JP2009058440A - Gap water extractor of rock by dilution/dispersion system - Google Patents

Gap water extractor of rock by dilution/dispersion system Download PDF

Info

Publication number
JP2009058440A
JP2009058440A JP2007227049A JP2007227049A JP2009058440A JP 2009058440 A JP2009058440 A JP 2009058440A JP 2007227049 A JP2007227049 A JP 2007227049A JP 2007227049 A JP2007227049 A JP 2007227049A JP 2009058440 A JP2009058440 A JP 2009058440A
Authority
JP
Japan
Prior art keywords
rock
pore water
water
dilution
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227049A
Other languages
Japanese (ja)
Other versions
JP4953311B2 (en
Inventor
Eiji Nakada
英二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007227049A priority Critical patent/JP4953311B2/en
Publication of JP2009058440A publication Critical patent/JP2009058440A/en
Application granted granted Critical
Publication of JP4953311B2 publication Critical patent/JP4953311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gap water extractor of a rock by a dilution/dispersion system capable of accelerating the extraction of the gap water from the rock to efficiently extract the gap water. <P>SOLUTION: The gap water extractor of the rock by the dilution/dispersion system includes a housing container 10 for storing ultrapure water 22 in which the rock 21 is immersed, stirrers 12 and 13 for stirring the ultrapure water 22 stored in the housing container 10 and a syring 18 for sampling the ultrapure water 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、希釈・分散方式による岩石の間隙水抽出装置に関し、特に、岩石の間隙水の組成を調査するのに用いて好適なものである。   The present invention relates to an apparatus for extracting pore water from a rock by a dilution / dispersion method, and is particularly suitable for use in investigating the composition of pore water in rock.

近年、地下深部の堆積岩を利用した地下施設の研究が進められている。特に、堆積岩は割れ目が少なく、放射性廃棄物の地層処分の母岩として遮蔽性や自己シール機能などの優れた天然バリア特性を持つことから、地下深部の放射性廃棄物処分施設調査への適用を目的とし、研究が各国で進められている。   In recent years, research on underground facilities using sedimentary rocks in the deep underground has been conducted. In particular, sedimentary rocks have few cracks, and have excellent natural barrier properties such as shielding and self-sealing function as the host rock for geological disposal of radioactive waste, so it is intended to be applied to investigation of radioactive waste disposal facilities in deep underground Research is being carried out in each country.

しかしながら堆積岩は間隙率が大きく、間隙水を多く含むため、その利用には、地盤内での水の動きを正確に把握しておくために、地盤の三次元水理地質構造モデルを構築する必要がある。そして、堆積岩地盤の詳細な水理地質構造モデルを構築するには、対象となる地盤の地質、水理、地化学特性を正確に評価することが必要となる。このうち地化学特性については、対象となる地盤に賦存する地下水を原位置で採取し、分析することにより地下水の水質を正確に把握することが重要となる。   However, sedimentary rocks have a high porosity and contain a large amount of pore water. Therefore, it is necessary to construct a three-dimensional hydrogeological structure model of the ground in order to accurately grasp the movement of water in the ground. There is. In order to build a detailed hydrogeological model of sedimentary rock ground, it is necessary to accurately evaluate the geology, hydraulic and geochemical characteristics of the target ground. Of these, for geochemical characteristics, it is important to accurately understand the quality of groundwater by collecting and analyzing groundwater existing in the target ground in situ.

たとえば深部堆積岩から地下水組成を知るために行われるボーリング掘削では泥水によって地下水が汚染され、原位置地下水を採取することが困難となる。他にも、地盤に高透水層が何層も存在する場合、各地層ごとの間隙水圧の差によって孔内上下に向かう地下水流が生じ、初期状態の地下水を採取することが困難となる。逆に、地盤が低透水の場合、原位置採水装置の能力では地下水の採取が困難であるか長時間を要する。さらに、特定の深度の原位置地下水を採取するためにはパッカーシステムを併用する等の特殊な採水装置が必要であり、費用も膨大となり採水深度が限られる。   For example, in borehole excavation conducted to learn the composition of groundwater from deep sedimentary rocks, groundwater is contaminated by mud, making it difficult to collect in situ groundwater. In addition, when there are many highly permeable layers in the ground, groundwater flows upward and downward in the hole due to the difference in pore water pressure for each layer, making it difficult to collect the groundwater in the initial state. On the other hand, when the ground has low water permeability, it is difficult to collect groundwater with the ability of the in-situ water sampling device or it takes a long time. Furthermore, in order to collect in-situ groundwater at a specific depth, a special water sampling device such as a packer system is required, which increases the cost and limits the water sampling depth.

一方、堆積岩軟岩地盤の地下水は主として岩石の間隙に賦存しており、地盤が低透水の場合には、岩石コアの間隙中から抽出された間隙水が原位置地下水の組成を反映することが多く、地下水水質調査の補完的手段として位置付けることができる。   On the other hand, the groundwater of sedimentary rock soft rock is mainly located in the gap between rocks, and when the ground is low-permeability, the pore water extracted from the gap of the rock core may reflect the composition of in situ groundwater. In many cases, it can be positioned as a complementary means for groundwater quality surveys.

堆積岩の間隙水を抽水する技術としては、遠心分離法及び圧密法が挙げられる。   Examples of techniques for extracting pore water from sedimentary rocks include a centrifugal separation method and a consolidation method.

しかしながら、いずれの抽出法も、抽出される水が間隙中に残留するため、間隙水採取量は少なく、数cc水を必要とする分析のために大量の岩石を処理しなければならない場合があるなど作業が煩雑となり、かつ試料が増えることから採取点が広範囲となり採水される間隙水の組成にバラツキを与える原因となる。   However, in any extraction method, the extracted water remains in the gap, so the amount of pore water collected is small, and a large amount of rock may have to be processed for analysis that requires several cc of water. The operation becomes complicated and the number of samples increases, so that the sampling points become wide and the composition of the pore water collected is varied.

また、岩石を間隙水の抽出に適した形に成形するときは、岩石の間隙水が蒸発するので、極力短時間で岩石を成形することが必要とされる。このため、岩石の間隙水を抽出する装置としては、岩石の成形を要さないか、又は簡易な成形で済むものが望まれている。   In addition, when forming a rock into a shape suitable for extraction of pore water, the rock's pore water evaporates, so it is necessary to form the rock in as short a time as possible. For this reason, as an apparatus for extracting pore water in rocks, an apparatus that does not require rock formation or that can be simply formed is desired.

木方建造・大山隆弘・馬原保典:圧密型岩石抽水装置の製作と深部堆積岩への適用、応用地質、第40巻、第5号、260〜269頁、1999年Kikata Construction, Takahiro Oyama, Yasunori Mahara: Production of compacted rock extraction device and application to deep sedimentary rocks, Applied Geology, Vol. 40, No. 5, 260-269, 1999

本発明は、上記状況に鑑みてなされたもので、岩石からの間隙水の抽出を促進し、効率的に間隙水を抽出することができる希釈・分散方式による岩石の間隙水抽出装置を提供することを目的とする。   The present invention has been made in view of the above situation, and provides a rock pore water extraction apparatus using a dilution / dispersion system that can facilitate the extraction of pore water from rocks and efficiently extract pore water. For the purpose.

上記目的を達成するための請求項1に係る本発明の希釈・分散方式による岩石の間隙水抽出装置は、岩石の間隙水を希釈させる流体と当該岩石とを混合させ一緒に収納する収納容器と、前記流体を攪拌して前記岩石に含まれる間隙水の流体への分散を促進する攪拌手段とを備えることを特徴とする。   In order to achieve the above object, a rock pore water extraction apparatus according to the present invention according to claim 1 according to the present invention comprises a storage container that mixes and stores together a fluid for diluting pore water of a rock and the rock. And stirring means for stirring the fluid to promote dispersion of pore water contained in the rock into the fluid.

請求項1に係る本発明では、岩石が収納容器に収納され、岩石が流体に浸漬されると、岩石の間隙水に含まれる各種成分は流体に抽出される。この結果、収納容器の流体は、間隙水を希釈したものとなる。これにより、間隙水を分析するに際し、流体を改めて水等で希釈する必要は無く、効率的に間隙水の分析を行うことができる。また、攪拌手段により、岩石の間隙水から希釈溶液への元素の分散は促進されるので、より効率的に間隙水を分析できる。   In the present invention according to claim 1, when the rock is stored in the storage container and the rock is immersed in the fluid, various components contained in the pore water of the rock are extracted into the fluid. As a result, the fluid in the storage container is diluted with pore water. Thereby, when analyzing pore water, there is no need to dilute the fluid again with water or the like, and the pore water can be analyzed efficiently. Further, since the dispersion of elements from the rock pore water to the diluted solution is promoted by the stirring means, the pore water can be analyzed more efficiently.

そして、請求項2に係る本発明の希釈・分散方式による岩石の間隙水抽出装置は、請求項1に記載の希釈・分散方式による岩石の間隙水抽出装置において、前記流体を採取する採取手段を備えたことを特徴とする。   According to a second aspect of the present invention, there is provided a rock pore water extraction device using the dilution / dispersion method according to the present invention, wherein the rock pore water extraction device using the dilution / dispersion method according to the first aspect comprises a sampling means for collecting the fluid. It is characterized by having.

請求項2に係る本発明では、収納容器内に岩石を収納したまま、岩石の間隙水を採取手段により採取できる。これにより、流体により希釈される間隙水の水質変化を連続的に観察することができる。   In the present invention according to claim 2, the rock water in the rock can be collected by the collecting means while the rock is stored in the storage container. Thereby, the water quality change of the pore water diluted with the fluid can be continuously observed.

また、請求項3に係る本発明の希釈・分散方式による岩石の間隙水抽出装置は、請求項1又は請求項2に記載の希釈・分散方式による岩石の間隙水抽出装置において、前記攪拌手段は、前記収納容器に配置された攪拌子を具備するマグネティックスターラであり、前記収納容器には、前記岩石が載置される台座部と前記台座部を支持する脚部とから構成される支持台が立設され、前記支持台の台座部には、前記岩石の径よりも小さな径の貫通孔が設けられていることを特徴とする。   According to a third aspect of the present invention, there is provided the rock pore water extraction device by the dilution / dispersion method according to the present invention, wherein the stirring means is the rock pore water extraction device by the dilution / dispersion method according to the first or second aspect. The magnetic stirrer includes a stirrer disposed in the storage container, and the storage container includes a support base including a base portion on which the rock is placed and a leg portion that supports the base portion. The pedestal portion of the support stand is provided with a through hole having a diameter smaller than the diameter of the rock.

請求項3に係る本発明では、支持台を介して岩石が収納容器内に収納されるので、攪拌子の回動が岩石に阻害されることはない。   In this invention which concerns on Claim 3, since a rock is accommodated in a storage container via a support stand, rotation of a stirrer is not inhibited by a rock.

また、請求項4に係る本発明の岩石の間隙水の採取方法は、請求項2又は請求項3に記載する希釈・分散方式による岩石の間隙水抽出装置を用いた岩石の間隙水の採取方法であって、流体に岩石を浸漬すると共に前記攪拌手段により流体を攪拌する工程と、前記攪拌手段を停止させる工程と、前記採取手段で前記収納容器から岩石の間隙水を抽出する工程とを備えることを特徴とする。   Further, the rock pore water collecting method according to claim 4 of the present invention is a rock pore water collecting method using the rock pore water extraction device according to claim 2 or claim 3 by the dilution / dispersion method. A step of immersing rock in a fluid and stirring the fluid by the stirring means; a step of stopping the stirring means; and a step of extracting pore water of the rock from the storage container by the sampling means. It is characterized by that.

請求項4に係る本発明では、流体に岩石を浸漬させることで岩石の間隙水が当該流体に抽出され、攪拌手段で攪拌させることで抽出が促進される。また、攪拌手段を停止させることで、液体中の岩石の懸濁物が収納容器の下に沈降する。その後、採取手段により収納容器内の流体を取り出す。取り出した流体の組成は抽出した流体を分析することで求められる。   In the present invention according to claim 4, the rock pore water is extracted into the fluid by immersing the rock in the fluid, and the extraction is promoted by stirring with the stirring means. Moreover, the suspension of the rock in a liquid sinks under a storage container by stopping a stirring means. Thereafter, the fluid in the storage container is taken out by the collecting means. The composition of the extracted fluid is obtained by analyzing the extracted fluid.

本発明の希釈・分散方式による岩石の間隙水抽出装置及び岩石の間隙水の採取方法は、岩石の間隙水を抽出して効率的に分析することができる。   The rock pore water extraction apparatus and the rock pore water extraction method according to the present invention using a dilution / dispersion method can extract rock pore water and efficiently analyze it.

以下本発明の実施形態例を図面に基づいて説明する。図1には本発明の実施形態に係る希釈・分散方式による岩石の間隙水抽出装置の分解斜視、図2には希釈・分散方式による岩石の間隙水抽出装置の使用時の態様、図3には岩石の間隙水が抽出される態様を示してある。なお、図示の実施形態例は例示であり、本発明は以下の説明に限定されない。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view of a rock pore water extraction device using a dilution / dispersion method according to an embodiment of the present invention, FIG. 2 is a diagram illustrating a mode of using a rock pore water extraction device using a dilution / dispersion method, and FIG. Shows the manner in which pore water in the rock is extracted. The illustrated embodiment is an exemplification, and the present invention is not limited to the following description.

図1に基づいて希釈・分散方式による岩石の間隙水抽出装置の全体構成を説明する。   Based on FIG. 1, the whole structure of the rock pore water extraction apparatus by a dilution / dispersion system is demonstrated.

図1に示すように、本実施形態に係る希釈・分散方式による岩石の間隙水抽出装置は、収納容器10を備えている。収納容器10は、内部に攪拌子12及び支持台14を収納し得る形状に形成された円筒形の容器である。収納容器10には、収納容器10の開口を塞ぐ蓋11が着脱自在に取付けられ、蓋11の側面には、環状のゴムリング26が嵌合されている。ゴムリング26は、蓋11の側面と収納容器10の内面との間隙を埋めるものである。また、蓋11は、ゴムリング26を介して、収納容器10の内面に沿って摺動する。すなわち、蓋11は、収納容器10の開口を塞いだ状態で、上下に移動自在になっている。なお、収納容器10及び蓋11は、耐食の合金、例えばニッケルを主成分とするハステロイ(登録商標)で好適に形成することができる。   As shown in FIG. 1, the rock pore water extraction apparatus according to the present embodiment using a dilution / dispersion system includes a storage container 10. The storage container 10 is a cylindrical container formed in a shape capable of storing the stirring bar 12 and the support base 14 therein. A lid 11 that closes the opening of the storage container 10 is detachably attached to the storage container 10, and an annular rubber ring 26 is fitted to the side surface of the lid 11. The rubber ring 26 fills a gap between the side surface of the lid 11 and the inner surface of the storage container 10. Further, the lid 11 slides along the inner surface of the storage container 10 via the rubber ring 26. That is, the lid 11 is movable up and down while closing the opening of the storage container 10. The storage container 10 and the lid 11 can be suitably formed of a corrosion-resistant alloy, for example, Hastelloy (registered trademark) whose main component is nickel.

攪拌子12は、スターラ13と共に攪拌手段を構成するものである。本実施形態では、いわゆるマグネティックスターラを用いている。攪拌子12は、平面視で十字型に形成した平板部材であり、収納容器10内の底部に配設される。   The stirrer 12 constitutes a stirring means together with the stirrer 13. In this embodiment, a so-called magnetic stirrer is used. The stirrer 12 is a flat plate member formed in a cross shape in plan view, and is disposed at the bottom of the storage container 10.

スターラ13は、上面に収納容器10が載置され、収納容器10内に配設された攪拌子12を磁力で回動させるものである。詳言すると、スターラ13には、棒状の磁石(図示せず)が設けられており、この磁石は駆動用モータ(図示せず)により水平面内で回動させられる。駆動用モータが回動すると、スターラ13の磁石も回動するので、収納容器10内の攪拌子12は、スターラ13の磁石の回動にあわせて回動する。   The stirrer 13 has the storage container 10 mounted on the upper surface thereof, and rotates the stirrer 12 disposed in the storage container 10 by a magnetic force. Specifically, the stirrer 13 is provided with a rod-shaped magnet (not shown), and this magnet is rotated in a horizontal plane by a driving motor (not shown). When the drive motor rotates, the magnet of the stirrer 13 also rotates, so that the stirrer 12 in the storage container 10 rotates in accordance with the rotation of the magnet of the stirrer 13.

支持台14は、台座部15と、複数の脚部16(本実施形態では4本)とを具備している。台座部15は、平板部材であり、台座部15の上面には、岩石が載置される。台座部15には、厚さ方向に貫通する貫通孔17が複数個設けられている。この貫通孔17の直径は、台座部15に載置される岩石の径よりも小さい。また、脚部16は、台座部15の下面に取付けられ、先端が下方に向けて延設されている。   The support base 14 includes a pedestal portion 15 and a plurality of leg portions 16 (four in this embodiment). The pedestal portion 15 is a flat plate member, and rocks are placed on the upper surface of the pedestal portion 15. The pedestal 15 is provided with a plurality of through-holes 17 that penetrate in the thickness direction. The diameter of the through hole 17 is smaller than the diameter of the rock placed on the pedestal portion 15. Moreover, the leg part 16 is attached to the lower surface of the base part 15, and the front-end | tip is extended toward the downward direction.

なお、支持台14の脚部16は、収納容器10内に支持台14が配設されたとき、攪拌子12の回動を阻害しない程度の空間が台座部15の下方に確保されるように形成されている。   Note that the leg 16 of the support base 14 is secured below the pedestal 15 so that when the support base 14 is disposed in the storage container 10, a space that does not hinder the rotation of the stirrer 12 is secured. Is formed.

本実施形態の間隙水抽出装置には、採取手段の一例であるシリンジ18が設けられている。また、蓋11には、厚さ方向に貫通する取水口19が設けられ、シリンジ18は、取水口19を介して収納容器10内部に連通している。   The interstitial water extraction apparatus of this embodiment is provided with a syringe 18 that is an example of a collecting means. Further, the lid 11 is provided with a water intake port 19 penetrating in the thickness direction, and the syringe 18 communicates with the inside of the storage container 10 through the water intake port 19.

図2に基づいて希釈・分散方式による岩石の間隙水抽出装置の使用時の態様を説明する。   Based on FIG. 2, the mode at the time of use of the rock pore water extraction apparatus by a dilution and dispersion system is demonstrated.

図2に示すように、スターラ13の上面には、収納容器10が載置されている。収納容器10内の底部には、攪拌子12が配設され、攪拌子12を覆うように支持台14が配設されている。更に、支持台14の台座部15には、岩石21が載置されている。   As shown in FIG. 2, the storage container 10 is placed on the upper surface of the stirrer 13. A stirrer 12 is disposed at the bottom of the storage container 10, and a support base 14 is disposed so as to cover the stirrer 12. Furthermore, a rock 21 is placed on the pedestal 15 of the support base 14.

ここで収納容器10に予め重量を計測した流体の一例である超純水22を注ぎ込み、岩石21を浸潰させる。収納容器10の開口を蓋11で塞ぎ、収納容器10内の上部に溜まった大気を取水口19を介してシリンジ18から排気させる。このとき、収納容器10に溜まった大気と一緒に超純水22がシリンジ18に排出させられた場合は、シリンジ風体とシリンジの総重量から排出させられた超純水22の重量を測定した上で、これは廃棄する。   Here, ultrapure water 22, which is an example of a fluid whose weight has been measured in advance, is poured into the storage container 10, and the rock 21 is crushed. The opening of the storage container 10 is closed with the lid 11, and the air accumulated in the upper part of the storage container 10 is exhausted from the syringe 18 through the water inlet 19. At this time, when the ultrapure water 22 is discharged into the syringe 18 together with the air accumulated in the storage container 10, the weight of the ultrapure water 22 discharged from the total weight of the syringe air body and the syringe is measured. So this is discarded.

スターラ13の駆動用モータの回動により攪拌子12が回動すると、超純水22が攪拌される。なお、支持台14の貫通孔17は、攪拌子12により攪拌される超純水22の通り道となるものであり、超純水22の攪拌を円滑にするために設けられている。   When the stirrer 12 is rotated by the rotation of the drive motor of the stirrer 13, the ultrapure water 22 is stirred. The through hole 17 of the support base 14 becomes a passage for the ultrapure water 22 stirred by the stirrer 12, and is provided for smooth stirring of the ultrapure water 22.

攪拌により、岩石21に含まれる間隙水が岩石21外に流出し、超純水22に混合し、次第に超純水22は、間隙水を希釈したものとなる。以下、超純水22で希釈された間隙水を希釈間隙水と称する。   By the stirring, the pore water contained in the rock 21 flows out of the rock 21 and is mixed with the ultrapure water 22, and the ultrapure water 22 gradually dilutes the pore water. Hereinafter, pore water diluted with ultrapure water 22 is referred to as diluted pore water.

収納容器10内の希釈間隙水(超純水22)の採取に際しては、スターラ13を停止して攪拌を停止させ、岩石21の懸濁物を収納容器10の下に沈降させたうえで、収納容器10を塞ぐ蓋11を下方に移動させることにより行う。蓋11の移動により、希釈間隙水(超純水22)は蓋11に押圧され、シリンジ18に押出される。このように、シリンジ18は、大気との接触なしに希釈間隙水の採取を可能としている。   When collecting the diluted pore water (ultra pure water 22) in the storage container 10, the stirrer 13 is stopped to stop stirring, and the suspension of the rock 21 is allowed to settle below the storage container 10 and then stored. This is done by moving the lid 11 that closes the container 10 downward. Due to the movement of the lid 11, the diluted pore water (ultra pure water 22) is pressed by the lid 11 and pushed out by the syringe 18. In this manner, the syringe 18 can collect diluted pore water without contact with the atmosphere.

この希釈間隙水の組成は、別途求めた岩石の含水比から抽出に使用した岩石に含まれる間隙水の量を算出し、当該間隙水を希釈させる超純水との混合比を計算し、この混合比を抽出した希釈間隙水の分析値に乗ずることで求められる。   The composition of this diluted pore water is calculated by calculating the amount of pore water contained in the rock used for extraction from the water content ratio of the rock obtained separately, and calculating the mixing ratio with ultrapure water that dilutes the pore water. The mixing ratio is obtained by multiplying the extracted analysis value of the diluted pore water.

この希釈間隙水の組成(X)は、別途求めた岩石の含水比から抽出に使用した岩石に含まれる間隙水の量(g)(A)を算出し、当該間隙水(B)を希釈させる超純水(g)(C)との混合比(D)を計算し、この混合比(D)を抽出した希釈間隙水の分析値(E)に乗ずることで求められる(下記数1参照)。   The composition (X) of this diluted pore water calculates the amount (g) (A) of pore water contained in the rock used for extraction from the water content ratio of the rock obtained separately, and dilutes the pore water (B). Calculated by calculating the mixing ratio (D) with ultrapure water (g) and (C) and multiplying this mixing ratio (D) by the analysis value (E) of the diluted pore water (see Equation 1 below) .

Figure 2009058440
Figure 2009058440

上記構成の希釈・分散方式による岩石の間隙水抽出装置では、岩石21は超純水22に浸漬されるので、岩石21に含まれる間隙水から、当該間隙水に溶存する成分が、岩石21外部に抽出され、超純水22に混合する。すなわち、超純水22は間隙水を希釈したものとなる。そして、間隙水の成分が溶存する超純水22をシリンジ18に採取できるので、岩石21の間隙水を分析することが可能となっている。   In the rock pore water extraction apparatus using the dilution / dispersion system configured as described above, the rock 21 is immersed in the ultrapure water 22, so that components dissolved in the pore water from the pore water contained in the rock 21 are outside the rock 21. And mixed with ultrapure water 22. That is, the ultrapure water 22 is obtained by diluting pore water. And since the ultrapure water 22 in which the pore water component is dissolved can be collected in the syringe 18, the pore water in the rock 21 can be analyzed.

また、スターラ13を稼働させると攪拌子12の回動により、収納容器10内の超純水22が攪拌されるので、岩石21の間隙水の抽出を短時間で行える。   Further, when the stirrer 13 is operated, the ultrapure water 22 in the storage container 10 is agitated by the rotation of the stirrer 12, so that the pore water in the rock 21 can be extracted in a short time.

図3に基づいて、岩石21の間隙水の抽出を短時間で行えることを詳細に説明する。   Based on FIG. 3, it demonstrates in detail that extraction of the pore water of the rock 21 can be performed in a short time.

図3に示すように、岩石21の間隙には、地下水等の間隙水23が存在する。間隙水には、間隙水の成分の一例であるナトリウム(Na)が溶存している。一方、収納容器10(図1、図2参照)には希釈された間隙水を分析する方法(イオンクロマトグラフやICP分析)ではイオンの存在を検知できない超純水22が貯留されている。間隙水23と超純水22とではナトリウムイオンの濃度が異なるので、この濃度の勾配により、ナトリウムイオンが超純水22に移動することになる。   As shown in FIG. 3, pore water 23 such as ground water exists in the gap between the rocks 21. Sodium (Na), which is an example of a component of pore water, is dissolved in the pore water. On the other hand, the storage container 10 (see FIGS. 1 and 2) stores ultrapure water 22 in which the presence of ions cannot be detected by a method of analyzing diluted pore water (ion chromatography or ICP analysis). Since the concentration of sodium ions is different between the pore water 23 and the ultrapure water 22, sodium ions move to the ultrapure water 22 due to the gradient of this concentration.

ここで、攪拌子12による超純水22の攪拌が行われないとすると、岩石21の近傍においては超純水22のナトリウムイオンの濃度は高くなる。したがって、ナトリウムイオンの濃度の勾配が小さくなることになるので、ナトリウムイオンが超純水22に抽出し難くなる。もちろん、超純水22のナトリウムイオンの濃度は徐々に均質化するが、時間が掛かる。   Here, if stirring of the ultrapure water 22 by the stirrer 12 is not performed, the concentration of sodium ions in the ultrapure water 22 increases in the vicinity of the rock 21. Accordingly, the concentration gradient of sodium ions becomes small, so that sodium ions are difficult to extract into the ultrapure water 22. Of course, the concentration of sodium ions in the ultrapure water 22 is gradually homogenized, but it takes time.

一方、攪拌子12により超純水22の攪拌が行われると、超純水22のナトリウムイオンの濃度が均質化されるので、岩石21の近傍にてナトリウムイオンの濃度の勾配が小さくならず、岩石21の間隙水23のナトリウムイオンの抽出を短時間で行える。   On the other hand, when the ultrapure water 22 is stirred by the stirrer 12, the concentration of sodium ions in the ultrapure water 22 is homogenized, so that the gradient of sodium ion concentration in the vicinity of the rock 21 is not reduced. Extraction of sodium ions in the pore water 23 of the rock 21 can be performed in a short time.

以上説明したように、本実施形態の希釈・分散方式による岩石の間隙水抽出装置では、岩石21の間隙水23からナトリウムイオン等の各種成分が超純水22に抽出し、シリンジ18で希釈間隙水として採取することができる。この結果、岩石21の間隙水23の水質を分析することができる。また、攪拌子12及びスターラ13を用いることで、短時間で間隙水23の抽出を行える。   As described above, in the rock pore water extraction apparatus according to the present embodiment using the dilution / dispersion method, various components such as sodium ions are extracted from the pore water 23 of the rock 21 into the ultrapure water 22 and diluted with the syringe 18. Can be collected as water. As a result, the water quality of the pore water 23 of the rock 21 can be analyzed. Further, by using the stirrer 12 and the stirrer 13, the pore water 23 can be extracted in a short time.

また、岩石21から抽出したイオンナトリウムなどの各種成分は、超純水22に溶け込むことになるので、岩石21の間隙水23は超純水22で希釈されたことになる。よって、従来技術においては、間隙水を抽出し、この間隙水を分析するに際し、間隙水を水で希釈するという作業を要していたが、本発明では希釈する作業は不要となるので、効率的に間隙水を分析できる。   Moreover, since various components such as ionic sodium extracted from the rock 21 are dissolved in the ultrapure water 22, the pore water 23 of the rock 21 is diluted with the ultrapure water 22. Therefore, in the prior art, when extracting the pore water and analyzing the pore water, it was necessary to dilute the pore water with water. It is possible to analyze pore water.

他に、図2に示したように、岩石21は、収納容器10内に収まればよく、岩石21の成形に複雑な作業は要求されないので、岩石21の成形時に間隙水が蒸発することを極力抑えることができる。   In addition, as shown in FIG. 2, the rock 21 only needs to be accommodated in the storage container 10, and complicated work is not required for the formation of the rock 21, so that the pore water evaporates as much as possible when the rock 21 is formed. Can be suppressed.

更に、収納容器10に封止されたままの水をシリンジ18で採取できるので、超純水22の水質の変化を連続的に観察することができる。   Furthermore, since the water that is still sealed in the storage container 10 can be collected by the syringe 18, changes in the water quality of the ultrapure water 22 can be continuously observed.

なお、収納容器10としては、本実施形態により示されたものに限定されない。例えば、シリンジであってもよい。シリンジは、容積が可変であるため、試料の大きさにあわせた容積の収納容器を提供することができる。   In addition, as the storage container 10, it is not limited to what was shown by this embodiment. For example, a syringe may be used. Since the volume of the syringe is variable, it is possible to provide a storage container having a volume that matches the size of the sample.

本発明は、岩石に含まれる間隙水を採取し、検証する産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field in which pore water contained in rocks is collected and verified.

本発明の実施形態に係る希釈・分散方式による岩石の間隙水抽出装置の分解斜視図である。1 is an exploded perspective view of a rock pore water extraction apparatus using a dilution / dispersion method according to an embodiment of the present invention. 希釈・分散方式による岩石の間隙水抽出装置の使用時の態様を示す図である。It is a figure which shows the aspect at the time of use of the rock pore water extraction apparatus by a dilution and dispersion system. 岩石の間隙水が抽出される態様を示す概念図である。It is a conceptual diagram which shows the aspect from which the pore water of a rock is extracted.

符号の説明Explanation of symbols

10 収納容器
11 蓋
12 攪拌子
13 スターラ
14 支持台
15 台座部
16 脚部
17 貫通孔
18 シリンジ
19 取水口
21 岩石
22 超純水
23 間隙水
26 ゴムリング
DESCRIPTION OF SYMBOLS 10 Storage container 11 Cover 12 Stirrer 13 Stirrer 14 Support stand 15 Base part 16 Leg part 17 Through-hole 18 Syringe 19 Water intake 21 Rock 22 Ultrapure water 23 Pore water 26 Rubber ring

Claims (4)

岩石の間隙水を希釈させる流体と当該岩石とを混合させ一緒に収納する収納容器と、
前記流体を攪拌して前記岩石に含まれる間隙水の流体への分散を促進する攪拌手段とを備えることを特徴とする希釈・分散方式による岩石の間隙水抽出装置。
A storage container for mixing and storing a fluid for diluting pore water in the rock and the rock;
An apparatus for extracting pore water from a rock by a dilution / dispersion system, comprising stirring means for stirring the fluid to promote dispersion of pore water contained in the rock into the fluid.
請求項1に記載の希釈・分散方式による岩石の間隙水抽出装置において、
前記流体を採取する採取手段を備えたことを特徴とする希釈・分散方式による岩石の間隙水抽出装置。
In the rock pore water extraction device by the dilution / dispersion method according to claim 1,
An apparatus for extracting pore water from a rock by a dilution / dispersion system, comprising a collecting means for collecting the fluid.
請求項1又は請求項2に記載の希釈・分散方式による岩石の間隙水抽出装置において、
前記攪拌手段は、前記収納容器に配置された攪拌子を具備するマグネティックスターラであり、
前記収納容器には、前記岩石が載置される台座部と前記台座部を支持する脚部とから構成される支持台が立設され、
前記支持台の台座部には、前記岩石の径よりも小さな径の貫通孔が設けられていることを特徴とする希釈・分散方式による岩石の間隙水抽出装置。
In the rock pore water extraction device by the dilution / dispersion method according to claim 1 or 2,
The stirring means is a magnetic stirrer provided with a stirring bar disposed in the storage container,
In the storage container, a support base composed of a pedestal part on which the rock is placed and a leg part that supports the pedestal part is erected,
An apparatus for extracting pore water from a rock by a dilution / dispersion system, wherein a through hole having a diameter smaller than the diameter of the rock is provided in a pedestal portion of the support base.
請求項2又は請求項3に記載する希釈・分散方式による岩石の間隙水抽出装置を用いた岩石の間隙水の採取方法であって、
流体に岩石を浸漬すると共に前記攪拌手段により流体を攪拌する工程と、
前記攪拌手段を停止させる工程と、
前記採取手段で前記収納容器から岩石の間隙水を抽出する工程と
を備えることを特徴とする岩石の間隙水の採取方法。
A method for collecting rock pore water using the rock pore water extraction device according to the dilution / dispersion method according to claim 2 or claim 3,
Immersing rock in the fluid and stirring the fluid by the stirring means;
Stopping the stirring means;
A step of extracting rock pore water from the storage container by the collecting means.
JP2007227049A 2007-08-31 2007-08-31 How to collect rock pore water Expired - Fee Related JP4953311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227049A JP4953311B2 (en) 2007-08-31 2007-08-31 How to collect rock pore water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227049A JP4953311B2 (en) 2007-08-31 2007-08-31 How to collect rock pore water

Publications (2)

Publication Number Publication Date
JP2009058440A true JP2009058440A (en) 2009-03-19
JP4953311B2 JP4953311B2 (en) 2012-06-13

Family

ID=40554299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227049A Expired - Fee Related JP4953311B2 (en) 2007-08-31 2007-08-31 How to collect rock pore water

Country Status (1)

Country Link
JP (1) JP4953311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932248A (en) * 2017-03-02 2017-07-07 中国地质大学(武汉) Portable pore water pressure squeezes device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170210A (en) * 1991-12-10 1994-06-21 Agency Of Ind Science & Technol Hydrothermal reactor
JP2006133069A (en) * 2004-11-05 2006-05-25 Railway Technical Res Inst Analyzer of liquid and analysis method of liquid
JP2006145273A (en) * 2004-11-17 2006-06-08 Railway Technical Res Inst Recovery device of liquid, liquid recovering cell, and liquid recovering method
JP2007120995A (en) * 2005-10-25 2007-05-17 Matsushita Electric Works Ltd Device for measuring chemical substance emission rate
JP2007199033A (en) * 2006-01-30 2007-08-09 Central Res Inst Of Electric Power Ind Rare gas extraction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170210A (en) * 1991-12-10 1994-06-21 Agency Of Ind Science & Technol Hydrothermal reactor
JP2006133069A (en) * 2004-11-05 2006-05-25 Railway Technical Res Inst Analyzer of liquid and analysis method of liquid
JP2006145273A (en) * 2004-11-17 2006-06-08 Railway Technical Res Inst Recovery device of liquid, liquid recovering cell, and liquid recovering method
JP2007120995A (en) * 2005-10-25 2007-05-17 Matsushita Electric Works Ltd Device for measuring chemical substance emission rate
JP2007199033A (en) * 2006-01-30 2007-08-09 Central Res Inst Of Electric Power Ind Rare gas extraction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932248A (en) * 2017-03-02 2017-07-07 中国地质大学(武汉) Portable pore water pressure squeezes device

Also Published As

Publication number Publication date
JP4953311B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
Baveye et al. Emergent properties of microbial activity in heterogeneous soil microenvironments: different research approaches are slowly converging, yet major challenges remain
US11579049B2 (en) Diffusive gradients in thin films (DGT) probe test device for sediment core in lake and test method using the same
WO2016007170A1 (en) Imaging a porous rock sample using a nanoparticle suspension
Leybourne et al. Groundwater in geochemical exploration
US20120197526A1 (en) Procedure for the determination of effective and total porosity of carbonated sedimentary rocks, and morphology characterization of their micro and nanopores
FI120164B (en) Method and equipment to enhance ore exploration
Tuit et al. A review of marine sediment sampling methods
Batley et al. Sediment sampling, sample preparation and general analysis
CN110470584B (en) Method for evaluating comprehensive effect of imbibition and water lock
Lichtschlag et al. Impact of CO2 leakage from sub-seabed carbon dioxide storage on sediment and porewater geochemistry
Perez-Santana et al. Total and partial digestion of sediments for the evaluation of trace element environmental pollution
Proteau et al. Impact of roots on hydrogeological parameters supporting the performance of a cover with capillary barrier effects
Moncur et al. Pore-water extraction from the unsaturated and saturated zones
JP4953311B2 (en) How to collect rock pore water
Yuan et al. A laboratory study of sediment and contaminant release during gas ebullition
TWM612722U (en) Passive sampler for detecting environmental pollutants below surface
Jeandel et al. New tools, new discoveries in marine geochemistry
Delemos et al. Rapid dissolution of soluble uranyl phases in arid, mine-impacted catchments near Church Rock, NM
Kennel Advances in rock core VOC analyses for high resolution characterization of chlorinated solvent contamination in a dolostone aquifer
Kuka et al. A new method for the extraction of undisturbed soil samples for X-ray computed tomography
Verba et al. Petrophysical characterization of the Bakken Shale for carbon storage investigation
Nakata et al. Evaluation of δ2H and δ18O of water in pores extracted by compression method-effects of closed pores and comparison to direct vapor equilibration and laser spectrometry method
CN104730225B (en) A kind of ground saturation degree on-site testing device and method
Inui et al. Evaluating the long-term leaching characteristics of heavy metals in excavated rocks
Engelhardt Stories of Noble Gases in Low Permeable Sediments, Hydrothermal Systems, and Groundwater in the Sea

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

R150 Certificate of patent or registration of utility model

Ref document number: 4953311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees