JP2009058442 A JP 2009058442A
Authority
JP
Japan
Prior art keywords
solution
rock
storage container
temperature
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227053A
Other languages
Japanese (ja)
Other versions
JP5013419B2 (en
Inventor
Eiji Nakada
英二 中田
Yuki Miyamoto
由紀 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007227053A priority Critical patent/JP5013419B2/en
Publication of JP2009058442A publication Critical patent/JP2009058442A/en
Application granted granted Critical
Publication of JP5013419B2 publication Critical patent/JP5013419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eluted element sampling device from a rock capable of making an acidic solution react with the rock in conformity to the state of an actual environment. <P>SOLUTION: A heater 50 is provided to a housing container 10 in which a test piece 20 is housed and the test piece 20 is set to the temperature corresponding to the actual environment by the heater 50. The test piece 20 set to the temperature corresponding to the actual environment is immersed in a saturated CO<SB>2</SB>dissolved solution, so that the saturated CO<SB>2</SB>dissolved solution, in which the element from the test piece 20 is dissolved, is sampled by a syringe 70. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多種類の鉱物からなる岩石、あるいは粉末化させた岩石を溶液に浸漬させて生じる反応を検証する岩石からの溶出元素採取装置に関し、特に、二酸化炭素飽和溶解溶液と二酸化炭素を含まない溶液を浸漬させた岩石、あるいは粉末化した岩石の反応させることで二酸化炭素飽和溶解溶液が存在するために溶出する元素を検証し、二酸化炭素地中貯留における実環境への環境影響の評価に用いて好適なものである。   The present invention relates to a device for collecting elution elements from rocks composed of various kinds of minerals or rocks that are obtained by immersing powdered rocks in a solution, and particularly includes a saturated solution of carbon dioxide and carbon dioxide. In order to evaluate the environmental impact on the real environment in carbon dioxide geological storage, we verify the elements that elute due to the presence of a saturated solution of carbon dioxide by reacting rocks immersed in undissolved rocks or powdered rocks. It is suitable for use.

近年、地球温暖化を緩和するために様々な取り組みがなされており、例えば省エネルギー化や、二酸化炭素(以下;CO2)の排出を抑制することなどが行われている。このような取り組みの一つとして、工場や発電所等から排出されるCO2を地中に貯留してCO2の排出量を削減する技術がCO2削減の即効性ある方法と考えられている(例えば、特許文献1参照)。 In recent years, various efforts have been made to mitigate global warming. For example, energy saving and emission of carbon dioxide (hereinafter referred to as CO 2 ) have been carried out. As one of such efforts, technology that reduces CO 2 emissions by storing CO 2 emitted from factories, power plants, etc. in the ground is considered to be an effective method for reducing CO 2 emissions. (For example, refer to Patent Document 1).

CO2地中貯留の実施の際には、CO2は地下の帯水層に圧入され、帯水層に含まれる地下水は貯留されたCO2の影響により酸性のCO2飽和溶解溶液へと変化することになる。貯留されたCO2はCO2の圧入停止後においても、長期間に亘り地下に貯留され、地下水中に溶解する。CO2が地中貯留された地層、および周辺の地層に含まれる地下水は自然状態より酸性になり、周辺の岩石では化学反応が生じ、人間が利用する地下水に影響を及ぼし、人間の普段の生活へ影響が及ぶこととなる虞があるため、CO2との反応によってのみ溶出しやすくなる元素を特定すること、元素溶出メカニズムを解明することが急務の課題となっている。 In the practice of the CO 2 geological storage is, CO 2 is pressed into underground aquifers, and changes to acidic CO 2 saturation solubility solution by ground water influence of CO 2 stored included in the aquifer Will do. The stored CO 2 is stored underground for a long period of time and is dissolved in the ground water even after the CO 2 injection stop. The groundwater in which the CO 2 is stored underground and the surrounding groundwater are more acidic than the natural state, and the surrounding rocks undergo chemical reactions, affecting the groundwater used by humans, and the daily lives of humans. Therefore, it is an urgent task to identify elements that can be easily eluted only by reaction with CO 2 and to elucidate the mechanism of element elution.

このような検討は実際に試験的にCO2を地下に圧入し、圧入を停止してから一定期間経過後に地下水を採取し、採取した地下水の組成を分析することで、地中貯留におけるCO2の影響を評価することができる。しかしながら試験的とは云え地下数百メートルにCO2を貯留し、貯留後から長期間地下水、岩石を採取しCO2の影響のみを明らかにするには多大な費用と地下水、岩石を実環境のままで採取する技術が必要となり多くの問題が発生する。 Such study actually tentatively pressed the CO 2 underground, groundwater collected from stop pressed after a certain period of time, to analyze the composition of the collected groundwater, CO in geological storage 2 Can be evaluated. However, even though it is experimental, CO 2 is stored several hundred meters below ground, and in order to clarify the effects of CO 2 by collecting ground water and rocks for a long time after storage, it is very expensive and ground water and rocks are used in the actual environment. A lot of problems occur because of the need for techniques to collect the raw materials.

更に、CO2地中貯留を行う場所やCO2を貯留する深度によって、地下の温度・圧力が様々であり、同種の岩石にCO2飽和溶解溶液を反応させても、温度環境の異なる場所の岩石の状態を再現することができない。このため、CO2地中貯留の際に温度や圧力の条件が異なる種々の実環境に応じて、地下の岩石からどのような有害元素が溶出するかを正確に把握できないのが現状であった。 Further, the depth for storing location and CO 2 to perform CO 2 sequestration, vary in temperature and pressure of the underground, be reacted with CO 2 saturated dissolved solution rock of the same type, the temperature environment different locations The rock condition cannot be reproduced. For this reason, it is currently impossible to accurately grasp what harmful elements elute from underground rocks according to various actual environments with different temperature and pressure conditions during CO 2 underground storage .

特開2004−237167号公報(請求項7等)JP 2004-237167 A (Claim 7 etc.)

本発明は、上記状況に鑑みてなされたもので、化学反応により岩石を構成する元素が溶出した溶液を採取できる岩石からの溶出元素採取装置を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a device for collecting eluted elements from a rock, which can collect a solution from which elements constituting the rock are eluted by a chemical reaction.

上記目的を達成するための請求項1に係る本発明の岩石からの溶出元素採取装置は、岩石を浸漬させる溶液が貯留される収納容器と、前記収納容器に貯留された溶液を前記収納容器外部から遮断する遮断手段と、前記岩石を浸漬させた反応溶液を前記収納容器から採取する採取手段とを備えることを特徴とする。   According to a first aspect of the present invention, there is provided a device for collecting elements eluted from a rock according to the first aspect of the present invention, a storage container storing a solution for immersing the rock, and a solution stored in the storage container outside the storage container. And a collecting means for collecting the reaction solution in which the rock is immersed from the storage container.

請求項1に係る本発明では、岩石から溶液への元素の溶出が収納容器内で再現され、溶存する元素を分析するために反応溶液が大気との接触なしに採取できる。なお、本明細書、特許請求の範囲に記載の岩石とは、固形状の岩石及び岩石を粉砕した粉末を総称したものであり、反応溶液とは岩石の元素が溶液に溶出したものである。   In the present invention according to claim 1, the elution of elements from the rock into the solution is reproduced in the storage container, and the reaction solution can be collected without contact with the atmosphere in order to analyze the dissolved elements. The rock described in the present specification and claims is a collective term for solid rocks and powders obtained by pulverizing rocks, and the reaction solution is a solution in which rock elements are eluted.

請求項2に係る本発明の岩石からの溶出元素採取装置は、請求項1に記載の岩石からの溶出元素採取装置において、前記収納容器に収納された岩石及び前記溶液の温度を設定する温度制御手段を備え、前記温度制御手段は前記収納容器に収納された岩石を浸潰させる溶液の温度を環境に応じ、任意に設定することを特徴とする。   The device for collecting elements from rocks of the present invention according to claim 2 is the device for collecting elements from rocks according to claim 1, in which the temperature of the rock stored in the storage container and the temperature of the solution is set. The temperature control means optionally sets the temperature of the solution for immersing the rock stored in the storage container according to the environment.

請求項2に係る本発明では、収納容器に収納された岩石、および溶液はこの温度制御手段により、実環境に応じた温度にプログラムにより自動で変化、維持される。これにより、収納容器に収納された岩石は、実環境の温度と同等の条件の下で溶液に浸漬されて反応を起こすため、採取した反応溶液は実環境において岩石から溶出する元素が含まれるものとなる。   In the present invention according to claim 2, the rock and the solution stored in the storage container are automatically changed and maintained by the program at a temperature corresponding to the actual environment by this temperature control means. As a result, the rock stored in the storage container reacts by being immersed in the solution under conditions equivalent to the temperature of the actual environment, so the collected reaction solution contains elements that elute from the rock in the actual environment It becomes.

請求項3に係る本発明の岩石からの溶出元素採取装置は、請求項1又は請求項2に記載の岩石からの溶出元素採取装置において、前記岩石は、二酸化炭素を地中に貯留した場合に人間の生活環境に与える影響を調査するために二酸化炭素が地中に貯留される予定の地層、およびその周辺の地層から採取されたものであることを特徴とする。   The device for collecting elements from rocks of the present invention according to claim 3 is the device for collecting elements from rocks according to claim 1 or 2, wherein the rocks store carbon dioxide in the ground. In order to investigate the impact on the human living environment, it is characterized by carbon dioxide collected from the geological formation planned to be stored in the ground and its surrounding geological formations.

請求項3に係る本発明では、CO2を地中貯留する地層からCO2地中貯留の影響により地下水中に溶出する元素を調査できる。 With the present invention according to claim 3, you can investigate an element eluted into ground water due to the effect of CO 2 geological storage of CO 2 from the formation of underground storage.

本発明の岩石からの溶出元素採取装置は、岩石を構成する元素が実環境の状況に則して溶液に溶出され、この溶液との反応で形成された反応溶液を大気との接触なしに採取、保存できる岩石からの溶出元素採取装置となる。   The device for collecting elements eluted from rocks of the present invention is a method in which elements constituting rocks are eluted into a solution according to the actual environment, and a reaction solution formed by reaction with this solution is collected without contact with the atmosphere. This is a device for collecting elements from rocks that can be stored.

以下本発明の実施形態例を図面に基づいて説明する。図1には本発明の一実施形態例に係る岩石からの溶出元素採取装置の全体構成、図2にはCO2が地下に貯留された状態の概略断面を示してある。なお、図示の実施形態例は例示であり、本発明は以下の説明に限定されない。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration of a device for collecting elements eluted from rocks according to an embodiment of the present invention, and FIG. 2 shows a schematic cross section of CO 2 stored underground. The illustrated embodiment is an exemplification, and the present invention is not limited to the following description.

図1に基づいて採取装置の全体構成を説明する。   The overall configuration of the sampling device will be described with reference to FIG.

図1に示すように、収納容器10は内部に任意の形状の岩石、あるいは岩石を粉砕した粉(以下;供試体20)が収納されるように形成された円筒形状の容器である。供試体20は収納容器10に収納できる形状に任意に整形され、収納容器10に収納されている。収納容器10には、遮断手段としてのOリング13及び蓋11が取付けられている。Oリング13は、収納容器10の開口に取付けられ、蓋11は、収納容器10の開口を塞いだ状態で係止されている。収納容器10及び収納容器10に係止された蓋11の外周にはリング状の固定部材12が嵌合されている。なお、収納容器10及び蓋11は、耐熱・耐酸腐食の合金、例えばニッケルを主成分とするハステロイ(登録商標)で形成されている。また、Oリング13は、温度200℃まで耐えることのできるバイトンゴム(登録商標)から形成されている。   As shown in FIG. 1, the storage container 10 is a cylindrical container formed so that a rock of an arbitrary shape or a powder obtained by pulverizing a rock (hereinafter referred to as a specimen 20) is stored therein. The specimen 20 is arbitrarily shaped into a shape that can be stored in the storage container 10 and stored in the storage container 10. The storage container 10 is provided with an O-ring 13 and a lid 11 as blocking means. The O-ring 13 is attached to the opening of the storage container 10, and the lid 11 is locked in a state where the opening of the storage container 10 is closed. A ring-shaped fixing member 12 is fitted to the outer periphery of the storage container 10 and the lid 11 locked to the storage container 10. The storage container 10 and the lid 11 are made of a heat and acid resistant corrosion alloy, for example, Hastelloy (registered trademark) whose main component is nickel. The O-ring 13 is made of Viton rubber (registered trademark) that can withstand temperatures up to 200 ° C.

収納容器10の底部には、攪拌子15が配置されており、攪拌子15はマグネティックスターラ(図示せず)の磁力により回動し、収納容器10に貯留された溶液乃至CO2飽和溶解溶液41(反応溶液)を攪拌する。 A stirrer 15 is disposed at the bottom of the storage container 10, and the stirrer 15 is rotated by the magnetic force of a magnetic stirrer (not shown) to store a solution stored in the storage container 10 or a CO 2 saturated solution 41. (Reaction solution) is stirred.

メッシュ台16は、供試体20を支持するものである。具体的には、メッシュ台16は平板部材である台座部と、台座部に取付けられた複数の脚部とから構成されている。   The mesh base 16 supports the specimen 20. Specifically, the mesh base 16 includes a pedestal portion that is a flat plate member and a plurality of leg portions attached to the pedestal portion.

メッシュ台16の台座部の上面には、供試体20が載置され、台座部の下方には、攪拌子15の回動を阻害しない程度の空間が形成されている。また、台座部には、厚さ方向に貫通する貫通孔が複数個設けられており、攪拌子15により攪拌される溶液乃至CO2飽和溶解溶液41の通り道となっている。この貫通孔は、溶液乃至CO2飽和溶解溶液41の攪拌を円滑にするために設けられている。 The specimen 20 is placed on the upper surface of the pedestal portion of the mesh base 16, and a space that does not hinder the rotation of the stirrer 15 is formed below the pedestal portion. Further, the pedestal portion is provided with a plurality of through holes penetrating in the thickness direction, and serves as a passage for the solution stirred by the stirrer 15 or the CO 2 saturated solution 41. This through hole is provided to facilitate stirring of the solution or the CO 2 saturated solution 41.

蓋11には配管31が挿通され、収納容器10には配管31を介してCO2ガスタンク30が接続されており、配管31にはバルブ32が介装されている。CO2ガスタンク30にはCO2ガス40が充填されておりCO2ガス40は配管31を通って収納容器10の内部に圧入される。また配管31にはバルブ32が介装されている。 A pipe 31 is inserted into the lid 11, a CO 2 gas tank 30 is connected to the storage container 10 via the pipe 31, and a valve 32 is interposed in the pipe 31. The CO 2 gas tank 30 CO 2 gas 40 CO 2 gas 40 is filled is pressed into the interior of the container 10 through the pipe 31. A valve 32 is interposed in the pipe 31.

収納容器10内にはあらかじめ用意された実環境に即した溶液が貯留されており、バルブ32が開放されると、収納容器10内にCO2ガスが圧入され、当該溶液にCO2ガスが溶解してCO2飽和溶解溶液41が作成される。所定のCO2ガスが圧入された後にはバルブ32は閉止される。これにより収納容器10内部には、バルブ32を開放しない限りCO2飽和溶解溶液41の出入りができない閉鎖環境が構築される。なお、CO2ガスの溶解量はCO2ガスタンク30に取り付けられたピストンの直径とピストンの変位量をひずみゲージ式変換器によって計算する。 A solution in accordance with the actual environment prepared in advance is stored in the storage container 10. When the valve 32 is opened, CO 2 gas is injected into the storage container 10, and the CO 2 gas is dissolved in the solution. Thus, a CO 2 saturated solution 41 is prepared. After a predetermined CO 2 gas is injected, the valve 32 is closed. As a result, a closed environment in which the CO 2 saturated solution 41 cannot enter and exit unless the valve 32 is opened is constructed inside the storage container 10. Incidentally, the amount of dissolved CO 2 gas is calculated by gage transducer strain diameter and displacement of the piston of the piston attached to the CO 2 gas tank 30.

収納容器10内の圧力は、CO2ガスタンク30で加圧するCO2ガス40の圧力を用いて実環境に応じた圧力に制御される。また、収納容器10には、圧力ゲージ14が取付けられており、圧力ゲージ14は、そのCO2ガス40の圧力値を測定して表示し、記録する。 The pressure of the container 10 is controlled to a pressure corresponding to the actual environment using the pressure of the CO 2 gas 40 pressurized with CO 2 gas tank 30. In addition, a pressure gauge 14 is attached to the storage container 10, and the pressure gauge 14 measures, displays, and records the pressure value of the CO 2 gas 40.

さらに、蓋11には配管71が挿通され、収納容器10には配管71を介して採取手段としてのシリンジ70が接続されている。配管71には、シリンジ70と蓋11との間に採取バルブ72が介装されている。収納容器10に蓋11が固定された状態で、採取バルブ72が開放されると、収納容器10内のCO2ガス40がシリンジ70で所定量採取されるようになっている。また、採取バルブ72が閉止された状態では、収納容器10内の供試体20及びCO2ガス40は収納容器10外部から遮断された状態に維持されている。 Further, a pipe 71 is inserted into the lid 11, and a syringe 70 as a collecting means is connected to the storage container 10 through the pipe 71. A sampling valve 72 is interposed between the syringe 70 and the lid 11 in the pipe 71. When the collection valve 72 is opened while the lid 11 is fixed to the storage container 10, a predetermined amount of CO 2 gas 40 in the storage container 10 is collected by the syringe 70. Further, when the collection valve 72 is closed, the specimen 20 and the CO 2 gas 40 in the storage container 10 are maintained in a state of being cut off from the outside of the storage container 10.

そして、収納容器10には、内部に収容された供試体20の温度を実環境に応じた温度に設定する温度制御手段としての温度制御装置51が備えられている。温度の制御は収納容器10の外周のヒータ50により行われ、ヒータ50は温度制御装置51からの制御信号に基づいて任意の温度に設定され、収納容器10の供試体20の温度は所定温度に設定される。温度制御装置51が設定する供試体20の所定温度は、実環境に応じた温度と実環境前後の任意の温度が用いられる。実環境に応じた温度としては、例えば、供試体20を採掘した場所における採掘前の供試体20の温度の実測値であり、温度の影響を明らかにするために、実測値より高い温度と低い温度を用いる。   The storage container 10 is provided with a temperature control device 51 as temperature control means for setting the temperature of the specimen 20 accommodated therein to a temperature corresponding to the actual environment. The temperature is controlled by a heater 50 on the outer periphery of the storage container 10. The heater 50 is set to an arbitrary temperature based on a control signal from the temperature control device 51, and the temperature of the specimen 20 of the storage container 10 is set to a predetermined temperature. Is set. As the predetermined temperature of the specimen 20 set by the temperature control device 51, a temperature corresponding to the actual environment and an arbitrary temperature before and after the actual environment are used. The temperature according to the actual environment is, for example, an actual measurement value of the specimen 20 before mining at the location where the specimen 20 is mined, and in order to clarify the influence of the temperature, the temperature is higher and lower than the actual measurement value Use temperature.

上記構成の岩石からの溶出元素採取装置では、CO2飽和溶解溶液41に溶出した供試体20の元素を分析するために、収納容器10内で供試体20を浸漬したCO2飽和溶解溶液41が採取される。CO2飽和溶解溶液41の採取の際、排水バルブ34を閉止し、採取バルブ72を開放することで、供試体20を浸漬したCO2飽和溶解溶液41がシリンジ70により採取される。収納容器10から蓋11を取外してCO2ガス40を採取する場合では、CO2飽和溶解溶液41に不純物等が混入する虞があるが、上記採取装置では、このような混入はない。したがって、収納容器10内の供試体20から溶出した元素のみが溶存するCO2飽和溶解溶液41(反応溶液)を採取することができる。 Elution element sampling device from rocks above structure, in order to analyze the elements of the specimen 20 was eluted in CO 2 saturation solubility solution 41, the CO 2 saturation solubility solution 41 immersing the specimen 20 in the container 10. Collected. When collecting the CO 2 saturated solution 41, the drain valve 34 is closed and the collection valve 72 is opened, so that the CO 2 saturated solution 41 in which the specimen 20 is immersed is collected by the syringe 70. When removing the lid 11 from the storage container 10 and collecting the CO 2 gas 40, there is a possibility that impurities or the like may be mixed into the CO 2 saturated solution 41, but there is no such mixing in the sampling device. Therefore, it is possible to collect the CO 2 saturated solution 41 (reaction solution) in which only the elements eluted from the specimen 20 in the storage container 10 are dissolved.

このように、収納容器10外部から遮断された状態で供試体20はCO2飽和溶解溶液41に浸漬されるので、供試体20とCO2飽和溶解溶液41との化学反応以外の要因によって、CO2飽和溶解溶液41の状態、例えばpHや圧力に影響が及ばない。CO2地中貯留を想定した場合、CO2地中貯留を実施し終えた後であってCO2地中貯留を想定した場所における供試体20がCO2飽和溶解溶液41に浸漬され続ける状況を収納容器10の中で再現し、そのCO2飽和溶解溶液41を採取することができる。 Thus, since the test piece 20 is immersed in the CO 2 saturated solution 41 while being cut off from the outside of the storage container 10, the CO 2 is caused by factors other than the chemical reaction between the test sample 20 and the CO 2 saturated solution 41. 2 The state of the saturated solution 41, such as pH and pressure, is not affected. Assuming the CO 2 sequestration, the situation where the specimen 20 at a position that is assumed CO 2 geological storage even after the finished implement CO 2 geological storage continues to be immersed in the CO 2 saturation solubility solution 41 The CO 2 saturated solution 41 can be collected by reproducing in the storage container 10.

また、温度制御装置51の制御によりヒータ50が所望の温度に調整され、収納容器10に収納された供試体20の温度が実環境に応じた温度に維持される。例えば、CO2地中貯留を想定した場合、想定される場所の所望の深度の温度環境に応じた温度に供試体20の温度が維持される。これにより、CO2地中貯留を想定した場所における温度環境で、供試体20の元素がCO2飽和溶解溶液41に溶出する反応状況を収納容器10の中で再現し、このCO2飽和溶解溶液41を採取することができる。 Further, the heater 50 is adjusted to a desired temperature under the control of the temperature control device 51, and the temperature of the specimen 20 stored in the storage container 10 is maintained at a temperature according to the actual environment. For example, when CO 2 underground storage is assumed, the temperature of the specimen 20 is maintained at a temperature corresponding to the temperature environment at a desired depth in the assumed location. As a result, the reaction state in which the element of the specimen 20 elutes into the CO 2 saturated solution 41 is reproduced in the storage container 10 in a temperature environment where CO 2 underground storage is assumed, and this CO 2 saturated solution is obtained. 41 can be collected.

図2に基づいてCO2地中貯留の状況を説明する。 The state of CO 2 underground storage will be described based on FIG.

図2に示すように、地表から不透水層102を貫通して帯水層100に達する縦穴101(ボーリング孔)が掘削され、地上には、CO2を縦穴101に圧送する圧送装置103が設置されている。帯水層100は地下水が存在する地層であり、圧送装置103によりCO2飽和溶解溶液が帯水層100に圧送されて貯留され、不透水層102により地上への流出が阻止されている。 As shown in FIG. 2, a vertical hole 101 (boring hole) that penetrates the impermeable layer 102 from the ground surface and reaches the aquifer 100 is excavated, and a pumping device 103 that pumps CO 2 into the vertical hole 101 is installed on the ground. Has been. The aquifer 100 is a formation in which groundwater exists, and a CO 2 saturated solution is pumped and stored in the aquifer 100 by the pumping device 103, and outflow to the ground is prevented by the impermeable layer 102.

例えば、工場や発電所から排出されるCO2が圧送装置103により縦穴101から帯水層100に圧送されると、CO2が地下水に溶けて酸性溶液であるCO2溶液が生成される。そして、CO2の圧送を停止後、CO2飽和溶解溶液は帯水層100に徐々に浸透して、例えば、帯水層100の縦穴101周辺の広範に亘る岩石104に影響を及ぼす。具体的には、ナトリウム(Na)やカルシウム(Ca)などの岩石を構成する典型元素と、カドミニウム(Cd)、ホウ素(B)、鉛(Pb)、砒素(As)、セレン(Se)、フッ素(F)などの遷移金属で希ガスを除く元素が岩石104からCO2溶解溶液(反応溶液)に溶出する。 For example, when CO 2 discharged from a factory or a power plant is pumped from the vertical hole 101 to the aquifer 100 by the pumping device 103, the CO 2 is dissolved in the groundwater to generate a CO 2 solution that is an acidic solution. Then, after stopping the pumping of CO 2, CO 2 saturation solubility solution gradually penetrates the aquifer 100, for example, it affects the rock 104 over a wide range around the vertical hole 101 of the aquifer 100. Specifically, typical elements constituting rocks such as sodium (Na) and calcium (Ca), cadmium (Cd), boron (B), lead (Pb), arsenic (As), selenium (Se), fluorine Elements other than rare gases, such as transition metals such as (F), elute from the rock 104 into the CO 2 solution (reaction solution).

CO2を地下に貯留する場所によっては、岩石104の温度は様々であり、また、帯水層100の深度によっては、岩石104に掛かる圧力も様々である。上述した岩石からの溶出元素採取装置は、このように実環境によって異なる温度・圧力を再現して供試体20(図1参照)にCO2飽和溶解溶液を浸漬するので、岩石104を構成する元素がCO2飽和溶解溶液に溶出する化学反応が、収納容器10の供試体20により実環境に則して精度よく再現され、元素が溶存するCO2飽和溶解溶液が採取される。 The temperature of the rock 104 varies depending on the location where CO 2 is stored underground, and the pressure applied to the rock 104 varies depending on the depth of the aquifer 100. The above-described apparatus for collecting elements eluted from rock reproduces the temperature and pressure that vary depending on the actual environment and immerses the CO 2 saturated solution in the specimen 20 (see FIG. 1). The chemical reaction that elutes into the CO 2 saturated solution is accurately reproduced by the specimen 20 of the storage container 10 according to the actual environment, and the CO 2 saturated solution in which the elements are dissolved is collected.

本実施形態例に係る岩石からの溶出元素採取装置により、供試体20に一定期間CO2飽和溶解溶液を浸漬した後、収納容器10から採取したCO2飽和溶解溶液は、様々な分析方法でCO2飽和溶解溶液に溶出している元素を測定できる。例えば、所定の温度・圧力条件でCO2飽和溶解溶液を浸漬した後のCO2飽和溶解溶液中に溶存するイオンを一定期間に亘り分析することで、元素の溶出し易さとその程度を判断することができる。 Elution element sampling device from rocks according to the present embodiment, after immersing for a period of time CO 2 saturation solubility solution specimen 20, CO 2 saturation solubility solution taken from the container 10, CO in a variety of analytical methods the elements are eluted into 2 saturation solubility solution can be measured. For example, by analyzing over the ions dissolved in the CO 2 saturated lysis solution after immersion of CO 2 saturated dissolved solution at a predetermined temperature and pressure conditions over a period of time to determine the elution ease and extent of the elements be able to.

さらに、このような検討は実際に貯留した帯水層100にボーリング掘削することにより地下水を採取し、採取した地下水の分析を行うことで前述した元素が溶出したことを確認することもできる。ただし、このようなボーリング掘削は地中貯留したCO2を放出させる原因ともなるため、意にそぐわない。本発明の岩石からの溶出元素採取装置を用いることで、CO2地中貯留を行う前にどのような元素がCO2の影響で溶出する可能性があるかを知ることができ、岩盤中に元素を留める方法の検討や、特に注意してモニタリングする元素の特定が可能となり、大幅な経費削減につながる。 Furthermore, such examination can also confirm that the above-mentioned elements were eluted by collecting groundwater by drilling into the aquifer 100 actually stored and analyzing the collected groundwater. However, such boring excavation also causes the release of CO 2 stored underground, which is not appropriate. By using the device for collecting elements eluted from rocks of the present invention, it is possible to know what elements may be eluted under the influence of CO 2 before CO 2 underground storage. It is possible to study the method of retaining elements and to identify elements to be monitored with particular care, leading to significant cost reductions.

以上に説明した実施形態例では、CO2を地下に貯留する実環境を想定して、CO2飽和溶解溶液に供試体20を浸漬させたが、CO2地中貯留の環境を想定することのみに限定されず、地下水汚染などの原因を探る方法の一つとして実際の溶液を実際に問題とされる岩石に浸漬させて汚染の根源を探ることにも役立つ。 In the embodiment example described above, the CO 2 assuming real environment for storing underground, but was immersed specimens 20 to CO 2 saturation solubility solution, only to assume an environment of CO 2 geological storage However, it is also useful to find the source of contamination by immersing an actual solution in the rock that is actually a problem as one of the methods for investigating the cause of groundwater contamination.

上記構成の岩石からの溶出元素採取装置は溶液としてCO2溶解溶液を想定した例を挙げて説明したが、CO2を溶解させる溶液は実際の地層に含まれる地下水と同じ水質の地下水とすることができる。すなわち岩石からの溶出元素採取装置は海底下など塩水溶液に満たされた地層にCO2を貯留する実環境に応じた環境を再現することも可能である。さらに、溶液として酸性雨を想定し、酸性雨により岩石から元素が溶出する化学的風化環境など実天然現象を対象とすることも可能である。この場合においても、実環境に合わせて、反応容器10に収納された供試体20の温度や供試体20に掛かる圧力を設定するため、地表で激しく変わる温度やCO2濃度の影響を考慮して、岩石から溶出する元素を採取することができ、これにより天然現象を実環境に則して精度よく再現することができることとなる。 Although the elution element collection device from the rock having the above-described configuration has been described with an example in which a CO 2 dissolving solution is assumed as a solution, the solution for dissolving CO 2 should be ground water having the same quality as the ground water contained in the actual formation. Can do. In other words, the device for collecting elements eluted from rocks can also reproduce the environment corresponding to the actual environment in which CO 2 is stored in a formation filled with a salt solution such as under the seabed. Furthermore, it is possible to target an actual natural phenomenon such as a chemical weathering environment in which acid rain is assumed as a solution and elements are eluted from rocks by acid rain. In this case, in accordance with the real environment, for setting the pressure on the temperature and the specimen 20 has been specimen 20 housed in the reaction vessel 10, in consideration of the influence of vigorous changes temperature and CO 2 concentration at the surface It is possible to collect elements that elute from rocks, and to reproduce natural phenomena with high accuracy according to the actual environment.

これは温度制御装置51が温度を常に一定に保たせることなく、任意にプログラム制御で増減させる機構を有しており、供試体20がCO2飽和溶解溶液に浸漬されている期間に応じて変動させることが可能となっていることによる。例えば、温度を下げて国内の冬季の温度を再現し、温度を上げて国内の夏季の温度を再現することで、昼に太陽光により熱せられ、夜に温度低下する繰り返しの温度変化を模擬することで地表における通年の地下環境を再現することができる。多様な地域において、より一層現実の地下環境に則した供試体20からの元素の溶出を再現し、この元素を溶存するCO2飽和溶解溶液を採取できることが特徴となっている。 This has a mechanism in which the temperature control device 51 does not always keep the temperature constant but arbitrarily increases or decreases by program control, and varies depending on the period during which the specimen 20 is immersed in the CO 2 saturated solution. It is possible to make it. For example, by reducing the temperature and reproducing the domestic winter temperature, and increasing the temperature and reproducing the domestic summer temperature, it simulates repeated temperature changes that are heated by sunlight in the day and decrease in temperature at night. It is possible to reproduce the year-round underground environment on the surface. In various regions, it is possible to reproduce the elution of an element from the specimen 20 in accordance with a more realistic underground environment and collect a CO 2 saturated solution in which this element is dissolved.

更に、CO2ガスタンク30は、収納容器10にCO2飽和溶解溶液の温度が、地下環境に存在するCO2飽和溶解溶液の温度に事前に設定されるように単独で加熱してもよい。この場合においても、現実の地下環境に則した供試体20からの元素の溶出が再現され、この元素が溶存したCO2飽和溶解溶液を採取することができる。 Furthermore, CO 2 gas tank 30, the temperature of CO 2 saturated dissolved solution container 10 may be heated alone to be set in advance to a temperature of CO 2 saturation solubility solution present in the underground environment. Even in this case, the elution of the element from the specimen 20 in accordance with the actual underground environment is reproduced, and a CO 2 saturated solution in which this element is dissolved can be collected.

<他の実施形態例>
上述の実施形態例では、CO2溶液に岩石を浸漬させるべく一つの収納容器10を用いたが、本発明はこのような形態に限定されない。図3は、他の実施形態例に係る岩石からの溶出元素採取装置の全体構成図である。なお、上述の実施形態例と同一のものには同一の符号を付し、重複する説明は省略する。
<Another embodiment>
In the above-described embodiment, the single storage container 10 is used to immerse the rock in the CO 2 solution, but the present invention is not limited to such a form. FIG. 3 is an overall configuration diagram of a device for collecting eluted elements from rocks according to another embodiment. In addition, the same code | symbol is attached | subjected to the same thing as the above-mentioned embodiment example, and the overlapping description is abbreviate | omitted.

図3に示すように、2つの収納容器10・10Aには、それぞれ供試体20が収納されている。一方の収納容器10には実施形態1と同様にCO2ガスタンク30が接続され、他方の収納容器10Aには蒸留水タンク30Aが接続されている。蒸留水タンク30Aには蒸留水が貯留されており、収納容器10A内に蒸留水41Aを供給できるようになっている。 As shown in FIG. 3, the specimen 20 is accommodated in each of the two storage containers 10 and 10A. A CO 2 gas tank 30 is connected to one storage container 10 as in the first embodiment, and a distilled water tank 30A is connected to the other storage container 10A. Distilled water is stored in the distilled water tank 30A, and the distilled water 41A can be supplied into the storage container 10A.

かかる構成の溶出元素採取装置では、収納容器10・10Aは共に温度制御装置51により同一の温度に制御されるようになっており、また、所定の圧力が掛かるようになっている。したがって、収納容器10に収納された供試体20は、CO2飽和溶解溶液41に浸漬され、収納容器10Aに収納された供試体20Aは蒸留水41Aに浸漬される。すなわち、CO2を含む溶液による変化と、CO2を含まない溶液とを比較することができ、CO2溶液が岩石に与える影響を評価することができる。 In the eluting element collection device having such a configuration, the storage containers 10 and 10A are both controlled to the same temperature by the temperature control device 51, and a predetermined pressure is applied. Therefore, the specimen 20 stored in the storage container 10 is immersed in the CO 2 saturated solution 41, and the specimen 20A stored in the storage container 10A is immersed in distilled water 41A. That is, a change with a solution containing a CO 2, can be compared with a solution containing no CO 2, CO 2 solution can be evaluated the effect on the rock.

このように、本発明の岩石の溶出元素採取装置は、複数の収納容器を具備し、そのうち一方の収納容器では二酸化炭素を含む溶液で供試体を浸漬し、他方の収納容器では二酸化炭素を含まない溶液で供試体を浸漬することで、供試体への二酸化炭素の影響をより詳しく調査することができる。とくに、CO2飽和溶解溶液の影響により岩石104から溶出する有害元素を見積もるために、岩石からの溶出元素採取装置に係わる実験では、比較のためにCO2を含まない溶液を準備し、同一条件、同一実験で供試体20を当該溶液に浸漬させることを行う。このような比較、実験と分析をすることで、CO2の貯留が地下水中に溶出する元素に影響を与えているかどうかを直接比較することで明らかにすることができる。 As described above, the rock elution element collection apparatus of the present invention includes a plurality of storage containers, one of which contains the specimen immersed in a solution containing carbon dioxide, and the other storage container contains carbon dioxide. By immersing the specimen in a solution that does not, the influence of carbon dioxide on the specimen can be investigated in more detail. In particular, in order to estimate the toxic elements eluted from the rock 104 under the influence of CO 2 saturated lysis solution, experiments relating to the dissolution element sampling device from the rock, to prepare a solution containing no CO 2 for comparison, the same conditions In the same experiment, the specimen 20 is immersed in the solution. By performing such comparison, experiment and analysis, it can be clarified by directly comparing whether or not the storage of CO 2 has an effect on the elements eluted in the groundwater.

なお、各収納容器10・10Aに異なる温度を設定してもよい。例えば収納容器10を相対的に低温に、収納容器10Aを相対的に高温に設定することができる。これにより、地中の多様な温度環境をより柔軟に模擬することができる。   In addition, you may set different temperature to each storage container 10 * 10A. For example, the storage container 10 can be set to a relatively low temperature, and the storage container 10A can be set to a relatively high temperature. Thereby, various underground temperature environments can be simulated more flexibly.

本発明は、酸性溶液を岩石に浸漬させた際の反応を検証する採取装置の産業分野で利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized in the industrial field | area of the sampling device which verifies reaction when an acidic solution is immersed in a rock.

本発明の一実施形態例に係る岩石からの溶出元素採取装置の全体構成図である。It is a whole block diagram of the elution element extraction device from the rock concerning one example of the present invention. CO2が地下に貯留された状態の概略断面図である。CO 2 is a schematic cross-sectional view of a state of being stored in the basement. 本発明の他の実施形態例に係る岩石からの溶出元素採取装置の全体構成図である。It is a whole block diagram of the eluting element extraction apparatus from the rock which concerns on the other embodiment of this invention.

符号の説明Explanation of symbols

10 収納容器
11 蓋
12 固定部材
13 リング
14 圧力ゲージ
15 攪拌子
16 メッシュ台
20 供試体
30 二酸化炭素(CO2)ガスタンク
31 配管
32 バルブ
40 二酸化炭素(CO2)ガス
41 二酸化炭素(CO2)飽和溶解溶液
50 ヒータ
51 温度制御装置
100 帯水層
101 縦穴
102 不透水層
103 圧送装置
104 岩石
10 container 11 lid 12 fixed member 13 the ring 14 a pressure gauge 15 stirrer 16 mesh stand 20 specimen 30 carbon dioxide (CO 2) gas tank 31 the pipe 32 valves 40 carbon dioxide (CO 2) gas 41 carbon dioxide (CO 2) saturated Dissolved solution 50 Heater 51 Temperature control device 100 Aquifer 101 Vertical hole 102 Impermeable layer 103 Pumping device 104 Rock

Claims (3)

岩石を浸漬させる溶液が貯留される収納容器と、
前記収納容器に貯留された溶液を前記収納容器外部から遮断する遮断手段と、
前記岩石を浸漬させた反応溶液を前記収納容器から採取する採取手段とを備えることを特徴とする岩石からの溶出元素採取装置。
A storage container in which a solution for immersing rocks is stored;
A blocking means for blocking the solution stored in the storage container from the outside of the storage container;
A device for collecting eluted elements from rock, comprising: a collecting means for collecting the reaction solution in which the rock is immersed from the storage container.
請求項1に記載の岩石からの溶出元素採取装置において、
前記収納容器に収納された岩石を浸潰させる溶液の温度を設定する温度制御手段を備え、
前記温度制御手段は前記収納容器に収納された岩石を浸潰させる溶液の温度を環境に応じ、任意に設定することを特徴とする岩石からの溶出元素採取装置。
In the elution element collection device from the rock according to claim 1,
A temperature control means for setting a temperature of a solution for immersing the rock stored in the storage container;
The temperature control means arbitrarily sets the temperature of a solution for immersing the rock stored in the storage container according to the environment, and a device for collecting eluted elements from rock.
請求項1又は請求項2に記載の岩石からの溶出元素採取装置において、
前記岩石は、二酸化炭素を地中に貯留した場合に人間の生活環境に与える影響を調査するために二酸化炭素が地中に貯留される予定の地層、およびその周辺の地層から採取されたものであることを特徴とする岩石からの溶出元素採取装置。
In the eluting element collection device from the rock according to claim 1 or 2,
The rocks were collected from the strata where carbon dioxide is planned to be stored underground and the surrounding strata to investigate the effects of carbon dioxide stored on the ground on the human living environment. A device for collecting eluted elements from rocks.
JP2007227053A 2007-08-31 2007-08-31 Elution element collection device from rock Expired - Fee Related JP5013419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227053A JP5013419B2 (en) 2007-08-31 2007-08-31 Elution element collection device from rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227053A JP5013419B2 (en) 2007-08-31 2007-08-31 Elution element collection device from rock

Publications (2)

Publication Number Publication Date
JP2009058442A true JP2009058442A (en) 2009-03-19
JP5013419B2 JP5013419B2 (en) 2012-08-29

Family

ID=40554301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227053A Expired - Fee Related JP5013419B2 (en) 2007-08-31 2007-08-31 Elution element collection device from rock

Country Status (1)

Country Link
JP (1) JP5013419B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004663A (en) * 2009-06-25 2011-01-13 Central Res Inst Of Electric Power Ind Carbon dioxide decreasing system by recovery-isolation of sea plankton
CN113763796A (en) * 2020-06-04 2021-12-07 中国石油化工股份有限公司 Experimental device and method for simulating interaction of carbon dioxide saturated fluid and surrounding rock

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111633A (en) * 1991-08-30 1993-05-07 Mitsubishi Materials Corp Reaction and examination vessel
JPH06170210A (en) * 1991-12-10 1994-06-21 Agency Of Ind Science & Technol Hydrothermal reactor
JP2005233895A (en) * 2004-02-23 2005-09-02 Okayama Univ Pressure vessel, sample decomposition device, and pretreatment method for elementary analysis
JP2006336435A (en) * 2005-06-06 2006-12-14 National Institute Of Advanced Industrial & Technology Temperature gradient addition type core holder device and component output behavior time variation measuring method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111633A (en) * 1991-08-30 1993-05-07 Mitsubishi Materials Corp Reaction and examination vessel
JPH06170210A (en) * 1991-12-10 1994-06-21 Agency Of Ind Science & Technol Hydrothermal reactor
JP2005233895A (en) * 2004-02-23 2005-09-02 Okayama Univ Pressure vessel, sample decomposition device, and pretreatment method for elementary analysis
JP2006336435A (en) * 2005-06-06 2006-12-14 National Institute Of Advanced Industrial & Technology Temperature gradient addition type core holder device and component output behavior time variation measuring method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004663A (en) * 2009-06-25 2011-01-13 Central Res Inst Of Electric Power Ind Carbon dioxide decreasing system by recovery-isolation of sea plankton
CN113763796A (en) * 2020-06-04 2021-12-07 中国石油化工股份有限公司 Experimental device and method for simulating interaction of carbon dioxide saturated fluid and surrounding rock
CN113763796B (en) * 2020-06-04 2023-10-13 中国石油化工股份有限公司 Experimental device for simulating interaction between carbon dioxide saturated fluid and surrounding rock

Also Published As

Publication number Publication date
JP5013419B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
Gascoyne Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba
Yan et al. Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada
Stotler et al. Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada
Mickler et al. Potential impacts of CO2 leakage on groundwater chemistry from laboratory batch experiments and field push–pull tests
Gupta et al. Leakage of CO2 from geological storage and its impacts on fresh soil–water systems: a review
JP4993199B2 (en) Rock reactor
Giroud et al. On the fate of oxygen in a spent fuel emplacement drift in Opalinus Clay
Czernichowski-Lauriol et al. Geochemical interactions between CO2, pore-waters and reservoir rocks
Stotler et al. Hydrogeology, chemical and microbial activity measurement through deep permafrost
Kietäväinen Deep groundwater evolution at Outokumpu, Eastern Finland: From meteoric water to saline gas-rich fluid
Feldbusch et al. Alteration of fluid properties during the initial operation of a geothermal plant: results from in situ measurements in Groß Schönebeck
Hortle et al. Groundwater monitoring at the Otway project site, Australia
JP5013419B2 (en) Elution element collection device from rock
JP4993198B2 (en) Rock immersion reactor
JP2009058441A (en) Eluted element sampling device from rock
Rossi et al. Dissolved trace elements dynamics during a rich-CO2-water leakage in a near-surface carbonate freshwater aquifer
AB Äspö Hard Rock Laboratory Annual Report 2017
Kunimaru et al. Groundwater/porewater hydrochemistry at Horonobe URL. Data freeze 1. Preliminary data quality evaluation for boreholes HDB-9, 10 and 11
Wilke et al. Activity concentrations of 238U and 226Ra in two European black shales and their experimentally-derived leachates
Szmigielski Characterizing a groundwater system downgradient of a coal mine waste rock dump, Elk Valley, British Columbia, Canada
Huq et al. Effect of injected CO 2 on geochemical alteration of the Altmark gas reservoir in Germany
Stotler Evolution of Canadian Shield groundwaters and gases: influence of deep permafrost
Kastner et al. THE HYDROGEOLOGY OF THE OCEANIC CRUST
Molaba Determining controlling factors for water stratification in flooded underground mines in an analogue model mine
Townsend et al. Tools and Techniques for Landfill Monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees