JP2009054922A - Catalyst - Google Patents

Catalyst Download PDF

Info

Publication number
JP2009054922A
JP2009054922A JP2007222371A JP2007222371A JP2009054922A JP 2009054922 A JP2009054922 A JP 2009054922A JP 2007222371 A JP2007222371 A JP 2007222371A JP 2007222371 A JP2007222371 A JP 2007222371A JP 2009054922 A JP2009054922 A JP 2009054922A
Authority
JP
Japan
Prior art keywords
activated carbon
ammonia
electrode
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007222371A
Other languages
Japanese (ja)
Other versions
JP5335211B2 (en
Inventor
Norio Aibe
紀夫 相部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007222371A priority Critical patent/JP5335211B2/en
Publication of JP2009054922A publication Critical patent/JP2009054922A/en
Application granted granted Critical
Publication of JP5335211B2 publication Critical patent/JP5335211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst for an electric double layer capacitor, a fuel cell or the like that has an excellent electrochemical initial characteristic, and excels in long-term stability of characteristics. <P>SOLUTION: Activated carbon is previously surface-oxidized by ozone, hydrogen peroxide and an oxygen-containing gas, and thereafter processed at a temperature of 200-1,300°C in the presence of ammonia, urea or its derivative. A nitrogen compound is produced on the surface of the activated carbon, this large amount of surface nitride exhibits a basic property, is chemically stable, and catalytically accelerates various chemical reactions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気化学反応の効率が極めて良好な触媒、特に電気二重層キャパシタ電極や燃料電池の酸素電極として有用な触媒に関する。   The present invention relates to a catalyst having very good electrochemical reaction efficiency, particularly a catalyst useful as an electric double layer capacitor electrode or an oxygen electrode of a fuel cell.

活性炭は、触媒や触媒担体として広く用いられているが、最近では電気二重層キャパシタ、燃料電池などにおいて、電気化学反応を効率よく促進させる触媒として、すなわち電極として脚光を浴びている。しかし、電気二重層キャパシタの大容量化およびその経時安定性などの点、また、燃料電池における電流密度や出力密度の向上およびその経時安定性などの点でまだまだ改良すべき問題が多い。   Activated carbon is widely used as a catalyst and a catalyst carrier, but recently, in an electric double layer capacitor, a fuel cell, and the like, it has attracted attention as a catalyst for efficiently promoting an electrochemical reaction, that is, as an electrode. However, there are still many problems to be improved in terms of increasing the capacity of the electric double layer capacitor and its stability over time, and improving the current density and output density of the fuel cell and its stability over time.

従来、繊維状炭素材をアルカリを用いて高度に賦活し、さらにその表面をオゾンや過硫酸アンモニウムで酸化して電気二重層キャパシタの大容量化を行う方法(特許文献1)や、石炭系バインダーと窒素含有有機化合物(メラミンなど)の混合物を1000℃まで加熱し、その後、水蒸気賦活して得られた窒素含有活性炭化物を燃料電池の酸素電極として用いて出力密度の向上を試みる方法(特許文献2)などが考案されている。   Conventionally, a method of increasing the capacity of an electric double layer capacitor (Patent Document 1) by activating a fibrous carbon material with alkali and further oxidizing the surface with ozone or ammonium persulfate, and a coal-based binder A method in which a mixture of nitrogen-containing organic compounds (such as melamine) is heated to 1000 ° C. and then steam-activated nitrogen-containing activated carbide is used as an oxygen electrode of a fuel cell to try to improve the output density (Patent Document 2) ) Has been devised.

さらに、活性炭粒子表面にアルカリ性化合物などの制酸剤(たとえば、炭酸カリウムなど)を存在させた電気二重層キャパシタ(特許文献3)なども考案されている。
しかしながら、オゾンなどによる表面酸化では、生成した酸性官能基が駆動用電解液と反応して特性劣化してしまい、長期使用に対する信頼性に問題が残る。また、石炭系バインダーと窒素含有有機化合物の混合物を炭化し、水蒸気賦活する方法では、その表面に酸化物が存在し、初期性能は良好でもその性能の長期安定性に欠ける。さらに、活性炭表面にアルカリ性化合物を物理的に存在させるために電気化学反応的に見た場合長期使用に対する安定性に問題がある。
Furthermore, an electric double layer capacitor (Patent Document 3) in which an antacid agent such as an alkaline compound (for example, potassium carbonate) is present on the surface of activated carbon particles has been devised.
However, in the surface oxidation by ozone or the like, the generated acidic functional group reacts with the driving electrolyte solution to deteriorate the characteristics, and there remains a problem in reliability for long-term use. Moreover, in the method of carbonizing a mixture of a coal-based binder and a nitrogen-containing organic compound and activating water vapor, an oxide is present on the surface, and the initial performance is good, but the long-term stability of the performance is lacking. Furthermore, since an alkaline compound is physically present on the activated carbon surface, there is a problem in stability for long-term use when viewed electrochemically.

特開2006−156918号公報JP 2006-156918 A 特開2004−330181号公報JP 2004-330181 A 特開2006−261516号公報JP 2006-261516 A

本発明は、電気化学反応を効率よく促進し、初期性能を著しく向上させ、かつ、その性能を長期間にわたり維持できる触媒を提供することを課題とする。   An object of the present invention is to provide a catalyst that can efficiently promote an electrochemical reaction, remarkably improve initial performance, and maintain the performance for a long period of time.

本発明者は、前記の点に鑑み鋭意検討した結果、活性炭表面を予め酸化処理することで、活性炭表面に多量の酸化物(酸素含有基)が生成されるが、それに引き続いてアンモニア、尿素またはその誘導体による高温処理を行うと、この表面酸化物量に対応して、表面窒素化合物が生成される。この多量の表面窒素化合物は塩基性を呈し、化学的に安定であり、種々の化学反応を触媒的に加速させ、特に酸素が関与する電気化学反応を飛躍的に促進し、かつその機能を長期にわたり維持するということを見出し、本発明を完成した。   As a result of intensive studies in view of the above points, the present inventor has produced a large amount of oxides (oxygen-containing groups) on the activated carbon surface by previously oxidizing the activated carbon surface. Subsequently, ammonia, urea or When a high temperature treatment with the derivative is performed, a surface nitrogen compound is generated corresponding to the amount of the surface oxide. This large amount of surface nitrogen compounds is basic, chemically stable, catalytically accelerates various chemical reactions, dramatically accelerates electrochemical reactions involving oxygen, and has long-term functions. The present invention has been completed.

すなわち、本発明は、
(1)
表面酸化した後、アンモニア、尿素又はその誘導体の存在下200〜1300℃の温度で処理した活性炭からなる触媒、
(2)
触媒が電気二重層キャパシタの電極である(1)記載の触媒、
(3)
触媒が燃料電池の酸素電極である(1)記載の触媒、
(4)
活性炭の表面酸化がオゾン、過酸化水素又は酸素含有ガスによる酸化である(1)記載の触媒、
That is, the present invention
(1)
A catalyst consisting of activated carbon treated at a temperature of 200 to 1300 ° C. in the presence of ammonia, urea or a derivative thereof after surface oxidation;
(2)
The catalyst according to (1), wherein the catalyst is an electrode of an electric double layer capacitor,
(3)
The catalyst according to (1), wherein the catalyst is an oxygen electrode of a fuel cell,
(4)
The catalyst according to (1), wherein the surface oxidation of the activated carbon is oxidation with ozone, hydrogen peroxide or an oxygen-containing gas,

本発明で使用される活性炭は、大鋸屑、木炭、コークス、石炭、ヤシ殻、樹脂などを原料として通常の方法により薬品賦活、水蒸気賦活などのされたものであれば、いかなるものでもよい。その形状は、粉末状、破砕状、円柱状、ハニカム状、繊維状などで、その表面積は、400m/g以上のものである。 The activated carbon used in the present invention may be any activated carbon as long as it has been activated by chemical methods, steam activation, or the like using raw sawdust, charcoal, coke, coal, coconut shell, resin, or the like as a raw material. The shape is powder, crushed, columnar, honeycomb, fiber, etc., and the surface area is 400 m 2 / g or more.

本発明において、活性炭を予め表面酸化する方法としては、たとえば、硝酸、NOx、SOx、三酸化硫黄、硫酸、二酸化塩素、過酸化水素、オゾン、酸素含有ガス(たとえば、空気、燃焼排ガスなど)などの酸化剤で、液相あるいは気相で酸化するなどの方法が挙げられる。NOxやSOxなどの場合においては、活性炭が排煙脱硝(排ガス中のNOx除去)、排煙脱硫(排ガス中のSOx除去)に長時間繰り返し使用されると、活性炭が繰り返し酸化され、その表面に多量の酸化物が生成されているので予備酸化処理活性炭としてそのまま使用できる。
また、浄水場において高度処理で長時間使用された活性炭は、高濃度のオゾン水によって繰り返し表面酸化されているので、予備酸化処理活性炭としてそのまま使用できる。高度処理で使用された活性炭は、浄水場によって異なるが、種々のものを吸着しているので、アルカリ洗浄や酸洗浄を行うことが望ましい。
なお、酸素含有ガスによる気相酸化などのように活性炭に対する酸化力が弱い場合などでは、ガス中の酸素濃度にもよるが、たとえば、200℃以上の温度、好ましくは250〜850℃で表面酸化を行うのが効率的である。活性炭に対するこれらの酸化剤使用量は、処理方法や酸化条件(たとえば、温度、時間など)などにもよるが、通常、活性炭1g当り酸素原子換算量で1mg以上、好ましくは、2mg以上、より好ましくは、5mg以上である。
本発明において、活性炭を表面酸化する方法のうち、オゾン、過酸化水素および酸素含有ガスによる酸化が、操作上および効率上などの点で特に好ましい。
このような酸化によって活性炭表面に多量の酸化物(酸素含有基)が生成される。
In the present invention, as a method for previously oxidizing the surface of activated carbon, for example, nitric acid, NOx, SOx, sulfur trioxide, sulfuric acid, chlorine dioxide, hydrogen peroxide, ozone, oxygen-containing gas (for example, air, combustion exhaust gas, etc.), etc. Examples of the oxidizing agent include a method of oxidizing in a liquid phase or a gas phase. In the case of NOx, SOx, etc., if the activated carbon is repeatedly used for a long time for flue gas denitrification (removal of NOx in exhaust gas) and flue gas desulfurization (removal of SOx in exhaust gas), the activated carbon is repeatedly oxidized, Since a large amount of oxide is generated, it can be used as it is as pre-oxidized activated carbon.
Moreover, since the activated carbon used for a long time by advanced treatment in the water purification plant has been repeatedly surface oxidized by high-concentration ozone water, it can be used as it is as pre-oxidized activated carbon. The activated carbon used in the advanced treatment varies depending on the water purification plant, but adsorbs various substances, so it is desirable to perform alkali cleaning or acid cleaning.
In the case where the oxidizing power for activated carbon is weak, such as gas phase oxidation with an oxygen-containing gas, surface oxidation is performed at a temperature of 200 ° C. or higher, preferably 250 to 850 ° C., depending on the oxygen concentration in the gas. Is efficient. The amount of these oxidizing agents used for activated carbon depends on the treatment method and oxidation conditions (eg, temperature, time, etc.), but is usually 1 mg or more, preferably 2 mg or more, more preferably in terms of oxygen atom per gram of activated carbon. Is 5 mg or more.
In the present invention, among the methods for oxidizing the surface of activated carbon, oxidation with ozone, hydrogen peroxide and an oxygen-containing gas is particularly preferable in terms of operation and efficiency.
Such oxidation generates a large amount of oxides (oxygen-containing groups) on the activated carbon surface.

本発明の触媒は、活性炭を予め酸化処理した後、引き続いてアンモニア、尿素またはその誘導体の存在下200〜1300℃、好ましくは250〜1200℃で高温処理して得られる。活性炭の酸化で活性炭表面に多量の酸化物(酸素含有基)が生成するが、この表面酸化物量に応じて、引き続いて行われるアンモニア、尿素またはその誘導体による高温処理によって、表面窒素化合物が生成し、触媒特性が大きく変化するという事実を突き止めたことが、本発明の最大の特徴である。   The catalyst of the present invention can be obtained by pre-oxidizing activated carbon and subsequently treating it at 200 to 1300 ° C., preferably 250 to 1200 ° C. in the presence of ammonia, urea or a derivative thereof. Oxidation of activated carbon generates a large amount of oxides (oxygen-containing groups) on the surface of the activated carbon. Depending on the amount of surface oxide, surface nitrogen compounds are generated by subsequent high-temperature treatment with ammonia, urea, or derivatives thereof. The greatest feature of the present invention is that the fact that the catalyst characteristics change greatly has been identified.

アンモニア、尿素またはその尿素誘導体による高温処理において、アンモニアを用いる場合は、次の通りである。
すなわち、アンモニアの活性炭に対する接触割合は、活性炭1gに対して0.1ミリモル以上が好ましく、0.5〜1000ミリモルがより好ましい。この場合、アンモニアは、窒素ガス、燃焼排ガスなどの不活性ガスと混合して200〜1300℃、好ましくは250〜1200℃の温度で行うのがよい。活性炭に対するアンモニアの接触時間は、温度、アンモニア濃度などによって異なるが10分間以上、好ましくは15〜500分である。
When ammonia is used in the high temperature treatment with ammonia, urea or its urea derivative, it is as follows.
That is, the contact ratio of ammonia to activated carbon is preferably 0.1 mmol or more, more preferably 0.5 to 1000 mmol, relative to 1 g of activated carbon. In this case, ammonia is mixed with an inert gas such as nitrogen gas or combustion exhaust gas, and is carried out at a temperature of 200 to 1300 ° C, preferably 250 to 1200 ° C. The contact time of ammonia with activated carbon varies depending on temperature, ammonia concentration and the like, but is 10 minutes or more, preferably 15 to 500 minutes.

また、尿素又はその誘導体の場合も、アンモニアの場合のように尿素又はその誘導体の水溶液を窒素ガス、燃焼排ガスなどの不活性ガスに混合して200℃〜1300℃、好ましくは250〜1200℃の温度で処理するのがよい。活性炭に対する尿素又はその誘導体の接触時間は、温度、尿素又はその誘導体濃度などによって異なるが10分間以上、好ましくは15〜500分である。尿素又はその誘導体の活性炭に対する接触割合は、活性炭1gに対して0.1ミリモル以上が好ましく、0.5〜1000ミリモルがより好ましい。   In the case of urea or a derivative thereof, as in the case of ammonia, an aqueous solution of urea or a derivative thereof is mixed with an inert gas such as nitrogen gas or combustion exhaust gas to 200 ° C. to 1300 ° C., preferably 250 to 1200 ° C. It is better to process at temperature. The contact time of urea or its derivative with activated carbon varies depending on the temperature, urea or its derivative concentration, etc., but is 10 minutes or longer, preferably 15 to 500 minutes. The contact ratio of urea or a derivative thereof to activated carbon is preferably 0.1 mmol or more, more preferably 0.5 to 1000 mmol, with respect to 1 g of activated carbon.

また、尿素又はその誘導体を用いる場合は、以下のようにして行ってのよい。すなわち、尿素又はその誘導体を活性炭に含浸した後、これを窒素ガスなどの不活性ガスを流通しながら200〜1300℃、好ましくは250〜1200℃の温度で10分間以上、好ましくは15〜500分の高温処理を行う。
尿素誘導体としては、ビーレット、ウレイド、モノメチロール尿素、ジメチロール尿素などが挙げられる。尿素またはその誘導体の活性炭に含浸させる量は、活性炭1gに対して0.1ミリモル以上が好ましく、特に0.5ミリモル以上が好ましい。尿素またはその誘導体を活性炭に含浸するに際しては、尿素またはその誘導体をあらかじめ水、酸水溶液(たとえば、硫酸、硝酸など)、アンモニウム塩水溶液(たとえば、硫酸アンモン、硝酸アンモンなど)などに溶解して、これを活性炭に含浸するのがよい。特に、硫酸、硝酸、硫酸アンモン、硝酸アンモンを使用すると触媒性能がさらに向上する。
Moreover, when using urea or its derivative (s), you may carry out as follows. That is, after impregnating activated carbon with urea or a derivative thereof, an inert gas such as nitrogen gas is passed through this, and the temperature is 200 to 1300 ° C., preferably 250 to 1200 ° C. for 10 minutes or more, preferably 15 to 500 minutes. High temperature treatment is performed.
Examples of urea derivatives include beret, ureido, monomethylol urea, dimethylol urea and the like. The amount of urea or its derivative impregnated into activated carbon is preferably 0.1 mmol or more, particularly 0.5 mmol or more, per 1 g of activated carbon. When impregnating activated carbon with urea or a derivative thereof, urea or a derivative thereof is dissolved in water, an acid aqueous solution (for example, sulfuric acid, nitric acid, etc.), an ammonium salt aqueous solution (for example, ammonium sulfate, ammonium nitrate, etc.) It is preferable to impregnate this into activated carbon. In particular, when sulfuric acid, nitric acid, ammonium sulfate, or ammonium nitrate is used, the catalyst performance is further improved.

本発明の活性炭を用いて電気二重層コンデンサや燃料電池の電極を製造するには、自体公知の方法を採用することができる。たとえば、粉末状活性炭を電解液と混練して成形してもよいし、また、活性炭、結合剤および水の混合物を混合機でよく混練し、得られたペースト状混合物をロールを用いて、200〜300℃程度の加熱下延伸処理をして、適当な厚み、たとえば0.3〜2mm程度のシートに成形してもよい。シート状電極材料は円板状に打ち抜いて分極性電極とすることができる。   In order to produce an electric double layer capacitor or a fuel cell electrode using the activated carbon of the present invention, a method known per se can be employed. For example, powdered activated carbon may be kneaded and molded with an electrolytic solution, or a mixture of activated carbon, binder and water may be well kneaded with a mixer, and the resulting paste-like mixture may be mixed using a roll. The sheet may be stretched under heating at about ~ 300 ° C and formed into a sheet having an appropriate thickness, for example, about 0.3 to 2 mm. The sheet electrode material can be punched into a disc shape to form a polarizable electrode.

得られた活性炭成形物2〜数枚をセパレータを介して重ね、外装容器に収納して、その中に電解液を注入することにより電気二重層コンデンサユニットセルを作ることができる。
電解液としては有機溶媒系のものと水溶液系のものがある。有機溶媒系電解液の溶媒としてはプロピレンカーボネートが一般的であり、電解質としてはこれまで知られている種々の第4級ホスホニウム塩、第4級アンモニウム塩のいずれもが使用できる。水溶液系電解液としては、希硫酸が一般的であるが、他の無機酸、たとえば四フッ化ホウ酸、硝酸なども使用できる。さらに水酸化カリ、水酸化ナトリウム、水酸化アンモニウムなどの無機塩基を溶質とする水溶液も便宜に使用できる。それぞれの電解質の濃度は10〜90重量%の範囲で適宜選択することができる。
Two or more of the obtained activated carbon moldings are stacked via a separator, housed in an outer container, and an electrolytic solution is injected therein, whereby an electric double layer capacitor unit cell can be made.
Electrolytic solutions include organic solvent-based and aqueous solutions. Propylene carbonate is generally used as the solvent for the organic solvent-based electrolytic solution, and any of various known quaternary phosphonium salts and quaternary ammonium salts can be used as the electrolyte. As the aqueous electrolyte, dilute sulfuric acid is generally used, but other inorganic acids such as tetrafluoroboric acid and nitric acid can also be used. Furthermore, an aqueous solution having an inorganic base such as potassium hydroxide, sodium hydroxide, or ammonium hydroxide as a solute can also be used conveniently. The concentration of each electrolyte can be appropriately selected within a range of 10 to 90% by weight.

本発明の触媒は、前記の従来技術などと異なり、活性炭を予め表面酸化して、アンモニア、尿素又はその誘導体の存在下200〜1300℃の温度で処理して、活性炭に多量の表面窒素化合物を賦与しているので、特に電気化学反応を著しく促進し、非常に良好な電極材特性を示し、かつ、その特性の経時劣化が小さい。   Unlike the prior art described above, the catalyst of the present invention is obtained by surface-oxidizing activated carbon in advance and treating it at a temperature of 200 to 1300 ° C. in the presence of ammonia, urea or a derivative thereof, so that a large amount of surface nitrogen compound is added to the activated carbon. In particular, the electrochemical reaction is remarkably accelerated, very good electrode material characteristics are exhibited, and the deterioration of the characteristics over time is small.

以下に実施例、比較例をあげて、本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples and comparative examples.

(1)繊維状活性炭A(BET比表面積1500m/g、 大阪ガス(株)製)3gを30mmφの石英ガラス管に充填し、O−5.0vol%含有のNガスを線流速5cm/秒で流通しながら60分間かけて600℃まで昇温し、同温度で10分間保った後、Nガス中で常温(25℃)まで冷却して、空気酸化処理活性炭Bを得た。
(2)同じ繊維状活性炭A3gを30mmφの石英ガラス管に充填し、O−5.0vol%含有のNガスを線流速5cm/秒で流通しながら60分間かけて600℃まで昇温した。同じ温度でNH−10vol%含有のNガスを線流速5cm/秒で30分間流通した後、Nガス中で常温まで冷却して、アンモニア処理活性炭Cを得た。
(3)電極の製造(特許文献1の方法)
繊維状活性炭:カーボンブラック:ポリテトラフロロエチレンを重量比85:10:5で混合、練合し、直径13mmの型に充填しデスク状に成型し、集電体であるチタンメッシュを圧着して電極にした。
(4)電気化学的測定(特許文献1の方法)
三極式セル法により、作用極は上記の電極を用い、対極は作用極の6倍重量の繊維上活性炭電極を使い、セルに1M硫酸の電解液を満たした。このセルを真空ポンプで12時間脱気し、さらに、電解液をアルゴンガスでバブリングした。電気二重層容量は、100mA/cmの定電流で測定した。
空気酸化処理活性炭Bおよびアンモニア処理活性炭Cを電極にしたときのBET比表面積と電気二重層容量は表1の通りであった。
(1) 3 g of fibrous activated carbon A (BET specific surface area 1500 m 2 / g, manufactured by Osaka Gas Co., Ltd.) is filled in a quartz glass tube of 30 mmφ, and N 2 gas containing O 2 -5.0 vol% is linear flow rate 5 cm. The temperature was raised to 600 ° C. over 60 minutes while circulating at / second, and kept at the same temperature for 10 minutes, and then cooled to room temperature (25 ° C.) in N 2 gas to obtain air-oxidized activated carbon B.
(2) The same fibrous activated carbon A3g was filled into a 30 mmφ quartz glass tube, and the temperature was raised to 600 ° C. over 60 minutes while flowing N 2 gas containing O 2 -5.0 vol% at a linear flow rate of 5 cm / sec. . N 2 gas containing NH 3 -10 vol% at the same temperature was circulated at a linear flow rate of 5 cm / sec for 30 minutes, and then cooled to room temperature in N 2 gas to obtain ammonia-treated activated carbon C.
(3) Manufacture of electrodes (method of Patent Document 1)
Fibrous activated carbon: carbon black: polytetrafluoroethylene is mixed and kneaded at a weight ratio of 85: 10: 5, filled into a 13 mm diameter mold and molded into a desk shape, and a titanium mesh as a current collector is pressure bonded. It was an electrode.
(4) Electrochemical measurement (Method of Patent Document 1)
By the three-electrode cell method, the above electrode was used as the working electrode, the activated carbon electrode on the fiber 6 times the weight of the working electrode was used, and the cell was filled with 1 M sulfuric acid electrolyte. The cell was deaerated with a vacuum pump for 12 hours, and the electrolyte was bubbled with argon gas. The electric double layer capacity was measured at a constant current of 100 mA / cm 2 .
Table 1 shows the BET specific surface area and electric double layer capacity when air-oxidized activated carbon B and ammonia-treated activated carbon C were used as electrodes.

Figure 2009054922
Figure 2009054922

実施例1の繊維状活性炭A(BET比表面積1500m/g)3gを30mmφの石英ガラス管に充填して、25℃でO−200ppm含有の空気を線流速3cm/秒で30時間流通して、オゾン酸化処理活性炭Dを得た。
同じ繊維状活性炭A3gを30mmφの石英ガラス管に充填し、25℃でO−200ppm含有の空気を線流速3cm/秒で30時間流通した。
その後、NH−10vol%含有のNガスを線流速5cm/秒で流通しながら750℃まで昇温して、この温度で30分間アンモニア処理し、Nガス中で常温まで冷却して、アンモニア処理活性炭Eを得た。
オゾン酸化処理活性炭Dおよびアンモニア処理活性炭Eについて、実施例1と同様な方法で電気二重層容量を測定した。その結果を表2に示した
3 g of fibrous activated carbon A of Example 1 (BET specific surface area 1500 m 2 / g) was filled in a 30 mmφ quartz glass tube, and air containing O 3 -200 ppm was circulated at 25 ° C. for 30 hours at a linear flow rate of 3 cm / second. As a result, ozone-oxidized activated carbon D was obtained.
3 g of the same fibrous activated carbon A was filled in a 30 mmφ quartz glass tube, and air containing O 3 -200 ppm was circulated at 25 ° C. for 30 hours at a linear flow rate of 3 cm / sec.
Thereafter, the N 2 gas containing NH 3 -10 vol% was heated to 750 ° C. while flowing at a linear flow rate of 5 cm / second, treated with ammonia at this temperature for 30 minutes, cooled to room temperature in N 2 gas, Ammonia-treated activated carbon E was obtained.
For the ozone-oxidized activated carbon D and the ammonia-treated activated carbon E, the electric double layer capacity was measured in the same manner as in Example 1. The results are shown in Table 2.

Figure 2009054922
Figure 2009054922

微粉砕した100〜200メッシュのヤシ殻炭化物10kgに粘結剤としてピッチ2kg、少量の水、さらにメラミン500g加え、混合・練合し、円柱状に加圧成型した。この成型物を600℃、1時間かけて炭化して、さらに850℃で水蒸気の存在下にて賦活して、BET比表面積が1050(m/g)である活性炭Fを得た。この活性炭Fの30gを55mmφの石英ガラス管に充填して、25℃でO−200ppm含有の空気を線流速3cm/秒で300時間流通し、オゾン酸化活性炭Gを得た。さらに、この活性炭Gの15gを5mmφの石英ガラス管に充填して、NH−10vol%含有のNガスを線流速5cm/秒で流通しながら750℃まで昇温して、この温度で30分間アンモニア処理し、Nガス中で常温まで冷却して、オゾン酸化の後アンモニア処理して活性炭H(本発明)を得た。
また、活性炭Fの30gを55mmφの石英ガラス管に充填して、NH−10vol%含有のNガスを線流速5cm/秒で流通しながら750℃まで昇温した。この温度で30分間アンモニア処理し、Nガス中で常温まで冷却し、アンモニア処理して活性炭Iを得た。これら活性炭F、G、HおよびIのそれぞれを粉砕して、粒子径を100ミクロン以下として酸素電極を製造した。その特性を評価した。
(1)電極の製造
上記の各活性炭微粉末を沈降液に懸濁させロックウール隔膜上に沈降させ、乾燥して、活性炭付着量20mg/cmの酸素電極を作成する。この電極を支持するために電解液側ではタンタル製多孔板とポリプロピレン製網を使う。
(2) 電気化学的測定
上記の電極を60℃の1M硫酸に挿入し、酸素圧2×10N/mで、水素電極に対して700mVの電圧かけたときの初期の電流密度を測定した。また、この条件下で、50時間継続後の電流密度をも測定して、電流密度の経時変化を調べて酸素電極特性を評価した。その結果を表3に示した。
Pitch 2 kg as a binder, a small amount of water, and 500 g of melamine were added to 10 kg of finely pulverized 100-200 mesh coconut shell carbide, mixed and kneaded, and pressed into a cylindrical shape. This molded product was carbonized at 600 ° C. for 1 hour and further activated at 850 ° C. in the presence of water vapor to obtain activated carbon F having a BET specific surface area of 1050 (m 2 / g). 30 g of this activated carbon F was filled in a 55 mmφ quartz glass tube, and air containing O 3 -200 ppm was circulated at 25 ° C. at a linear flow rate of 3 cm / second for 300 hours to obtain ozone-oxidized activated carbon G. Further, 15 g of this activated carbon G was filled in a quartz glass tube of 5 mmφ, and the temperature was raised to 750 ° C. while N 2 gas containing NH 3 -10 vol% was circulated at a linear flow rate of 5 cm / sec. Ammonia treatment was performed for minutes, cooling to room temperature in N 2 gas, ozone treatment after ammonia oxidation, and activated carbon H (present invention) was obtained.
Further, 30 g of activated carbon F was filled into a 55 mmφ quartz glass tube, and the temperature was raised to 750 ° C. while N 2 gas containing NH 3 -10 vol% was circulated at a linear flow rate of 5 cm / sec. This was treated with ammonia for 30 minutes, cooled to room temperature in N 2 gas, and treated with ammonia to obtain activated carbon I. Each of these activated carbons F, G, H and I was pulverized to produce an oxygen electrode with a particle size of 100 microns or less. Its characteristics were evaluated.
(1) Production of electrode Each of the above activated carbon fine powders is suspended in a sedimentation solution, allowed to settle on a rock wool diaphragm, and dried to prepare an oxygen electrode having an activated carbon deposition amount of 20 mg / cm 2 . In order to support this electrode, a tantalum porous plate and a polypropylene net are used on the electrolyte side.
(2) Electrochemical measurement Measure the initial current density when the above electrode is inserted into 1 M sulfuric acid at 60 ° C. and a voltage of 700 mV is applied to the hydrogen electrode at an oxygen pressure of 2 × 10 4 N / m 2. did. Under these conditions, the current density after 50 hours was also measured, and the change in current density with time was examined to evaluate the oxygen electrode characteristics. The results are shown in Table 3.

Figure 2009054922
Figure 2009054922

10/30メッシュの破砕状ヤシ殻活性炭J(BET比表面積1100m/g)の30gを55mmφの石英ガラス管に充填して、450℃でO−5.0vol%含有のNガスを線流速5cm/秒で10分間流通して空気酸化活性炭Kを調製した。この活性炭Kの15gを55mmφの石英ガラス管に充填して、NH−10vol%含有のNガスを線流速5cm/秒で流通しながら800℃まで昇温し、この温度で30分間流通した後、Nガス中で常温まで冷却して、空気酸化した後アンモニア処理をして活性炭Lを得た。
これら活性炭J、KおよびLのそれぞれを微粉砕して粒子径を100ミクロン以下にした。実施例3と同様に酸素電極を製造して酸素電極の特性を評価した。
30 g of 10/30 mesh crushed coconut shell activated carbon J (BET specific surface area 1100 m 2 / g) was filled in a quartz glass tube of 55 mmφ, and N 2 gas containing O 2 -5.0 vol% was drawn at 450 ° C. Air-oxidized activated carbon K was prepared by flowing for 10 minutes at a flow rate of 5 cm / sec. 15 g of this activated carbon K was filled in a quartz glass tube of 55 mmφ, and the temperature was raised to 800 ° C. while N 2 gas containing NH 3 -10 vol% was circulated at a linear flow rate of 5 cm / sec, and circulated at this temperature for 30 minutes. after cooled to room temperature in N 2 gas, it was then ammonia treatment after air oxidation to give the activated carbon L.
Each of these activated carbons J, K and L was pulverized to a particle size of 100 microns or less. An oxygen electrode was produced in the same manner as in Example 3, and the characteristics of the oxygen electrode were evaluated.

Figure 2009054922
Figure 2009054922

20Lのホーロー容器に水蒸気賦活した8/10メッシュの破砕状瀝青炭系活性炭M(BET比表面積1250m/g)100gと水10Lを入れ、これらを常温で攪拌しながら、8重量%の過酸化水素水4Lを15mL/分で滴下した。過酸化水素水を滴下後も攪拌を5時間継続した。過酸化水素酸化後の活性炭試料を水切りし、110℃で乾燥し、過酸化水素酸化活性炭Nを得た。
この過酸化水素酸化活性炭N30gを55mmφの石英ガラス管に充填して、NH−10vol%含有のNガスを線流速5cm/秒で流通しながら750℃まで昇温して、この温度で30分間アンモニア処理し、Nガス中で常温まで冷却して、過酸化水素酸化処理後アンモニア処理活性炭Oを得た。
これら活性炭M、NおよびOのそれぞれを微粉砕して粒子径を100ミクロン以下にした。実施例3と同様に酸素電極を製造して酸素電極の特性を評価した。その結果を表5に示した。
Into a 20 L enamel container, 100 g of crushed bituminous coal-based activated carbon M (BET specific surface area of 1250 m 2 / g) activated with water vapor and 10 L of water and 10 L of water were added, and 8% by weight of hydrogen peroxide was stirred at room temperature. 4 L of water was added dropwise at 15 mL / min. Stirring was continued for 5 hours after the hydrogen peroxide solution was added dropwise. The activated carbon sample after hydrogen peroxide oxidation was drained and dried at 110 ° C. to obtain hydrogen peroxide-oxidized activated carbon N.
This hydrogen peroxide-oxidized activated carbon N30 g was filled in a quartz glass tube of 55 mmφ, and the temperature was raised to 750 ° C. while flowing N 2 gas containing NH 3 -10 vol% at a linear flow rate of 5 cm / sec. Ammonia treatment was performed for 30 minutes, and the mixture was cooled to room temperature in N 2 gas. After the hydrogen peroxide oxidation treatment, ammonia-treated activated carbon O was obtained.
Each of these activated carbons M, N, and O was pulverized to a particle size of 100 microns or less. An oxygen electrode was produced in the same manner as in Example 3, and the characteristics of the oxygen electrode were evaluated. The results are shown in Table 5.

Figure 2009054922
Figure 2009054922

浄水場において、2年間高度処理で使用した8/30メッシュの破砕状瀝青炭系活性炭P(BET比表面積650m/g)を以下の実験に使用した。
なお、この活性炭Pは、オゾン濃度約0.25mg/Lの水に空塔速度約6/時で2年間接触し、オゾン酸化を受けて、1g当たりに表面酸化物を酸素原子換算で約200mg生成していた。この活性炭Iの30gを55mmφの石英ガラス管に充填して、NH−10vol%含有のNガスを線流速5cm/秒で流通しながら850℃まで昇温して、この温度で30分間アンモニア処理し、Nガス中で常温まで冷却して、アンモニア処理活性炭Qを得た。
これら活性炭PおよびQのそれぞれを微粉砕して粒子径を100ミクロン以下にした。実施例3と同様に酸素電極を製造して酸素電極の特性を評価した。その結果を表6に示した。
In the water purification plant, 8/30 mesh crushed bituminous coal-based activated carbon P (BET specific surface area 650 m 2 / g) used in the advanced treatment for 2 years was used in the following experiments.
The activated carbon P is in contact with water having an ozone concentration of about 0.25 mg / L at a superficial velocity of about 6 / hour for 2 years, undergoes ozone oxidation, and surface oxide is converted to about 200 mg in terms of oxygen atom per gram. It was generated. 30 g of this activated carbon I is filled into a 55 mmφ quartz glass tube, heated to 850 ° C. while flowing N 2 gas containing NH 3 -10 vol% at a linear flow rate of 5 cm / sec, and ammonia is kept at this temperature for 30 minutes. treated, and cooled to room temperature in N 2 gas, to obtain a ammonia treatment of activated carbon Q.
Each of these activated carbons P and Q was finely pulverized to a particle size of 100 microns or less. An oxygen electrode was produced in the same manner as in Example 3, and the characteristics of the oxygen electrode were evaluated. The results are shown in Table 6.

Figure 2009054922
Figure 2009054922

実施例6の活性炭について、特許文献3による方法で電気二重層キャパシタの特性を評価した。
すなわち、活性炭粒子:カーボンブラック:成型密度0.85g/cm、厚さ145ミクロンのシート状電極を調製した。このシートをアルミ箔からなる帯状集電体両面にそれぞれ導電性接着剤を用いて貼付して、正極および負極を形成して、セパレータとともに重ね合わせて巻き素子を作成した。これらの素子を直径40mm×長さ120mmのアルミ製円筒型容器に挿入し、端子部を封止した。200℃で真空乾燥した円筒型キャパシタセルに電解液を注入して、2.7Vの電圧を65℃にて6時間印加した後、30Aの定電流放電にて初期静電容量を測定した。なお、電解液は、トリエチルメチルアンモ二ウム・テトラフルオロボーレイト1.8mol/L溶液である。
また、65℃で、2.7Vの定電圧を印加しながら50時間継続後の静電容量をも測定した。その結果を表7に示した。
Regarding the activated carbon of Example 6, the characteristics of the electric double layer capacitor were evaluated by the method according to Patent Document 3.
That is, activated carbon particles: carbon black: a sheet-like electrode having a molding density of 0.85 g / cm 3 and a thickness of 145 microns was prepared. This sheet was affixed to both sides of a strip-shaped current collector made of an aluminum foil using a conductive adhesive to form a positive electrode and a negative electrode, which were laminated together with a separator to form a wound element. These elements were inserted into an aluminum cylindrical container having a diameter of 40 mm and a length of 120 mm, and the terminal portion was sealed. The electrolyte was injected into a cylindrical capacitor cell that was vacuum-dried at 200 ° C., and a voltage of 2.7 V was applied at 65 ° C. for 6 hours, and then the initial capacitance was measured by constant current discharge at 30 A. The electrolytic solution is a triethylmethylammonium tetrafluoroborate 1.8 mol / L solution.
Moreover, the electrostatic capacity after 50 hours was measured while applying a constant voltage of 2.7 V at 65 ° C. The results are shown in Table 7.

Figure 2009054922
Figure 2009054922

排煙脱硫で約6ヶ月間使用した10mmφの円柱状褐炭系活性炭R(BET比表面積550m/g)ついて以下の実験を行った。なお、この活性炭はSOxで繰り返し酸化され、その表面に1g当たり酸化物を酸素原子当たり165mg含んでいた。この活性炭Rの30gを55mmφの石英ガラス管に充填して、NH−10vol%含有のNガスを線流速5cm/秒で流通しながら850℃まで昇温して、この温度で30分間アンモニア処理し、Nガス中で常温まで冷却して、アンモニア処理活性炭Sを得た。
これらの活性炭RおよびSのそれぞれを微粉砕して粒子径を100ミクロン以下にした。実施例3と同様に酸素電極を製造し、実施例7と同じ方法で電気二重層キャパシタの特性を評価し、その結果を表8に示した。
The following experiment was conducted on 10 mmφ cylindrical lignite activated carbon R (BET specific surface area 550 m 2 / g) used for about 6 months in flue gas desulfurization. The activated carbon was repeatedly oxidized with SOx, and its surface contained 165 mg of oxide per gram of oxygen per gram of oxygen. 30 g of this activated carbon R is filled in a 55 mmφ quartz glass tube, heated to 850 ° C. while flowing N 2 gas containing NH 3 -10 vol% at a linear flow rate of 5 cm / sec, and ammonia is kept at this temperature for 30 minutes. treated, and cooled to room temperature in N 2 gas, to obtain a ammonia treatment of activated carbon S.
Each of these activated carbons R and S was finely pulverized to a particle size of 100 microns or less. An oxygen electrode was produced in the same manner as in Example 3, and the characteristics of the electric double layer capacitor were evaluated in the same manner as in Example 7. The results are shown in Table 8.

Figure 2009054922
Figure 2009054922

本発明に係る触媒は、電気化学反応の効率がよく、初期性能が著しく高いうえ、その性能を長期間にわたり維持することができるので、電気二重層キャパシタの電極や、燃料電池の電極などとして、有利に使用できる。   The catalyst according to the present invention is highly efficient in electrochemical reaction, the initial performance is remarkably high, and the performance can be maintained over a long period of time, so as an electrode of an electric double layer capacitor, an electrode of a fuel cell, etc. It can be used advantageously.

Claims (4)

表面酸化した後、アンモニア、尿素又はその誘導体の存在下200〜1300℃の温度で処理した活性炭からなる触媒。   A catalyst comprising activated carbon which has been surface oxidized and then treated at a temperature of 200 to 1300 ° C. in the presence of ammonia, urea or a derivative thereof. 触媒が電気二重層キャパシタの電極である請求項1記載の触媒。   The catalyst according to claim 1, wherein the catalyst is an electrode of an electric double layer capacitor. 触媒が燃料電池の酸素電極である請求項1記載の触媒。   The catalyst according to claim 1, wherein the catalyst is an oxygen electrode of a fuel cell. 活性炭の表面酸化がオゾン、過酸化水素又は酸素含有ガスによる酸化である請求項1記載の触媒。   The catalyst according to claim 1, wherein the surface oxidation of the activated carbon is an oxidation with ozone, hydrogen peroxide or an oxygen-containing gas.
JP2007222371A 2007-08-29 2007-08-29 catalyst Expired - Fee Related JP5335211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222371A JP5335211B2 (en) 2007-08-29 2007-08-29 catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222371A JP5335211B2 (en) 2007-08-29 2007-08-29 catalyst

Publications (2)

Publication Number Publication Date
JP2009054922A true JP2009054922A (en) 2009-03-12
JP5335211B2 JP5335211B2 (en) 2013-11-06

Family

ID=40505712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222371A Expired - Fee Related JP5335211B2 (en) 2007-08-29 2007-08-29 catalyst

Country Status (1)

Country Link
JP (1) JP5335211B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
JP2010287316A (en) * 2009-06-09 2010-12-24 Kyoto Univ Method for manufacturing electrode catalyst for fuel cell
JP2012230096A (en) * 2011-04-13 2012-11-22 Eiko:Kk Method of adsorbing radioactive cesium
JP2013026484A (en) * 2011-07-22 2013-02-04 Gunma Univ Method for producing carbon material for electrical double layer capacitor
JP2019079861A (en) * 2017-10-20 2019-05-23 Tpr株式会社 Capacitor and method of manufacturing withstand voltage active material for capacitor electrode
JP2020088119A (en) * 2018-11-22 2020-06-04 国立大学法人群馬大学 Manufacturing method of carbon material for electrical double layer capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189162A (en) * 1984-03-07 1985-09-26 Matsushita Electric Ind Co Ltd Manufacture of polarization electrode
JPH06241019A (en) * 1993-01-20 1994-08-30 Uk Atomic Energy Authority Equipment and method of purifying gas
JPH11121285A (en) * 1997-10-15 1999-04-30 Mitsubishi Chemical Corp Electric double-layer capacitor
JP2004352595A (en) * 2003-05-30 2004-12-16 Kanac Corp Manufacturing method of activated carbon by microwave heating and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189162A (en) * 1984-03-07 1985-09-26 Matsushita Electric Ind Co Ltd Manufacture of polarization electrode
JPH06241019A (en) * 1993-01-20 1994-08-30 Uk Atomic Energy Authority Equipment and method of purifying gas
JPH11121285A (en) * 1997-10-15 1999-04-30 Mitsubishi Chemical Corp Electric double-layer capacitor
JP2004352595A (en) * 2003-05-30 2004-12-16 Kanac Corp Manufacturing method of activated carbon by microwave heating and its device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
JP2010287316A (en) * 2009-06-09 2010-12-24 Kyoto Univ Method for manufacturing electrode catalyst for fuel cell
JP2012230096A (en) * 2011-04-13 2012-11-22 Eiko:Kk Method of adsorbing radioactive cesium
JP2013026484A (en) * 2011-07-22 2013-02-04 Gunma Univ Method for producing carbon material for electrical double layer capacitor
JP2019079861A (en) * 2017-10-20 2019-05-23 Tpr株式会社 Capacitor and method of manufacturing withstand voltage active material for capacitor electrode
JP2020088119A (en) * 2018-11-22 2020-06-04 国立大学法人群馬大学 Manufacturing method of carbon material for electrical double layer capacitor

Also Published As

Publication number Publication date
JP5335211B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5335211B2 (en) catalyst
RU2434806C2 (en) Carbonised biopolymers
CN101281821B (en) Nano thread-shaped manganese dioxide load carbon silica aerogel as well as preparation method and application thereof
CN103204497A (en) Method for preparing graphene material and application thereof in chemical energy storage and/or conversion
KR20140069223A (en) High voltage electro-chemical double layer capacitor
CN110467182A (en) A kind of multi-stage porous carbon sill and its preparation method and application based on reaction template
CN104715936B (en) A kind of classifying porous carbon electrode material and preparation method for ultracapacitor
Shiraishi Heat-treatment and nitrogen-doping of activated carbons for high voltage operation of electric double layer capacitor
CN108808018A (en) A kind of preparation and application of octahedron nitrating carbon skeleton material
CN108584944A (en) A kind of preparation method of the ultracapacitor rich nitrogen grading porous carbon electrode material of high-specific surface area
CN103227336A (en) Band-shaped carbon-carrier metal catalyst, preparation method and application thereof
CN112938969A (en) Method for preparing nitrogen-sulfur co-doped activated carbon by pore-forming/doping integrated activating agent and application of method
CN105321726A (en) High-magnification active carbon and active graphene composite electrode material and preparation method thereof
JPS6065478A (en) Polymer secondary battery
KR102032387B1 (en) A catalyst for regenerating a carbon dioxide absorbent containing a modified activated carbon, a method for producing the same, and a method for capturing carbon dioxide using the catalyst
CN109499563A (en) A kind of preparation method of zinc oxide-active carbon composite catalyst
CN105498525B (en) A kind of catalysis system for removing formaldehyde in air harmful components
KR20210088516A (en) Method and device for preparing reduction product of carbon dioxide
Alharbi et al. A nanosized manganese-based chalcogenide composite for enhanced electrocatalytic OER
Fan et al. The state-of-the-art in the electroreduction of NO x for the production of ammonia in aqueous and nonaqueous media at ambient conditions: a review
JP2007266248A (en) Electric double layer capacitor, carbon material thereof, and electrode thereof
CN106732542A (en) One-step method prepares sheet manganese dioxide/carbon fibers at low temperature denitrating catalyst
CN113684499B (en) Preparation method and application of nickel-nitrogen co-doped carbon-based catalyst with high metal loading efficiency
Elmouwahidi et al. Carbon microspheres with tailored texture and surface chemistry as electrode materials for supercapacitors
Zakir et al. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120807

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Ref document number: 5335211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees