JP2009057263A5 - - Google Patents

Download PDF

Info

Publication number
JP2009057263A5
JP2009057263A5 JP2007227627A JP2007227627A JP2009057263A5 JP 2009057263 A5 JP2009057263 A5 JP 2009057263A5 JP 2007227627 A JP2007227627 A JP 2007227627A JP 2007227627 A JP2007227627 A JP 2007227627A JP 2009057263 A5 JP2009057263 A5 JP 2009057263A5
Authority
JP
Japan
Prior art keywords
composite
nanostructure
nanostructure composite
solid substrate
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227627A
Other languages
Japanese (ja)
Other versions
JP4413252B2 (en
JP2009057263A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2007227627A external-priority patent/JP4413252B2/en
Priority to JP2007227627A priority Critical patent/JP4413252B2/en
Priority to PCT/JP2008/065646 priority patent/WO2009031489A1/en
Priority to EP08829076A priority patent/EP2194027A4/en
Priority to KR1020107000525A priority patent/KR101066898B1/en
Priority to CN2008801008982A priority patent/CN101815673B/en
Priority to US12/675,959 priority patent/US8257662B2/en
Publication of JP2009057263A publication Critical patent/JP2009057263A/en
Publication of JP2009057263A5 publication Critical patent/JP2009057263A5/ja
Publication of JP4413252B2 publication Critical patent/JP4413252B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (13)

固体基材(X)の表面がナノ構造複合体(Y)で被覆されているナノ構造複合体被覆型構造物であって、該ナノ構造複合体(Y)がポリエチレンイミン骨格(a)を有するポリマー(A)とシリカ(B)とを含有する複合ナノファイバー(y1)又は複合ナノ粒子(y2)を基本ユニットとする集合体であることを特徴とするナノ構造複合体被覆型構造物。 A nanostructure composite-coated structure in which the surface of a solid substrate (X) is coated with a nanostructure composite (Y), the nanostructure composite (Y) having a polyethyleneimine skeleton (a) A nanostructure-composite-covered structure, characterized in that the nanostructure-composite-covered structure is an assembly having composite nanofibers (y1) or composite nanoparticles (y2) containing a polymer (A) and silica (B) as a basic unit . 前記ナノ構造複合体(Y)中に更に金属イオン(C)が含まれている請求項1記載のナノ構造複合体被覆型構造物。 The nanostructure composite-coated structure according to claim 1, wherein the nanostructure composite (Y) further contains a metal ion (C). 前記ナノ構造複合体(Y)中に更に金属ナノ粒子(D)が含まれている請求項1記載のナノ構造複合体被覆型構造物。 The nanostructure composite-coated structure according to claim 1, wherein the nanostructure composite (Y) further contains metal nanoparticles (D). 前記ナノ構造複合体(Y)中に更に有機色素分子(E)が含まれている請求項1記載のナノ構造複合体被覆型構造物。 The nanostructure composite-covered structure according to claim 1, wherein the nanostructure composite (Y) further contains an organic dye molecule (E). 前記ナノ構造複合体(Y)が複合ナノファイバー(y1)を基本ユニットとし、該複合ナノファイバーの長軸が固体基材(X)の表面に対して略垂直の方向を向いている請求項1〜4の何れか1項記載のナノ構造複合体被覆型構造物。 The nanostructure composite (Y) has a composite nanofiber (y1) as a basic unit, and the long axis of the composite nanofiber is oriented in a direction substantially perpendicular to the surface of the solid substrate (X). The nanostructure composite covering type structure of any one of -4. 前記複合ナノファイバー(y1)の太さが10〜100nmの範囲であり、且つ長さが50nm〜10μmである請求項5記載のナノ構造複合体被覆型構造物。The nanostructure composite-coated structure according to claim 5, wherein the thickness of the composite nanofiber (y1) is in the range of 10 to 100 nm and the length is 50 nm to 10 µm. 前記ナノ構造複合体(Y)が複合ナノ粒子(y2)を基本ユニットとし、該複合ナノ粒子(y2)がネットワークを形成して固体基材(Y)を被覆する請求項1〜4の何れか1項記載のナノ構造複合体被覆型構造物。 The nanostructure composite (Y) has composite nanoparticles (y2) as a basic unit, and the composite nanoparticles (y2) form a network to cover the solid substrate (Y). 2. A nanostructure composite-coated structure according to item 1. 前記複合ナノ粒子(y2)の平均粒子径が20nm以下である請求項7記載のナノ構造複合体被覆型構造物。The nanostructure composite-covered structure according to claim 7, wherein the composite nanoparticle (y2) has an average particle size of 20 nm or less. 固体基材(X)上のナノ構造複合体(Y)の被覆層の厚みが50nm〜20μmである請求項1〜8の何れか1項記載のナノ構造複合体被覆型構造物。The nanostructure composite-covered structure according to any one of claims 1 to 8, wherein the thickness of the coating layer of the nanostructure composite (Y) on the solid substrate (X) is 50 nm to 20 µm. ポリエチレンイミン骨格(a)を有するポリマー(A)を含有する溶液中に固体基材(X)を浸漬させた後取り出し、該固体基材(X)の表面にポリマー層を形成させる工程(1)と、
前記で得られたポリマー層を有する固体基材(X)と、シリカソース液(B’)とを接触して、固体基材(X)表面のポリマー層中にシリカ(B)を析出させ、複合ナノファイバー(y1)又は複合ナノ粒子(y2)を基本ユニットとする集合体であるナノ構造複合体(Y)を形成させる工程(2)と、
を有することを特徴とするナノ構造複合体被覆型構造物の製造方法。
Step (1) of immersing the solid substrate (X) in a solution containing the polymer (A) having a polyethyleneimine skeleton (a) and then taking it out to form a polymer layer on the surface of the solid substrate (X) When,
The solid substrate (X) having the polymer layer obtained above is contacted with the silica source liquid (B ′) to precipitate silica (B) in the polymer layer on the surface of the solid substrate (X), A step (2) of forming a nanostructure composite (Y) that is an assembly having the composite nanofiber (y1) or the composite nanoparticle (y2) as a basic unit ;
A method for producing a nanostructure composite-coated structure characterized by comprising:
請求項10で得られるナノ構造複合体被覆型構造物を、更に金、銀及び白金からなる群から選ばれる貴金属のイオン水溶液中に浸漬させることにより、該貴金属イオンをナノ構造複合体(Y)中に浸透させ、該ナノ構造複合体(Y)中のポリエチレンイミン骨格(a)による自発還元作用により、当該貴金属の金属ナノ粒子(D)とすることを特徴とする、金属ナノ粒子が含まれたナノ構造複合体被覆型構造物の製造方法。 The nanostructure composite-covered structure obtained in claim 10 is further immersed in an aqueous solution of a noble metal ion selected from the group consisting of gold, silver and platinum, so that the noble metal ion is nanostructured composite (Y). Metal nanoparticles are included, characterized in that the noble metal metal nanoparticles (D) are made to penetrate into the nanostructure composite (Y) by the spontaneous reduction action by the polyethyleneimine skeleton (a). A method for producing a nanostructure composite-coated structure. ポリエチレンイミン骨格(a)を有するポリマー(A)と金属イオン(C)とを含有する溶液中に固体基材(X)を浸漬させた後取り出し、該固体基材(X)の表面に金属イオン(C)を含有するポリマー層を形成させる工程(1)と、
前記で得られたポリマー層を有する固体基材(X)と、シリカソース液(B’)とを接触して、固体基材(X)表面の該ポリマー層中にシリカ(B)を析出させ、金属イオンを含む複合ナノファイバー(y1)又は複合ナノ粒子(y2)を基本ユニットとする集合体であるナノ構造複合体(Y)を形成させる工程(2)と、
を有することを特徴とする金属イオンが含まれたナノ構造複合体被覆型構造物の製造方法。
The solid substrate (X) is immersed in a solution containing the polymer (A) having the polyethyleneimine skeleton (a) and the metal ion (C), and then taken out, and metal ions are deposited on the surface of the solid substrate (X). A step (1 ) of forming a polymer layer containing (C);
The solid substrate (X) having the polymer layer obtained above is brought into contact with the silica source liquid (B ′) to deposit silica (B) in the polymer layer on the surface of the solid substrate (X). A step (2 ) of forming a nanostructure composite (Y) that is an assembly having a composite nanofiber (y1) or composite nanoparticle (y2) containing a metal ion as a basic unit ;
A method for producing a nanostructure composite-covered structure containing a metal ion, comprising:
請求項12で得られる金属イオンを含むナノ構造複合体被覆型構造物を、更に還元剤溶液中に浸漬させ、ナノ構造複合体(Y)中の金属イオンを還元し、当該金属ナノ粒子に変換させることを特徴とする金属ナノ粒子が含まれたナノ構造複合体被覆型構造物の製造方法。 The nanostructure composite-covered structure containing metal ions obtained in claim 12 is further immersed in a reducing agent solution to reduce the metal ions in the nanostructure composite (Y) and convert them into metal nanoparticles. A method for producing a nanostructure composite-covered structure containing metal nanoparticles, characterized by comprising:
JP2007227627A 2007-09-03 2007-09-03 Nanostructure composite-coated structure and method for producing the same Active JP4413252B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007227627A JP4413252B2 (en) 2007-09-03 2007-09-03 Nanostructure composite-coated structure and method for producing the same
CN2008801008982A CN101815673B (en) 2007-09-03 2008-09-01 Process for producing nanostructure composite covered structure, nanostructure composite covered structure, and reactor using the nanostructure composite covered structure
EP08829076A EP2194027A4 (en) 2007-09-03 2008-09-01 Process for producing nanostructure composite covered structure, nanostructure composite covered structure, and reactor using the nanostructure composite covered structure
KR1020107000525A KR101066898B1 (en) 2007-09-03 2008-09-01 Method for producing nanostructured composite cladding structure, nanostructured composite cladding structure and reactor using the same
PCT/JP2008/065646 WO2009031489A1 (en) 2007-09-03 2008-09-01 Process for producing nanostructure composite covered structure, nanostructure composite covered structure, and reactor using the nanostructure composite covered structure
US12/675,959 US8257662B2 (en) 2007-09-03 2008-09-01 Process for producing nanostructure composite-covered structure, nanostructure composite-covered structure, and reactor using nanostructure composite-covered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227627A JP4413252B2 (en) 2007-09-03 2007-09-03 Nanostructure composite-coated structure and method for producing the same

Publications (3)

Publication Number Publication Date
JP2009057263A JP2009057263A (en) 2009-03-19
JP2009057263A5 true JP2009057263A5 (en) 2009-04-30
JP4413252B2 JP4413252B2 (en) 2010-02-10

Family

ID=40553348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227627A Active JP4413252B2 (en) 2007-09-03 2007-09-03 Nanostructure composite-coated structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP4413252B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017234B2 (en) 2008-06-12 2011-09-13 Dic Corporation Structural object coated with superhydrophobic nanostructure composite and process for producing the same
JP4469002B2 (en) * 2008-06-12 2010-05-26 財団法人川村理化学研究所 Structure coated with superhydrophobic nanostructure composite and its production method
WO2014171597A1 (en) 2013-04-15 2014-10-23 (주)플렉센스 Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
WO2016099954A1 (en) * 2014-12-15 2016-06-23 Plexense, Inc. Surface plasmon detection apparatuses and methods
JP7365081B2 (en) * 2020-06-08 2023-10-19 株式会社Imuzak Superhydrophilic structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153295A (en) * 1986-12-16 1988-06-25 Nippon Steel Corp Colored coated steel sheet and its production
JP3883556B2 (en) * 2004-02-18 2007-02-21 財団法人川村理化学研究所 Organic-inorganic composite nanofiber, organic-inorganic composite structure, and production method thereof
JP3978440B2 (en) * 2004-05-31 2007-09-19 財団法人川村理化学研究所 Silica / polymer / metal composite material and method for producing the same
JP3972053B2 (en) * 2004-07-28 2007-09-05 大日本インキ化学工業株式会社 Organic-inorganic composite coating film and aqueous coating composition
JP2007161755A (en) * 2005-12-09 2007-06-28 Dainippon Ink & Chem Inc Water-based coating composition and water-resistant coated film

Similar Documents

Publication Publication Date Title
Hrapovic et al. New strategy for preparing thin gold films on modified glass surfaces by electroless deposition
Ganesh et al. A review on self-cleaning coatings
Ye et al. Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications
Martinez et al. Porous tin oxide nanostructured microspheres for sensor applications
Wu et al. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route
Linford et al. Nonmonotonic effect of ionic strength on surface dye extraction during dye− polyelectrolyte multilayer formation
Pol et al. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation
Masuda et al. Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution
Yeo et al. Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates
Tao et al. Fabrication of robust, self-cleaning, broadband TiO2SiO2 double-layer antireflective coatings with closed-pore structure through a surface sol-gel process
Guo et al. Gold/titania core/sheath nanowires prepared by layer-by-layer assembly
Hagen et al. Shift-time polyelectrolyte multilayer assembly: fast film growth and high gas barrier with fewer layers by adjusting deposition time
Duan et al. Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition
Bigall et al. High-resolution metal nanopatterning by means of switchable block copolymer templates
JP2012031232A5 (en)
JP2009057263A5 (en)
JP2009527641A5 (en)
Wu et al. A brief review on bioinspired ZnO superhydrophobic surfaces: theory, synthesis, and applications
Abbas et al. High stability performance of superhydrophobic modified fluorinated graphene films on copper alloy substrates
CN102384904A (en) Metal surface enhanced Raman scattering substrate with three-dimensional period structure and preparation method thereof
Muench et al. Metal nanotubes and nanowires with rhombohedral cross-section electrolessly deposited in mica templates
Zhu et al. Copper nanoparticle decorated non-woven polypropylene fabrics with durable superhydrophobicity and conductivity
Li et al. Super-hydrophobic silver-doped TiO2@ polycarbonate coatings created on various material substrates with visible-light photocatalysis for self-cleaning contaminant degradation
Sahoo et al. Effect of TiO2 powder on the surface morphology of micro/nanoporous structured hydrophobic fluoropolymer based composite material
Krichevski et al. Growth of colloidal gold nanostars and nanowires induced by palladium doping