JP2009055705A - 電力系統の同期状態予測システムおよび同期状態予測方法 - Google Patents

電力系統の同期状態予測システムおよび同期状態予測方法 Download PDF

Info

Publication number
JP2009055705A
JP2009055705A JP2007219543A JP2007219543A JP2009055705A JP 2009055705 A JP2009055705 A JP 2009055705A JP 2007219543 A JP2007219543 A JP 2007219543A JP 2007219543 A JP2007219543 A JP 2007219543A JP 2009055705 A JP2009055705 A JP 2009055705A
Authority
JP
Japan
Prior art keywords
phase difference
loop
power system
always
synchronization state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007219543A
Other languages
English (en)
Inventor
Yoichi Takeuchi
洋一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007219543A priority Critical patent/JP2009055705A/ja
Publication of JP2009055705A publication Critical patent/JP2009055705A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

【課題】 同期検出継電器が設置されていない場合でも、ループ対象の系統が同期状態にあるかどうかを予測することが可能な電力系統の同期状態予測システムおよび同期状態予測方法を提供する。
【解決手段】 電力系統に2つの常時切り箇所が設けられ、電力系統にループを形成する際に一方のループ入り箇所を閉じてループ入り箇所とするかどうかの良否判定をする電力系統の同期状態予測システムであって、制御所のコンピュータ13は、ループを形成する一方の系統側と他方の系統側の位相差を、他方の常時切り箇所から得る。この後、コンピュータ13は、先の位相差を基にして、ループを形成する一方の系統と他方の系統との位相差であり、かつ、一方の常時切り箇所での位相差を算出する。さらに、コンピュータ13は、算出した位相差と、あらかじめ設定された許容位相差とを比較して、先の良否判定をする。
【選択図】 図2

Description

この発明は、電力系統にループを形成する際にループ対象である系統の同期状態を予測する、電力系統の同期状態予測システムおよび同期状態予測方法に関する。
電力系統内で例えば需要家に対する供給系統を切り替える際などに、一時的に2つの系統から送電するために、系統をループにする場合がある。ループ系統は、複数の系統の送電線路を互いに接続して閉じた状態にしたものであり、例えば2つの系統を用いた送電を可能にする。系統をループにする場合、系統に設置されている同期検出継電器によって2つの系統の位相差と電圧差を計測し、位相差および電圧差の両方が許容範囲であると、つまり、2つの系統が同期している状態にあると、2つの系統をループにする(例えば、特許文献1参照。)。
一方、同期検出継電器が設置されていない場合に2つの系統をループにするときは、過去の潮流記録を用いて担当者が2つの系統の位相差と電圧差を算出して、2つの系統が同期しているかどうかを予測し、問題が無いことを確認した後、2つの系統をループにする。
特開2003−319548号公報
前述したように、同期検出継電器が設置されていない場合に、電力系統内の系統をループにするときは、過去の潮流記録を用いることになるが、潮流は常に一定ではなく変化するものである。この結果、例えば電圧の位相差の予測については、潮流記録を用いて算出した値と実測値とには差が発生することになる。つまり、潮流記録を用いて予測した系統の同期状態と、実測値を用いて算出した場合とでは、差異が生じる。こうした状態で、潮流記録を用いて予測した同期状態を基にして、電力系統内の系統をループにすると、継電器の不要な動作や、設備に対する損傷などが懸念される。
この発明の目的は、前記の課題を解決し、同期検出継電器が設置されていない場合でも、ループ対象の系統が同期状態にあるかどうかを予測することが可能な電力系統の同期状態予測システムおよび同期状態予測方法を提供することにある。
前記の課題を解決するために、請求項1の発明は、電力系統に第1および第2の常時切り箇所が設けられ、該電力系統にループを形成する際に該第1の常時切り箇所を閉じてループ入り箇所とするかどうかの良否判定をする電力系統の同期状態予測システムであって、前記ループを形成する一方の系統側と他方の系統側の位相差を、前記第2の常時切り箇所から得る収集手段と、前記収集手段が得た位相差を基にして、前記ループを形成する一方の系統と他方の系統との位相差であり、かつ、前記第1の常時切り箇所での位相差を算出する処理手段とを備え、前記処理手段は、算出した位相差と、あらかじめ設定された許容位相差とを比較して、前記良否判定をすることを特徴とする電力系統の同期状態予測システムである。
請求項1の発明では、ループを形成する一方の系統側と他方の系統側の位相差を、収集手段が第2の常時切り箇所から得る。この後、処理手段は、収集手段が得た位相差を基にして、ループを形成する一方の系統と他方の系統との位相差であり、かつ、第1の常時切り箇所での位相差を算出する。そして、電力系統にループを形成する際に第1の常時切り箇所を閉じてループ入り箇所とすることの良否を、処理手段は、算出した位相差と、あらかじめ設定された許容位相差とを比較して判定する。
請求項2の発明は、請求項1に記載の電力系統の同期状態予測システムにおいて、前記処理手段は、前記収集手段が得た位相差と共に、前記第1および前記第2の常時切り箇所を含む最小のループ系統内で計測して得た潮流値と、該潮流値を計測した送電線の定数とを用いて、前記第1の常時切り箇所での位相差を算出することを特徴とする。
請求項3の発明は、請求項1または2に記載の電力系統の同期状態予測システムにおいて、前記処理手段は、算出した位相差を基にして、前記ループを形成する系統に設置されている保護継電器の入力電流を算出し、算出した入力電流を基にして前記良否判定をすることを特徴とする。
請求項4の発明は、請求項1〜3のいずれか1項に記載の電力系統の同期状態予測システムにおいて、前記処理手段は、前記算出した位相差が前記許容位相差以内であった場合、該算出した位相差を基にして、前記ループを形成する系統に設置されている保護継電器の入力電流を算出し、算出した入力電流を基にして前記良否判定をすることを特徴とする。
請求項5の発明は、電力系統に第1および第2の常時切り箇所が設けられ、該電力系統にループを形成する際に該第1の常時切り箇所を閉じてループ入り箇所とするかどうかの良否判定をする電力系統の同期状態予測方法であって、前記ループを形成する一方の系統側と他方の系統側の位相差を、前記第2の常時切り箇所から収集し、収集した位相差を基にして、前記ループを形成する一方の系統と他方の系統との位相差であり、かつ、前記第1の常時切り箇所での位相差を算出し、算出した位相差と、あらかじめ設定された許容位相差とを比較して、前記良否判定をすることを特徴とする電力系統の同期状態予測方法である。
請求項1および請求項5の発明によれば、第2の常時切り箇所から得た位相差から、ループを形成する際に閉じられる第1の常時切り箇所での位相差を算出するので、同期検出継電器が設置されていない場合でも、ループ対象の系統が同期状態にあるかどうかを予測することができる。また、算出した位相差により、ループ対象の系統が同期状態にあるかどうかを判定することができる。
請求項2の発明によれば、第2の常時切り箇所での位相差と、最小のループ系統内での潮流値と、潮流値を計測した送電線の定数とを用いて、ループを形成する際に閉じられる第1の常時切り箇所での位相差を算出するので、第1の常時切り箇所を閉じて形成されるループ全体の潮流値の計測を不要にすることができる。
請求項3の発明によれば、第2の常時切り箇所での位相差を基にして、ループを形成する系統に設置されている保護継電器の入力電流を算出し、算出した入力電流から良否判定をするので、ループ対象の系統が同期状態にあるかどうかを判定することができる。
請求項4の発明によれば、第2の常時切り箇所での位相差を用いて算出した位相差が許容位相差以内であった場合に、第2の常時切り箇所での位相差を基にして、ループを形成する系統に設置されている保護継電器の入力電流を算出し、算出した入力電流から良否を判定するので、ループ対象の系統が同期状態にあるかどうかを正確に判定することができる。
次に、この発明の実施の形態について、図面を用いて詳しく説明する。この実施の形態による、電力系統の同期状態予測システムは、図1に示すように、制御所に設置されている通信制御装置11とデータベースサーバ12とコンピュータ13を備え、制御所は通信網NWを経由してD電気所〜L電気所とデータの送受信が可能な状態にある。
D電気所〜L電気所は、変電所等の設備であり、図2に示すように、3箇所に設置されたA発電所〜C発電所の電力を各系統に送る。なお、図2では、N1線〜N22線が送電線である。A発電所の電力はM1変圧器を経てD電気所に送られ、B発電所からの電力はM2変圧器を経てJ電気所に送られ、C発電所の電力はM3変圧器を経てG電気所に送られている。D電気所では、各送電線が遮断器D1〜D5を経て母線に接続され、J電気所では、各送電線が遮断器J1〜J5を経て母線に接続され、G電気所では、各送電線が遮断器G1〜G4を経て母線に接続されている。
E電気所では、各送電線が遮断器E1〜E3を経て母線に接続され、また、M4変圧器と過電流継電器(51F)E11が設置されている。K電気所では、各送電線が遮断器K1〜K4を経て母線に接続され、また、M5変圧器と過電流継電器(51F)K11が設置されている。H電気所には遮断器H1が設置され、E電気所からのN13線とK電気所からのN14線が遮断器H1に接続されている。遮断器H1は、制御所による制御によって「切」の状態にある。つまり、遮断器H1は常時切り箇所である。
F電気所では、各送電線が遮断器F1、F2を経て母線に接続されている。遮断器F1は、制御所による制御によって常時「切」の状態にある。つまり、遮断器F1は常時切り箇所である。L電気所では、各送電線が遮断器L1〜L3を経て母線に接続され、I電気所では、各送電線が遮断器I1、I2を経て母線に接続されている。
図2では、D電気所からE電気所を経て電力を供給する系統と、J電気所からK電気所を経て電力を供給する系統とがある。
制御所の通信制御装置11は、通信網NWを経由して、データベースサーバ12とD電気所〜L電気所との間をデータ伝送可能に接続する。
データベースサーバ12は、電力系統の中で制御所が管理する各設備や電力に関するデータをデータベース(図示を省略)に記憶している。データベースサーバ12が記憶しているデータには、定数データがある。定数データは、M1変圧器〜M5変圧器の定数としてインピーダンスと、送電線であるN1線〜N22線の定数としてインピーダンスとを記録したものである。この定数データを図3に示す。図3の定数データは、M1変圧器〜M5変圧器のインピーダンスと、N1線〜N22線のインピーダンスとを、パーセントインピーダンス%Zで表したものである。そして、M1変圧器〜M5変圧器やN1線〜N22線が交換されたときなどを除いて、パーセントインピーダンス%Zは一定の値である。
データベースサーバ12が記憶しているデータには、継電器データがある。継電器データは、過電流継電器(51F)E11と過電流継電器(51F)K11の整定値などを記録したものである。この継電器データを図4に示す。図4の継電器データには、過電流継電器(51F)E11、K11の種類および設置場所、各継電器の整定値およびCT比が記録されている。整定値は、例えば過電流継電器(51F)E11に設けられている整定用のタップの位置を表すものである。整定値が「5TAP」である場合、過電流継電器(51F)E11への入力が5[A]以上で継電器が動作する。CT比は、過電流継電器(51F)E11、K11の入力側に接続されている変流器の特性を表すものである。CT比が「500/5」である場合、系統に400[A]の電流が流れると、
400÷(500/5)=4
の算出結果から、過電流継電器の入力電流は4[A]となる。
データベースサーバ12が記録しているデータには、開閉データがある。開閉データは、D電気所〜L電気所の遮断器D1〜L3の開閉状態を記録したものである。この開閉データを図5に示す。図5の開閉データには、遮断器D1〜L3の「開」または「閉」がそれぞれ記録されている。
制御所のコンピュータ13は、制御所の担当者によって操作され、各種の処理を行う。この処理として、コンピュータ13は、制御所が管理する遮断器D1〜L3の開閉を行う。つまり、コンピュータ13は、開閉データ(図5)を用いて遮断器D1〜L3の開閉状態を表示し、表示された遮断器が開閉対象として担当者に指定されると、この遮断器の開閉を行う。
コンピュータ13が行う処理には、電力系統にループを形成する際に、ループ対象の系統の同期状態を予測する同期状態予測処理がある。同期状態を予測する指示がコンピュータ13に入力されると、コンピュータ13は図6に示す同期状態予測処理を行う。担当者がコンピュータ13を操作して、ループ系統を形成するために、常時切り箇所をループ入り箇所にする遮断器と、位相差測定のための遮断器であって、常時切り箇所の遮断器とを指定すると、コンピュータ13は、これらの指定箇所をループ化データとして受け取る(ステップS1)。例えば、図2の電力系統の場合では、図7に示すように、ループ入り箇所として遮断器H1を指定し、位相差測定のための常時切り箇所として遮断器F1を指定する。つまり、H電気所のループ入り箇所を閉じることにより、ループ対象の一方の系統のE電気所と、ループ対象の他方の系統のK電気所とを接続して、2つの系統をループにする。また、この実施の形態では、H電気所のループ入り箇所とF電気所の常時切り箇所を含む最小のループを最小ループ系統としている。
ステップS1が終了すると、コンピュータ13は、データベースサーバ12の定数データ(図3)と継電器データ(図4)から、ループに必要とするデータを収集する(ステップS2)。例えば、図2の電力系統の場合では、図8に示すように、N5線およびN13線のインピーダンスと、N14線、N21線・N22線、N16線およびN15線のインピーダンスと、M4変圧器およびM5変圧器のインピーダンスを定数データ(図3)から収集し、過電流継電器(51F)E11、K11の整定値とCT比を継電器データ(図4)から収集する。つまり、コンピュータ13は最小ループ系統(図7)のデータをステップS2で収集する。
ステップS2が終了すると、コンピュータ13はF電気所の遮断器F1つまり常時切り箇所の位相差θKを測定する(ステップS3)。遮断器F1は常時切り箇所であるので、コンピュータ13は、この常時切り箇所において、例えば、E電気所側の電圧波形とI電気所側の電圧波形とから、2つの系統の位相差θKを測定する。
ステップS3が終了すると、コンピュータ13は最小ループ系統(図7)内の潮流値を計測する(ステップS4)。ステップS4で、コンピュータ13は、通信網NWを経由して、該当する電気所で計測された潮流値を収集する。また、ステップS4で、コンピュータ13は、上位系とモニター系を含むデータを表し、かつ、計測した潮流値とステップS2で収集したインピーダンスとを表すループ系統データを作成する。この実施の形態では、図9に示すように、ループ対象である2つの系統、つまり、E電気所を含む系統とK電気所を含む系統を上位系とし、また、ループ対象である2つの系統をループ入り箇所で接続してループにする系統を連結系としている。さらに、連結系に並列状態で接続され、常時切り箇所を含む系統をモニター系としている。前述のループ系統データを図10に示す。このループ系統データでは、上位系および連結系の変圧器および送電線のパーセントインピーダンス%Zが記録されている。また、連結系の各送電線の潮流値Pが記録されている。潮流値Pの単位は[MW](メガワット)である。なお、ステップS4の段階では、上位系の潮流値Pは不明な状態である。
ステップS4が終了すると、コンピュータ13は、ステップS3で測定した位相差θKと、ステップS4のループ系統データ(図10)の潮流値と、同じくループ系統データ(図10)の送電線および変圧器の定数とを用いて、ループ入り箇所の位相差であるループアングルθHを予測する(ステップS5)。ステップS5では図11に示すように、コンピュータ13はパーセントインピーダンス%Zと潮流値Pとの積算値%Z・Pをそれぞれ算出する。この後、コンピュータ13は、位相差θKを用いて積算値%Z・Pの合計(値VAL1)を算出し、図12に示すように、算出結果(値VAL1)から上位系の積算値%Z・P(値VAL2)を逆算して予測する。この後、コンピュータ13は、図13に示すように、連結系の積算値%Z・Pと、上位系の積算値%Z・P(値VAL2)を用いて、ループ系統の積算値%Z・P(値VAL3)を算出する。また、コンピュータ13は、連結系のパーセントインピーダンス%Zと、上位系のパーセントインピーダンス%Zを用いて、ループ系統のパーセントインピーダンス%Z(値VAL4)を算出する。この後、コンピュータ13は、ループ系統の積算値%Z・P(値VAL3)とループ系統のパーセントインピーダンス%Z(値VAL4)を用いて、ループ入り箇所での位相差であるループアングルθHを算出する。
ステップS5が終了すると、コンピュータ13は、あらかじめ設定されている許容位相差θMと、ステップS4で算出したループアングルθHとを比較し、許容位相差θMに比べて位相差θHが小さいかどうかを判定する(ステップS6)。ステップS6でループアングルθHが許容位相差θMに比べて大きいと、コンピュータ13は、「ループ不可」のメッセージを表示して担当者に知らせる(ステップS7)。
一方、ステップS6でループアングルθHが許容位相差θMに比べて同等以下であると、コンピュータ13は、ループ系統データ(図13)の積算値%Z・P(値VAL3)とパーセントインピーダンス%Z(値VAL4)を用いて、ループ入り箇所を流れるループ潮流つまり過電流継電器への入力電流を算出する(ステップS8)。
ステップS8が終了すると、コンピュータ13は、ステップS2で収集した継電器データ(図4)の整定値と、ステップS8で算出した入力電流値とを比較し、入力電流が整定値に比べて小さいかどうかを判定する(ステップS9)。ステップS9で入力電流値が整定値に比べて同等以下であると、コンピュータ13は、「ループ可能」のメッセージを表示して担当者に知らせる(ステップS10)。また、ステップS9で入力電流が整定値に比べて大きいと、コンピュータ13はステップS7の処理を行う。
こうして、コンピュータ13はステップS1〜S10の同期状態予測処理を行う。
次に、この実施の形態の電力系統の同期状態予測システムを用いた同期状態予測方法について、具体例を用いて説明する。制御所の担当者がコンピュータ13を操作して、系統をループにするために、同期状態を予測するための指示をコンピュータ13に入力すると、コンピュータ13は同期状態予測処理を始める。
ここで従来であると、コンピュータ13は次のようにして同期状態を調べる。つまり、コンピュータ13はループにする系統から潮流値Pをそれぞれ収集する。例えば電力系統が図14に示すものであり、「NO.123」のDA連絡線に設置されている遮断器をループ入り箇所とする場合、コンピュータ13は電力系統の各電気所などから潮流値Pを収集して、図15に示すループ系統データを作成する。このとき、制御所の管理範囲外にある電気所などについては、担当者がコンピュータ13を操作して、別の制御所から潮流値Pを収集する。パーセントインピーダンス%Zについては、データベースサーバ12の継電器データ(図4)を参照するが、制御所の管理範囲外であると、担当者がコンピュータ13を操作して、別の制御所のデータベースサーバから必要とするパーセントインピーダンス%Zをそれぞれ収集する。
この後、コンピュータ13は、パーセントインピーダンス%Zの合計(値40.293)を算出する。また、コンピュータ13は、パーセントインピーダンス%Zと潮流値Pとの積算値%Z・Pをそれぞれ算出し、この後、積算値%Z・Pの合計(値−15.29)を算出する。各合計を算出すると、コンピュータ13は、次の式を用いてループ潮流を算出する。
Σ%Z・P/Σ%Z=(−15.29)/40.293=−0.38
この式では、Σ%Z・Pが積算値%Z・Pの合計を表し、Σ%Zがパーセントインピーダンス%Zの合計を表し、ループ潮流を[MW]の単位と±符号による潮流の向きで表している。ループ潮流が−符号ならBD変電所側が遅れ位相(BH変電所側→BD変電所側へループ潮流が流れる)になり、また、+符号ならBD変電所側が進み位相(BD変電所側→BH変電所側へループ潮流が流れる)になり、ループした際の潮流の向きを±符号で表している。さらに、「NO.123」のDA連絡線の電圧が22[kV]であるので、コンピュータ13は、次の式を用いて、[MW]の単位で表されているループ潮流をアンペア表示に変更する。
ループ潮流[MW]÷22[kV]÷√3
=(−0.38)÷22[kV]÷√3=−10[A]
また、コンピュータ13は、位相差θHを次の式で算出する。
Σ%Z・P/17.45=(−15.29)/17.45=−0.9
これらの式の中で、値「17.45」は、ラジアンを度に換算する指数である。ラジアンを度に換算するには、
π/180=0.01745
である。例えば、位相差θH[度]を算出する式
ΣP・%Z÷17.45
では、値「0.01745」ではなく「17.45」を使っているが、これは、この式中「%Z」を、パーセント法を用いているためである。
こうして、コンピュータ13は、
ループ潮流:−10[A]
位相差θH:−0.9[度]
を得る。ここで、コンピュータ13は、位相差θHが「−0.9」[度]であり、あらかじめ設定された許容位相差θMに比べて小さいと判定する。
一方、BD変電所に設置されている過電流継電器(51Fリレー)は、
整定値:5TAP
CT比:500/5
である。つまり、BD変電所側のDA連絡線に500[A]以上の電流が流れると入力電流が5[A]となり、BD変電所の過電流継電器(51Fリレー)が動作する。BD変電所側のDA連絡線の潮流P[MW]はループ前で値「−2.9」であるので、この潮流Pをアンペア表示に変更すると、
(−2.9)÷22[kV]÷√3=−76[A]
となる。先に算出したループ潮流の値が−10[A]であるので、ループ中の潮流は66[A]となり、入力電流が0.66[A]であるので、BD変電所の過電流継電器(51Fリレー)は動作しないと判定する。
また、BH変電所に設置されている過電流継電器(51Fリレー)は、
整定値:4TAP
CT比:500/5
である。つまり、BH変電所側のDA連絡線に400[A]以上の電流が流れると入力電流が4[A]となり、BH変電所の過電流継電器(51Fリレー)が動作する。BH変電所側のDA連絡線の潮流P[MW]はループ前で値「2.9」であるので、この潮流Pをアンペア表示に変更すると、
(2.9)÷22[kV]÷√3=76[A]
となる。先に算出したループ潮流の値が−10[A]であるので、ループ中の潮流は86[A]となり、入力電流が0.86[A]であるので、BH変電所の過電流継電器(51Fリレー)は動作しないと判定する。
これにより、コンピュータ13は、「ループ可能」と判定する。
こうした従来の手法に対して、この実施の形態では次のようにしている。つまり、図16に示すように、コンピュータ13は、ループ入り箇所と常時切り箇所を含む、最小ループ系統内の潮流値を計測する。図16の電力系統では、「NO.123」のDA連絡線に設置されている遮断器をループ入り箇所とし、BF変電所の遮断器(67CB)を常時切り箇所とする。コンピュータ13は、電力系統の最小ループ系統内から潮流値Pを収集して、図17に示すループ系統データを作成する。このとき、図16の矢印Iで示す箇所からDB幹線、DC幹線、DD幹線などを経て矢印IIまでの箇所が上位系であり、この上位系については、潮流値Pを収集しない。なお、矢印Iで示す箇所からDA連絡線などを経て矢印IIまでの箇所が連結系であり、矢印Iで示す箇所からBF変電所などを経て矢印IIまでの箇所がモニター系である。
コンピュータ13は、パーセントインピーダンス%Zについては、データベースサーバ12の継電器データ(図4)を参照して収集するが、例えば上位系が管理範囲外であると、上位系の制御所のデータベースサーバからパーセントインピーダンス%Zを収集する。また、コンピュータ13は、常時切り箇所の位相差θKを測定する。このときの位相差θKを−0.9(度)とする。
この後、コンピュータ13は、図18に示すように、パーセントインピーダンス%Zの合計(14.938)を算出する。また、コンピュータ13は、パーセントインピーダンス%Zと潮流値Pとの積算値%Z・Pをそれぞれ算出する。この後、コンピュータ13は、図19に示すように、常時切り箇所の位相差0.9(度)を用いて、次の式から積算値%Z・Pの合計(値VAL11)を算出する。
Σ%Z・P=17.45×位相差=17.45×0.9=−15.71
この後、コンピュータ13は、算出した積算値%Z・Pの合計(値VAL11)である−15.71を用いて、次の式から上位系の積算値%Z・P(値VAL12)を逆算して予測する。
−15.71−(最小ループ系統内の%Z・Pの合計)
=−15.71−(0.00−24.6−34.36−1.65−6.36+
16.63+22.38+23.13)
=−10.89
こうして上位系の積算値%Z・P(値VAL12)を算出すると、コンピュータ13は、図20に示すように、上位系および連結系から成るループ系統のループ系統データを得る。この後、コンピュータ13は、このループ系統データ(図20)を用い、先に説明した手法によりループ潮流や位相差を算出する。つまり、コンピュータ13は、次の式を用いてループ潮流を算出する。
Σ%Z・P/Σ%Z=(−16.58)/40.293=−0.41[MW]
さらに、コンピュータ13は、次の式を用いて、[MW]の単位で表されているループ潮流をアンペア表示に変更する。
ループ潮流[MW]÷22[kV]÷√3
=(−0.41)÷22[kV]÷√3=−11[A]
また、コンピュータ13は、位相差θHを次の式で算出する。
Σ%Z・P/17.45=(−16.58)/17.45=−0.9
先に従来の手法で得た位相差θHが−0.9(度)であり、これに対して、この実施の形態で得た位相差θHが−0.9(度)であるので、この実施の形態により、高精度で位相差θHを得ることができる。
こうして、コンピュータ13は、
ループ潮流:−11[A]
位相差θH:−0.9[度]
を得る。ここで、コンピュータ13は、位相差θHが「−0.9」[度]であり、あらかじめ設定された許容位相差θMに比べて小さいと判定する。
一方、BD変電所に設置されている過電流継電器(51Fリレー)は、
整定値:5TAP
CT比:500/5
である。BD変電所側のDA連絡線の潮流P[MW]はループ前で値「−2.9」であるので、この潮流Pをアンペア表示に変更すると、
(−2.9)÷22[kV]÷√3=−76[A]
となる。先に算出したループ潮流の値が−11[A]であるので、ループ中の潮流は65[A]となり、入力電流が0.65[A]であるので、BD変電所の過電流継電器(51Fリレー)は動作しないと判定する。
また、BH変電所に設置されている過電流継電器(51Fリレー)は、
整定値:4TAP
CT比:500/5
である。BH変電所側のDA連絡線の潮流P[MW]はループ前で値「2.9」であるので、この潮流Pをアンペア表示に変更すると、
(2.9)÷22[kV]÷√3=76[A]
となる。先に算出したループ潮流の値が−11[A]であるので、ループ中の潮流は87[A]となり、入力電流が0.87[A]であるので、BH変電所の過電流継電器(51Fリレー)は動作しないと判定する。
こうして、この実施の形態によれば、同期検出継電器が設置されていなくても、送電線定数、変圧器の定数、潮流値および常時切り箇所の位相差を用いて、2つの系統を接続するループ入り箇所の位相差を、実測値との差を少なくして得ることができる。この結果、この位相差を用いて2つの系統の同期状態を予測することにより、ループ不可であるかどうかを判断することを可能にする。また、この実施の形態によれば、同期検出継電器が設置されていなくても、実測値との差を少なくした位相差を得ることができるので、この位相差を用いて、実測値との差を少なくした、保護継電器への入力電流を得ることができる。この結果、これらの位相差と入力電流を用いて2つの電力系統の同期状態を予測することにより、ループ可能であるかどうかを正確に判定することを可能にする。さらに、この実施の形態によれば、上位系の潮流値を収集する必要がないので、上位系に管理範囲外の電気所があっても、この電気所から潮流値Pを得るための処理を不要にすることができる。
以上、この発明の実施の形態を詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、電力系統は図2や図14の構成に限られるものではない。
この発明による電力系統の同期状態予測システムを示す構成図である。 電力系統を説明する図である。 定数データの一例を示す図である。 継電器データの一例を示す図である。 開閉データの一例を示す図である。 同期状態予測処理を示すフローチャートである。 電力系統でのループ入り箇所と常時切り箇所を示す図である。 データ収集の様子を示す図である。 各系統を説明する図である。 ループ系統データを示す図である。 ループ系統データを示す図である。 ループ系統データを示す図である。 ループ系統データを示す図である。 この発明による同期状態予測方法と対比される従来の手法を説明するための電力系統を示す図である。 この発明による同期状態予測方法と対比される従来の手法を説明するためのループ系統データを示す図である。 この発明による同期状態予測方法を説明するための電力系統を示す図である。 この発明による同期状態予測方法を説明するためのループ系統データを示す図である。 この発明による同期状態予測方法を説明するためのループ系統データを示す図である。 この発明による同期状態予測方法を説明するためのループ系統データを示す図である。 この発明による同期状態予測方法を説明するためのループ系統データを示す図である。
符号の説明
11 通信制御装置
12 データベースサーバ
13 コンピュータ(収集・処理手段)

Claims (5)

  1. 電力系統に第1および第2の常時切り箇所が設けられ、該電力系統にループを形成する際に該第1の常時切り箇所を閉じてループ入り箇所とするかどうかの良否判定をする電力系統の同期状態予測システムであって、
    前記ループを形成する一方の系統側と他方の系統側の位相差を、前記第2の常時切り箇所から得る収集手段と、
    前記収集手段が得た位相差を基にして、前記ループを形成する一方の系統と他方の系統との位相差であり、かつ、前記第1の常時切り箇所での位相差を算出する処理手段と、
    を備え、前記処理手段は、算出した位相差と、あらかじめ設定された許容位相差とを比較して、前記良否判定をすることを特徴とする電力系統の同期状態予測システム。
  2. 前記処理手段は、前記収集手段が得た位相差と共に、前記第1および前記第2の常時切り箇所を含む最小のループ系統内で計測して得た潮流値と、該潮流値を計測した送電線の定数とを用いて、前記第1の常時切り箇所での位相差を算出することを特徴とする請求項1に記載の電力系統の同期状態予測システム。
  3. 前記処理手段は、算出した位相差を基にして、前記ループを形成する系統に設置されている保護継電器の入力電流を算出し、算出した入力電流を基にして前記良否判定をすることを特徴とする請求項1または2に記載の電力系統の同期状態予測システム。
  4. 前記処理手段は、前記算出した位相差が前記許容位相差以内であった場合、該算出した位相差を基にして、前記ループを形成する系統に設置されている保護継電器の入力電流を算出し、算出した入力電流を基にして前記良否判定をすることを特徴とする請求項1〜3のいずれか1項に記載の電力系統の同期状態予測システム。
  5. 電力系統に第1および第2の常時切り箇所が設けられ、該電力系統にループを形成する際に該第1の常時切り箇所を閉じてループ入り箇所とするかどうかの良否判定をする電力系統の同期状態予測方法であって、
    前記ループを形成する一方の系統側と他方の系統側の位相差を、前記第2の常時切り箇所から収集し、
    収集した位相差を基にして、前記ループを形成する一方の系統と他方の系統との位相差であり、かつ、前記第1の常時切り箇所での位相差を算出し、
    算出した位相差と、あらかじめ設定された許容位相差とを比較して、前記良否判定をする、
    ことを特徴とする電力系統の同期状態予測方法。
JP2007219543A 2007-08-27 2007-08-27 電力系統の同期状態予測システムおよび同期状態予測方法 Pending JP2009055705A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219543A JP2009055705A (ja) 2007-08-27 2007-08-27 電力系統の同期状態予測システムおよび同期状態予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007219543A JP2009055705A (ja) 2007-08-27 2007-08-27 電力系統の同期状態予測システムおよび同期状態予測方法

Publications (1)

Publication Number Publication Date
JP2009055705A true JP2009055705A (ja) 2009-03-12

Family

ID=40506279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219543A Pending JP2009055705A (ja) 2007-08-27 2007-08-27 電力系統の同期状態予測システムおよび同期状態予測方法

Country Status (1)

Country Link
JP (1) JP2009055705A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090386A (ja) * 2010-10-18 2012-05-10 Chugoku Electric Power Co Inc:The 配電線転負荷可否判定システム
JP2014135812A (ja) * 2013-01-09 2014-07-24 Tokyo Electric Power Co Inc:The 配電線異系統ループ切替可否判定方法
CN104600678A (zh) * 2014-08-11 2015-05-06 长园深瑞继保自动化有限公司 母线保护电流同步方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090386A (ja) * 2010-10-18 2012-05-10 Chugoku Electric Power Co Inc:The 配電線転負荷可否判定システム
JP2014135812A (ja) * 2013-01-09 2014-07-24 Tokyo Electric Power Co Inc:The 配電線異系統ループ切替可否判定方法
CN104600678A (zh) * 2014-08-11 2015-05-06 长园深瑞继保自动化有限公司 母线保护电流同步方法

Similar Documents

Publication Publication Date Title
CN100431232C (zh) 电力输送网状态估计
CN102474130B (zh) 母线条件监视系统
US8135550B2 (en) System for monitoring and assessing electrical circuits and method of operation
KR101171027B1 (ko) 온라인 전기회로 정수 측정에 의한 전력설비 상태감시 시스템 및 방법
Kazemi Reliability evaluation of smart distribution grids
US20150248617A1 (en) Systems and Methods for Automatic Real-Time Capacity Assessment for Use in Real-Time Power Analytics of an Electrical Power Distribution System
Popovic et al. The optimal automation level of medium voltage distribution networks
Cebrian et al. Hybrid method to assess sensitive process interruption costs due to faults in electric power distribution networks
WO2003005524A1 (en) System for estimating the frequency of the power signal on a power transmission line
Rehtanz et al. A new wide area protection system
JP2009055705A (ja) 電力系統の同期状態予測システムおよび同期状態予測方法
US20210326731A1 (en) Systems and Methods for Automatic Real-Time Capacity Assessment for Use in Real-Time Power Analytics of an Electrical Power Distribution System
US20130215556A1 (en) Control arrangement
Zhang et al. Design of adaptive line protection under smart grid
Draganova-Zlateva et al. Digital substations
Chang et al. Application of a multifunctional distance protective IED in a 15KV distribution network
Jain et al. A Communication-assisted Scheme in Radial Distribution Systems Using Phasor Measurement Units
Campeanu et al. Real-time stability monitoring at transelectrica
Huang et al. Extracting substation cyber-physical architecture through intelligent electronic devices' data
Wang Foundational report series: Advanced distribution management systems for grid modernization
Phyu et al. Loss reduction and reliability improvement of industrial distribution system through network reconfiguration
Arghandeh et al. Synchronized measurements and their applications in distribution systems: An update
Piesciorovsky Relay in the loop test procedures for adaptive overcurrent protection
Wu et al. Research on automatic generation technology for secondary equipment of security measures of smart substation
Kreusel GRID4EU optimises the medium voltage grid