JP2009056416A - Reaction apparatus for reacting water with rocks penetrated thereby - Google Patents

Reaction apparatus for reacting water with rocks penetrated thereby Download PDF

Info

Publication number
JP2009056416A
JP2009056416A JP2007227050A JP2007227050A JP2009056416A JP 2009056416 A JP2009056416 A JP 2009056416A JP 2007227050 A JP2007227050 A JP 2007227050A JP 2007227050 A JP2007227050 A JP 2007227050A JP 2009056416 A JP2009056416 A JP 2009056416A
Authority
JP
Japan
Prior art keywords
rock
temperature
permeable
water
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227050A
Other languages
Japanese (ja)
Other versions
JP4993197B2 (en
Inventor
Eiji Nakada
英二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007227050A priority Critical patent/JP4993197B2/en
Publication of JP2009056416A publication Critical patent/JP2009056416A/en
Application granted granted Critical
Publication of JP4993197B2 publication Critical patent/JP4993197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction apparatus for reacting water with rocks penetrated thereby capable of causing rocks to react with an acidic solution while adjusting the reaction conditions according to the conditions (such as temperature, pressure, and composition of underground water) in the actual environment. <P>SOLUTION: The apparatus for reacting water with rocks penetrated thereby is constituted of a reactor cell 10 storing rocks 20 and a heater 50 for heating the reactor cell 10. The rocks 20 are heated by the heater 50 up to a temperature corresponding to a temperature in the actual environment, and an aqueous solution comprising carbon dioxide dissolved therein is allowed to penetrate the rocks 20 heated in a manner as described above to cause them to react with the aqueous solution comprising carbon dioxide dissolved therein according to the conditions in the actual environment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸性溶液を岩石に透水させた際の反応を検証する透水反応装置に関し、特に、二酸化炭素溶解溶液を透水させて岩石との反応により生ずる岩盤の透水特性への影響を特定することが可能で、二酸化炭素地中貯留における実環境の岩盤安定性評価に用いて好適なものである。   The present invention relates to a water permeation reaction apparatus that verifies the reaction when an acidic solution is made to permeate rocks, and in particular, to determine the influence on the water permeation characteristics of a rock mass caused by permeation of a carbon dioxide-dissolved solution and reaction with rocks. Therefore, it is suitable for use in the evaluation of rock stability in a real environment in carbon dioxide underground storage.

近年、地球温暖化を緩和するために様々な取り組みがなされている。例えば省エネルギー化や、二酸化炭素(以下;CO2)の排出を抑制することなどが行われている。このような取り組みの一つとして、工場や発電所等から排出されるCO2を地中に貯留して(CO2地中貯留)CO2の排出量を削減する技術がCO2削減の即効性ある方法として注目されている(例えば、特許文献1参照)。 In recent years, various efforts have been made to mitigate global warming. For example, energy saving and suppression of carbon dioxide (hereinafter referred to as CO 2 ) emissions have been performed. One such effort, and storing the CO 2 discharged from factories and power stations and the like in the ground (CO 2 geological storage) immediate techniques to reduce emissions of CO 2 CO 2 Reduction It has been attracting attention as a method (see, for example, Patent Document 1).

しかしながら、実際にCO2地中貯留を実施するに先立ち、地下に貯留される大量のCO2が地下環境において及ぼす影響を事前に評価・検討する必要がある。地下に貯留されるCO2は、地下の帯水層で酸性のCO2溶解溶液となることから、長期間、地下にCO2溶解溶液が貯留されると、地下資源や地上の人間の生活圏に影響を及ぼす虞がある。このため実際にCO2地中貯留が行われる前に、室内においてCO2が地下水の移動環境に及ぼす影響を調査・予想・評価することが不可欠となっている。 However, prior to actual CO 2 underground storage, it is necessary to evaluate and examine in advance the influence of a large amount of CO 2 stored underground in the underground environment. Since the CO 2 stored underground becomes an acidic CO 2 solution in the underground aquifer, if the CO 2 solution is stored underground for a long period of time, underground resources and the human living area above the ground May affect For this reason, it is indispensable to investigate, predict and evaluate the influence of CO 2 on the groundwater movement environment in the room before actual CO 2 underground storage.

実際には本格的なCO2地中貯留を行う前に試験的にCO2の地中貯留を行い、一定期間後、CO2溶解溶液により変化した地下の岩石を採取し、採取した岩石の態様を観察することで、地中貯留におけるCO2の影響を実際に近い場の結果に基づいて評価することができる。しかし、事前に数百メートルの地下を掘削し、試験的にCO2を圧入するには大規模な設備と費用が必要となり現実的ではない。 Actually, were tested to geological storage CO 2 before performing a full-scale CO 2 geological storage, after a certain period of time, the rock underground changed by CO 2 dissolved solution was taken, aspects of the collected rocks By observing the above, it is possible to evaluate the influence of CO 2 in underground storage based on the result of a field that is close to actuality. However, in order to excavate underground several hundred meters in advance and inject CO 2 on a trial basis, large-scale facilities and costs are required, which is not practical.

更に、地下の温度・圧力・地下水組成はCO2地中貯留を行う深度によって様々であり、同種の岩石にCO2溶解溶液を反応させるだけでは、地下深部から浅部までの異なる深度を網羅したCO2地中貯留の影響評価を行うことはできない。このため、これまではCO2地中貯留の際に、温度、圧力、地下水組成の条件が異なる種々の実環境に応じて、地下から採取した岩石の物性がどのように変化するかを正確に把握できないのが現状であった。 Furthermore, the underground temperature, pressure, and groundwater composition vary depending on the depth of CO 2 underground storage. By simply reacting the same kind of rock with a CO 2 solution, it covers different depths from deep to shallow. The impact assessment of CO 2 underground storage cannot be performed. For this reason, in the past, when CO 2 underground storage, how exactly the physical properties of rocks collected from the underground changes according to various real environments with different conditions of temperature, pressure, and groundwater composition. It was the present situation that I could not grasp.

特開2004−237167号公報(請求項7等)JP 2004-237167 A (Claim 7 etc.)

本発明は、上記状況に鑑みてなされたもので、実環境の状況(温度、圧力、地下水組成)に則して、これらの条件を変化させながら酸性溶液と岩石を反応させることができる岩石の透水反応装置を提供することを目的とする。   The present invention has been made in view of the above situation, and in accordance with the situation of the real environment (temperature, pressure, groundwater composition), a rock that can react an acidic solution and rock while changing these conditions. It aims at providing a water-permeable reaction apparatus.

上記目的を達成するための請求項1に係る本発明の岩石の透水反応装置は、岩石が収納される収納容器と、前記収納容器に収納された岩石に酸性溶液を圧送する透水手段と、前記収納容器に収納された岩石の温度を設定する温度制御手段とを備え、前記温度制御手段は、前記収納容器に収納された岩石の温度を実環境に対応して温度を変化させることを特徴とする岩石の透水反応装置にある。   To achieve the above object, the rock-permeable reaction device for rock according to the present invention according to claim 1 comprises a storage container for storing rocks, a water-permeable means for pumping an acidic solution to the rock stored in the storage container, Temperature control means for setting the temperature of the rock stored in the storage container, wherein the temperature control means changes the temperature of the rock stored in the storage container according to the actual environment. It is in the rock water permeability reactor.

また、請求項1に係る本発明では、収納容器に収納された岩石は温度制御手段により、実環境に応じた温度に維持される。これにより、収納容器に収納された岩石は、実環境の温度と同等の複雑な条件の下で酸性溶液を透水させて反応を起こさせることができ、このために本装置により実環境に即した状況を透水反応装置内で再現することができ、大掛かりな設備や多大なる費用の必要がなくなる。また、温度制御手段は、収納容器に収納された岩石の温度を、実験途中においてもプログラムで変更可能であるので、より一層実環境に則して実験することが可能となっている。   Moreover, in this invention which concerns on Claim 1, the rock accommodated in the storage container is maintained by the temperature control means at the temperature according to real environment. As a result, the rock stored in the storage container can cause the reaction by causing the acidic solution to permeate under complex conditions equivalent to the temperature of the actual environment. The situation can be reproduced in the permeable reactor, eliminating the need for large facilities and great expense. Further, the temperature control means can change the temperature of the rock stored in the storage container by a program even during the experiment, so that it is possible to perform an experiment in accordance with the actual environment.

そして、請求項2に係る本発明の岩石の透水反応装置は、請求項1に記載の岩石の透水反応装置において、前記収納容器に収納された岩石を実環境に応じた圧力で押圧する圧力調節手段を備えたことを特徴とする。   And the rock-permeable reactor of the present invention according to claim 2 is the rock-permeable reactor according to claim 1, wherein the rock accommodated in the storage container is pressed with a pressure according to the actual environment. Means are provided.

請求項2に係る本発明では、収納容器に収納された岩石は、圧力調節手段により、実環境に応じた圧力が掛けられる。これにより、収納容器に収納された岩石は、実環境の圧力と同等の条件の基で酸性溶液が透水されて反応を起こすため、実環境において生じる酸性溶液による岩石の反応を収納容器内でより高精度に再現することができる。   In the present invention according to claim 2, the rock stored in the storage container is subjected to pressure according to the actual environment by the pressure adjusting means. As a result, the rock stored in the storage container reacts when the acidic solution is permeated under conditions equivalent to the pressure in the actual environment, and therefore the reaction of the rock caused by the acidic solution generated in the actual environment is more effective in the storage container. Can be reproduced with high accuracy.

また、請求項3に係る本発明の岩石の透水反応装置は、請求項2に記載の岩石の透水反応装置において、前記収納容器には岩石を収容する遮断部材が備えられ、前記収納容器と前記遮断部材との間には流体が封入され、前記圧力調整手段は、前記流体を加圧して実環境に応じた圧力に岩石を押圧する加圧手段であることを特徴とする。   Moreover, the rock-permeable reaction apparatus of the present invention according to claim 3 is the rock-permeable reaction apparatus of rock according to claim 2, wherein the storage container is provided with a blocking member for storing rock, and the storage container and the A fluid is enclosed between the blocking member, and the pressure adjusting unit is a pressurizing unit that pressurizes the fluid and presses the rock to a pressure corresponding to an actual environment.

請求項3に係る本発明では、流体により収納容器内の岩石に圧力が掛けられるので、実環境の圧力をより精密に再現することができる。   In the present invention according to claim 3, since the pressure is applied to the rock in the storage container by the fluid, the pressure in the real environment can be reproduced more precisely.

また、請求項4に係る本発明の岩石の透水反応装置は、請求項1〜請求項3の何れか一項に記載の岩石の透水反応装置において、前記透水手段は、前記収納容器に圧送する酸性溶液の組成を実環境の地下水組成に応じて設定することを特徴とする。   Moreover, the rock-permeable reactor of the present invention according to claim 4 is the rock-permeable reactor according to any one of claims 1 to 3, wherein the water-permeable means is pumped to the storage container. The composition of the acidic solution is set according to the groundwater composition of the actual environment.

請求項4に係る本発明では、実環境に応じた温度、圧力に設定された酸性溶液が実際に地下深部に存在する地下水組成と同じ地下水を保持する岩石に透水され、あるいは透水させる酸性溶液に他の組成の地下水が流入した場合を想定しており、より一層実環境に則した岩石の反応を再現することができる。   In the present invention according to claim 4, an acidic solution set to a temperature and pressure corresponding to the actual environment is actually permeated into rocks holding the same groundwater as the groundwater composition existing in the deep underground, or to the acidic solution to be permeated. Assuming the case where groundwater of other composition flows in, it is possible to reproduce the reaction of the rock according to the actual environment.

また、請求項5に係る本発明の岩石の透水反応装置は、請求項1〜請求項4の何れか一項に記載の岩石の透水反応装置において、請求項1〜請求項4の何れか一項に記載の岩石の透水反応装置において、前記岩石は、二酸化炭素を地中貯留すると想定された場所で採掘されたものであり、前記酸性溶液は二酸化炭素溶解溶液であることを特徴とする。   Moreover, the rock-permeable reactor of the present invention according to claim 5 is the rock-permeable reactor according to any one of claims 1 to 4, and any one of claims 1 to 4. The rock permeation reaction apparatus according to the item, wherein the rock is mined at a place where carbon dioxide is assumed to be stored underground, and the acidic solution is a carbon dioxide-dissolved solution.

請求項5に係る本発明では、二酸化炭素を地中貯留する場合における二酸化炭素溶解溶液による岩石の反応が実環境に則して再現される。   In the present invention according to claim 5, the reaction of the rock by the carbon dioxide solution when carbon dioxide is stored underground is reproduced according to the actual environment.

本発明の岩石の透水反応装置は、酸性溶液と岩石とを実環境の状況に則して反応させることができる岩石の透水反応装置となる。   The rock permeation reaction apparatus of the present invention is a rock permeation reaction apparatus capable of reacting an acidic solution and rock according to the actual environment.

〈実施形態1〉
以下本発明の実施形態例を図面に基づいて説明する。図1には本発明の一実施形態例に係る岩石の透水反応装置の全体構成、図2には反応セルの断面、図3には二酸化炭素が地下に貯留された状態の概略断面を示してある。なお、図示の実施形態例は例示であり、本発明は以下の説明に限定されない。
<Embodiment 1>
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration of a rock-permeable reactor according to an embodiment of the present invention, FIG. 2 shows a cross section of a reaction cell, and FIG. 3 shows a schematic cross section of carbon dioxide stored underground. is there. The illustrated embodiment is an exemplification, and the present invention is not limited to the following description.

図1、図2に基づいて透水反応装置の全体構成を説明する。
図1に示すように、筐体1の内部には複数本の支柱2が鉛直に設けられ、支柱2には台座3及び天板4が水平に固定されている。台座3の上には収納容器としての反応セル10が載置され、反応セル10は台座3と天板4とに亘って固定されている。
Based on FIG. 1, FIG. 2, the whole structure of a water-permeable reaction apparatus is demonstrated.
As shown in FIG. 1, a plurality of support columns 2 are vertically provided inside the housing 1, and a pedestal 3 and a top plate 4 are horizontally fixed to the support columns 2. A reaction cell 10 as a storage container is placed on the pedestal 3, and the reaction cell 10 is fixed across the pedestal 3 and the top plate 4.

図1、図2に示すように、反応セル10は内部に岩石20が収納されるように形成された円筒形状の容器であり、岩石20は切削されて円柱状に形成されている。岩石20の周囲は流体を遮断する遮断部材25に覆われ、遮断部材25に覆われた岩石20は反応セル10の中央部に収納されている。   As shown in FIGS. 1 and 2, the reaction cell 10 is a cylindrical container formed so that a rock 20 is accommodated therein, and the rock 20 is cut and formed into a columnar shape. The periphery of the rock 20 is covered with a blocking member 25 that blocks the fluid, and the rock 20 covered with the blocking member 25 is stored in the center of the reaction cell 10.

反応セル10の下部には配管31を介してCO2溶解溶液タンク30が接続され、CO2溶解溶液タンク30にはCO2溶解溶液が充填されている。CO2溶解溶液タンク30には所定圧のヘリウム(He)ガスが供給され、CO2溶解溶液タンク30に充填されたCO2溶解溶液が配管31を通って反応セル10の内部に圧送される。一方、反応セル10の上部には配管33を介してピストンシリンダ32が接続され、反応セル10の内部のCO2溶解溶液(岩石20を透水したCO2溶解溶液)がピストンシリンダ32によって吸引されて排出される。これにより、CO2溶解溶液がCO2溶解溶液タンク30から反応セル10に圧送されることで、岩石20の下側から上側に向かってCO2溶解溶液が透水するようになっている。 At the bottom of the reaction cell 10 CO 2 dissolved solution tank 30 is connected via a pipe 31, CO 2 dissolved solution in CO 2 dissolved solution tank 30 is filled. CO is the 2 lysing solution tank 30 is supplied with a constant pressure of helium (He) gas at, CO 2 dissolved solution tank 30 CO 2 dissolved solution filled in is pumped into the reaction cell 10 through line 31. On the other hand, the upper portion of the reaction cell 10 the piston cylinder 32 is connected via a pipe 33, (CO 2 dissolving solution the rock 20 has water permeability) inside the CO 2 dissolving solution in the reaction cell 10 is sucked by the piston cylinder 32 Discharged. As a result, the CO 2 solution is pumped from the CO 2 solution tank 30 to the reaction cell 10 so that the CO 2 solution passes through the rock 20 from the lower side to the upper side.

この岩石20の上側から排出されたCO2溶解溶液はピストンシリンダ32に吸引されて排出される。なお、ピストンシリンダ32は、反応セル10からのCO2溶解溶液を一定圧力で排出するように構成されている。 The CO 2 dissolved solution discharged from the upper side of the rock 20 is sucked into the piston cylinder 32 and discharged. The piston cylinder 32 is configured to discharge the CO 2 solution from the reaction cell 10 at a constant pressure.

また、別の溶液が入ったピストンシリンダを、配管33から分岐した配管に接続させ、このピストンシリンダから、CO2溶解溶液が移動中に接触するであろう地下水を模擬した組成の溶液を岩石20に透水させる構成を設けてもよい。この構成により、岩石20に透水されるCO2溶解溶液の組成を可変にできるので、実環境で起こりえる複雑な現象を再現できる。 In addition, a piston cylinder containing another solution is connected to a pipe branched from the pipe 33, and a solution having a composition simulating groundwater that the CO 2 solution would come into contact with during the movement from the piston cylinder is obtained from the rock 20 You may provide the structure which makes water permeate. With this configuration, the composition of the CO 2 solution that is permeable to the rock 20 can be made variable, so that complicated phenomena that can occur in an actual environment can be reproduced.

反応セル10の筒部には配管41を介して圧力調整手段としての圧縮シリンダ40が接続されている。反応セル10の内面と遮断部材25との間には流体としてのイオン交換水26が封入され、イオン交換水26は圧縮シリンダ40により所定圧力で反応セル10の内面と遮断部材25との間に封入される。これにより、遮断部材25により囲まれた岩石20はイオン交換水26の圧力によって所定圧力が掛けられた状態にされている。   A compression cylinder 40 serving as a pressure adjusting means is connected to the cylindrical portion of the reaction cell 10 via a pipe 41. Ion exchange water 26 as a fluid is sealed between the inner surface of the reaction cell 10 and the blocking member 25, and the ion exchange water 26 is placed between the inner surface of the reaction cell 10 and the blocking member 25 by a compression cylinder 40 at a predetermined pressure. Enclosed. Thereby, the rock 20 surrounded by the blocking member 25 is in a state where a predetermined pressure is applied by the pressure of the ion exchange water 26.

ここで、圧縮シリンダ40により設定される圧力としては、例えば、岩石20を採掘した場所における採掘前の岩石20に掛かる推定された圧力を用いることができる。   Here, as the pressure set by the compression cylinder 40, for example, an estimated pressure applied to the rock 20 before mining at the place where the rock 20 is mined can be used.

筒状の反応セル10の上面及び下面にはボルト28がナット29により取付けられ、ボルト28の頂部(上側のボルト28の下端、下側のボルト28の上端)にはナット部材27がそれぞれ固定されている。ナット部材27の対向面にはフィルタ21がそれぞれ配され、フィルタ21の間に円柱状の岩石20の端面が挟持される。ナット29の調整により、ボルト28を介してナット部材27同士の間隔が調整され、フィルタ21の間に岩石20が挟持されて固定される。   Bolts 28 are attached to the upper and lower surfaces of the tubular reaction cell 10 by nuts 29, and nut members 27 are fixed to the tops of the bolts 28 (the lower ends of the upper bolts 28 and the upper ends of the lower bolts 28), respectively. ing. Filters 21 are arranged on the opposing surfaces of the nut member 27, and the end face of the columnar rock 20 is sandwiched between the filters 21. By adjusting the nut 29, the interval between the nut members 27 is adjusted via the bolts 28, and the rock 20 is sandwiched and fixed between the filters 21.

上側及び下側のボルト28には貫通流路61が形成されている。下側のボルト28の貫通流路61には配管31が接続され、上側のボルト28の貫通流路61には配管33が接続されている。なお、フィルタ21、ナット部材27、ボルト28及びナット29は耐熱・耐食の合金、例えばニッケルを主成分とするハステロイC(登録商標)で形成されている。   A through passage 61 is formed in the upper and lower bolts 28. A pipe 31 is connected to the through passage 61 of the lower bolt 28, and a pipe 33 is connected to the through passage 61 of the upper bolt 28. The filter 21, the nut member 27, the bolt 28, and the nut 29 are made of a heat and corrosion resistant alloy, for example, Hastelloy C (registered trademark) whose main component is nickel.

遮断部材25は、テフロン(登録商標)製のシールテープ22、バイトンゴム(登録商標)(フッ素ゴム)製のスリーブ23及び熱収縮チューブ24から構成される。即ち、岩石20及びフィルタ21の周囲にシールテープ22が巻き付けられ、岩石20の端面にフィルタ21が固定された状態になる。シールテープ22の周囲には筒状のスリーブ23が嵌合され、筒状のスリーブ23の外周側に熱収縮チューブ24が被せられている。スリーブ23の上端開口及び下端開口はフィルタ21を覆った状態でナット部材27に弾性接着剤で接着され、岩石20の上面及び下面が外部と遮断される。   The blocking member 25 includes a seal tape 22 made of Teflon (registered trademark), a sleeve 23 made of Viton rubber (registered trademark) (fluoro rubber), and a heat shrinkable tube 24. That is, the seal tape 22 is wound around the rock 20 and the filter 21, and the filter 21 is fixed to the end face of the rock 20. A cylindrical sleeve 23 is fitted around the seal tape 22, and a heat shrinkable tube 24 is covered on the outer peripheral side of the cylindrical sleeve 23. The upper end opening and the lower end opening of the sleeve 23 are bonded to the nut member 27 with an elastic adhesive while covering the filter 21, and the upper surface and the lower surface of the rock 20 are blocked from the outside.

遮断部材25が岩石20を取り囲み、遮断部材25の熱収縮チューブ24と反応セル10の内面との間にイオン交換水26が充填される。岩石20は熱収縮チューブ24、スリーブ23及びシールテープ22を介して所定の圧力が掛けられる。そして、遮断部材25により岩石20が完全に覆われるので、岩石20に透水されるCO2溶解溶液と封圧媒体であるイオン交換水26とは混合しない。 The blocking member 25 surrounds the rock 20, and ion exchange water 26 is filled between the heat shrinkable tube 24 of the blocking member 25 and the inner surface of the reaction cell 10. A predetermined pressure is applied to the rock 20 through the heat shrinkable tube 24, the sleeve 23 and the seal tape 22. Since the rock 20 is completely covered by the blocking member 25, the CO 2 solution that is permeable to the rock 20 and the ion exchange water 26 that is the sealing pressure medium are not mixed.

筐体1には内部に収容された岩石20の温度を実環境に応じた温度に設定する温度制御手段が備えられている。即ち、筐体1の外周には複数のヒータ50が上下方向に間隔を空けて取付けられている。ヒータ50は、温度制御装置51からの制御信号に基づいて任意の温度に設定され、反応セル10の岩石20の温度を所定温度に設定する。温度制御装置51が設定する岩石20の所定温度は、実環境に応じた温度が用いられる。実環境に応じた温度としては、例えば、岩石20を採取した場所における採取前の岩石20の実測温度を用いる。   The casing 1 is provided with temperature control means for setting the temperature of the rock 20 accommodated therein to a temperature according to the actual environment. That is, a plurality of heaters 50 are attached to the outer periphery of the housing 1 at intervals in the vertical direction. The heater 50 is set to an arbitrary temperature based on a control signal from the temperature control device 51, and sets the temperature of the rock 20 of the reaction cell 10 to a predetermined temperature. As the predetermined temperature of the rock 20 set by the temperature control device 51, a temperature according to the actual environment is used. As the temperature according to the actual environment, for example, the measured temperature of the rock 20 before being collected at the place where the rock 20 was collected is used.

上記構成の岩石の透水反応装置では、温度制御装置51の制御によりヒータ50が所望の温度にプログラム調整され、反応セル10に収納された岩石20の温度は実環境の温度変化に応じた温度に変更、維持できる。例えば、CO2地中貯留を想定し、想定される所定の深度の温度環境に応じた温度に岩石20の温度が維持される。これにより、CO2地中貯留が実施される深度における温度環境、およびCO2地中貯留後に移動する地点の温度に対応させて岩石20のCO2による侵食(溶解)状況等の化学反応状況を反応セル10の中で再現する。 In the rock water permeation reactor having the above-described configuration, the heater 50 is program-adjusted to a desired temperature under the control of the temperature control device 51, and the temperature of the rock 20 stored in the reaction cell 10 becomes a temperature corresponding to the temperature change in the actual environment. Can be changed and maintained. For example, assuming the CO 2 underground storage, the temperature of the rock 20 is maintained at a temperature corresponding to the assumed temperature environment of a predetermined depth. Thus, the chemical reaction status such as the erosion (dissolution) status of the rock 20 by CO 2 corresponding to the temperature environment at the depth at which CO 2 geological storage is carried out and the temperature at the point of movement after CO 2 geological storage. Reproduce in reaction cell 10.

更に、圧縮シリンダ40で圧送されたイオン交換水26により、遮断部材25を介して岩石に所望の圧力が掛けられ、実環境に応じた圧力環境に岩石20が維持される。これにより、CO2地中貯留を想定した深度における温度環境・圧力環境での岩石20のCO2による侵食(溶解)状況、すなわち将来にわたる岩盤溶解による透水性変化の様子を予想することができるようになる。なお、イオン交換水26の封入圧力を一定の値に固定し、実環境に応じた温度環境だけを再現することも可能である。 Furthermore, a desired pressure is applied to the rock through the blocking member 25 by the ion exchange water 26 fed by the compression cylinder 40, and the rock 20 is maintained in a pressure environment according to the actual environment. As a result, it is possible to predict the erosion (dissolution) situation of the rock 20 by CO 2 in the temperature environment and pressure environment at the depth assuming CO 2 underground storage, that is, the state of permeability change due to the dissolution of the rock mass in the future. become. It is also possible to reproduce only the temperature environment according to the actual environment by fixing the sealed pressure of the ion exchange water 26 at a constant value.

図3に基づいてCO2地中貯留の状況を説明する。
図3に示すように、地表から不透水層102を貫通して帯水層100に達する縦穴101(ボーリング孔)が掘削され、地上には、二酸化炭素を縦穴101に圧送する圧送装置103が設置されている。帯水層100は地下水が存在する地層であり、圧送装置103によりCO2が帯水層100に圧送されて貯留され、不透水層102により地上への流出が阻止されている。
The state of CO 2 underground storage will be described based on FIG.
As shown in FIG. 3, a vertical hole 101 (boring hole) that penetrates the impermeable layer 102 from the surface and reaches the aquifer 100 is excavated, and a pumping device 103 that pumps carbon dioxide into the vertical hole 101 is installed on the ground. Has been. The aquifer 100 is a formation in which groundwater exists, CO 2 is pumped and stored in the aquifer 100 by the pumping device 103, and outflow to the ground is prevented by the impermeable layer 102.

例えば、工場や発電所から排出されるCO2が圧送装置103により縦穴101から帯水層100に圧送されると、CO2が地下水に溶けて酸性溶液であるCO2溶解溶液が生成される。CO2溶解溶液により帯水層100の縦穴101近傍の岩石104は化学反応が生じる。具体的には、岩石104を構成する鉱物である雲母などのスメクタイト化、方解石の溶解、斜長石の溶解等が生じる。 For example, when CO 2 discharged from a factory or a power plant is pumped from the vertical hole 101 to the aquifer 100 by the pumping device 103, the CO 2 is dissolved in the ground water to generate a CO 2 solution that is an acidic solution. A chemical reaction occurs in the rock 104 near the vertical hole 101 of the aquifer 100 by the CO 2 solution. Specifically, smectization of mica, which is a mineral constituting the rock 104, dissolution of calcite, dissolution of plagioclase, and the like occur.

CO2を地中に貯留する場所によっては、岩石104の温度は様々であり、また、帯水層100の深度によっては、岩石104に掛かる圧力も様々である。上述した透水反応装置は、このように実環境によって異なる温度・圧力を再現して岩石20(図1、図2参照)にCO2溶解溶液を透水するので、地下の実環境が岩石104で生じる化学反応を反応セル10の岩石20により精度よく再現できる。 The temperature of the rock 104 varies depending on the location where CO 2 is stored in the ground, and the pressure applied to the rock 104 varies depending on the depth of the aquifer 100. The above-described water permeable reaction apparatus reproduces the temperature and pressure which vary depending on the actual environment and allows the rock 20 (see FIGS. 1 and 2) to permeate the CO 2 solution, so that an actual underground environment is generated in the rock 104. The chemical reaction can be accurately reproduced by the rock 20 of the reaction cell 10.

本実施形態に係る岩石の透水反応装置を用いることにより、岩石20に一定期間CO2溶解溶液を透水した後、反応セル10から取り出した岩石20は、様々な分析方法で化学反応による変化が測定される。例えば、所定の温度・圧力条件でCO2溶解溶液を透水した後の岩石20をX線解析し、岩石20の組成の変化を分析する。また、岩石20の色・間隙率・密度・間隙径分布等の物性変化を測定し、分析する。組成変化や物性変化を検証することで、例えば、CO2により酸性化した地下水が岩石に影響を及ぼし、健康、環境に有害な物質が溶出するか否かを判断することができる。この結果、例えば、岩石20が存在する場所がCO2地中貯留に適切か不適切かを事前に調査、評価する判断材料を提供することができる。 By using the rock permeation reaction apparatus according to the present embodiment, the rock 20 taken out of the reaction cell 10 after passing the CO 2 solution through the rock 20 for a certain period of time is measured for changes due to chemical reactions by various analysis methods. Is done. For example, X-ray analysis is performed on the rock 20 after passing the CO 2 solution under a predetermined temperature and pressure condition, and the change in the composition of the rock 20 is analyzed. In addition, changes in physical properties such as color, porosity, density, and pore diameter distribution of the rock 20 are measured and analyzed. By verifying the change in composition and the change in physical properties, for example, it can be determined whether or not groundwater acidified by CO 2 affects rocks and substances harmful to health and the environment are eluted. As a result, for example, it is possible to provide a judgment material for investigating and evaluating in advance whether the place where the rock 20 exists is appropriate or inappropriate for CO 2 underground storage.

上記構成の岩石の透水反応装置は酸性溶液としてCO2溶解溶液を想定した例を挙げて説明したが、CO2を溶解させる溶液は実際の地層に含まれる地下水と同じ水質の地下水とすることができる。すなわち本岩石の透水反応装置は海底下の地中など塩水溶液に満たされた地層にCO2を貯留する実環境に応じた環境を再現することも可能である。さらに、酸性溶液として酸性雨を想定し、酸性雨により岩石が変化する地表付近の物理的風化、侵食、岩盤劣化、崩壊などの実天然現象を対象とすることも可能である。この場合においても、実環境に合わせて、反応セル10に収納された岩石20の温度や岩石20に掛かる圧力、透水させる溶液の組成を設定することができるので、地表で激しく変わる温度やCO2濃度の影響を想定した岩石の変化を実環境に則して精度よく再現することができる。これは温度制御装置51が温度を常に一定に保たせることなく、任意にプログラム制御で増減させる機構を有しており、CO2溶解溶液を透水している期間に応じて温度を変動させることが可能となっていることによる。例えば、温度を下げて国内の冬季の温度を再現し、温度を上げて国内の夏季の温度を再現すること、昼に太陽光により熱せられ、夜に温度低下する繰り返しの温度変化を模擬することで地表における通年の地下環境を再現することができる。多様な地域において、より一層現実の地下環境に則した岩石20の反応を検証することができることが特徴となっている。 The rock permeation reaction apparatus having the above-described configuration has been described with an example in which a CO 2 dissolving solution is assumed as an acidic solution. However, the solution for dissolving CO 2 may be ground water having the same water quality as the ground water contained in the actual formation. it can. In other words, the permeation reactor of the present rock can also reproduce the environment according to the actual environment in which CO 2 is stored in a formation filled with a salt solution such as in the ground under the seabed. Furthermore, assuming acid rain as the acidic solution, it is also possible to target real natural phenomena such as physical weathering, erosion, rock mass degradation, and collapse near the surface where rocks change due to acid rain. In this case, in accordance with the real environment, the pressure exerted on the temperature and rocks 20 rocks 20 housed in the reaction cell 10, it is possible to set the composition of the solution to be water-permeable, temperature and CO 2 vary violently at the surface It is possible to accurately reproduce the changes in rocks assuming the effect of concentration according to the actual environment. This has a mechanism in which the temperature control device 51 arbitrarily increases / decreases by program control without keeping the temperature constant, and the temperature can be changed according to the period during which the CO 2 solution is permeated. It depends on what is possible. For example, reducing the temperature to reproduce the domestic winter temperature, increasing the temperature to reproduce the domestic summer temperature, simulating repeated temperature changes that are heated by sunlight in the daytime and decrease in temperature at night Can reproduce the year-round underground environment on the surface. It is characterized in that the reaction of the rock 20 in accordance with the actual underground environment can be verified in various areas.

更に、CO2溶解溶液タンク30は、貯留しているCO2溶解溶液の温度が、地下環境に存在するCO2溶解溶液の温度に事前に設定されるように単独で加熱してもよい。この場合においても、現実の地下環境に則して岩石20の反応の検証を行うことができる。 Furthermore, CO 2 dissolved solution tank 30, the temperature of the CO 2 dissolved solution are stored may be heated alone to be set in advance to a temperature of CO 2 dissolved solution present in the underground environment. Even in this case, the reaction of the rock 20 can be verified according to the actual underground environment.

〈他の実施形態〉
実施形態1では、CO2溶液を岩石に透水させるべく一つの反応セル10を筐体1に配設しているが、本発明ではこのような形態に限定されない。図4は、他の実施形態に係る岩石の透水反応装置の全体構成図である。なお、実施形態1と同一のものには同一の符号を付し、重複する説明は省略する。
<Other embodiments>
In the first embodiment, one reaction cell 10 is disposed in the housing 1 in order to allow the CO 2 solution to permeate the rock, but the present invention is not limited to such a form. FIG. 4 is an overall configuration diagram of a rock water permeation reaction device according to another embodiment. In addition, the same code | symbol is attached | subjected to the same thing as Embodiment 1, and the overlapping description is abbreviate | omitted.

図4に示すように、反応セル10の下方に、反応セル10Aが配設されている。反応セル10Aの構成は反応セル10と同一である。反応セル10Aには、蒸留水タンク30Aが接続されており、蒸留水タンク30Aに貯留された蒸留水が、反応セル10Aの下部から上部へ透水するようになっている。   As shown in FIG. 4, a reaction cell 10 </ b> A is disposed below the reaction cell 10. The configuration of the reaction cell 10A is the same as that of the reaction cell 10. A distilled water tank 30A is connected to the reaction cell 10A, and the distilled water stored in the distilled water tank 30A permeates from the lower part to the upper part of the reaction cell 10A.

かかる構成の透水反応装置では、反応セル10・10Aは共に温度制御装置51により同一の温度に制御されるようになっており、また、圧縮シリンダ40により同一の圧力が掛かるようになっている。したがって、反応セル10に収納された岩石20は、CO2溶液に透水され、反応セル10Aに収納された岩石20Aは蒸留水に透水される。すなわち、CO2を含む溶液による変化と、CO2を含まない溶液とを比較することができ、CO2溶液が岩石に与える影響を評価することができる。 In the water-permeable reaction device having such a configuration, the reaction cells 10 and 10A are both controlled to the same temperature by the temperature control device 51, and the same pressure is applied by the compression cylinder 40. Therefore, the rock 20 accommodated in the reaction cell 10 is permeable to CO 2 solution, and the rock 20A accommodated in the reaction cell 10A is permeable to distilled water. That is, a change with a solution containing a CO 2, can be compared with a solution containing no CO 2, CO 2 solution can be evaluated the effect on the rock.

このように、本発明の岩石の透水反応装置は、複数の反応セルを具備し、そのうち一方の反応セルには岩石を収納して二酸化炭素を含む溶液を流し、他方の反応セルには岩石を収納して二酸化炭素を含まない溶液を別途流すことで、岩石への二酸化炭素の影響をより詳しく調査することもできる。例えば、CO2溶解溶液により溶解しやすい岩石、溶出し易い元素であるか否かをより詳細に判断することができる。この結果、例えば、図4に示した岩石104の近傍のように、岩石20が存在する場所がCO2地中貯留に適切か不適切かを評価する判断材料を得ることができる。 As described above, the rock-permeation reactor of the present invention comprises a plurality of reaction cells, one of which contains the rock and flows a solution containing carbon dioxide, and the other reaction cell contains the rock. By storing and separately flowing a solution that does not contain carbon dioxide, the influence of carbon dioxide on rocks can be investigated in more detail. For example, it can be determined in more detail whether or not it is a rock that is easily dissolved by a CO 2 solution and an element that is easily eluted. As a result, for example, it is possible to obtain a judgment material for evaluating whether the place where the rock 20 exists is appropriate or inappropriate for the CO 2 underground storage like the vicinity of the rock 104 shown in FIG.

また、図4に示したように、複数の反応セルを筐体1に取り付け、ひとつの反応セルを透水したCO2溶液を、他の反応セルに再度透水させるように連結してもよい。また、各反応セルに異なる温度を設定してもよい。例えば一つの反応セルを相対的に低温に、他の反応セルを相対的に高温に設定することができる。これにより、地中の多様な温度環境をより柔軟に模擬することができる。 Further, as shown in FIG. 4, a plurality of reaction cells may be attached to the housing 1, and the CO 2 solution that has permeated one reaction cell may be connected so that the other reaction cell can permeate again. Moreover, you may set different temperature to each reaction cell. For example, one reaction cell can be set at a relatively low temperature and the other reaction cell can be set at a relatively high temperature. Thereby, various underground temperature environments can be simulated more flexibly.

本発明は、酸性溶液を岩石に透水させた際の反応を検証する透水反応装置の産業分野で利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized in the industrial field | area of the water-permeable reaction apparatus which verifies the reaction at the time of making an acidic solution permeate a rock.

本発明の一実施形態例に係る岩石の透水反応装置の全体構成図である。1 is an overall configuration diagram of a rock water permeation reaction device according to an embodiment of the present invention. 反応セルの断面図である。It is sectional drawing of a reaction cell. 二酸化炭素が地下に貯留された状態の概略断面図である。It is a schematic sectional drawing of the state by which carbon dioxide was stored underground. 本発明の他の実施形態例に係る岩石の透水反応装置の全体構成図である。It is a whole block diagram of the water-permeable reaction apparatus of the rock based on the other embodiment of this invention.

符号の説明Explanation of symbols

1 筐体
2 支柱
3 台座
4 天板
10、10A 反応セル
20、20A 岩石
21 フィルタ
22 シールテープ
23 スリーブ
24 熱収縮チューブ
25 遮断部材
26 イオン交換水
27 ナット部材
28 ボルト
29 ナット
30 二酸化炭素(CO2)溶液タンク
31、33、41 配管
32 ピストンシリンダ
40 圧縮シリンダ
50 ヒータ
51 温度制御装置
61 貫通流路
DESCRIPTION OF SYMBOLS 1 Housing | casing 2 Support | pillar 3 Base 4 Top plate 10, 10A Reaction cell 20, 20A Rock 21 Filter 22 Seal tape 23 Sleeve 24 Heat shrinkable tube 25 Shut-off member 26 Ion exchange water 27 Nut member 28 Bolt 29 Nut 30 Carbon dioxide (CO 2 ) Solution tanks 31, 33, 41 Piping 32 Piston cylinder 40 Compression cylinder 50 Heater 51 Temperature control device 61 Through passage

Claims (5)

岩石が収納される収納容器と、
前記収納容器に収納された岩石に酸性溶液を圧送する透水手段と、
前記収納容器に収納された岩石の温度を設定する温度制御手段とを備え、
前記温度制御手段は、前記収納容器に収納された岩石の温度を実環境に対応して温度を変化させることを特徴とする岩石の透水反応装置。
A storage container for storing rocks;
A water-permeable means for pumping an acidic solution to the rock stored in the storage container;
Temperature control means for setting the temperature of the rock stored in the storage container,
The rock control device, wherein the temperature control means changes the temperature of the rock stored in the storage container according to the actual environment.
請求項1に記載の岩石の透水反応装置において、
前記収納容器に収納された岩石を実環境に応じた圧力で押圧する圧力調節手段を備えたことを特徴とする岩石の透水反応装置。
The rock-permeable reaction device for rock according to claim 1,
A rock water permeable reaction apparatus comprising pressure adjusting means for pressing the rock stored in the storage container with a pressure according to a real environment.
請求項2に記載の岩石の透水反応装置において、
前記収納容器には岩石を収容する遮断部材が備えられ、
前記収納容器と前記遮断部材との間には流体が封入され、
前記圧力調整手段は、前記流体を加圧して実環境に応じた圧力に岩石を押圧する加圧手段であることを特徴とする岩石の透水反応装置。
The rock-permeable reaction device for rock according to claim 2,
The storage container is provided with a blocking member for storing rocks,
A fluid is sealed between the storage container and the blocking member,
The rock pressure permeable reaction apparatus, wherein the pressure adjusting means is a pressurizing means that pressurizes the fluid and presses the rock to a pressure corresponding to an actual environment.
請求項1〜請求項3の何れか一項に記載の岩石の透水反応装置において、
前記透水手段は、前記収納容器に圧送する酸性溶液の組成を実環境の地下水組成に応じて設定することを特徴とする岩石の透水反応装置。
In the rock-permeable water reaction device according to any one of claims 1 to 3,
The water permeable means sets the composition of the acidic solution pumped to the storage container according to the groundwater composition of the actual environment, and is a rock permeable water reaction apparatus.
請求項1〜請求項4の何れか一項に記載の岩石の透水反応装置において、
前記岩石は、二酸化炭素を地中貯留すると想定された場所で採掘されたものであり、
前記酸性溶液は二酸化炭素溶解溶液であることを特徴とする岩石の透水反応装置。
In the rock-permeable water reaction device according to any one of claims 1 to 4,
The rock is mined in a place where carbon dioxide is supposed to be stored underground,
The rock water permeation reaction apparatus, wherein the acidic solution is a carbon dioxide-dissolved solution.
JP2007227050A 2007-08-31 2007-08-31 Rock permeation reactor Expired - Fee Related JP4993197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227050A JP4993197B2 (en) 2007-08-31 2007-08-31 Rock permeation reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227050A JP4993197B2 (en) 2007-08-31 2007-08-31 Rock permeation reactor

Publications (2)

Publication Number Publication Date
JP2009056416A true JP2009056416A (en) 2009-03-19
JP4993197B2 JP4993197B2 (en) 2012-08-08

Family

ID=40552655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227050A Expired - Fee Related JP4993197B2 (en) 2007-08-31 2007-08-31 Rock permeation reactor

Country Status (1)

Country Link
JP (1) JP4993197B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284605A (en) * 2009-06-12 2010-12-24 Central Res Inst Of Electric Power Ind Apparatus and method for preparing and injecting emulsion and method of mining methane hydrate
CN102621043A (en) * 2012-03-31 2012-08-01 中联煤层气有限责任公司 Device for testing corrosion performance of carbon dioxide injection to coal rocks and detection method
CN104316650A (en) * 2014-10-20 2015-01-28 中国石油天然气股份有限公司 Rapid high-temperature high-pressure dynamic acid rock experiment device and method
CN104880395A (en) * 2015-05-13 2015-09-02 成都理工大学 Rock-fluid reaction in situ observation device capable of controlling temperature and pressure
CN105928764A (en) * 2016-07-06 2016-09-07 西南交通大学 Method for preventing seepage by glue injection to side wall of irregular undisturbed fractured rock
CN109030775A (en) * 2018-07-04 2018-12-18 河南理工大学 The analytical equipment and analysis method that water flow loses solvable karst under a kind of closed system
CN110320339A (en) * 2018-03-28 2019-10-11 中国石油化工股份有限公司 A kind of the Water-rock interaction device and operating method of simulated formation enclosed environment
CN110879271A (en) * 2019-12-13 2020-03-13 大连理工大学 CO under simulated formation condition2Experimental device and method for water-rock reaction
CN111272978A (en) * 2020-02-26 2020-06-12 西南石油大学 Evaluation of CO2Device and method for testing influence on flat acid rock reaction rate
CN115805104A (en) * 2023-02-07 2023-03-17 太原理工大学 Oil-bearing rate detection device for in-situ exploitation of oil shale and use method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599834A (en) * 1991-06-04 1993-04-23 Mitsubishi Materials Corp Water penetration test device of rock sample
JP2006090698A (en) * 2004-08-23 2006-04-06 Mitsubishi Materials Corp Method for forming underground impermeable layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599834A (en) * 1991-06-04 1993-04-23 Mitsubishi Materials Corp Water penetration test device of rock sample
JP2006090698A (en) * 2004-08-23 2006-04-06 Mitsubishi Materials Corp Method for forming underground impermeable layer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284605A (en) * 2009-06-12 2010-12-24 Central Res Inst Of Electric Power Ind Apparatus and method for preparing and injecting emulsion and method of mining methane hydrate
CN102621043A (en) * 2012-03-31 2012-08-01 中联煤层气有限责任公司 Device for testing corrosion performance of carbon dioxide injection to coal rocks and detection method
CN104316650A (en) * 2014-10-20 2015-01-28 中国石油天然气股份有限公司 Rapid high-temperature high-pressure dynamic acid rock experiment device and method
CN104316650B (en) * 2014-10-20 2016-03-09 中国石油天然气股份有限公司 High Temperature High Pressure dynamic acid-rock reaction quick experiment device and method
CN104880395A (en) * 2015-05-13 2015-09-02 成都理工大学 Rock-fluid reaction in situ observation device capable of controlling temperature and pressure
CN105928764A (en) * 2016-07-06 2016-09-07 西南交通大学 Method for preventing seepage by glue injection to side wall of irregular undisturbed fractured rock
CN105928764B (en) * 2016-07-06 2019-01-18 西南交通大学 Irregular original state crack rock side wall injecting glue anti-seepage method
CN110320339B (en) * 2018-03-28 2021-10-15 中国石油化工股份有限公司 Water-rock reaction device for simulating stratum closed environment and operation method
CN110320339A (en) * 2018-03-28 2019-10-11 中国石油化工股份有限公司 A kind of the Water-rock interaction device and operating method of simulated formation enclosed environment
CN109030775A (en) * 2018-07-04 2018-12-18 河南理工大学 The analytical equipment and analysis method that water flow loses solvable karst under a kind of closed system
CN110879271B (en) * 2019-12-13 2021-08-20 大连理工大学 CO under simulated formation condition2Experimental device and method for water-rock reaction
CN110879271A (en) * 2019-12-13 2020-03-13 大连理工大学 CO under simulated formation condition2Experimental device and method for water-rock reaction
CN111272978A (en) * 2020-02-26 2020-06-12 西南石油大学 Evaluation of CO2Device and method for testing influence on flat acid rock reaction rate
CN111272978B (en) * 2020-02-26 2021-04-09 西南石油大学 Evaluation of CO2Device and method for testing influence on flat acid rock reaction rate
CN115805104A (en) * 2023-02-07 2023-03-17 太原理工大学 Oil-bearing rate detection device for in-situ exploitation of oil shale and use method thereof

Also Published As

Publication number Publication date
JP4993197B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4993197B2 (en) Rock permeation reactor
Sigfusson et al. Solving the carbon-dioxide buoyancy challenge: The design and field testing of a dissolved CO2 injection system
Zhao et al. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin
Sell et al. Measurement of CO2 diffusivity for carbon sequestration: A microfluidic approach for reservoir-specific analysis
Holloway et al. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide
Zimmer et al. The gas membrane sensor (GMS): A new method for gas measurements in deep boreholes applied at the CO2SINK site
JP4993199B2 (en) Rock reactor
CN105823902A (en) Low-flow-rate sonar measurement method, device and application
Cui et al. Investigation on gas migration in saturated bentonite using the residual capillary pressure technique with consideration of temperature
Anaya et al. Estimating preferential flow in karstic aquifers using statistical mixed models
Yang et al. Experimental study on effect of CO2–alkaline water two-phase gas displacement and coal wetting
Xiao et al. Wormhole generations in Indiana limestone with CO2 intrusion: numerical simulations based on core flooding experiments
US20170282228A1 (en) Method and means for treatment of soil
Zhang et al. The influence of CO2 saturation time on the coal gas flow: Fractured bituminous coal
Pearce What can we learn from natural analogues?
JP2009058441A (en) Eluted element sampling device from rock
Druhan et al. A reactive transport model for geochemical mitigation of CO2 leaking into a confined aquifer
Oliva et al. A comparison of three methods for monitoring CO2 migration in soil and shallow subsurface in the Ressacada Pilot site, Southern Brazil
Pham et al. Quantifying the desaturation effect of biogenic gas formation in sandy soil
Chapuis Compacted clay: difficulties obtaining good laboratory permeability tests
Shachi et al. Migration of CO 2 through carbonate cores: Effect of salinity, pressure, and cyclic brine-CO 2 injection
Tang et al. Influence of compaction degree on membrane behavior of compacted clay amended with bentonite
Casini et al. A physical analogue model to analyse interactions between tensile stresses and dissolution in carbonate slopes
Heilweil et al. Evaluation of potential gas clogging associated with managed aquifer recharge from a spreading basin, Southwestern Utah, USA
JP5013419B2 (en) Elution element collection device from rock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees