JP2009057437A - Composite material comprising polybenzoxazine-based resin and ionic liquid, and method for producing the same - Google Patents

Composite material comprising polybenzoxazine-based resin and ionic liquid, and method for producing the same Download PDF

Info

Publication number
JP2009057437A
JP2009057437A JP2007224956A JP2007224956A JP2009057437A JP 2009057437 A JP2009057437 A JP 2009057437A JP 2007224956 A JP2007224956 A JP 2007224956A JP 2007224956 A JP2007224956 A JP 2007224956A JP 2009057437 A JP2009057437 A JP 2009057437A
Authority
JP
Japan
Prior art keywords
ionic liquid
resin composition
polybenzoxazine
group
benzoxazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007224956A
Other languages
Japanese (ja)
Inventor
Takehiro Kawachi
岳大 河内
Minori Obara
みのり 小原
Tsutomu Takeichi
力 竹市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2007224956A priority Critical patent/JP2009057437A/en
Publication of JP2009057437A publication Critical patent/JP2009057437A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ionic liquid-containing resin composition having a high moldability and necessary heat resistance in order to practically use the ionic liquid as a constituent material of an electrochemical device, and a method for producing the same. <P>SOLUTION: This resin composition using the polybenzoxazine-based resin and ionic liquid as the constituent materials is prepared by performing a ring-opening polymerization of a benzoxazine-based monomer in the presence of the ionic liquid. As the ionic liquid, at least one is selected from the group consisting of salts of imidazolium, pyrrolidinium, pyridinium, ammonium, phosphonium and sulfonium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ポリベンゾオキサジン系樹脂とイオン液体を構成材料とする樹脂組成物に関する。特にイオン液体存在下でのベンゾオキサジンの開環重合により得られる樹脂組成物、及びその製造法に関する。
The present invention relates to a resin composition comprising a polybenzoxazine-based resin and an ionic liquid as constituent materials. In particular, the present invention relates to a resin composition obtained by ring-opening polymerization of benzoxazine in the presence of an ionic liquid, and a method for producing the same.

ポリベンゾオキサジン系樹脂は環状モノマーの開環重合により得られる比較的新しいフェノール系合成樹脂である(非特許文献1、非特許文献2、特許文献1、特許文献2、特許文献3)。ポリベンゾオキサジン系樹脂は、重合触媒が不要、耐熱性、難燃性、硬化時に副生成物を生成しない、寸法安定性が良いなどといった長所があるが、重合温度が約 240℃と高く、得られる樹脂が脆いという短所もある。 Polybenzoxazine-based resins are relatively new phenol-based synthetic resins obtained by ring-opening polymerization of cyclic monomers (Non-patent Document 1, Non-patent Document 2, Patent Document 1, Patent Document 2, and Patent Document 3). Polybenzoxazine-based resins do not require a polymerization catalyst, have heat resistance, flame retardancy, no by-products during curing, good dimensional stability, etc., but the polymerization temperature is as high as about 240 ° C. Another disadvantage is that the resin is brittle.

一方、常温付近で液体状態の塩であるイオン液体は、不揮発性、高耐熱性、難燃性、高い化学的安定性などの特徴を有していることから、揮発性有機溶媒の代替溶媒として期待されている(非特許文献3)。またイオン液体は、高イオン伝導性、広い電位窓を有するなどの特性から、リチウムイオン電池(非特許文献4)、燃料電池(非特許文献5)、太陽電池(非特許文献6)、キャパシター(非特許文献7)などの構成材料、すなわち、電気化学的デバイスとしての応用展開もなされている。 On the other hand, ionic liquid, which is a salt in a liquid state at around room temperature, has characteristics such as non-volatility, high heat resistance, flame retardancy, and high chemical stability. It is expected (Non-patent Document 3). In addition, ionic liquids have characteristics such as high ion conductivity and a wide potential window, so that lithium ion batteries (Non-Patent Document 4), fuel cells (Non-Patent Document 5), solar cells (Non-Patent Document 6), capacitors ( Non-patent literature 7) and the like, that is, application development as an electrochemical device has also been made.

このようなイオン液体の電気化学的デバイスへの使用には、高い成形加工性が要求されるため、高分子材料との複合化が必要不可欠である。実際、イオン液体単体で、デバイス化されることは稀であり、高分子材料との複合体であるイオンゲルとして用いられている(非特許文献3〜6)が耐熱性に課題がある。通常、電気化学的デバイスは、100℃以上の高温度域で安定に作動することが望まれており、デバイス構成材料の耐熱性を高める必要がある。
特開2000−34339 特開2007−45968 特開2007−45968 特開2007−70631 Ishida,H.;Ning,X. J.Polym.Sci.Part A,Polym.Chem.1994,32,1121. 竹市 力,小宮 巌,高山雄二,強化プラスチックス 1997,43,109. Welton,T.Chem.Rev.1999,99,2071 Sun,J.;MacFarlane,D.R.;Forsyth,M. Solid State Ionics 2002,147,333. Doyle,M.;Choi,S.K.;Proulx,G. J.Electrochem.Soc.2000,147,34. Wang,P.;Zakeeruddin,S.M.;Exnar,I.; Gratzel,M.Chem.Commun.2002,2972. Stenger−Smith,J.D.;Webber,C.K.;Anderson,N.;Chafin,A.P.;Zong,K.;Reynolds,R. J.Elecrochem.Soc.2002,149A,973.
In order to use such an ionic liquid in an electrochemical device, high moldability is required, so that it is indispensable to make a composite with a polymer material. In fact, it is rare that a ionic liquid is used as a device, and it is used as an ion gel that is a composite with a polymer material (Non-Patent Documents 3 to 6), but there is a problem in heat resistance. Usually, an electrochemical device is desired to operate stably in a high temperature range of 100 ° C. or higher, and it is necessary to increase the heat resistance of the device constituent material.
JP 2000-34339 JP2007-45968 JP2007-45968 JP2007-70631A Ishida, H .; Ning, X .; J. et al. Polym. Sci. Part A, Polym. Chem. 1994, 32, 1121. Takeshi Riki, Jun Komiya, Yuji Takayama, Reinforced Plastics 1997, 43, 109. Welton, T.W. Chem. Rev. 1999, 99, 2071 Sun, J. et al. MacFarlane, D .; R. Forsyth, M .; Solid State Ionics 2002, 147, 333. Doyle, M .; Choi, S .; K. Proulx, G .; J. et al. Electrochem. Soc. 2000, 147, 34. Wang, P.A. Zakeeruddin, S .; M.M. Exnar, I .; Gratzel, M .; Chem. Commun. 2002, 2972. Stanger-Smith, J. et al. D. Webber, C .; K. Anderson, N .; Chafin, A .; P. Zong, K .; Reynolds, R .; J. et al. Elecrochem. Soc. 2002, 149A, 973.

イオン液体を構成材料とする電気化学デバイスを実用するために、イオン液体を構成材料とし、かつフィルム状などに容易に加工できる高い成形性と必要な耐熱性を有する樹脂組成物を得ることが、本発明が解決しようとする課題である。
In order to put an electrochemical device having an ionic liquid as a constituent material into practical use, it is possible to obtain a resin composition having a high moldability and a necessary heat resistance that can be easily processed into a film shape using the ionic liquid as a constituent material. It is a problem to be solved by the present invention.

本発明者らは、イオン液体の存在下でベンゾオキサジンの開環重合を行うことで、ポリベンゾオキサジンとイオン液体を構成材料とする樹脂組成物を作成できることを発見し、本発明を完成した。本発明は、[1]〜[6]に示す事項により特定される。 The present inventors have discovered that a resin composition comprising polybenzoxazine and an ionic liquid can be prepared by carrying out ring-opening polymerization of benzoxazine in the presence of an ionic liquid, thereby completing the present invention. The present invention is specified by the items shown in [1] to [6].

[1]ポリベンゾオキサジン系樹脂とイオン液体を構成材料とする樹脂組成物。 [1] A resin composition comprising a polybenzoxazine-based resin and an ionic liquid as constituent materials.

[2]前記 [1]に記載の樹脂組成物が追加の成分を含んでなる樹脂組成物。 [2] A resin composition in which the resin composition according to [1] includes an additional component.

[3]前記ポリベンゾオキサジン系樹脂100重量部に対し、前記イオン液体を0.1〜400重量部含む、[1]もしくは[2]に記載の樹脂組成物。   [3] The resin composition according to [1] or [2], containing 0.1 to 400 parts by weight of the ionic liquid with respect to 100 parts by weight of the polybenzoxazine-based resin.

[4]前記イオン液体が、イミダゾリウム塩、ピロリジニウム塩、ピリジニウム塩、アンモニウム塩、ホスホニウム塩、スルホニウム塩、よりなる群から1種又は2種以上選択されることを特徴とする [1]〜[3]に記載の樹脂組成物。 [4] The ionic liquid is selected from the group consisting of an imidazolium salt, a pyrrolidinium salt, a pyridinium salt, an ammonium salt, a phosphonium salt, and a sulfonium salt. 3].

[5]ベンゾオキサジン系モノマーの開環重合をイオン液体の存在下で行うことにより得られる[1]〜[4]のいずれかに記載の樹脂組成物。 [5] The resin composition according to any one of [1] to [4], which is obtained by performing ring-opening polymerization of a benzoxazine-based monomer in the presence of an ionic liquid.

[6]前記ベンゾオキサジン系モノマーが、下記一般式(1)よりなる群から1種又は2種以上選択されることを特徴とする[5]に記載の樹脂組成物。
一般式(1)

Figure 2009057437
(一般式(1)中、nは1〜3の整数であり、R1は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケン基、置換基を有してもよいアルキン基、置換基を有してもよいアラルキル基、もしくは置換基を有してもよいアリール基を示す。R2は下記に示した(I)〜(XI)の1〜3価の有機基もしくは無機基を表す。)
Figure 2009057437
[6] The resin composition according to [5], wherein the benzoxazine-based monomer is selected from the group consisting of the following general formula (1).
General formula (1)
Figure 2009057437
(In general formula (1), n is an integer of 1 to 3, and R1 has a hydrogen atom, an alkyl group which may have a substituent, an alkene group which may have a substituent, and a substituent. R2 represents an alkyne group that may be substituted, an aralkyl group that may have a substituent, or an aryl group that may have a substituent, wherein R2 is a valence of 1 to 3 of (I) to (XI) shown below. Represents an organic or inorganic group.)
Figure 2009057437

本発明で用いるイオン液体は、イミダゾリウム塩、ピロリジニウム塩、ピリジニウム塩、アンモニウム塩、ホスホニウム塩、スルホニウム塩よりなる群から1種又は2種以上選択される。イミダゾリウム塩イオン液体の例を下記化学式(1)に示すが、化学式(1)のイミダゾリウム塩を、ピロリジニウム塩、ピリジニウム塩、アンモニウム塩、ホスホニウム塩、スルホニウム塩でそれぞれ置換しても同様なイオン液体が得られる。ただし、本発明で用いるイオン液体は、ここに示す例に限られるものではない。 The ionic liquid used in the present invention is selected from the group consisting of imidazolium salts, pyrrolidinium salts, pyridinium salts, ammonium salts, phosphonium salts, and sulfonium salts. An example of an imidazolium salt ionic liquid is shown in the following chemical formula (1). The same ion can be obtained by replacing the imidazolium salt of the chemical formula (1) with a pyrrolidinium salt, a pyridinium salt, an ammonium salt, a phosphonium salt, or a sulfonium salt. A liquid is obtained. However, the ionic liquid used in the present invention is not limited to the example shown here.

化学式(1)

Figure 2009057437
化学式(1)中、X:PF、(CFSON、CFSO、もしくは他の陰イオン Chemical formula (1)
Figure 2009057437
In chemical formula (1), X: PF 6 , (CF 3 SO 2 ) 2 N, CF 3 SO 3 , or other anions

化学式(1)中、XがPFである場合のイオン液体は、1−ブチル−3−メチルイミダゾリウムヘキサフルオロホスファート(BMIPF6と表記)、Xが(CFSONである場合のイオン液体は、1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホニルイミド(BMITFSIと表記)、XがCFSOである場合のイオン液体は、1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート(BMICF3SO3と表記)である。 In the chemical formula (1), when X is PF 6 , the ionic liquid is 1-butyl-3-methylimidazolium hexafluorophosphate (denoted as BMIPF6) and X is (CF 3 SO 2 ) 2 N The ionic liquid is 1-butyl-3-methylimidazolium trifluoromethanesulfonylimide (denoted as BMITFSI), and the ionic liquid when X is CF 3 SO 3 is 1-butyl-3-methylimidazolium trifluoromethanesulfo Naruto (denoted as BMICF3SO3).

本発明のベンゾオキサジン系モノマーとしては、下記化学式(2)に示す、ビス(3−フェニル−3,4−ジヒドロ−2H−1,3−ベンゾオキサジニル)イソプロパン(ベンゾオキサジン、B−aと表記)を用いることができるが、本発明におけるベンゾオキサジン系モノマーは前記ベンゾオキサジンに限られるものではない。 As the benzoxazine-based monomer of the present invention, bis (3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) isopropane (benzoxazine, Ba) represented by the following chemical formula (2) However, the benzoxazine-based monomer in the present invention is not limited to the benzoxazine.

化学式(2)

Figure 2009057437
Chemical formula (2)
Figure 2009057437

本発明のポリベンゾオキサジン系樹脂の例としては、ポリベンゾオキサジン(PB−aと表記)が挙げられるが、本発明におけるポリベンゾオキサジン系樹脂はこのポリベンゾオキサジンに限られるものではない。本発明におけるポリベンゾオキサジン系樹脂とイオン液体を構成材料とする樹脂組成物は、当該イオン液体の存在下で、ベンゾオキサジン系モノマーを開環重合させることにより得られる。例えば、前記ベンゾオキサジン(B−a)を開環重合させてポリベンゾオキサジン(PB−a)を得る過程は、下記化学式(3)で表される。 An example of the polybenzoxazine-based resin of the present invention is polybenzoxazine (indicated as PB-a), but the polybenzoxazine-based resin in the present invention is not limited to this polybenzoxazine. The resin composition comprising the polybenzoxazine-based resin and the ionic liquid in the present invention can be obtained by ring-opening polymerization of a benzoxazine-based monomer in the presence of the ionic liquid. For example, the process of ring-opening polymerization of the benzoxazine (Ba) to obtain polybenzoxazine (PB-a) is represented by the following chemical formula (3).

化学式(3)

Figure 2009057437
Chemical formula (3)
Figure 2009057437

本発明におけるポリベンゾオキサジン系樹脂とイオン液体を構成材料とする樹脂組成物は、本発明の目的に沿うものである限り、ポリベンゾオキサジン系樹脂とイオン液体以外の追加成分を含むことを排除するものではない。追加成分としては、可塑剤、フィラー、硬化剤などが挙げられる。 The resin composition comprising the polybenzoxazine-based resin and the ionic liquid in the present invention excludes the inclusion of additional components other than the polybenzoxazine-based resin and the ionic liquid as long as the object of the present invention is met. It is not a thing. Examples of the additional component include a plasticizer, a filler, and a curing agent.

本発明における樹脂組成物は、ポリベンゾオキサジン系樹脂100重量部に対し、イオン液体を0.1〜400重量部含む。イオン液体の配合が、ポリベンゾオキサジン系樹脂100重量部に対し、0.1重量部以下では、電気化学デバイスに必要なイオン伝導性が損なわれる、デバイス構成材料としての靭性が低下する、開環重合速度が遅くなる、などの支障があり実用的でない。イオン液体の配合が400重量部以上では樹脂組成物の機械的性質が低下する。すなわち、材料自身の自己支持性が損なわれ、液状化してしまい、実用的でない。
The resin composition in the present invention contains 0.1 to 400 parts by weight of an ionic liquid with respect to 100 parts by weight of the polybenzoxazine-based resin. When the blending of the ionic liquid is 0.1 parts by weight or less with respect to 100 parts by weight of the polybenzoxazine-based resin, the ion conductivity required for the electrochemical device is impaired, and the toughness as a device constituent material is lowered. This is impractical due to problems such as a slow polymerization rate. When the ionic liquid content is 400 parts by weight or more, the mechanical properties of the resin composition are lowered. That is, the self-supporting property of the material itself is impaired and liquefied, which is not practical.

本発明の効果を以下に列挙する。本項では、ベンゾオキサジン系モノマーとしてベンゾオキサジンを使用した場合の効果について記述するが、当該記述は、ベンゾオキサジンをベンゾオキサジン系モノマーと読み替えても成立する。
・イオン液体は、ベンゾオキサジンが開環重合する際の触媒としても働き、より低温で熱硬化を終了する。重合反応終了後は、そのまま樹脂組成物の構成材料となるので製造工程が簡単である。
・本発明によれば、ポリベンゾオキサジンとイオン液体が相分離することなく、均一な樹脂組成物が得られる。当該樹脂組成物は、フィルム状などに容易に加工できる高い成形性を有する。
・ベンゾオキサジンの開環重合は副生成物が生成せず、イオン液体も不揮発性であることから、フィルム作成段階で発泡などは見られず、均一で透明なフィルムを作成することができる。
・ベンゾオキサジン系樹脂単体の場合と比較し、本発明のポリベンゾオキサジンとイオン液体の複合材料は機械的性質が向上するとともに同等な耐熱性を有する。
The effects of the present invention are listed below. In this section, the effect when benzoxazine is used as the benzoxazine-based monomer is described, but the description is valid even when benzoxazine is replaced with the benzoxazine-based monomer.
-The ionic liquid also acts as a catalyst when benzoxazine undergoes ring-opening polymerization, and completes thermosetting at a lower temperature. After the completion of the polymerization reaction, the production process is simple because it becomes the constituent material of the resin composition as it is.
-According to the present invention, a uniform resin composition can be obtained without phase separation of polybenzoxazine and ionic liquid. The resin composition has high moldability that can be easily processed into a film or the like.
・ By ring-opening polymerization of benzoxazine, no by-product is generated, and the ionic liquid is also non-volatile. Therefore, no foaming is observed in the film production stage, and a uniform and transparent film can be produced.
-Compared with the case of a benzoxazine-based resin alone, the composite material of polybenzoxazine and ionic liquid of the present invention has improved mechanical properties and equivalent heat resistance.

本発明が提供する複合材料(樹脂組成物)を得るためには、マトリックスポリマーであるポリベンゾオキサジン中に、イオン液体を均一に分散させることが必要である。そのためには、ポリベンゾオキサジン前駆体とイオン液体を混合した後、熱処理することで重合を行う方が望ましい。 In order to obtain the composite material (resin composition) provided by the present invention, it is necessary to uniformly disperse the ionic liquid in polybenzoxazine which is a matrix polymer. For that purpose, it is desirable to perform polymerization by mixing the polybenzoxazine precursor and the ionic liquid and then performing heat treatment.

本発明の効果を損なわない範囲であれば、ポリベンゾオキサジン系樹脂には共重合体を使用してもよい。 A copolymer may be used for the polybenzoxazine-based resin as long as the effects of the present invention are not impaired.

ポリベンゾオキサジンとイオン液体の配合割合については、ポリベンゾオキサジン100重量部に対し、イオン液体0.1〜400重量部を配合することが望ましい。イオン液体の配合がこれより少ないと得られる複合材料のイオン伝導性が損なわれ、かつ靭性が低下する。これより多いと自己支持性が損なわれ、液状化してしまい、実用的でない。 About the mixture ratio of polybenzoxazine and an ionic liquid, it is desirable to mix | blend 0.1-400 weight part of ionic liquid with respect to 100 weight part of polybenzoxazine. If the amount of the ionic liquid is less than this, the ionic conductivity of the composite material obtained is impaired and the toughness is lowered. If it is more than this, the self-supporting property is impaired, and it becomes liquefied, which is not practical.

イオン液体の配合量としてはポリベンゾオキサジン100重量部に対し、イオン液体が0.1重量部以上が挙げられるが、さらに好ましくは5重量部以上あればよい。 The blending amount of the ionic liquid may be 0.1 parts by weight or more with respect to 100 parts by weight of polybenzoxazine, but more preferably 5 parts by weight or more.

本発明におけるイオン液体としては、例えば、イミダゾリウム塩、ピロリジニウム塩、ピリジニウム塩、アンモニウム塩、ホスホニウム塩、スルホニウム塩などが挙げられる。イオン液体は単体で使用してもよく、2種以上を混合して用いてもよい。
Examples of the ionic liquid in the present invention include imidazolium salts, pyrrolidinium salts, pyridinium salts, ammonium salts, phosphonium salts, sulfonium salts and the like. The ionic liquid may be used alone or in combination of two or more.

ガラス容器にベンゾオキサジンとイオン液体を添加し、均一な溶液となるまで攪拌した。この際、3種類のイオン液体を使用し、ベンゾオキサジン単体のケースを含め、以下の4種類の当該溶液試料を作製した。
(a)ベンゾオキサジンのみを添加
(b)ベンゾオキサジンと前記イオン液体1−ブチル−3−メチルイミダゾリウムヘキサフルオロホスファートを添加
(c)ベンゾオキサジンと前記イオン液体1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホニルイミドを添加
(d)ベンゾオキサジンと前記イオン液体1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナートを添加
上記各イオン液体はベンゾオキサジン100重量部に対し、25重量部添加した。得られた4種類の溶液をジクロロジメチルシランで疎水処理したガラス板にそれぞれキャストし、50℃で16時間送風乾燥した後、示差走査熱量測定(DSC)を行った。
Benzoxazine and ionic liquid were added to a glass container and stirred until a uniform solution was obtained. At this time, three types of ionic liquids were used, and the following four types of solution samples including the case of benzoxazine alone were prepared.
(A) Add only benzoxazine (b) Add benzoxazine and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (c) Benzoxazine and the ionic liquid 1-butyl-3-methylimidazolium Addition of trifluoromethanesulfonylimide (d) Addition of benzoxazine and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate The ionic liquid was added in an amount of 25 parts by weight to 100 parts by weight of the benzoxazine. The obtained four types of solutions were each casted on a glass plate hydrophobized with dichlorodimethylsilane, dried by blowing at 50 ° C. for 16 hours, and then subjected to differential scanning calorimetry (DSC).

図1に前記示差走査熱量測定(DSC)の結果を示す。図1の結果によれば、ベンゾオキサジン単体の場合、50℃では重合が進行しない為、DSC測定中に開環重合が進行し、シャープな発熱ピーク(246℃)として観測される(a)。一方、イオン液体を添加した場合、重合が進行し、発熱ピークが低温側に広幅化する傾向が見られた(b)〜(d)。すなわち、イオン液体によりベンゾオキサジンの開環重合が促進されていることを示す結果である。特に、イオン液体として、1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナートを用いたものではピークトップ温度が218℃まで低下した(d)。
FIG. 1 shows the results of the differential scanning calorimetry (DSC). According to the result of FIG. 1, in the case of benzoxazine alone, polymerization does not proceed at 50 ° C., and therefore ring-opening polymerization proceeds during DSC measurement, which is observed as a sharp exothermic peak (246 ° C.) (a). On the other hand, when the ionic liquid was added, polymerization proceeded and the exothermic peak tended to widen to the low temperature side (b) to (d). That is, the results show that ring-opening polymerization of benzoxazine is promoted by the ionic liquid. In particular, in the case of using 1-butyl-3-methylimidazolium trifluoromethanesulfonate as the ionic liquid, the peak top temperature decreased to 218 ° C. (d).

イオン液体である1−ブチル−3−メチルイミダゾリウムヘキサフルオロホスファート(BMIPF6と表記)とポリベンゾオキサジンモノマーであるビス(3−フェニル−3,4−ジヒドロ−2H−1,3−ベンゾオキサジニル)イソプロパン(B−aと表記)から本発明の樹脂組成物を作成した。
ガラス容器にBMIPF6とB−aを加え、均一な溶液となるまでよく撹拌した。得られた溶液をジクロロジメチルシランで疎水処理したガラス板にキャストし、50℃で16時間送風乾燥した後、100℃、150℃、200℃、220℃で各1時間ずつ段階的に熱処理を行い、PB−aとBMIPF6を構成材料とする樹脂組成物からなるフィルム(ハイブリッドフィルムと称する)を作成した。表1に当該ハイブリッドフィルムの動的粘弾性測定の結果を示した。
Ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (denoted as BMIPF6) and polybenzoxazine monomer bis (3-phenyl-3,4-dihydro-2H-1,3-benzoxazini The resin composition of the present invention was prepared from (i) isopropane (denoted as Ba).
BMIPF6 and Ba were added to a glass container and stirred well until a uniform solution was obtained. The obtained solution was cast on a glass plate hydrophobized with dichlorodimethylsilane, blown and dried at 50 ° C. for 16 hours, and then heat treated stepwise at 100 ° C., 150 ° C., 200 ° C., and 220 ° C. for 1 hour each. A film (referred to as a hybrid film) made of a resin composition comprising PB-a and BMIPF6 as constituent materials was prepared. Table 1 shows the results of dynamic viscoelasticity measurement of the hybrid film.

イオン液体である1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホニルイミド(BMITFSIと表記)とB−aから本発明の樹脂組成物を作成した。
ガラス容器にBMITFSIとB−aを加え、均一な溶液となるまでよく撹拌した。得られた溶液をジクロロジメチルシランで疎水処理したガラス板にキャストし、50℃で16時間送風乾燥した後、100℃、150℃、200℃、220℃で各1時間ずつ段階的に熱処理を行い、PB−aとBMITFSIを構成材料とする樹脂組成物からなるフィルム(ハイブリッドフィルムと称する)を作成した。表1に当該ハイブリッドフィルムの動的粘弾性測定の結果を示した。
A resin composition of the present invention was prepared from 1-butyl-3-methylimidazolium trifluoromethanesulfonylimide (denoted as BMITFSI) and Ba, which are ionic liquids.
BMITFSI and Ba were added to a glass container and stirred well until a uniform solution was obtained. The obtained solution was cast on a glass plate hydrophobized with dichlorodimethylsilane, blown and dried at 50 ° C. for 16 hours, and then heat treated stepwise at 100 ° C., 150 ° C., 200 ° C., and 220 ° C. for 1 hour each. A film (referred to as a hybrid film) made of a resin composition containing PB-a and BMITFSI as constituent materials was prepared. Table 1 shows the results of dynamic viscoelasticity measurement of the hybrid film.

イオン液体である1−ブチル−3−メチルイミダゾリウムテトラフルオロボラート(BMIBF4と表記)とB−aから本発明の樹脂組成物を作成した。
ガラス容器にBMIBF4とB−aを加え、均一な溶液となるまでよく撹拌した。得られた溶液をジクロロジメチルシランで疎水処理したガラス板にキャストし、50℃で16時間送風乾燥した後、100℃、150℃、200℃、220℃で各1時間ずつ段階的に熱処理を行い、PB−a/BMIBF4を構成材料とする樹脂組成物からなるフィルム(ハイブリッドフィルムと称する)を作成した。表1に当該ハイブリッドフィルムの動的粘弾性測定の結果を示した。
A resin composition of the present invention was prepared from 1-butyl-3-methylimidazolium tetrafluoroborate (denoted as BMIBF4), which is an ionic liquid, and Ba.
BMIBF4 and Ba were added to a glass container and stirred well until a uniform solution was obtained. The obtained solution was cast on a glass plate hydrophobized with dichlorodimethylsilane, blown and dried at 50 ° C. for 16 hours, and then heat treated stepwise at 100 ° C., 150 ° C., 200 ° C., and 220 ° C. for 1 hour each. A film (referred to as a hybrid film) made of a resin composition containing PB-a / BMIBF4 as a constituent material was prepared. Table 1 shows the results of dynamic viscoelasticity measurement of the hybrid film.

イオン液体である1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート(BMICF3SO3と表記)とB−aから本発明の樹脂組成物を作成した。
ガラス容器にBMICF3SO3とB−aを加え、均一な溶液となるまでよく撹拌した。得られた溶液をジクロロジメチルシランで疎水処理したガラス板にキャストし、50℃で16時間送風乾燥した後、100℃、150℃、200℃、220℃で各1時間ずつ段階的に熱処理を行い、PB−a/BMICF3SO3を構成材料とする樹脂組成物からなるフィルム(ハイブリッドフィルムと称する)を作成した。表1に当該ハイブリッドフィルムの動的粘弾性測定の結果を示した。
A resin composition of the present invention was prepared from 1-butyl-3-methylimidazolium trifluoromethanesulfonate (denoted as BMICF3SO3), which is an ionic liquid, and Ba.
BMICF3SO3 and Ba were added to a glass container and stirred well until a uniform solution was obtained. The obtained solution was cast on a glass plate hydrophobized with dichlorodimethylsilane, blown and dried at 50 ° C. for 16 hours, and then heat treated stepwise at 100 ° C., 150 ° C., 200 ° C., and 220 ° C. for 1 hour each. A film (referred to as a hybrid film) made of a resin composition containing PB-a / BMICF3SO3 as a constituent material was prepared. Table 1 shows the results of dynamic viscoelasticity measurement of the hybrid film.

PB−a単体フィルムの作成例。
比較のため、イオン液体を添加しないPB−a単体フィルムを作成した。B−aのN,N−ジメチルホルムアミド溶液をジクロロジメチルシランで疎水処理したガラス板にキャストし、50℃で16時間送風乾燥した後、100℃、150℃、200℃、240℃で各1時間ずつ段階的に熱処理を行い、PB−a単体からなるフィルムを作成した。表1に当該フィルのム動的粘弾性測定の結果を示した。
An example of making a PB-a single film.
For comparison, a single PB-a film without an ionic liquid was prepared. The N, N-dimethylformamide solution of Ba was cast on a glass plate hydrophobized with dichlorodimethylsilane, air-dried at 50 ° C for 16 hours, and then at 100 ° C, 150 ° C, 200 ° C, 240 ° C for 1 hour each. Heat treatment was performed step by step to prepare a film made of a single PB-a. Table 1 shows the results of measuring the dynamic viscoelasticity of the film.

表1.PB−a単体およびハイブリッドフィルムの動的粘弾性測定結果

Figure 2009057437
ハイブリッドフィルムはPB−a100重量部に対し、イオン液体25重量部の割合で作成。上表で、E’:貯蔵弾性率、E”:損失弾性率
Table 1. Dynamic viscoelasticity measurement results of PB-a simple substance and hybrid film *
Figure 2009057437
* Hybrid film was prepared at a ratio of 25 parts by weight of ionic liquid to 100 parts by weight of PB-a. In the above table, E ′: storage elastic modulus, E ″: loss elastic modulus

表1の結果は、室温(30℃)における貯蔵弾性率(E’)はPB−a単体フィルムでは3.9GPaであったのに対し、ハイブリッドフィルムでは2.1〜2.2と低下し、すなわち、可撓性が増した上に、損失弾性率(E”)より求めたガラス転移点は、ハイブリッド化することにより若干の低下が見られたが、いずれのイオン液体を用いても160℃以上と比較的高い値を示し、本発明の樹脂組成物が電気化学的デバイスに必要な耐熱性を維持することを示すものである。 The results of Table 1 show that the storage elastic modulus (E ′) at room temperature (30 ° C.) was 3.9 GPa for the PB-a single film, whereas it decreased to 2.1 to 2.2 for the hybrid film, That is, the glass transition point obtained from the loss elastic modulus (E ″) was slightly decreased by the hybridization while being increased in flexibility, but it was 160 ° C. regardless of which ionic liquid was used. The above comparatively high values indicate that the resin composition of the present invention maintains heat resistance necessary for electrochemical devices.

イオン液体にBMICF3SO3とPB−aを用いて得られたハイブリッドフィルムの写真を図2に示す。図2は、本発明のポリベンゾオキサジンとイオン液体を構成材料とする樹脂組成物において、ポリベンゾオキサジンとイオン液体の構成比を変えた場合の可撓性の変化を示す写真である。(a):PB−a単独フィルム、(b〜e):PB−a100重量部に対し、BMICF3SO3を25重量部(b)、67重量部(c)、150重量部(d)、400重量部(e)を混合して作成したフィルム。
図2に示すように、イオン液体の含量が増加するに従い、フィルムの柔軟性が大きく向上した。PB−a100重量部に対し、イオン液体400重量部であっても均一でしなやかなフィルムが得られた。
A photograph of a hybrid film obtained using BMICF3SO3 and PB-a as the ionic liquid is shown in FIG. FIG. 2 is a photograph showing the change in flexibility when the composition ratio of polybenzoxazine and ionic liquid is changed in the resin composition comprising polybenzoxazine and ionic liquid of the present invention. (A): PB-a single film, (b to e): 25 parts by weight (b), 67 parts by weight (c), 150 parts by weight (d), 400 parts by weight of BMICF3SO3 with respect to 100 parts by weight of PB-a A film prepared by mixing (e).
As shown in FIG. 2, the flexibility of the film was greatly improved as the ionic liquid content increased. Even with 400 parts by weight of ionic liquid based on 100 parts by weight of PB-a, a uniform and flexible film was obtained.

本発明に基づく樹脂組成物の化学的熱安定性を熱重量分析により評価した。
PB−a単体フィルム(比較例)、およびPB−a100重量部に対し、イオン液体BMICF3SO3を25重量部配合してなる本発明の樹脂組成物(ハイブリッドフィル)の熱重量分析曲線を図3に示した。またその結果を表2にまとめた。本実施例の結果、本発明の樹脂組成物からなるハイブリッドフィルムは、PB−a単体フィルムと同等な高い5%、10%重量減少温度を示し、本発明の樹脂組成物が高い化学的熱安定性を有していることがわかった。

表2.PB−a単体およびBMICF3SO3ハイブリッドフィルムの熱重量分析結果

Figure 2009057437
ハイブリッドフィルムは100重量部のPB−aに対し、BMICF3SO3が25重量部の割合で作成。T5%およびT10%はそれぞれ5%、10%重量減少温度を示す。
The chemical thermal stability of the resin composition according to the present invention was evaluated by thermogravimetric analysis.
FIG. 3 shows a thermogravimetric analysis curve of the resin composition (hybrid fill) of the present invention obtained by blending 25 parts by weight of the ionic liquid BMICF3SO3 with respect to 100 parts by weight of the PB-a simple substance film (comparative example) and PB-a. It was. The results are summarized in Table 2. As a result of this example, the hybrid film comprising the resin composition of the present invention exhibits a high 5%, 10% weight loss temperature equivalent to that of the PB-a simple substance film, and the resin composition of the present invention has a high chemical heat stability. It was found to have sex.

Table 2. Thermogravimetric analysis results of single PB-a and BMICF3SO3 hybrid films *
Figure 2009057437
* The hybrid film was made with 25 parts by weight of BMICF3SO3 per 100 parts by weight of PB-a. T5% and T10% indicate 5% and 10% weight loss temperatures, respectively.

本発明に基づく樹脂組成物の示差走査熱量測定(DSC)結果を示す図。The figure which shows the differential scanning calorimetry (DSC) result of the resin composition based on this invention. 本発明の樹脂組成物からなるフィルムの可撓性を示す写真。The photograph which shows the flexibility of the film which consists of a resin composition of this invention. PB−a単独フィルムおよびBMICF3SO3を用いて得られた本発明の樹脂組成物の熱分析結果。The thermal-analysis result of the resin composition of this invention obtained using PB-a independent film and BMICF3SO3.

Claims (6)

ポリベンゾオキサジン系樹脂とイオン液体を構成材料とする樹脂組成物。
A resin composition comprising a polybenzoxazine-based resin and an ionic liquid as constituent materials.
請求項1に記載の樹脂組成物が追加の成分を含んでなる樹脂組成物。
A resin composition comprising the resin composition according to claim 1 as an additional component.
前記ポリベンゾオキサジン系樹脂100重量部に対し、前記イオン液体を0.1〜400重量部含む、請求項1もしくは請求項2に記載の樹脂組成物。
The resin composition according to claim 1 or 2, comprising 0.1 to 400 parts by weight of the ionic liquid with respect to 100 parts by weight of the polybenzoxazine-based resin.
前記イオン液体が、イミダゾリウム塩、ピロリジニウム塩、ピリジニウム塩、アンモニウム塩、ホスホニウム塩、スルホニウム塩、よりなる群から1種又は2種以上選択されることを特徴とする請求項1〜3のいずれかに記載の樹脂組成物。
The ionic liquid is selected from the group consisting of an imidazolium salt, a pyrrolidinium salt, a pyridinium salt, an ammonium salt, a phosphonium salt, and a sulfonium salt, or two or more types thereof. The resin composition described in 1.
ベンゾオキサジン系モノマーの開環重合をイオン液体の存在下で行うことにより得られる請求項1〜4のいずれかに記載の樹脂組成物。
The resin composition according to any one of claims 1 to 4, which is obtained by performing ring-opening polymerization of a benzoxazine-based monomer in the presence of an ionic liquid.
前記ベンゾオキサジン系モノマーが、下記一般式(1)よりなる群から1種又は2種以上選択されることを特徴とする請求項5に記載の樹脂組成物。
一般式(1)
Figure 2009057437
(一般式(1)中、nは1〜3の整数であり、R1は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケン基、置換基を有してもよいアルキン基、置換基を有してもよいアラルキル基、もしくは置換基を有してもよいアリール基を示す。R2は下記に示した(I)〜(XI)の1〜3価の有機基もしくは無機基を表す。)
Figure 2009057437
6. The resin composition according to claim 5, wherein the benzoxazine-based monomer is selected from the group consisting of the following general formula (1).
General formula (1)
Figure 2009057437
(In general formula (1), n is an integer of 1 to 3, and R1 has a hydrogen atom, an alkyl group which may have a substituent, an alkene group which may have a substituent, and a substituent. R2 represents an alkyne group which may be substituted, an aralkyl group which may have a substituent, or an aryl group which may have a substituent, wherein R2 is a 1 to 3 valent group of (I) to (XI) shown below. Represents an organic or inorganic group.)
Figure 2009057437
JP2007224956A 2007-08-31 2007-08-31 Composite material comprising polybenzoxazine-based resin and ionic liquid, and method for producing the same Pending JP2009057437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224956A JP2009057437A (en) 2007-08-31 2007-08-31 Composite material comprising polybenzoxazine-based resin and ionic liquid, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224956A JP2009057437A (en) 2007-08-31 2007-08-31 Composite material comprising polybenzoxazine-based resin and ionic liquid, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009057437A true JP2009057437A (en) 2009-03-19

Family

ID=40553488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224956A Pending JP2009057437A (en) 2007-08-31 2007-08-31 Composite material comprising polybenzoxazine-based resin and ionic liquid, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009057437A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217627A1 (en) * 2010-03-03 2011-09-08 Samsung Electronics Co., Ltd. Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
CN102250468A (en) * 2010-05-21 2011-11-23 北京化工大学 Benzoxazine resin/ionic liquid compositions
JP2011530632A (en) * 2008-08-12 2011-12-22 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Thermosetting composition
CN102869726A (en) * 2010-03-03 2013-01-09 三星电子株式会社 Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
TWI384011B (en) * 2009-05-14 2013-02-01 Univ Chia Nan Pharm & Sciency Imidazolium-based poly(ionic liquid)s and method to prepare the same
JP2013508485A (en) * 2009-10-21 2013-03-07 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Thermosetting composition
CN103012780A (en) * 2011-09-21 2013-04-03 北京化工大学 Benzoxazine resin/ionic liquid composition
CN103012779A (en) * 2011-09-21 2013-04-03 北京化工大学 Benzoxazine resin/ionic liquid composition
JP2016127015A (en) * 2014-12-26 2016-07-11 株式会社半導体エネルギー研究所 Electrode, power storage device, electronic apparatus and method of manufacturing electrode
US9680156B2 (en) 2010-02-05 2017-06-13 Samsung Electronics Co., Ltd Composition, polymer thereof, electrode and electrolyte membrane for fuel cell, and fuel cell including the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530632A (en) * 2008-08-12 2011-12-22 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Thermosetting composition
TWI384011B (en) * 2009-05-14 2013-02-01 Univ Chia Nan Pharm & Sciency Imidazolium-based poly(ionic liquid)s and method to prepare the same
US9074049B2 (en) 2009-10-21 2015-07-07 Huntsman International Llc Thermosetting composition
JP2013508485A (en) * 2009-10-21 2013-03-07 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Thermosetting composition
US9680156B2 (en) 2010-02-05 2017-06-13 Samsung Electronics Co., Ltd Composition, polymer thereof, electrode and electrolyte membrane for fuel cell, and fuel cell including the same
CN102869726A (en) * 2010-03-03 2013-01-09 三星电子株式会社 Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
WO2011108861A2 (en) * 2010-03-03 2011-09-09 Samsung Electronics Co., Ltd. Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
US20110217627A1 (en) * 2010-03-03 2011-09-08 Samsung Electronics Co., Ltd. Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
WO2011108861A3 (en) * 2010-03-03 2012-03-01 Samsung Electronics Co., Ltd. Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
US10355284B2 (en) 2010-03-03 2019-07-16 Samsung Electronics Co., Ltd. Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
KR101747863B1 (en) 2010-03-03 2017-06-16 삼성전자주식회사 Polybenzthiazole-based compound composition, preparing method thereof, electrode using the composition, and fuel cell employing the same
CN102869726B (en) * 2010-03-03 2015-02-11 三星电子株式会社 Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
EP2365567A3 (en) * 2010-03-03 2013-01-23 Samsung Electronics Co., Ltd. Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
US9368803B2 (en) * 2010-03-03 2016-06-14 Samsung Electronics Co., Ltd. Composition, method of preparing the composition, electrode including the composition, and fuel cell including the electrode
CN102250468A (en) * 2010-05-21 2011-11-23 北京化工大学 Benzoxazine resin/ionic liquid compositions
CN103012779A (en) * 2011-09-21 2013-04-03 北京化工大学 Benzoxazine resin/ionic liquid composition
CN103012780A (en) * 2011-09-21 2013-04-03 北京化工大学 Benzoxazine resin/ionic liquid composition
JP2016127015A (en) * 2014-12-26 2016-07-11 株式会社半導体エネルギー研究所 Electrode, power storage device, electronic apparatus and method of manufacturing electrode
JP2020126848A (en) * 2014-12-26 2020-08-20 株式会社半導体エネルギー研究所 Power storage device
US10978710B2 (en) 2014-12-26 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and manufacturing method of electrode
JP7055831B2 (en) 2014-12-26 2022-04-18 株式会社半導体エネルギー研究所 Power storage device

Similar Documents

Publication Publication Date Title
JP2009057437A (en) Composite material comprising polybenzoxazine-based resin and ionic liquid, and method for producing the same
Marubayashi et al. Complex crystal formation of poly (l-lactide) with solvent molecules
Shirshova et al. Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes
Ye et al. Crystallization kinetics and phase transformation of poly (vinylidene fluoride) films incorporated with functionalized baTiO3 nanoparticles
Li et al. Micro-porous P (VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles
Nguyen et al. Ionic liquids: A new route for the design of epoxy networks
Lee et al. Novel polysilsesquioxane hybrid polymer electrolytes for lithium ion batteries
Yang et al. Properties and structural characterization of oxidized starch/PVA/α‐zirconium phosphate composites
Zhu et al. Mechanically strong and highly stiff supramolecular polymer composites repairable at ambient conditions
TW201136988A (en) Process for preparing polyarylene sulfide having lower content of iodine
Blanco et al. Variously substituted phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites: The influence of substituents on the thermal stability
Sheydaei et al. Poly (butylene disulfide) and poly (butylene tetrasulfide): Synthesis, cure and investigation of polymerization yield and effect of sulfur content on mechanical and thermophysical properties
Liu et al. A synergetic strategy of well dispersing hydrophilic Ti3C2Tx MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances
JP2010248479A5 (en)
Dintcheva et al. Interaction in POSS-poly (ethylene-co-acrylic acid) nanocomposites
Cai et al. Simultaneous improvement of the processability and mechanical properties of polyamide-6 by chain extension in extrusion
Wu et al. Starch‐based nanocomposites reinforced with layered zirconium phosphonate
de Windt et al. Elucidating the Supramolecular Copolymerization of N‐and C‐Centered Benzene‐1, 3, 5‐Tricarboxamides: The Role of Parallel and Antiparallel Packing of Amide Groups in the Copolymer Microstructure
Álvarez-Gómez et al. Polyacrylonitrile-b-Polystyrene Block Copolymer-Derived Hierarchical Porous Carbon Materials for Supercapacitor
CN104151606B (en) Polysilsesquioxane-modified sorbitol polypropylene nucleating agent and preparation method thereof
Hakeem et al. Spectroscopic, thermal, and electrical investigations of PVDF films filled with BiCl3
Chinnam et al. The polyoctahedral silsesquioxane (POSS) 1, 3, 5, 7, 9, 11, 13, 15-octaphenylpentacyclo [9.5. 1.13, 9.15, 15.17, 13] octasiloxane (octaphenyl-POSS)
Morimoto et al. POSS solid solutions exhibiting orientationally disordered phase transitions
Feng et al. Facile and rapid synthesis of flexible PEG porous polymers as substrates for functional materials by thiol-ene click chemistry
Jiang et al. The plasticizing effect of calcium nitrate on poly (vinyl alcohol)