JP2009056126A - Light irradiation method and apparatus by electromagnetic wave synchronized light derived from activated mineral water - Google Patents

Light irradiation method and apparatus by electromagnetic wave synchronized light derived from activated mineral water Download PDF

Info

Publication number
JP2009056126A
JP2009056126A JP2007226408A JP2007226408A JP2009056126A JP 2009056126 A JP2009056126 A JP 2009056126A JP 2007226408 A JP2007226408 A JP 2007226408A JP 2007226408 A JP2007226408 A JP 2007226408A JP 2009056126 A JP2009056126 A JP 2009056126A
Authority
JP
Japan
Prior art keywords
light
mineral water
activated mineral
electromagnetic wave
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007226408A
Other languages
Japanese (ja)
Inventor
Kenji Hatanaka
賢爾 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKI SANGYO KK
Original Assignee
SHINKI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKI SANGYO KK filed Critical SHINKI SANGYO KK
Priority to JP2007226408A priority Critical patent/JP2009056126A/en
Publication of JP2009056126A publication Critical patent/JP2009056126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrotherapy Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for exerting operations such as health promotion affected by favorable characteristics derived from the activated mineral water without directly processing the activated mineral water, irradiate an electromagnetic wave synchronized light derived from the activated mineral water by a relatively simple optical process, improve the manufacturing efficiency of a light irradiation apparatus with desired characteristics and save the labor of manufacturing work. <P>SOLUTION: This light irradiation method by the electromagnetic wave synchronized light derived from the activated mineral water is formed by previously irradiating a light from an electric lighting device to a component consisting of a light transmission section or a light reflection section of the light irradiation apparatus or the both sections, transmitting or reflecting the light emitted from the light irradiation apparatus through/to the component to form an electromagnetic wave synchronized light resonated to the electromagnetic wave derived from the activated mineral water, and irradiating the electromagnetic wave synchronized light to a subject to be treated. An electric lighting device is provided with a light transmission section or a light reflection section for transmitting or reflecting the light from an electric energy light emitting device, and the light transmission section or the light reflection section of the electric lighting device or the both sections are defined to come into contact with the activated mineral water produced by a predetermined method. This method irradiates the electromagnetic wave emitted from the activated mineral water to absorb the electromagnetic vibration energy, thus providing a favorable operation effect equivalent to the contact process of the activated mineral water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、活性化鉱水に由来する電磁波同調光を照射処理し、活性化鉱水の有する特性を汎用製品に付与できるように加工処理する活性化鉱水由来の電磁波同調光による光照射処理方法およびその光照射処理装置に関するものである。   The present invention relates to a light irradiation treatment method using electromagnetically tuned light derived from activated mineral water, which is subjected to irradiation treatment with electromagnetically tuned light derived from activated mineral water and processed so that the properties possessed by the activated mineral water can be imparted to general-purpose products, and the like The present invention relates to a light irradiation processing apparatus.

一般に、通常の水は、分子が水素結合によってクラスターを形成した状態であり、このクラスターの形成度合によって、水の腐敗速度に多大な影響があることが近年多くの学者等の実験研究によって解明されている。   In general, normal water is a state in which molecules form clusters by hydrogen bonding, and it has recently been clarified by experimental studies by many scholars that the degree of cluster formation has a great influence on the decay rate of water. ing.

水分子のクラスターを崩壊させて小さなクラスターにするか、または昇降圧状態で無機物質から溶け出したイオンを中心にするなどして小分子集団化させると、例えば物質への浸透性が増し、繊維加工水として用いた場合に染着性が改善され、または雑菌の増殖を抑制するといった種々の効用があることも知られている。   When water molecules are collapsed into small clusters, or small molecules are grouped by centering on ions dissolved from an inorganic substance in a step-up / down state, for example, the permeability to the substance increases and the fibers It is also known that when used as processed water, there are various effects such as improved dyeability or suppression of growth of various bacteria.

活性化鉱水は、本願の発明者が食品加工用水や繊維加工用水として適当な小分子集団化されまたは単分子化された水を開発し、これを活性化鉱水としてその製造方法を開示したものである(特許文献1)。   The activated mineral water was developed by the inventor of the present application as water for food processing or fiber processing, which is suitable for small molecule grouping or unimolecularization, and disclosed the production method as activated mineral water. Yes (Patent Document 1).

特許文献2に記載されているように、活性化鉱水は、5〜30気圧に加圧された水を所定の鉱物性無機物質に接触通過させる工程と、この工程を経た加圧水を前記所定の気圧未満の雰囲気に貯留する工程とを設け、これらの工程を交互に繰り返すようにして前記加圧水を循環させて製造できる。   As described in Patent Document 2, the activated mineral water includes a step of passing water pressurized to 5 to 30 atmospheres in contact with a predetermined mineral inorganic substance, and the pressurized water that has undergone this step is subjected to the predetermined atmospheric pressure. And a process of storing in an atmosphere of less than the above, and by repeating these processes alternately, the pressurized water can be circulated and manufactured.

このような活性化鉱水を好ましくは2〜30気圧に加圧し、セラミックス、ガラス、樹脂、金属などの固形状処理対象物に接触通過させて、好ましい物理化学的作用を及ぼす接触反応方法が知られている(特許文献2)。   There is known a contact reaction method in which such activated mineral water is preferably pressurized to 2 to 30 atm and passed through a solid processing object such as ceramics, glass, resin, metal, etc. and exerts a preferable physicochemical action. (Patent Document 2).

活性化鉱水を接触させた樹脂ペレットを用いて液体や固体の収容容器を成形すると、この容器に収容された生鮮食品の鮮度低下が穏やかになり、またその生鮮食品の味がまろやかになるといった特異な物理化学的作用のあることも開示されている(特許文献3)。   When a liquid or solid container is molded using resin pellets in contact with activated mineral water, the freshness of the fresh food contained in this container is moderately reduced, and the taste of the fresh food is mellow. It is also disclosed that there is a physicochemical action (Patent Document 3).

また、活性化鉱水の物理化学的な作用を非接触の状態でも奏されるようにし、特に光を介して人の健康増進に役立つような装置となるようにし、その他にも種々の効用が期待される活性化鉱水の物理化学的作用が奏される電光装置およびこれを光源とする照明装置が開示されている(特許文献4)。   In addition, the physicochemical action of the activated mineral water can be performed even in a non-contact state, and it should be a device that is useful for promoting human health through light, and various other benefits are also expected. A lightning device that exhibits the physicochemical action of activated mineral water and a lighting device using this as a light source are disclosed (Patent Document 4).

特公平4−74074号公報(特許請求の範囲)Japanese Patent Publication No. 4-74074 (Claims) 特許第3561532号公報(特許請求の範囲、段落[0020])Japanese Patent No. 3561532 (Claims, paragraph [0020]) 特許第3634021号公報(特許請求の範囲、段落[0036])Japanese Patent No. 3634021 (Claims, paragraph [0036]) 特開2006−332439号公報JP 2006-332439 A

しかし、上記した従来の電光装置およびこれを光源とする照明装置では、電光装置の発光素子を封入した透光性の中空成形体を直接に活性化鉱水で接触処理しなければ所期した効果が得られないものであり、そのような照明装置の製造には加圧設備などを要し、また長時間の活性化鉱水での接触処理工程が必要であり、処理には長時間に亘り多くの労力が必要であった。   However, the above-described conventional lightning device and the lighting device using this as a light source have the expected effect unless the light-transmitting hollow molded body enclosing the light emitting element of the lightning device is directly contacted with activated mineral water. Such a lighting device requires a pressurization facility and the like, and requires a long contact treatment process with activated mineral water. It took effort.

そこで、この発明の課題は、上記した問題点を解決して、活性化鉱水由来の好ましい特性が人や動物に及ぶことによる健康増進などの作用が、活性化鉱水を直接に用いなくても間接的に及ぶ方法とし、すなわち比較的簡易な光学的処理によって活性化鉱水由来の電磁波に同調した光照射処理ができるようにし、また所期した特性ある光照射装置の製造作業の省力化を図り、装置の製造効率を向上させることである。   Therefore, an object of the present invention is to solve the above-mentioned problems, and the effects such as health promotion due to the favorable characteristics derived from activated mineral water reaching humans and animals can be indirectly achieved without using activated mineral water directly. A method that reaches the target, that is, a light irradiation process synchronized with the electromagnetic wave derived from the activated mineral water can be performed by a relatively simple optical process, and the labor of manufacturing a light irradiation apparatus having a desired characteristic is saved. It is to improve the manufacturing efficiency of the device.

上記の課題を解決するために、この発明においては光照射装置の光透過部もしくは光反射部または両部材からなる構成部材に、下記の電光装置からの光を予め照射処理しておき、次いで光照射装置の電気光源からの光を前記構成部材に透過または反射させて活性化鉱水由来の電磁波に共鳴した電磁波同調光とし、この電磁波同調光を光照射装置から処理対象物に照射処理することからなる活性化鉱水由来の電磁波同調光による光照射処理方法としたのである。

電気光源からの光を透過または反射する光透過部または光反射部を有する電光装置からなり、この電光装置の光透過部もしくは光反射部または両部材は、所定方法で製造された活性化鉱水で接触処理された電光装置である。
In order to solve the above-described problems, in the present invention, light from the following lightning device is preliminarily irradiated on the light transmitting device or the light reflecting portion of the light irradiation device, or a component composed of both members, and then the light is irradiated. Because the light from the electric light source of the irradiation device is transmitted or reflected by the constituent members to be electromagnetic wave tuning light that resonates with the electromagnetic waves derived from the activated mineral water, and this electromagnetic wave tuning light is irradiated from the light irradiation device to the object to be processed. This is a light irradiation treatment method using electromagnetic wave tuning light derived from activated mineral water.
The light transmission part which transmits or reflects the light from an electrical light source, or the light transmission part which has a light reflection part, The light transmission part or light reflection part of this lightning apparatus, or both members are the activated mineral water manufactured by the predetermined method It is a lightning device that has been subjected to the contact treatment.

上記したように構成されるこの発明の光照射処理方法は、光照射装置の構成部材である光透過部もしくは光反射部または両部材に、活性化鉱水から放出される電磁波を照射して電磁振動エネルギーを吸収させることにより、活性化鉱水を接触させて処理する場合と同等の好ましい作用効果を得ることができる。   The light irradiation treatment method of the present invention configured as described above is a method of irradiating an electromagnetic wave emitted from activated mineral water to a light transmitting part or a light reflecting part or both members which are constituent members of a light irradiation apparatus. By absorbing energy, it is possible to obtain a preferable effect equivalent to the case where the activated mineral water is contacted and treated.

具体的には、当初製造する光照射装置については、予め、光照射装置の構成部材である光透過部もしくは光反射部または両部材に対して、活性化鉱水を噴霧またはこれに浸漬するなど接触処理を行なっておき、活性化鉱水を直接に作用させた光照射装置の所定構成部品を作製しておくが、次の段階で製造する光照射装置については、その構成部材である光透過部もしくは光反射部または両部材に対し、光照射装置から発せられる活性化鉱水由来の電磁波同調光を光照射処理しておき、活性化鉱水を直接に接触させる処理と同等の好ましい作用効果の奏される光照射装置にする。   Specifically, for the light irradiation apparatus to be initially manufactured, contact is made in advance by, for example, spraying or immersing activated mineral water on the light transmitting part or the light reflecting part or both members which are constituent members of the light irradiation apparatus. Processing is performed, and the predetermined component of the light irradiation device in which the activated mineral water is directly acted is prepared. For the light irradiation device to be manufactured in the next stage, the light transmitting portion that is the component member or The light reflecting part or both members are subjected to light irradiation treatment with electromagnetic wave tuned light derived from activated mineral water emitted from the light irradiation device, and the same advantageous effects as the treatment of directly contacting the activated mineral water are exhibited. Use a light irradiation device.

すなわち、前記した活性化鉱水由来の電磁波同調光による光照射処理方法において、電光装置が、所定方法で製造された活性化鉱水で接触処理された光透過部もしくは光反射部または両部材に代えて、前述の光照射処理方法で処理された光透過部もしくは光反射部または両部材を用いた電光装置である活性化鉱水由来の電磁波同調光による光照射処理方法を採用することもできるのである。   That is, in the light irradiation treatment method using the electromagnetic wave tuning light derived from the activated mineral water described above, the lightning device is replaced with the light transmitting portion or the light reflecting portion or both members subjected to the contact treatment with the activated mineral water manufactured by a predetermined method. It is also possible to employ a light irradiation treatment method using electromagnetic wave tuning light derived from activated mineral water, which is a light transmission device or light reflection portion treated by the above-described light irradiation treatment method, or an electro-optical device using both members.

このような光照射装置は、可視光、赤外線、遠赤外線および紫外線から選ばれる一種以上の光を発する光照射装置であればよく、発生させる光の波長は特に限定して採用するものではなく、活性化鉱水由来の電磁波同調光による光照射処理方法を汎用的に使用することができる。   Such a light irradiation device may be any light irradiation device that emits one or more kinds of light selected from visible light, infrared light, far infrared light, and ultraviolet light, and the wavelength of the light to be generated is not particularly limited, The light irradiation processing method by the electromagnetic wave tuning light derived from activated mineral water can be used universally.

特に光照射装置が、蛍光灯である場合には、光透過部もしくは光反射部または両部材に代わる部材が、蓄光材が塗布された蛍光管であるから、すなわち蛍光管の内面に塗布される蓄光材が、活性化鉱水から放出される電磁波を照射して電磁振動エネルギーを吸収させた電磁波伝搬性の蓄光材である活性化鉱水由来の電磁波同調光による光照射処理方法としてもよい。   In particular, when the light irradiation device is a fluorescent lamp, the light transmitting portion or the light reflecting portion or the member replacing the two members is a fluorescent tube coated with a phosphorescent material, that is, applied to the inner surface of the fluorescent tube. The light storage material may be a light irradiation treatment method using electromagnetic wave tuned light derived from activated mineral water, which is an electromagnetic wave propagating light storage material in which electromagnetic vibration energy is absorbed by irradiating electromagnetic waves emitted from the activated mineral water.

すなわち、蛍光管に塗布される蓄光材に対して、光照射装置から発せられる活性化鉱水由来の電磁波同調光を光照射処理すれば、活性化鉱水を接触処理する場合と同等な作用効果の得られる光照射装置になるのである。   That is, if the phosphorescent material applied to the fluorescent tube is subjected to light irradiation treatment with the electromagnetic wave tuning light derived from the activated mineral water emitted from the light irradiation device, the same effect as that obtained when the activated mineral water is contact treated is obtained. It becomes a light irradiation device.

前記した所定特性の活性化鉱水の製造方法としては、5〜30気圧に加圧された水を玄武岩、安山岩、磁鉄鉱から選ばれる1種以上の鉱物を含む鉱物性無機物質に接触通過させる工程と、この工程を経た水を前記気圧未満の雰囲気下に貯留する工程を交互に繰り返して活性化鉱水を製造する方法を採用することができる。   As a method for producing the activated mineral water having the predetermined characteristics described above, a step of bringing water pressurized to 5 to 30 atmospheres into contact with a mineral inorganic substance containing one or more minerals selected from basalt, andesite and magnetite; A method of producing activated mineral water by alternately repeating the step of storing the water that has undergone this step in an atmosphere below the atmospheric pressure can be employed.

所定の活性化鉱水は、分子レベルで小集団化した水、すなわち無機物質から溶出した2価、3価イオンなどを中心に水のクラスターが小型化して浸透性の高い水であり、ガラス等の光学部品の材料に接した場合には浸透しやすいが、浸透しない状態でも、光照射装置の構成部材である光透過部もしくは光反射部または両部材に対して活性化鉱水からの電磁振動エネルギーとしての電磁波が伝播し、物理化学的作用が及ぼされると考えられる。   Predetermined activated mineral water is water that is small in size at the molecular level, that is, water that is highly permeable by reducing the size of water clusters, mainly divalent and trivalent ions eluted from inorganic substances. Although it is easy to penetrate when it comes into contact with the material of the optical component, even if it does not penetrate, the light transmitting part or the light reflecting part, which is a component of the light irradiation device, or both members as electromagnetic vibration energy from the activated mineral water It is thought that the electromagnetic wave propagates and has a physicochemical effect.

このような活性化鉱水由来の電磁振動エネルギーを吸収した光学部品は、これを通過、または反射する光(電磁波)と共振するものになると考えられ、電磁波が透過または反射する際に得られる電磁波同調光に水その他の極性のある分子や金属などに対して何らかの物理化学的作用を及ぼしやすい特異な光化学特性が付与される。   Optical components that absorb electromagnetic vibration energy derived from such activated mineral water are considered to resonate with light that passes through or reflects (electromagnetic waves), and are obtained when electromagnetic waves are transmitted or reflected. It gives unique photochemical properties that are likely to have some physicochemical action on water and other polar molecules and metals.

その作用は、光透過部を透過する光が可視光であっても奏され、例えば光照射装置が、白熱電球、蛍光灯または発光ダイオードのいずれの電光装置である場合にも奏される。   The effect is exhibited even when the light transmitted through the light transmission part is visible light. For example, the light irradiating device is exhibited when the light irradiating device is an incandescent lamp, a fluorescent lamp, or a light emitting diode.

また、活性化鉱水がセラミックス、ガラス、金属などの固形状処理対象物に接触しないまでも、これらに一時的に接触した状態と同様に、電磁波を介して分子の振動エネルギーを電磁場と同様に伝播させているとすれば、その結果として処理対象物の分子のエネルギーは変化するものと考えられる。   In addition, even if the activated mineral water does not come into contact with solid processing objects such as ceramics, glass, metal, etc., the vibration energy of molecules propagates through electromagnetic waves in the same way as electromagnetic fields, as in the case of temporary contact with these. As a result, it is considered that the molecular energy of the object to be processed changes as a result.

上記の作用効果の得られる光照射装置としては、上記した所定方法で製造された活性化鉱水由来の電磁振動を光透過部または光反射部からなる構成部材に与えた光照射装置を設け、この光照射装置の電気光源から発した光を前記光透過部または光反射部に透過または反射させて活性化鉱水由来の電磁波に共鳴した電磁波同調光を調製する光の経路を設けた活性化鉱水由来の電磁波同調光の照射装置とすることができる。   As the light irradiation device that can obtain the above-described effects, a light irradiation device is provided in which electromagnetic vibration derived from the activated mineral water produced by the above-described predetermined method is applied to a constituent member composed of a light transmitting portion or a light reflecting portion. Derived from activated mineral water having a light path for preparing electromagnetically tuned light that resonates with electromagnetic waves derived from activated mineral water by transmitting or reflecting light emitted from the electric light source of the light irradiation device to the light transmitting portion or the light reflecting portion. The electromagnetic wave tuning light irradiation apparatus can be used.

本願の光照射処理方法および照射装置に係る発明は、光照射装置における所定の構成部材に、活性化鉱水の電磁振動を与え、またはこれに同調した光を照射し、次いで光を前記構成部材に透過または反射させて得られた電磁波同調光を処理対象物に照射処理するようにしたので、光照射装置から活性化鉱水の電磁振動エネルギーが照射できるようになり、活性化鉱水由来の好ましい特性が及ぶ健康増進などの作用が、活性化鉱水を用いて直接に処理しなくてもよい方法となり、すなわち比較的簡易な光学的処理で活性化鉱水由来の電磁波同調光による光照射ができる利点がある。   The invention according to the light irradiation treatment method and the irradiation apparatus of the present application is to apply electromagnetic vibration of activated mineral water to a predetermined constituent member of the light irradiation apparatus or to irradiate light in synchronization with the electromagnetic vibration, and then apply light to the constituent member. Since the electromagnetic wave tuning light obtained by transmission or reflection is irradiated on the object to be processed, electromagnetic vibration energy of the activated mineral water can be irradiated from the light irradiation device, and preferable characteristics derived from the activated mineral water are obtained. The effects of health promotion and the like become a method that does not need to be directly treated with activated mineral water, that is, there is an advantage that light irradiation by electromagnetic wave tuning light derived from activated mineral water can be performed by relatively simple optical treatment. .

この電磁波同調光を用いて照射処理すれば、処理対象物に活性化鉱水由来の特性が簡便に伝達されるようになり、特に、照射された空気中のマイナスイオンの富化効果、有機物質が原因の有臭成分の分解脱臭効果、電磁波同調光の照射による血流改善効果などが期待される。   If irradiation treatment is performed using this electromagnetic wave tuning light, the characteristics derived from the activated mineral water can be easily transmitted to the object to be treated. In particular, the effect of enriching negative ions in the irradiated air, organic substances Expected to be effective in decomposing and deodorizing causative odorous components and improving blood flow by irradiating electromagnetic wave tuning light.

また、活性化鉱水由来の電磁波同調光による光照射装置の製造工程の簡単化により、所期した特性のある光照射装置の製造効率の向上と製造作業の省力化を図ることができるという利点もある。   In addition, by simplifying the manufacturing process of the light irradiation device by the electromagnetic wave tuning light derived from the activated mineral water, there is an advantage that it is possible to improve the manufacturing efficiency of the light irradiation device with the expected characteristics and save labor in the manufacturing work. is there.

この発明の活性化鉱水由来の電磁波同調光による光照射処理方法および活性化鉱水由来の電磁波同調光の照射装置について、以下に適宜に添付図面を参照しながら説明する。
実施形態の光照射処理方法は、例えば白熱電灯や蛍光灯のような室内外灯、または懐中電灯その他の電光装置または光照射装置の構成部材である集光レンズや電球の保護用覆いとなる光透過部もしくは所定方向へ光を集中させまたは散乱させるための光反射部または蓄光材などの部材に、活性化鉱水から放出される電磁波を照射し、好ましくは所定時間の処理を経て電磁振動等のエネルギーを与えて吸収させる。
A light irradiation treatment method using electromagnetic wave tuning light derived from activated mineral water and an irradiation apparatus of electromagnetic wave tuning light derived from activated mineral water according to the present invention will be described below with reference to the accompanying drawings as appropriate.
The light irradiation processing method according to the embodiment includes, for example, an indoor / outdoor lamp such as an incandescent lamp and a fluorescent lamp, a flashlight, a light-transmitting light that serves as a protective cover for a condenser lens and a light bulb that are components of the light-emitting device or the light-emitting device. Irradiate electromagnetic waves emitted from activated mineral water to a member such as a light reflecting part or a phosphorescent material for concentrating or scattering light in a part or a predetermined direction, and preferably, energy such as electromagnetic vibration after a predetermined time treatment To absorb.

次いで、光照射装置内で発せられた光は、装置内の構成透過性部材に透過させ、もしくは反射性部材に反射させ、または蛍光剤などに蓄光させて前記の電磁振動と共振させ、この際に得られる電磁波同調光を処理対象物に照射処理することによる活性化鉱水由来の電磁波同調光による光照射処理方法を採用する。   Next, the light emitted in the light irradiation device is transmitted through the constituent transmissive member in the device, reflected by the reflective member, or stored in a fluorescent agent to resonate with the electromagnetic vibration. The light irradiation processing method by the electromagnetic wave tuning light derived from the activated mineral water by irradiating the processing object with the electromagnetic wave tuning light obtained in the above is adopted.

図1に示すように、実施形態の電光装置または光照射装置は、光源(電光装置)Aから発生した光を凸レンズ5付きのヘッド6やその他の光透過性または光反射性の1以上の光学部品を介して被照明物に照射可能であるもの、例えば懐中電灯、その他周知の照明器具を例示できる。光照射装置の構成部材である光透過部としては、凸レンズ、凹レンズや平板状または曲面状のガラスなどの透明性または半透明性のセラミックス、またはポリカーボネートやアクリル系樹脂などの合成樹脂製の透明な部品、同様な材料で形成された外装部品(カバー、ケースなど)が挙げられる。   As shown in FIG. 1, the lightning device or the light irradiation device according to the embodiment uses light generated from a light source (lightning device) A as a head 6 with a convex lens 5 or one or more other optically or light-reflective optical elements. Examples of the illumination device that can irradiate the object to be illuminated through the component, such as a flashlight, and other well-known illumination devices can be given. The light transmitting part, which is a component of the light irradiation device, includes a transparent lens made of a convex lens, a concave lens, a transparent or semi-transparent ceramic such as flat or curved glass, or a synthetic resin such as polycarbonate or acrylic resin. Examples thereof include exterior parts (covers, cases, etc.) formed of similar materials.

また、光反射部としては、アルミニウム、クロム、銀、ニッケル、ステンレス鋼などの金属製からなるもの、金属や合成樹脂やガラスなどに蒸着などして物理化学的に鍍金したもの、またはガラスや合成樹脂に蒸着したもの、またはセラミックスなどからなり、例えば、電球の一部が反射面となるように鍍金されたものや、電球の裏側に別途設置される反射凹面鏡などの光学部品などが挙げられる。   In addition, the light reflecting portion may be made of a metal such as aluminum, chromium, silver, nickel, stainless steel, physicochemically plated by vapor deposition on metal, synthetic resin or glass, or glass or synthetic. For example, an optical component such as one deposited on a resin, ceramics, or the like plated with a part of a light bulb as a reflecting surface, or a reflective concave mirror separately installed on the back side of the light bulb.

また、電光装置としては、発光素子が、白熱電球ばかりでなく、他にも発光素子を発光ダイオード(LED)としたもの(図1参照)や、蛍光灯(可視光の蛍光灯、いわゆるブラックライトなどの紫外線電球など、)その他周知の電光装置を採用することができる。
これらに使用する電源は、直流電源ばかりでなく、交流電源も適宜に調整使用できる。
In addition, as the lightning device, the light emitting element is not only an incandescent light bulb, but also a light emitting diode (LED) as a light emitting element (see FIG. 1) or a fluorescent lamp (visible light fluorescent lamp, so-called black light). Other well-known lightning devices can be employed.
As the power source used for these, not only a DC power source but also an AC power source can be appropriately adjusted and used.

この発明に用いる活性化鉱水は、5〜30気圧に加圧された水を玄武岩、安山岩、磁鉄鉱から選ばれる1種以上の鉱物を含む鉱物性無機物質に接触通過させ、接触通過した水を前記気圧未満の雰囲気下に曝気し、これらの工程を順に繰り返して製造されると、鉱物性無機化合物を含有する活性化鉱水になる。   The activated mineral water used in the present invention allows water that has been pressurized to 5 to 30 atmospheres to pass through a mineral inorganic substance containing one or more minerals selected from basalt, andesite, and magnetite, and the water that has passed through the contact is the above-mentioned When aeration is performed in an atmosphere of less than atmospheric pressure and these steps are repeated in order, activated mineral water containing a mineral inorganic compound is obtained.

上記方法で製造された活性化鉱水は、接触通過した鉱物性無機物質から溶出した無機イオン(例えば2価または3価の無機イオン)を含んでいるほか、水素結合が切れて水分子が5〜6クラスター程度となり、通常の水分子の20〜30分子の場合に比べて小さくなっているなど、分子レベルで水の状態が変化しているものと考えられており、種々の物質によく浸透する物性がある。   The activated mineral water produced by the above method contains inorganic ions (for example, divalent or trivalent inorganic ions) eluted from the mineral inorganic material that has passed through the contact, and the hydrogen bond is broken and the water molecules are 5 to 5. It is considered that the state of water is changing at the molecular level, such as about 6 clusters, which is smaller than the case of 20 to 30 molecules of normal water molecules, and penetrates various substances well. There are physical properties.

因みに、鉱物性無機物質の代表例である玄武岩、安山岩、磁鉄鉱の主な成分は、SiO2、TiO2、Al23、Fe23、FeO、MnO、MgO、CaO、Na2O、K2Oからなっている。 Incidentally, the main components of basalt, andesite and magnetite, which are representative examples of mineral inorganic substances, are SiO 2 , TiO 2 , Al 2 O 3 , Fe 2 O 3 , FeO, MnO, MgO, CaO, Na 2 O, It consists of K 2 O.

5〜30気圧に加圧された水を使用して鉱物性無機物質に接触通過させる理由は、5気圧未満の低圧では活性化鉱水の製造効率が悪く、生成された鉱水の浸透性向上などの作用が不充分だからであり、また加圧の上限は、30気圧を越える加圧水を接触させても活性化鉱水にそれ以上に変化が見られず、却って実用性を失するからである。   The reason why the water pressurized to 5 to 30 atmospheres is used to contact and pass the mineral inorganic substance is that the production efficiency of the activated mineral water is poor at a low pressure of less than 5 atmospheres, such as improved permeability of the generated mineral water. This is because the action is inadequate, and the upper limit of pressurization is that even if pressurized water exceeding 30 atm is brought into contact with the activated mineral water, no further change is seen, and practicality is lost.

また、5〜30気圧という加圧時の気圧未満の雰囲気下に貯留する工程を設け、例えば曝気などによって好ましくは大気圧に減圧する理由は、加圧された水を減圧し、再び加圧するという工程を繰り返すことにより、水の水素結合を切って変性させ、それまで水素結合に寄与していた電子を還元性に寄与させるようにするためであり、このような減圧と加圧を繰り返す製造工程は、活性化鉱水に特有の物性を付与するために必要な工程と考えられる。   Moreover, the process of storing in the atmosphere below the atmospheric pressure at the time of pressurization of 5 to 30 atmospheres is provided, and the reason why the pressure is preferably reduced to atmospheric pressure by aeration, for example, is that the pressurized water is decompressed and pressurized again. By repeating the process, the hydrogen bond of water is cut and denatured, and the electrons that have previously contributed to the hydrogen bond are made to contribute to the reducibility. Is considered to be a process necessary for imparting specific physical properties to the activated mineral water.

上記の所定方法で製造された活性化鉱水に透光性中空成形体、樹脂ペレット、ガラスの原材料などを浸漬する他の接触処理を施すと、この原材料に活性化鉱水およびこれに溶出した鉱物性無機物質からの無機イオン性物質が添加され、また接触した水分子の振動エネルギーが電磁場と同様に伝播するとすれば、その結果として樹脂ペレット等の処理対象物の分子内のエネルギーは変化するものと考えられる。また実験結果からみても、活性化鉱水の物理化学的な性質が樹脂やガラスの原材料に転移した状態になると考えられる。   When other contact treatment is performed by immersing translucent hollow molded bodies, resin pellets, glass raw materials, etc. in the activated mineral water produced by the above-mentioned predetermined method, the activated mineral water and the mineral properties eluted in this raw material If an inorganic ionic substance from an inorganic substance is added and the vibration energy of the contacted water molecule propagates in the same way as an electromagnetic field, the energy in the molecule of the processing object such as resin pellets will change as a result. Conceivable. From the experimental results, it is considered that the physicochemical properties of the activated mineral water have been transferred to the raw materials of resin and glass.

このように活性化鉱水を光照射装置の構成部材である光透過部もしくは光反射部または両部材に接触させる処理は、常温、常圧で行なうこともできるが、処理対象物である電光装置の光が通過するレンズなどの光透過部や、光反射部(電光装置から周囲に拡散した光を前方などに集中させるための光学的反射面)を含めて、装置の一部または全体(水濡れに不適当な電気回路などを除く。)を耐圧性のタンクに収容し、加圧ポンプで処理対象物が壊れない程度に2〜30気圧の範囲で加圧調整した活性化鉱水を供給する状態で行なうことは製造効率がよくて好ましい。   In this way, the process of bringing the activated mineral water into contact with the light transmitting part or the light reflecting part or both members which are constituent members of the light irradiation device can be performed at room temperature and normal pressure. A part or the whole of the device (water wet), including a light transmitting part such as a lens through which light passes and a light reflecting part (an optical reflecting surface for concentrating the light diffused from the lightning device to the front). Is stored in a pressure-resistant tank, and activated mineral water whose pressure is adjusted in the range of 2 to 30 atm. It is preferable to carry out the above in terms of production efficiency.

次に、上記のようにして製造された光照射装置を用いて、活性化鉱水に接触することなく、同様な特性を有する光照射装置を製造する。
すなわち、光照射装置の構成部材である光透過部もしくは光反射部または両部材に、前記のようにして得られた光照射装置からの光を照射する。光照射装置の構成部材である光透過部もしくは光反射部の例としては、前述した例と同様である。
Next, using the light irradiation apparatus manufactured as described above, a light irradiation apparatus having the same characteristics is manufactured without contacting the activated mineral water.
That is, light from the light irradiation device obtained as described above is irradiated to the light transmission portion or the light reflection portion, or both members, which are constituent members of the light irradiation device. Examples of the light transmitting part or the light reflecting part which are constituent members of the light irradiation device are the same as those described above.

照射時間は、できるだけ長時間であることが好ましく、少なくとも1時間以上、好ましくは10時間、より好ましくは24時間以上であれば、処理対象品の大きさや構造に合わせて充分に表面が均等に照射でき、また処理対象品の立体的形状からみた表面の凹凸が多いもの、その他複雑な形状である場合にも充分に光照射される。   The irradiation time is preferably as long as possible. If the irradiation time is at least 1 hour, preferably 10 hours, more preferably 24 hours or more, the surface is irradiated evenly in accordance with the size and structure of the object to be treated. In addition, light is sufficiently irradiated even when the surface of the product to be processed has a large number of irregularities as viewed from the three-dimensional shape, or in other complicated shapes.

また、光照射の際には、被処理品に対して活性化鉱水を霧状に噴霧しながら行なえば、活性化鉱水から放出される電磁波が鉱物性無機物質と共に確実に作用すると考えられるので好ましい。このようにして所定方法で製造された活性化鉱水から放出される電磁波を光照射装置の所定の構成部材に照射し、これらに電磁振動エネルギーを吸収させるようにする。   In addition, it is preferable that the irradiation with light is performed while spraying the activated mineral water in the form of a mist on the article to be treated, because it is considered that the electromagnetic waves emitted from the activated mineral water work together with the mineral inorganic substance. . Thus, the electromagnetic wave emitted from the activated mineral water manufactured by the predetermined method is irradiated to the predetermined constituent member of the light irradiation device so as to absorb the electromagnetic vibration energy.

光照射装置は、その構造は特に限定されるものではなく、周知の照明器具の基本な構造を備えたものを採用でき、例えば可視光または紫外線を発光する蛍光灯、発光ダイオード(LED)、アルゴンガスやクリプトンガスを封入した白熱電球(豆電球を含む。)を用いた白熱灯、水銀灯など、または赤外線や遠赤外線を発生させるハロゲンランプなどを適用できる。   The structure of the light irradiation device is not particularly limited, and a light irradiation device having a basic structure of a well-known lighting fixture can be adopted. For example, a fluorescent lamp that emits visible light or ultraviolet light, a light emitting diode (LED), argon An incandescent lamp using an incandescent bulb (including a miniature bulb) enclosing gas or krypton gas, a mercury lamp, or a halogen lamp that generates infrared rays or far infrared rays can be applied.

因みに、ハロゲンランプは、石英管内にタングステンフィラメントを内蔵しハロゲンガスを封入したものであり、ハロゲンランプが放射する光の80%以上が熱(赤外線)である。   Incidentally, a halogen lamp has a tungsten filament built in a quartz tube and sealed with a halogen gas, and 80% or more of light emitted from the halogen lamp is heat (infrared rays).

一方、蛍光灯の発光機構は、電流が流れると蛍光管フイラメントから電子が飛び出し、内部に封入されている気体の水銀と衝突し、紫外線が発せられ、紫外線は蛍光ガラス管の内側には塗布されている蛍光塗料(高輝度の蓄光顔料と様々な樹脂及び添加剤をブレンドした塗料)に当たって発光し、蛍光管外に可視光線を放つというものである。   On the other hand, the light emission mechanism of a fluorescent lamp is that when current flows, electrons are emitted from the fluorescent tube filament, collide with mercury contained in the gas, and ultraviolet rays are emitted, and the ultraviolet rays are applied to the inside of the fluorescent glass tube. It emits light when it hits a fluorescent paint (paint blended with a high-luminance phosphorescent pigment and various resins and additives), and emits visible light outside the fluorescent tube.

この発明の第1実施形態として挙げる蛍光灯では、ガラス管などの光透過部もしくは蓄光材または反射板などの光反射部を処理対象物とし、例えば蓄光塗料またはそれに含まれる蓄光材に対して、前記光照射装置からの光を照射するか、またはガラス管に対して光照射装置からの光を照射する。因みに、蓄光材としては、アルミナ系酸化物の無機顔料が代表例であり、それらは1000℃以上の温度で溶融して製造される。   In the fluorescent lamp mentioned as the first embodiment of the present invention, a light transmission part such as a glass tube or a light reflection part such as a phosphorescent material or a reflection plate is a processing object, for example, a phosphorescent paint or a phosphorescent material contained therein. The light from the light irradiation device is irradiated, or the glass tube is irradiated with light from the light irradiation device. Incidentally, as a phosphorescent material, an inorganic pigment of an alumina-based oxide is a representative example, and they are manufactured by melting at a temperature of 1000 ° C. or higher.

また、図1に示す第2実施形態の発光ダイオード(LED)からなる光照射装置(光源となるもの)Aでは、発光ダイオード(LED)チップ1を合成樹脂製の光透過部2に封入したものであり、光透過部2に対して、前記光照射装置からの光が照射処理されている。   Moreover, in the light irradiation apparatus (thing used as a light source) A which consists of the light emitting diode (LED) of 2nd Embodiment shown in FIG. 1, the light emitting diode (LED) chip | tip 1 was enclosed with the light transmissive part 2 made from a synthetic resin. The light transmission unit 2 is irradiated with light from the light irradiation device.

発光ダイオード(LED)チップ1は、LED用の周知の半導体材料を使用し、二層構造またはダブルヘテロ構造などの周知の積層構造のものであり、直流電源からの+端子3と−端子4に表裏から接続されて、赤、青、黄、白色などのエレクトロルミネッセンスが可能であるように材料を選択的に採用できる。   The light-emitting diode (LED) chip 1 uses a well-known semiconductor material for LED and has a well-known laminated structure such as a two-layer structure or a double hetero structure, and is connected to a + terminal 3 and a − terminal 4 from a DC power supply. The materials can be selectively employed so that they can be connected from the front and back and electroluminescence such as red, blue, yellow, and white is possible.

たとえば、LED用の周知の半導体材料およびその発光色としては、INGAN(青色)、ZnCdSe(青色)、ZnTeSe(緑色)、GaP(緑色)、AGaInP(黄色)、INGAN(黄色)、AlGaAs(赤色)、GaP(Zn−O)(赤色)、GaAs(Si)(赤外線)、(InGaAsP)(赤外線)などである。   For example, known semiconductor materials for LEDs and their emission colors include INGAN (blue), ZnCdSe (blue), ZnTeSe (green), GaP (green), AGaInP (yellow), INGAN (yellow), AlGaAs (red) GaP (Zn-O) (red), GaAs (Si) (infrared), (InGaAsP) (infrared), and the like.

さらに、エレクトロルミネッセンス(EL)とフォトルミネッセンス(PL)を組み合わせて、光を別の波長(別の色)に変え、青色LEDとYAG(イットリウム・アルミニウム・ガーネット)系蛍光体などを組み合わせて白色LEDを使用することもできる。   Furthermore, by combining electroluminescence (EL) and photoluminescence (PL), the light is changed to another wavelength (different color), and a blue LED and YAG (yttrium, aluminum, garnet) phosphor are combined to produce a white LED Can also be used.

光透過部2は、電球に使用できる耐熱性のあるガラス材などのセラミックや耐久性や透明性のよい合成樹脂などからなるものであればよく、また透明な素材ばかりでなく、着色された素材であってもよい。また、光透過部2の形状は、図示したようにいわゆる発光ダイオードのカプセル型である物の他に、球、楕円球、円筒型、白熱電球型など種々任意の形態であってもよく、先端に集光のためのレンズ部2aを備えているものは好適品である。   The light transmitting portion 2 may be made of a heat-resistant glass material that can be used for a light bulb or a synthetic resin that is durable and transparent, and is not only a transparent material but also a colored material. It may be. In addition to the so-called light-emitting diode capsule type as shown in the figure, the light transmission part 2 may have any shape such as a sphere, an elliptical sphere, a cylindrical shape, an incandescent bulb type, etc. A lens having a lens portion 2a for condensing light is suitable.

図2に示すように、照明装置としては、電光装置の光源Aから発生した光を凸レンズ5付きのヘッド6やその他の光透過性または光反射性の1以上の光学部品を介して被照明物に照射可能であるもの、例えば懐中電灯、その他周知の照明器具を例示できる。光透過性の光学部品としては、凸レンズ、凹レンズや平板状または曲面状のガラスなどの透明性または半透明性のセラミックス、またはポリカーボネートやアクリル系樹脂などの合成樹脂製の透明な部品、同様な材料で形成された外装部品(カバー、ケースなど)が挙げられる。   As shown in FIG. 2, the illuminating device is an object to be illuminated with light generated from the light source A of the lightning device via a head 6 with a convex lens 5 or one or more other light transmissive or light reflective optical components. For example, a flashlight or other well-known lighting device can be exemplified. Light transmissive optical parts include transparent lenses such as convex lenses, concave lenses, flat or curved glass, or transparent parts made of synthetic resin such as polycarbonate or acrylic resin, or similar materials. The exterior parts (cover, case, etc.) formed in (1) are mentioned.

[活性化鉱水の製造]
ステンレス製の耐圧容器の両端部に操作弁付きの通水路と排水路を接続すると共に、耐圧容器の内部にステンレス製の多孔板または網板等からなるフィルターを対向させ、かつできるだけ間隔を開けて配置し、そのフィルター間に粒径約5mmの玄武岩粒を主成分とする鉱物性無機物質を充填した。排水路は、大気に解放された貯水タンクに連結し、さらにこの貯水タンクからの水を前記耐圧容器の通水路に返送して循環させるようにした。原料の水道水は、圧力ポンプで25気圧に加圧して耐圧容器の一端に通水し、他端から押出された水は貯水タンクの上部から曝気状態で注水して、貯水タンクの下部に溜まった水は圧力ポンプで通水路に返送して24時間の加圧と減圧解放を繰り返し、600リットルの活性化鉱水を製造した。
[Manufacture of activated mineral water]
Connect a water channel with a control valve and a drainage channel to both ends of a stainless steel pressure resistant container, and a stainless steel porous plate or a mesh plate facing the inside of the pressure resistant vessel, with as much space as possible. A mineral inorganic substance mainly composed of basalt grains having a particle size of about 5 mm was filled between the filters. The drainage channel was connected to a water storage tank released to the atmosphere, and water from the water storage tank was returned to the water passage of the pressure vessel and circulated. The raw tap water is pressurized to 25 atm by a pressure pump and passed through one end of the pressure vessel, and the water pushed out from the other end is aerated from the upper part of the water storage tank and accumulated in the lower part of the water storage tank. The water was returned to the water passage with a pressure pump and repeatedly pressed and released under reduced pressure for 24 hours to produce 600 liters of activated mineral water.

[電光装置(従来品)の製造]
発光ダイオードおよび懐中電灯のレンズ付きヘッドを収容した圧力タンクに、前述のようして製造した活性化鉱水を満たし、3気圧の加圧状態で24時間浸漬して活性化鉱水での接触処理を行なった。そして、得られた発光ダイオード5個を光源とし、レンズ付きヘッドを取り付けた直流電源3Vの電光装置を製造した。
[Manufacture of lightning devices (conventional products)]
The pressure tank containing the light emitting diode and the head with the lens of the flashlight is filled with the activated mineral water produced as described above, and immersed in the pressurized state of 3 atm for 24 hours to perform the contact treatment with the activated mineral water. It was. Then, the light-emitting device of DC power supply 3V to which the obtained five light emitting diodes were used as a light source and a head with a lens was attached was manufactured.

[活性化鉱水由来の電磁波同調光の照射装置(実施例1、2、3、4)の製造]
紫外線蛍光灯(市販品:ブラックライト、4W、FL4BL)のガラス管に、前記のようにして得られた電光装置からの光を外部から24時間照射し、活性化鉱水由来の電磁波同調光の照射装置(実施例1)を得た。
[Manufacture of irradiation apparatus (Examples 1, 2, 3, 4) of electromagnetic wave tuning light derived from activated mineral water]
Irradiate the glass tube of the ultraviolet fluorescent lamp (commercial product: black light, 4W, FL4BL) with the light from the lightning device obtained as described above for 24 hours from the outside, and irradiate the electromagnetic wave tuning light derived from the activated mineral water. An apparatus (Example 1) was obtained.

また、昼光色の蛍光灯(市販品:100V、15W、直管)のガラス管に、前記のようにして得られた電光装置からの光を外部から24時間照射し、活性化鉱水由来の電磁波同調光の照射装置(実施例2)を得た。   In addition, the glass tube of a daylight fluorescent lamp (commercial product: 100 V, 15 W, straight tube) is irradiated with light from the lightning device obtained as described above for 24 hours from the outside, and electromagnetic wave tuning derived from activated mineral water is performed. A light irradiation apparatus (Example 2) was obtained.

また、蛍光灯(市販品:昼光色、200V、40W)のガラス管に、前記のようにして得られた電光装置からの光を外部から24時間照射し、活性化鉱水由来の電磁波同調光の照射装置(実施例3)を得た。   Further, the glass tube of a fluorescent lamp (commercial product: daylight color, 200 V, 40 W) is irradiated with light from the lightning device obtained as described above for 24 hours from the outside, and irradiation with electromagnetic wave tuning light derived from activated mineral water is performed. An apparatus (Example 3) was obtained.

また、発光ダイオードおよび懐中電灯のレンズ付きヘッドに前記のようにして得られた電光装置からの光を外部から24時間照射し、活性化鉱水由来の電磁波同調光の照射装置(実施例4)を得た。   Further, the light-emitting diode and the head with the lens of the flashlight are irradiated with light from the lightning device obtained as described above for 24 hours from the outside, and an irradiation device (Example 4) of electromagnetically tuned light derived from activated mineral water is used. Obtained.

[実験例1]
実施例1(紫外線蛍光灯)の照射処理による空気中の水蒸気に対する荷電粒子数の影響を調べるため、図3に示すように、実施例1を発光可能な状態で同心円状に二重壁(外周壁直径60cm、内周壁直径17.5cm)を設けた「たらい形」の容器7を準備し、その外壁7a、内壁7bの間に水道水Wを深さ15cmまで貯めてから内周壁の中心に実施例1(紫外線蛍光灯)8を直立させた状態で点灯し、60分間の点灯直後の容器内の水を資料として採水した。
[Experimental Example 1]
In order to investigate the influence of the number of charged particles on water vapor in the air by irradiation treatment of Example 1 (ultraviolet fluorescent lamp), as shown in FIG. A “tub” -shaped container 7 having a wall diameter of 60 cm and an inner peripheral wall diameter of 17.5 cm is prepared, and tap water W is stored between the outer wall 7a and the inner wall 7b to a depth of 15 cm, and then at the center of the inner peripheral wall. Example 1 (ultraviolet fluorescent lamp) 8 was turned on in an upright state, and water in the container immediately after lighting for 60 minutes was sampled.

得られた水は、噴霧器に入れて室内(測定時の室内マイナスイオン数平均43個/cc)に噴霧し、噴霧直後から1分間のプラスイオンとマイナスイオンの単位体積当たりの数を測定器(フィーサ社製:エアーイオンカウンタFIC−2000)で計測した。この結果は表1中および図4の図表に示した。   The obtained water is put in a sprayer and sprayed indoors (the average number of negative ions in the room at the time of measurement: 43 / cc), and the number of positive ions and negative ions per unit volume for 1 minute immediately after spraying is measured ( Measurement was performed with an air ion counter FIC-2000 manufactured by Fiesa. The results are shown in Table 1 and the chart of FIG.

なお、比較のために活性化鉱水由来の電磁波同調光による光照射処理をしていない比較例1の紫外線蛍光灯(市販品:ブラックライト、4W、FL4BL)を用いたこと以外は実施例1と全く同様してプラスイオンとマイナスイオンの単位体積当たりの数を計測し、その結果は表1中および図4の図表に併記した。
また、単に水道水を噴霧器に入れて室内に噴霧し、その噴霧雰囲気中のプラスイオンとマイナスイオンの単位体積当たりの数を計測し、その結果を表1中および図4の図表に併記した。
For comparison, Example 1 is the same as Example 1 except that the ultraviolet fluorescent lamp (commercial product: black light, 4W, FL4BL) of Comparative Example 1 that is not subjected to light irradiation treatment using electromagnetically tuned light derived from activated mineral water is used. The number of positive ions and negative ions per unit volume was measured in exactly the same manner, and the results are shown in Table 1 and in the diagram of FIG.
Further, tap water was simply put in a sprayer and sprayed indoors, and the number of positive ions and negative ions per unit volume in the spray atmosphere was measured, and the results are also shown in Table 1 and the diagram of FIG.

Figure 2009056126
Figure 2009056126

表1および図4の結果からも明らかなように、通常の水道水の噴霧では室内にマイナスイオンが富化されることは全くなく、また単なる紫外線を水道水に照射し、それを噴霧しても室内空気中のマイナスイオンは、測定時間1分平均でプラスイオンの1.3倍程度であったが、その量に比べて実施例1の照射処理によると、空気中にマイナスイオンがプラスイオンの1.7倍量にまで顕著に富化されていた。   As is clear from the results in Table 1 and FIG. 4, the spraying of normal tap water never enriches negative ions in the room, and the tap water is irradiated with simple ultraviolet light. However, the negative ion in the room air was about 1.3 times the positive ion on average for 1 minute in the measurement time, but according to the irradiation treatment of Example 1 compared to the amount, the negative ion was positive ion in the air. It was significantly enriched to 1.7 times the amount.

[実験例2]
実施例2(昼光色蛍光灯)の照射処理により、空気中の水蒸気に対する荷電粒子数の影響を調べるため、図3に示すように、実施例2を点灯し、90分間の点灯直後の容器内の水を資料として採水した。
[Experimental example 2]
In order to investigate the influence of the number of charged particles on the water vapor in the air by the irradiation treatment of Example 2 (daylight fluorescent lamp), as shown in FIG. 3, Example 2 was turned on, and the inside of the container immediately after lighting for 90 minutes. Water was collected as data.

得られた水は、噴霧器に入れて室内に噴霧し、噴霧直後から1分間のプラスイオンとマイナスイオンの単位体積当たりの数を測定器(フィーサ社製:エアーイオンカウンタFIC−2000)で計測した。この結果は表2中および図5の図表に示した。因みに、測定時における室内雰囲気のマイナスイオン存在量は、数平均43個/ccであった。   The obtained water was put in a sprayer and sprayed indoors, and the number of positive ions and negative ions per unit volume for 1 minute immediately after spraying was measured with a measuring instrument (Fiesa Corporation: air ion counter FIC-2000). . The results are shown in Table 2 and in the chart of FIG. Incidentally, the number of negative ions present in the room atmosphere at the time of measurement was 43 / cc.

なお、比較のために活性化鉱水由来の電磁波同調光による光照射処理をしていない比較例2の蛍光灯(市販蛍光灯:4W、FL4)を用いたこと以外は実施例2と全く同様してプラスイオンとマイナスイオンの単位体積当たりの数を計測し、その結果は表2中および図5の図表に併記した。   For comparison, the same procedure as in Example 2 was performed except that the fluorescent lamp of Comparative Example 2 (commercial fluorescent lamp: 4W, FL4) that was not subjected to light irradiation treatment using electromagnetic wave tuning light derived from activated mineral water was used. The number of positive ions and negative ions per unit volume was measured, and the results are shown in Table 2 and in the diagram of FIG.

Figure 2009056126
Figure 2009056126

表2および図5の結果からも明らかなように、単なる紫外線を水道水に照射しそれを噴霧しても室内空気中のマイナスイオンは富化されることはなかったが、実施例2の照射処理によれば、空気中にマイナスイオンがプラスイオンの2.0倍の量に富化されていた。   As is clear from the results of Table 2 and FIG. 5, the negative ions in the indoor air were not enriched by irradiating tap water with simple ultraviolet light and spraying it, but the irradiation of Example 2 According to the treatment, negative ions were enriched in the air to 2.0 times the amount of positive ions.

[実験例3]
実施例3の蛍光灯を用い、自動車の塗装工場内(タクト送り式の塗装ブース)における空気中の有機溶媒(トルエン、キシレンなど)の有臭成分の脱臭性能を調べる実験を行なった。
[Experiment 3]
Using the fluorescent lamp of Example 3, an experiment was conducted to examine the deodorizing performance of odorous components in an organic solvent (toluene, xylene, etc.) in the air in an automobile painting factory (tact feed type painting booth).

すなわち、工場内の蛍光灯による照明設備として、市販されている通常の蛍光灯(市販品:昼光色、200V、40W)に代えて、実施例3の蛍光灯に取替えた。そして、2トントラックのボディー塗装を行ない、総合排気口を測定ポイントとした。すなわち、蛍光灯30本で照明されているブースまたは40本で照明されているブースでの蛍光灯を通常の蛍光灯から実施例3の蛍光灯に取替える前と後での排気ミストを、1L/分の吸引量で20分間吸引し、ビニール袋に捕集した。このようにして捕集されたサンプルのVOC(Volatile Organic Compounds)濃度値(ppmC)を、水素炎イオン化型分析計で測定し、その結果を表3中に示した。   That is, as a lighting facility using a fluorescent lamp in the factory, the fluorescent lamp of Example 3 was replaced with a commercially available normal fluorescent lamp (commercial product: daylight color, 200 V, 40 W). The body was painted on a 2-ton truck, and the general exhaust port was used as the measurement point. That is, the exhaust mist before and after replacing the fluorescent lamp in the booth illuminated with 30 fluorescent lamps or the booth illuminated with 40 fluorescent lamps from the normal fluorescent lamp to the fluorescent lamp of Example 3 is 1 L / The sample was sucked for 20 minutes with a suction amount of 1 minute and collected in a plastic bag. The VOC (Volatile Organic Compounds) concentration value (ppmC) of the sample collected in this manner was measured with a flame ionization analyzer, and the results are shown in Table 3.

Figure 2009056126
Figure 2009056126

表3の結果からも明らかなように、通常の蛍光灯に比べて実施例3の処理を経た蛍光灯は、脱臭機能により20〜49%程度の臭い削減率であることが判明した。   As is apparent from the results in Table 3, it was found that the fluorescent lamp that had undergone the treatment of Example 3 had an odor reduction rate of about 20 to 49% due to the deodorizing function as compared with a normal fluorescent lamp.

[実験例4]
実施例4のLED電灯を照射することにより、生体の血流変化を調べるため、ノーマルLED電灯を対照として、照射前後の血流速度および血流量の変化率を測定した。
すなわち、健常な成年男子(49歳)を被験者として、室温22.2℃で10分間安静を保った後、ノーマルLED電灯を10センチの距離から肩に照射し、20分間の血流速度、血流量をレーザードップラー血流計にて経時的に測定した。
[Experimental Example 4]
In order to examine the blood flow change of the living body by irradiating the LED lamp of Example 4, the change rate of the blood flow velocity and the blood flow rate before and after the irradiation was measured using the normal LED lamp as a control.
That is, a healthy adult male (49 years old) was subject to a rest at room temperature of 22.2 ° C. for 10 minutes, and then a normal LED light was applied to the shoulder from a distance of 10 cm, and blood flow velocity and blood for 20 minutes The flow rate was measured over time with a laser Doppler blood flow meter.

次いで、20分間の急速の後、実施例4のLED電灯を全く同様に照射することにより、20分間の血流速度、血流量をレーザードップラー血流計にて経時的に測定した。
これらの結果は、表4中に示した。
Then, after 20 minutes of rapid irradiation, the LED light of Example 4 was irradiated in exactly the same manner, and the blood flow velocity and blood flow for 20 minutes were measured over time with a laser Doppler blood flow meter.
These results are shown in Table 4.

Figure 2009056126
Figure 2009056126

表4の結果からも明らかなように、実施例4のLED電灯を照射することにより、ノーマルLEDの照射に比べて血流速度は8.0%増加し、血流量も6.6%増加した。これにより、実施例4の活性化鉱水由来の電磁波同調光の照射装置(LED電灯)は、血流改善効果が奏されたことがわかる。   As is apparent from the results in Table 4, by irradiating the LED lamp of Example 4, the blood flow velocity increased by 8.0% and the blood flow increased by 6.6% compared to the normal LED irradiation. . Thereby, it turns out that the irradiation device (LED lamp) of the electromagnetic wave tuning light derived from the activated mineral water of Example 4 has an effect of improving blood flow.

実施形態の電光装置である発光ダイオードの一部切り欠き正面図Partially cutaway front view of a light-emitting diode that is the lightning device of the embodiment 実施形態の照明装置である懐中電灯の概略構成を示す斜視図The perspective view which shows schematic structure of the flashlight which is the illuminating device of embodiment. 実験例1の実験装置の概略構成を示す斜視図The perspective view which shows schematic structure of the experimental apparatus of Experimental example 1 実施例1の空気中マイナスイオンの経時的富化効果を示す図表The chart which shows the time-based enrichment effect of the negative ion in the air of Example 1 実施例2の空気中マイナスイオンの経時的富化効果を示す図表The chart which shows the time-based enrichment effect of the negative ion in the air of Example 2

符号の説明Explanation of symbols

1 発光ダイオードチップ
2 透光性中空成形体
2a レンズ部
3 +端子
4 −端子
5 凸レンズ
6 ヘッド
7 容器
7a 外壁
7b 内壁
8 紫外線蛍光灯
A 電光装置(光源)
W 水
DESCRIPTION OF SYMBOLS 1 Light emitting diode chip 2 Translucent hollow molded object 2a Lens part 3 + Terminal 4-Terminal 5 Convex lens 6 Head 7 Container 7a Outer wall 7b Inner wall 8 Ultraviolet fluorescent lamp A Lightning device (light source)
W Water

Claims (10)

光照射装置の光透過部もしくは光反射部または両部材からなる構成部材に、下記の電光装置からの光を予め照射処理しておき、次いで前記光照射装置の電気光源から前記構成部材に光を透過または反射させて活性化鉱水由来の電磁波に共鳴した電磁波同調光とし、この電磁波同調光を処理対象物に照射処理することからなる活性化鉱水由来の電磁波同調光による光照射処理方法。

電気光源からの光を透過または反射する光透過部または光反射部を有する電光装置からなり、この電光装置の光透過部もしくは光反射部または両部材は、所定方法で製造された活性化鉱水で接触処理された電光装置である。
A light transmission unit or a light reflection unit of the light irradiation device or a component member composed of both members is preliminarily irradiated with light from the following lightning device, and then light is applied to the component member from the electric light source of the light irradiation device. A light irradiation treatment method using electromagnetic wave tuning light derived from activated mineral water, comprising transmitting or reflecting electromagnetic wave tuning light resonating with electromagnetic waves derived from activated mineral water and irradiating the object to be treated with the electromagnetic wave tuning light.
The light transmission part which transmits or reflects the light from an electrical light source, or the light transmission part which has a light reflection part, The light transmission part or light reflection part of this lightning apparatus, or both members are the activated mineral water manufactured by the predetermined method It is a lightning device that has been subjected to the contact treatment.
請求項1に記載の活性化鉱水由来の電磁波同調光による光照射処理方法において、電光装置が、所定方法で製造された活性化鉱水で接触処理された光透過部もしくは光反射部または両部材に代えて、請求項1に記載の光照射処理方法で処理された光透過部もしくは光反射部または両部材を用いた電光装置である活性化鉱水由来の電磁波同調光による光照射処理方法。   The light irradiation processing method by the electromagnetic wave tuning light derived from the activated mineral water according to claim 1, wherein the lightning device is applied to the light transmitting part or the light reflecting part or both members contact-treated with the activated mineral water produced by a predetermined method. Instead, the light irradiation processing method by the electromagnetic wave tuning light derived from the activated mineral water which is the light transmission part processed by the light irradiation processing method of Claim 1, or the light reflection part or both members. 光照射装置または電光装置の電気光源からの光が、可視光、赤外線、遠赤外線および紫外線から選ばれる1種以上の光である請求項1または2に記載の活性化鉱水由来の電磁波同調光による光照射処理方法。   The light from the electric light source of the light irradiation device or the lightning device is one or more kinds of light selected from visible light, infrared light, far-infrared light, and ultraviolet light. Light irradiation treatment method. 請求項1または2に記載の活性化鉱水由来の電磁波同調光による光照射処理方法において、
光照射装置の光源が、蛍光灯であり、かつ光透過部もしくは光反射部または両部材に代わる部材が、蓄光材が塗布された蛍光管である活性化鉱水由来の電磁波同調光による光照射処理方法。
In the light irradiation processing method by the electromagnetic wave tuning light derived from the activated mineral water according to claim 1 or 2,
The light source of the light irradiation device is a fluorescent lamp, and the light irradiating process by the electromagnetic wave tuning light derived from the activated mineral water, in which the light transmitting portion or the light reflecting portion or the member replacing the both members is a fluorescent tube coated with a phosphorescent material Method.
活性化鉱水の製造方法が、5〜30気圧に加圧された水を玄武岩、安山岩、磁鉄鉱から選ばれる1種以上の鉱物を含む鉱物性無機物質に接触通過させる工程と、この工程を経た水を前記気圧未満の雰囲気下に貯留する工程を交互に繰り返して製造された活性化鉱水である請求項1〜4のいずれかに記載の活性化鉱水由来の電磁波同調光による光照射処理方法。   A method for producing activated mineral water in which water pressurized to 5 to 30 atm is brought into contact with a mineral inorganic material containing one or more minerals selected from basalt, andesite, and magnetite, and water that has undergone this step The light irradiation processing method by the electromagnetic wave tuning light derived from the activated mineral water according to any one of claims 1 to 4, wherein the activated mineral water is produced by alternately repeating the step of storing the product in an atmosphere of less than the atmospheric pressure. 請求項1〜5のいずれかの光照射処理方法において、処理対象物が、金属、樹脂、セラミック、水または空気である活性化鉱水由来の電磁波同調光による光照射処理方法。   The light irradiation treatment method according to any one of claims 1 to 5, wherein the object to be treated is an electromagnetic wave tuning light derived from activated mineral water which is a metal, resin, ceramic, water or air. 所定方法で製造された活性化鉱水由来の電磁振動を光透過部または光反射部からなる構成部材に与えた光照射装置を設け、この光照射装置の電気光源から発した光を前記光透過部または光反射部に透過または反射させて活性化鉱水由来の電磁波に共鳴した電磁波同調光を調製する光の経路を設けた活性化鉱水由来の電磁波同調光の照射装置。   A light irradiation device is provided that applies electromagnetic vibration derived from activated mineral water produced by a predetermined method to a constituent member composed of a light transmission portion or a light reflection portion, and light emitted from an electric light source of the light irradiation device is transmitted to the light transmission portion. Or the irradiation apparatus of the electromagnetic wave tuning light derived from the activated mineral water which provided the optical path which prepared the electromagnetic wave tuning light which permeate | transmitted or reflected by the light reflection part and resonated with the electromagnetic wave derived from the activated mineral water. 請求項7に記載の活性化鉱水由来の電磁波同調光の照射装置からなる空気中のマイナスイオン富化装置。   A device for enriching negative ions in air, comprising the irradiation device for electromagnetic wave tuning light derived from activated mineral water according to claim 7. 請求項7に記載の活性化鉱水由来の電磁波同調光の照射装置からなる血行促進性の光照射装置。   A blood circulation promoting light irradiation apparatus comprising the irradiation apparatus for electromagnetic wave tuning light derived from the activated mineral water according to claim 7. 請求項7に記載の活性化鉱水由来の電磁波同調光の照射装置からなる脱臭装置。   The deodorizing apparatus which consists of an irradiation apparatus of the electromagnetic wave tuning light derived from the activated mineral water of Claim 7.
JP2007226408A 2007-08-31 2007-08-31 Light irradiation method and apparatus by electromagnetic wave synchronized light derived from activated mineral water Pending JP2009056126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226408A JP2009056126A (en) 2007-08-31 2007-08-31 Light irradiation method and apparatus by electromagnetic wave synchronized light derived from activated mineral water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226408A JP2009056126A (en) 2007-08-31 2007-08-31 Light irradiation method and apparatus by electromagnetic wave synchronized light derived from activated mineral water

Publications (1)

Publication Number Publication Date
JP2009056126A true JP2009056126A (en) 2009-03-19

Family

ID=40552429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226408A Pending JP2009056126A (en) 2007-08-31 2007-08-31 Light irradiation method and apparatus by electromagnetic wave synchronized light derived from activated mineral water

Country Status (1)

Country Link
JP (1) JP2009056126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252358A (en) * 2008-04-01 2009-10-29 Shinki Sangyo Kk Method of manufacturing insulation coated conductor subjected to optical radiation process
CN102805902A (en) * 2012-08-24 2012-12-05 李长春 Multi-light-magnetism health-care physiotherapy instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121010U (en) * 1990-03-23 1991-12-11
JP2006332439A (en) * 2005-05-27 2006-12-07 Shinki Sangyo Kk Electric lighting device and illuminator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121010U (en) * 1990-03-23 1991-12-11
JP2006332439A (en) * 2005-05-27 2006-12-07 Shinki Sangyo Kk Electric lighting device and illuminator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252358A (en) * 2008-04-01 2009-10-29 Shinki Sangyo Kk Method of manufacturing insulation coated conductor subjected to optical radiation process
CN102805902A (en) * 2012-08-24 2012-12-05 李长春 Multi-light-magnetism health-care physiotherapy instrument

Similar Documents

Publication Publication Date Title
KR100989431B1 (en) Photocatalyst material and, containing the same, photocatalyst composition and photocatalyst product
US20100320405A1 (en) Handheld portable multi purpose sterilizing wavelength transforming converter
US7781751B2 (en) Portable wavelength transforming converter for UV LEDs
DE50112131D1 (en) METHOD AND DEVICE FOR PRODUCING SINGULATED OXYGEN
US20150147240A1 (en) Led Lamp Having Photocatalyst Agents
CN106255516A (en) Air cleaner, illuminator and light fixture
JP3658800B2 (en) Light emitting diode
EP0925832A1 (en) Photocatalyzer
JP2001009016A (en) Photocatalyst cleaning unit and air cleaning machine as well as light emitting diode
US7095163B2 (en) Method for the production of a visible, UV or IR radiation with a lamp without electrodes, and lamp that carries out this method
JP2009056126A (en) Light irradiation method and apparatus by electromagnetic wave synchronized light derived from activated mineral water
JP3912806B2 (en) Photocatalytic device
JP3689939B2 (en) Photocatalytic device
US20040251810A1 (en) Photocatalyst sterilizing lamp
JP6476592B2 (en) Wavelength conversion member
JP2006255701A (en) Photocatalyst device
JP2004195461A (en) Water cleaner
JP2006332439A (en) Electric lighting device and illuminator
CN101865444A (en) LED photocatalyst air purifying lamp
KR200339155Y1 (en) electric light apparatus coated with a layer containing photo-catalyzer material
KR100387752B1 (en) The far infrared incandescent lamp and the appliance
JP2009252358A (en) Method of manufacturing insulation coated conductor subjected to optical radiation process
RU2223792C1 (en) Method and device for disinfecting fluid medium and concurrently illuminating it
CN1487550A (en) Two-purpose gas discharge lamp tube for lighting and sterilizing
JP2002306580A (en) Air cleaning method and device as well as refrigerator with air cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807