JP2009053900A - Oscillation analyzing system and oscillation analyzing method - Google Patents

Oscillation analyzing system and oscillation analyzing method Download PDF

Info

Publication number
JP2009053900A
JP2009053900A JP2007219475A JP2007219475A JP2009053900A JP 2009053900 A JP2009053900 A JP 2009053900A JP 2007219475 A JP2007219475 A JP 2007219475A JP 2007219475 A JP2007219475 A JP 2007219475A JP 2009053900 A JP2009053900 A JP 2009053900A
Authority
JP
Japan
Prior art keywords
point
transfer function
interest
vibration
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007219475A
Other languages
Japanese (ja)
Other versions
JP4844502B2 (en
Inventor
Seigo Yamamoto
征吾 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007219475A priority Critical patent/JP4844502B2/en
Publication of JP2009053900A publication Critical patent/JP2009053900A/en
Application granted granted Critical
Publication of JP4844502B2 publication Critical patent/JP4844502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for easily and precisely predicting any influence to be given to oscillation and noise performance by the error and disturbance of the arbitrary site of a structure. <P>SOLUTION: This structure is provided with an input point (a) to which oscillation is added, an evaluation point b at which a response is evaluated, and a point (c) under consideration. A transmission function matrix acquisition part 10 acquires a transmission function matrix including a transmission function Hac between the input point (a) and the point c under consideration, a transmission function Hbc between the evaluation point b and the point c under consideration and a transmission function Hcc between the point c under consideration and the same point c under consideration. A fluctuation characteristic acquisition part 11 acquires fluctuation characteristics ΔHcc of the transmission function Hcc. An influence calculation part 12 calculates an influence ΔHab to be given to the response of the evaluation point by the fluctuation of the transmission function Hcc from the transmission functions Hac, Hbc, and Hcc and the fluctuation characteristics ΔHcc. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構造体の振動を解析する技術に関する。   The present invention relates to a technique for analyzing vibration of a structure.

構造体の振動・騒音性能は、設計誤差、製造誤差、外乱などによって影響を受けることが知られている。例えば、同一仕様の製品であっても、製造上のわずかなばらつきにより、一部のロットにのみ問題となる振動・騒音が発現するということが起こり得る。振動・騒音の要因が判明している場合は、それを抑制するための処置を講じることも可能である。しかし通常は、振動・騒音の要因がどこで、どのように、どの程度の規模で発生しているのかを速やかに発見するのは非常に困難である。評価点の振動・騒音に影響を及ぼす振動が構造体中のどの部位からどのように伝播してきているのかを特定するのが難しいからである。特に、自動車のように構造が複雑で部品点数の多い構造体ほど困難となる。   It is known that the vibration / noise performance of a structure is affected by design errors, manufacturing errors, disturbances, and the like. For example, even with products of the same specification, it may happen that vibrations and noises that are problematic only in some lots are generated due to slight manufacturing variations. If the factors of vibration and noise are known, it is possible to take measures to suppress them. However, it is usually very difficult to quickly find out where, how and at what scale the factors of vibration and noise are occurring. This is because it is difficult to specify from which part of the structure the vibration that affects the evaluation point vibration and noise propagates. In particular, a structure having a complicated structure and a large number of parts, such as an automobile, becomes more difficult.

とはいえ、誤差・外乱等による影響を事前に予測する有効な手法はなく、製品や試作品が実際に出来上がった段階ではじめて問題が露見することも多かった。なお、バネ・マス・板といった物理量のばらつきが評価点応答に与える影響をシミュレーションするシステムが実用化されているが(CDH社「CDH/VAO」)、このシステムはシミュレーションモデルでの検討しかできず、実際の構造体には適用できない。また、振動・騒音性能に影響する因子は、バネ・マス・板のような単純な物理モデルで表されるものではなく、部品の形状、寸法、剛性、質量、物性値(材料特性)、部品接触状態などの種々の要因が複雑に絡み合っているものであるが、従来システムはこの種の誤差・外乱要因を考慮できないという問題もある。   Nonetheless, there is no effective method for predicting the effects of errors, disturbances, etc. in advance, and problems were often revealed only when products and prototypes were actually completed. Although a system for simulating the influence of variations in physical quantities such as springs, masses, and plates on the evaluation point response has been put into practical use (CDH “CDH / VAO”), this system can only be studied using a simulation model. It cannot be applied to actual structures. Factors that affect vibration and noise performance are not represented by simple physical models such as springs, masses, and plates, but the shape, dimensions, rigidity, mass, physical properties (material properties), and parts of parts. Various factors such as the contact state are complicatedly intertwined, but there is a problem that the conventional system cannot take into account this kind of error / disturbance factor.

なお、構造体の振動を解析する技術としては次のものがある。特許文献1には、車体に対し車体以外の要素を動バネで連結し、車体の運動方程式を周波数解析して車体の応答点の振動レベルを求める手法が開示されている。特許文献2には、防音材をバネ・マスモデルとしてモデル化するFEM解析手法が開示されている。特許文献3には、解析対象部位を表したFEMモデルの0Hzにおける振動変位から剛性を求める評価手法が開示されている。
特開平8−272837号公報 特開2006−65466号公報 特開2007−94567号公報
The following techniques are available as techniques for analyzing the vibration of the structure. Japanese Patent Application Laid-Open No. 2003-228561 discloses a method of obtaining a vibration level of a response point of a vehicle body by connecting an element other than the vehicle body to the vehicle body with a dynamic spring and performing frequency analysis on the motion equation of the vehicle body. Patent Document 2 discloses an FEM analysis method for modeling a soundproof material as a spring / mass model. Patent Document 3 discloses an evaluation method for obtaining rigidity from vibration displacement at 0 Hz of an FEM model representing an analysis target part.
JP-A-8-272837 JP 2006-65466 A JP 2007-94567 A

本発明は上記実情に鑑みてなされたものであって、その目的とするところは、構造体の任意の部位の誤差・外乱等が振動・騒音性能に与える影響を簡単かつ精度良く予測可能な技術を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is a technology that can easily and accurately predict the effect of errors, disturbances, etc. of arbitrary parts of the structure on vibration / noise performance. Is to provide.

上記目的を達成するために本発明は以下の構成を採用する。   In order to achieve the above object, the present invention adopts the following configuration.

本発明に係る振動解析システムは、振動が加えられる入力点、応答が評価される評価点、及び、着目点を有する構造体について、前記入力点と前記着目点との間の第1の伝達関数、前記評価点と前記着目点との間の第2の伝達関数、及び、前記着目点と同一着目点との間の第3の伝達関数を取得する伝達関数取得手段と、前記第3の伝達関数の変動特性を取得する変動特性取得手段と、前記第1乃至第3の伝達関数、及び、前記第3の伝達関数
の変動特性に基づいて、前記第3の伝達関数の変動が前記評価点の応答に与える影響を算出する影響算出手段と、前記評価点の応答への前記影響を出力する出力手段と、を備える。
The vibration analysis system according to the present invention includes a first transfer function between the input point and the point of interest for a structure having an input point to which vibration is applied, an evaluation point at which a response is evaluated, and the point of interest. Transfer function acquisition means for acquiring a second transfer function between the evaluation point and the point of interest, and a third transfer function between the point of interest and the same point of interest, and the third transfer Based on the fluctuation characteristic acquisition means for acquiring the fluctuation characteristic of the function, the first to third transfer functions, and the fluctuation characteristics of the third transfer function, the fluctuation of the third transfer function is the evaluation score. Influence calculating means for calculating the influence of the evaluation point on the response, and output means for outputting the influence of the evaluation point on the response.

ここで「着目点」が、誤差・外乱等を付与する点であり、「第3の伝達関数の変動特性」が、着目点に付与する誤差・外乱等を表現するパラメータである。着目点の選択、及び、伝達関数の変動特性の設定によって、構造体中の任意の部位に任意の誤差・外乱等を付与することが可能である。また、従来システムのようにバネ・マス・板のような限定された物理量でなく、伝達関数の変動特性という形式を用いたことにより、当該着目点に生じ得る種々の誤差・外乱要因を包括的かつ直接的に表現することができる。そして、伝達関数の演算により評価点の応答への影響を算出することで、着目点の誤差・外乱等が構造体の振動・騒音性能に与える影響を簡単かつ精度良く予測することができる。なお、「伝達関数」は、実構造体を用いた振動実験の結果から算出してもよいし、シミュレーションにより算出してもよい。   Here, the “target point” is a point to which an error / disturbance is applied, and the “variation characteristic of the third transfer function” is a parameter expressing the error / disturbance to be applied to the target point. By selecting the point of interest and setting the fluctuation characteristics of the transfer function, it is possible to give an arbitrary error / disturbance to an arbitrary part in the structure. In addition, by using the form of fluctuation characteristics of the transfer function instead of limited physical quantities such as springs, masses, and plates as in the conventional system, a comprehensive range of errors and disturbance factors that can occur at the point of interest And can be expressed directly. Then, by calculating the influence of the evaluation point on the response by calculating the transfer function, it is possible to easily and accurately predict the influence of the error / disturbance of the point of interest on the vibration / noise performance of the structure. The “transfer function” may be calculated from the result of a vibration experiment using an actual structure or may be calculated by simulation.

前記第3の伝達関数の変動特性が、確率分布で与えられ、前記評価点の応答への前記影響が、前記評価点の応答の確率分布で表されることが好ましい。確率分布を用いたことにより、着目点にどの程度の誤差・外乱等が発生し得るか、またそれによる評価点応答への影響はどの程度か、というリスク評価が可能になる。   Preferably, the variation characteristic of the third transfer function is given by a probability distribution, and the influence on the response of the evaluation point is expressed by a probability distribution of the response of the evaluation point. By using the probability distribution, it is possible to evaluate the risk of how much error, disturbance, etc. can occur at the point of interest, and how much it affects the evaluation point response.

さらに、前記第3の伝達関数の変動特性が、前記着目点の特性に応じて設定されていることが好ましい。着目点の特性に応じて伝達関数の変動特性を異ならせることにより、振動・騒音性能への影響をより精度良く算出可能となる。   Furthermore, it is preferable that the variation characteristic of the third transfer function is set according to the characteristic of the point of interest. By varying the variation characteristic of the transfer function according to the characteristic of the point of interest, the influence on the vibration / noise performance can be calculated with higher accuracy.

前記構造体が、前記着目点を複数有しており、前記複数の着目点のそれぞれについて、前記第3の伝達関数及びその変動特性が取得され、前記複数の着目点のそれぞれの第3の伝達関数の変動について、前記評価点の応答への影響が算出されることが好ましい。ユーザは、各着目点の出力結果から、振動・騒音性能に与える影響の大きさ(つまり、誤差・外乱等の許容限)を客観的に比較でき、振動・騒音対策のための有益な情報を得ることができる。   The structure has a plurality of the points of interest, and the third transfer function and its variation characteristics are acquired for each of the plurality of points of interest, and a third transmission of each of the plurality of points of interest is obtained. It is preferable that the influence of the evaluation point on the response is calculated for the function variation. The user can objectively compare the magnitude of the impact on vibration and noise performance (that is, the tolerance of error and disturbance) from the output results of each point of interest, and provide useful information for measures against vibration and noise. Obtainable.

なお、本発明は、上記手段の少なくとも一部を有する振動解析システムとして捉えることができる。また、本発明は、上記処理の少なくとも一部を含む振動解析方法、または、かかる方法を実現するためのプログラムとして捉えることもできる。上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。   The present invention can be understood as a vibration analysis system having at least a part of the above means. The present invention can also be understood as a vibration analysis method including at least a part of the above processing, or a program for realizing the method. Each of the above means and processes can be combined with each other as much as possible to constitute the present invention.

たとえば、本発明の一態様としての振動解析方法は、コンピュータが、振動が加えられる入力点、応答が評価される評価点、及び、着目点を有する構造体について、前記入力点と前記着目点との間の第1の伝達関数、前記評価点と前記着目点との間の第2の伝達関数、及び、前記着目点と同一着目点との間の第3の伝達関数を取得する処理と、前記第3の伝達関数の変動特性を取得する処理と、前記第1乃至第3の伝達関数、及び、前記第3の伝達関数の変動特性に基づいて、前記第3の伝達関数の変動が前記評価点の応答に与える影響を算出する処理と、前記評価点の応答への前記影響を出力する処理と、を実行するものである。   For example, in the vibration analysis method as one aspect of the present invention, the computer includes an input point to which vibration is applied, an evaluation point at which a response is evaluated, and a structure having a point of interest, the input point and the point of interest. A process of obtaining a first transfer function between the second point, a second transfer function between the evaluation point and the point of interest, and a third transfer function between the point of interest and the same point of interest; Based on the process of obtaining the variation characteristic of the third transfer function, the first to third transfer functions, and the variation characteristic of the third transfer function, the variation of the third transfer function is The process of calculating the influence of the evaluation point on the response and the process of outputting the influence of the evaluation point on the response are executed.

また、本発明の一態様としての振動解析プログラムは、コンピュータに、振動が加えられる入力点、応答が評価される評価点、及び、着目点を有する構造体について、前記入力点と前記着目点との間の第1の伝達関数、前記評価点と前記着目点との間の第2の伝達関数、及び、前記着目点と同一着目点との間の第3の伝達関数を取得する処理と、前記第3の伝達関数の変動特性を取得する処理と、前記第1乃至第3の伝達関数、及び、前記第3
の伝達関数の変動特性に基づいて、前記第3の伝達関数の変動が前記評価点の応答に与える影響を算出する処理と、前記評価点の応答への前記影響を出力する処理と、を実行させるための、コンピュータ可読なプログラムである。
Further, the vibration analysis program as one aspect of the present invention includes an input point where a vibration is applied to a computer, an evaluation point where a response is evaluated, and a structure having a point of interest. A process of obtaining a first transfer function between the second point, a second transfer function between the evaluation point and the point of interest, and a third transfer function between the point of interest and the same point of interest; A process for obtaining a variation characteristic of the third transfer function; the first to third transfer functions; and the third transfer function.
A process of calculating the effect of the variation of the third transfer function on the response of the evaluation point, and a process of outputting the effect on the response of the evaluation point, based on the variation characteristic of the transfer function of It is a computer-readable program for making it happen.

本発明によれば、構造体の任意の部位の誤差・外乱等が振動・騒音性能に与える影響を簡単かつ精度良く予測できる。   According to the present invention, it is possible to easily and accurately predict the influence of an error, disturbance, etc. of an arbitrary part of a structure on vibration / noise performance.

以下、車両の振動解析を例に挙げて、本発明の好適な実施形態を説明する。ただし、本発明の適用範囲は車両の振動解析に限られることはなく、本発明は振動・騒音が問題とされるあらゆる構造体の振動解析に好ましく適用可能である。   Hereinafter, a preferred embodiment of the present invention will be described by taking a vehicle vibration analysis as an example. However, the scope of application of the present invention is not limited to vehicle vibration analysis, and the present invention is preferably applicable to vibration analysis of any structure in which vibration and noise are problems.

(システム概要)
車両開発において、振動及び騒音の低減は非常に重要な課題であり、所定の性能評価点(例えば、運転者の耳位置、ステアリング、シートなど)の振動・騒音レベルが許容値を下回るように様々な対策が採られる。しかし、シミュレーションモデル又は試作車のような理想モデルで目標レベルをクリアできたとしても、すべての実車(実際の製品)が目標レベルを満足するとは限らない。設計誤差、製造誤差、外乱などにより、部品の形状、寸法、剛性、質量、物性値(材料特性)、部品接触状態などがばらつき、それにより車両の振動・騒音性能が変化し、許容値を超える振動・騒音が発現することがあるからである。
(System overview)
In vehicle development, reduction of vibration and noise is a very important issue, and various vibration and noise levels at predetermined performance evaluation points (eg, driver's ear position, steering wheel, seat, etc.) fall below the allowable value. Measures are taken. However, even if the target level can be cleared by an ideal model such as a simulation model or a prototype vehicle, not all actual vehicles (actual products) satisfy the target level. Due to design errors, manufacturing errors, disturbances, etc., the shape, dimensions, rigidity, mass, physical properties (material properties), contact status of the parts, etc. vary, thereby changing the vibration and noise performance of the vehicle and exceeding the allowable values. This is because vibration and noise may appear.

このような振動・騒音の発現を未然に防ぐには、該当部品の公差や品質管理を厳しくしたり、設計を変更したり、制振部材を付加したりするなどの対策を講じる必要がある。そして、そのためには、事前に構造体(車両)の中のどの部位がどの程度ばらつくと振動・騒音性能に問題が生じるのかを明らかにし、対策を施すべき部位(対策部位)を絞り込む必要がある。   In order to prevent the occurrence of such vibrations and noises, it is necessary to take measures such as tightening tolerances and quality control of the corresponding parts, changing the design, and adding damping members. For this purpose, it is necessary to clarify in advance which part of the structure (vehicle) varies and how much the vibration / noise performance will cause problems, and to narrow down the part (countermeasure part) where countermeasures should be taken. .

本実施形態の振動解析システムは、ユーザによる対策部位の特定を支援するためのシステムであり、構造体の任意の部位に発生した誤差・外乱等が性能評価点の振動・騒音レベルに与える影響を予測し出力する機能を提供するものである。   The vibration analysis system of the present embodiment is a system for assisting the user in identifying the countermeasure part, and the influence of errors, disturbances, etc. occurring in any part of the structure on the vibration / noise level of the performance evaluation point. It provides a function to predict and output.

(影響予測手法)
まず、図1を参照して、本システムの影響予測手法の基本的な理論を説明する。図1は、伝達関数合成法の理論モデルを示している。
(Impact prediction method)
First, the basic theory of the impact prediction method of this system will be described with reference to FIG. FIG. 1 shows a theoretical model of the transfer function synthesis method.

図1の左辺の第1項は、構造体の初期状態を表している。この構造体は、振動が加えられる入力点a、その入力に対する応答(振動・騒音性能)が評価される性能評価点b、及び、誤差の発生が想定される着目点cを有している。この初期状態では、構造体は、誤差因子のない理想的な振動系[Hij]であるものとする。Hijは、点iと点jとの間の伝達関数を表している。なお、本実施形態では、伝達関数Hijとして、点iを加振したときの点jの変位であるコンプライアンスを用いるが、伝達関数の形式はこれに限らない。   The first term on the left side of FIG. 1 represents the initial state of the structure. This structure has an input point a where vibration is applied, a performance evaluation point b where a response to the input (vibration / noise performance) is evaluated, and a point of interest c where an error is assumed. In this initial state, it is assumed that the structure is an ideal vibration system [Hij] having no error factor. Hij represents a transfer function between the points i and j. In the present embodiment, as the transfer function Hij, a compliance that is a displacement of the point j when the point i is vibrated is used, but the form of the transfer function is not limited to this.

図1の左辺に示すように、理想的な振動系[Hij]における着目点cに誤差因子(Fc=Q・Xcなる振動系)が発生し、図1の右辺に示すように、誤差を含む振動系[Hij]*が形成されたとする。ここで、伝達関数合成法の理論によって、図1の関係式を構築してQを消去することにより、(式1)が得られる。

Figure 2009053900
As shown on the left side of FIG. 1, an error factor (vibration system of Fc = Q · Xc) occurs at the point of interest c in the ideal vibration system [Hij], and includes an error as shown on the right side of FIG. It is assumed that the vibration system [Hij] * is formed. Here, (Equation 1) is obtained by constructing the relational expression of FIG. 1 and eliminating Q by the theory of the transfer function synthesis method.
Figure 2009053900

Hacは入力点aと着目点cとの間の伝達関数、Hbcは性能評価点bと着目点cとの間の伝達関数、Hccは着目点cと同一着目点cとの間の伝達関数(着目点cの加振点コンプライアンスと呼ばれる)である。また、ΔHabは誤差因子によって受けた性能評価点bの応答の変化量(影響)であり、ΔHccは誤差因子によって生じた着目点cの加振点コンプライアンスの変化量である。   Hac is a transfer function between the input point a and the point of interest c, Hbc is a transfer function between the performance evaluation point b and the point of interest c, and Hcc is a transfer function between the point of interest c and the same point of interest c ( This is called excitation point compliance at the point of interest c). ΔHab is a change amount (influence) of the response of the performance evaluation point b received by the error factor, and ΔHcc is a change amount of the excitation point compliance of the point of interest c caused by the error factor.

(式1)より、構造体の初期の伝達関数Hac,Hbc,Hccと、誤差因子による着目点cの加振点コンプライアンスの変化量ΔHcc(伝達関数Hccの変化量)とが与えられれば、着目点cに生じた誤差が構造体の振動・騒音性能に与える影響ΔHabを算出可能であることが分かる。   If (Equation 1) gives the initial transfer function Hac, Hbc, Hcc of the structure and the variation ΔHcc of the excitation point compliance at the point of interest c due to the error factor (the amount of change of the transfer function Hcc) It can be seen that it is possible to calculate the influence ΔHab that the error generated at the point c gives to the vibration / noise performance of the structure.

構造体の伝達関数Hac,Hbc,Hccについては、(1)シミュレーションにより算出してもよいし、(2)実構造体を用いた振動実験の結果から算出してもよい。(1)の場合は、構造体のFEMモデルによる振動・騒音シミュレーションを実施し、伝達関数行列を計算する。(2)の場合は、振動・騒音伝達の計測装置(騒音計、加速度計、信号発生器、加振器からなる構成)を構造体に取り付けて振動実験を行い、その測定結果をFFTアナライザで解析することで、構造体の伝達関数行列を得る。なお、初期状態の伝達関数は誤差因子を含まない理想値であることが望ましいので、複数回の測定結果の平均をとるか、可能であれば複数の実構造体による測定結果の平均をとることが好ましい。   The transfer functions Hac, Hbc, and Hcc of the structure may be calculated by (1) simulation or (2) the result of a vibration experiment using the actual structure. In the case of (1), a vibration / noise simulation using a FEM model of the structure is performed, and a transfer function matrix is calculated. In the case of (2), a vibration / noise transmission measuring device (configuration consisting of a noise meter, accelerometer, signal generator, and vibrator) is attached to the structure, and a vibration experiment is performed. By analyzing, the transfer function matrix of the structure is obtained. It is desirable that the transfer function in the initial state is an ideal value that does not include an error factor. Therefore, average the measurement results from multiple measurements or, if possible, average the measurement results from multiple real structures. Is preferred.

図2は、4つの実構造体について、ある着目点における加振点イナータンスの測定結果を示している。図2の上段は、加振点イナータンスの位相を示し、下段は、加振点イナータンスのレベル(絶対値)を示している。なお、加振点イナータンスとは、着目点を加振したときの同一着目点の加速度であり、加振点コンプライアンスHccの二階微分に相当する。   FIG. 2 shows the measurement results of the excitation point inertance at a certain point of interest for four real structures. The upper part of FIG. 2 shows the phase of the excitation point inertance, and the lower part shows the level (absolute value) of the excitation point inertance. The excitation point inertance is the acceleration at the same point of interest when the point of interest is vibrated, and corresponds to the second order differentiation of the excitation point compliance Hcc.

図2に示すように、周波数ごとに加振点イナータンスには誤差がある。誤差の原因はひとつに限らず、その着目点における部品の形状、寸法、剛性、質量、物性値(材料特性)、部品接触状態など様々である。加振点イナータンスの測定結果は、これら分離困難な様々な要因が複合した結果を反映したものである。すなわち、このような測定結果から把握されるHccの変動特性ΔHccは、当該着目点に生じ得る種々の誤差・外乱要因を包括的かつ直接的に表現したものといえる。   As shown in FIG. 2, there is an error in the excitation point inertance for each frequency. The cause of the error is not limited to one, but may be various such as the shape, dimension, rigidity, mass, physical property value (material property), and component contact state at the point of interest. The measurement result of the excitation point inertance reflects the result of a combination of various factors that are difficult to separate. That is, it can be said that the Hcc fluctuation characteristic ΔHcc grasped from such a measurement result comprehensively and directly expresses various error / disturbance factors that may occur at the point of interest.

加振点コンプライアンスの変動特性ΔHccは確率分布で表すことができる。ただし、その変動幅(標準偏差)や、確率分布形態(正規分布、カイ二乗分布など)は、着目点における部品の特性に応じて異なる。例えば、部品の材料に関していえば、金属<樹脂<ゴムの順に製造誤差が大きくなるため、Hccの変動幅も大きくなる。また、構造体のオプション装備などに応じて、取り付けられる部品の形状等にバリエーションがある場合がある。このようなバリエーション部品による変動も、誤差・外乱要因の一つとして捉えてもよい。このような部品特性に応じた変動特性ΔHccについては、図2のような実験結果、シミュレーション、あるいは経験値などに基づいて決定することが可能である。   The fluctuation characteristic ΔHcc of the excitation point compliance can be expressed by a probability distribution. However, the fluctuation range (standard deviation) and the probability distribution form (normal distribution, chi-square distribution, etc.) differ depending on the component characteristics at the point of interest. For example, regarding the material of the component, the manufacturing error increases in the order of metal <resin <rubber, so that the fluctuation range of Hcc also increases. In addition, depending on the optional equipment of the structure, there may be variations in the shape of the parts to be attached. Such variation due to variation parts may also be regarded as one of errors and disturbance factors. Such variation characteristics ΔHcc corresponding to the component characteristics can be determined based on experimental results, simulations, or experience values as shown in FIG.

(システム構成)
では次に、本実施形態の振動解析システムの具体的な構成を説明する。
(System configuration)
Next, a specific configuration of the vibration analysis system of this embodiment will be described.

図3は、振動解析システムの構成を示すブロック図である。振動解析システム1は、主な機能として、伝達関数行列取得部10、変動特性取得部11、影響算出部12、出力部13を備えている。このシステムは、ハードウエア的には、CPU(中央演算処理装置)、記憶装置、表示装置、入力装置などを備えた汎用のコンピュータシステムで構成可能であり、上述した各機能は記憶装置に格納されたプログラムがCPUによって実行されることで実現されるものである。   FIG. 3 is a block diagram showing the configuration of the vibration analysis system. The vibration analysis system 1 includes a transfer function matrix acquisition unit 10, a fluctuation characteristic acquisition unit 11, an influence calculation unit 12, and an output unit 13 as main functions. This system can be configured by a general-purpose computer system including a CPU (Central Processing Unit), a storage device, a display device, an input device, etc. in terms of hardware. Each function described above is stored in the storage device. The program is executed by the CPU.

伝達関数行列取得部10は、解析対象となる構造体の伝達関数行列データを取得する機能である。ここでは、図4に示すように、入力点A、性能評価点B、複数の着目点C1〜C5を含む構造体を想定する。ただし着目点の数は解析目的や解析周波数などに応じて自由に設定可能である。また入力点や性能評価点についても複数設定してもよい。この構造体の伝達関数行列については、上述のようにシミュレーションまたは実験により予め求められているものとする。   The transfer function matrix acquisition unit 10 has a function of acquiring transfer function matrix data of a structure to be analyzed. Here, as shown in FIG. 4, a structure including an input point A, a performance evaluation point B, and a plurality of points of interest C1 to C5 is assumed. However, the number of points of interest can be freely set according to the purpose of analysis and analysis frequency. A plurality of input points and performance evaluation points may be set. It is assumed that the transfer function matrix of this structure is obtained in advance by simulation or experiment as described above.

変動特性取得部11は、着目点C1〜C5それぞれの加振点コンプライアンスの変動特性ΔHccを取得する機能である。上述のように、変動特性ΔHccについては、それぞれの着目点の特性に応じて予め適当な確率分布で定義されている。   The fluctuation characteristic acquisition unit 11 has a function of acquiring the fluctuation characteristic ΔHcc of the excitation point compliance of each of the points of interest C1 to C5. As described above, the variation characteristic ΔHcc is defined in advance with an appropriate probability distribution according to the characteristic of each point of interest.

影響算出部12は、(式1)を用い、各着目点C1〜C5について、加振点コンプライアンスの変動ΔHccが性能評価点Bの応答(振動・騒音レベル)に与える影響ΔHabを算出する。その算出結果は出力部13により表示装置又は印刷装置に出力される。   The influence calculation unit 12 uses (Expression 1) to calculate the influence ΔHab that the fluctuation ΔHcc of the excitation point compliance has on the response (vibration / noise level) of the performance evaluation point B for each of the points of interest C1 to C5. The calculation result is output to the display device or the printing device by the output unit 13.

図5及び図6は、算出結果の出力の一例を示している。図5は、ある着目点の加振点コンプライアンスが変動した場合の、性能評価点の振動・騒音レベルの変動を示している。横軸は周波数[Hz]であり、縦軸は振動・騒音のレベル[dB]である。振動・騒音のレベルは初期状態のレベルを平均値とする確率分布で表されており、確率の値に応じて色分けされた等高線表示となっている。また図6は、ある周波数における確率分布を示している。横軸は度数を規格化した値であり、縦軸は振動・騒音のレベル[リニア値]である。図5のグラフ上で周波数を1点選択すると、その選択された周波数における確率分布が図6のグラフに詳細表示される仕組みである。なお、各着目点C1〜C5のグラフは、切り替えて表示したり、並べて表示したりすることができる。   5 and 6 show an example of calculation result output. FIG. 5 shows the fluctuation of the vibration / noise level at the performance evaluation point when the excitation point compliance at a certain point of interest fluctuates. The horizontal axis represents the frequency [Hz], and the vertical axis represents the vibration / noise level [dB]. The level of vibration / noise is represented by a probability distribution with the initial level being an average value, and is displayed in contour lines that are color-coded according to the probability value. FIG. 6 shows a probability distribution at a certain frequency. The horizontal axis is a value obtained by standardizing the frequency, and the vertical axis is a vibration / noise level [linear value]. When one frequency is selected on the graph of FIG. 5, the probability distribution at the selected frequency is displayed in detail on the graph of FIG. The graphs of the respective points of interest C1 to C5 can be switched and displayed side by side.

以上述べた本システムは、次のような利点を有する。   The present system described above has the following advantages.

従来システムのようにバネ・マス・板のような限定された物理量でなく、伝達関数(加振点コンプライアンス)の変動特性ΔHccという形式を用いたことにより、当該着目点に生じ得る種々の誤差・外乱要因を包括的かつ直接的に表現することができる。そして、(式1)のように伝達関数の演算により評価点の応答への影響ΔHabを算出することで、着目点の誤差・外乱等が構造体の振動・騒音性能に与える影響を簡単かつ精度良く予測することができる。しかも、着目点の特性に応じて変動特性ΔHccを異ならせることにより、振動・騒音性能への影響をより精度良く算出可能となる。   By using the form of fluctuation characteristics ΔHcc of the transfer function (excitation point compliance) instead of limited physical quantities like springs, masses, and plates as in the conventional system, various errors that can occur at the point of interest Disturbance factors can be expressed comprehensively and directly. Then, by calculating the influence ΔHab of the evaluation point on the response by calculating the transfer function as in (Equation 1), the influence of the error / disturbance of the point of interest on the vibration / noise performance of the structure can be easily and accurately determined. Can be predicted well. In addition, by varying the variation characteristic ΔHcc according to the characteristics of the point of interest, the influence on the vibration / noise performance can be calculated with higher accuracy.

また、着目点に生じる誤差・外乱を確率分布で定義するとともに、評価点応答が受ける影響を確率分布で表したことにより、着目点にどの程度の誤差・外乱等が発生し得るか、またそれによる評価点応答への影響はどの程度か、というリスク評価が可能になる。   In addition, the error / disturbance that occurs at the point of interest is defined by the probability distribution, and the influence of the evaluation point response is expressed by the probability distribution, so how much error / disturbance can occur at the point of interest, and It is possible to evaluate the risk of the impact on the evaluation point response.

また、ユーザは、各着目点の出力結果を比較することで、振動・騒音性能に与える影響
の大きさ(つまり、誤差・外乱等の許容限)を客観的に比較でき、振動・騒音対策のための有益な情報を得ることができる。例えば、誤差・外乱等の許容限が小さい部位については、品質管理や公差を厳しくしたり、部品の形状や材料あるいは接触状態などを変更したり、といった対策をとることで、振動・騒音性能のばらつきを小さくすることが可能となる。
In addition, the user can objectively compare the magnitude of the impact on the vibration / noise performance (that is, the tolerance of error / disturbance) by comparing the output results of each point of interest. You can get useful information for. For example, for parts where tolerances such as errors and disturbances are small, by taking measures such as tightening quality control and tolerances, changing the shape, material or contact state of parts, etc., vibration and noise performance can be improved. Variations can be reduced.

また、本システムは、伝達関数を基にした演算だけで各着目点の影響を予測できるため、数秒〜数分程度という短時間での結果出力が可能である、という利点もある。   Further, the present system has an advantage that the result can be output in a short time of several seconds to several minutes because the influence of each point of interest can be predicted only by the calculation based on the transfer function.

なお、上記実施形態は本発明の一具体例を例示したものにすぎない。本発明の範囲は上記実施形態に限られるものではなく、その技術思想の範囲内で種々の変形が可能である。例えば、上記実施形態では伝達関数としてコンプライアンスを用いたが、イナータンスなど他の形式の伝達関数を用いてもよい。また、ΔHccやΔHabを確率分布でなく、単純な値域で表現してもよい。   The above embodiment is merely an example of the present invention. The scope of the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the technical idea. For example, in the above embodiment, compliance is used as a transfer function, but other types of transfer functions such as inertance may be used. Further, ΔHcc and ΔHab may be expressed by a simple value range instead of the probability distribution.

図1は、伝達関数合成法の理論モデルを示す図である。FIG. 1 is a diagram illustrating a theoretical model of the transfer function synthesis method. 図2は、加振点イナータンスのばらつきの一例を示す図である。FIG. 2 is a diagram illustrating an example of variation in excitation point inertance. 図3は、本発明の実施形態に係る振動解析システムの構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the vibration analysis system according to the embodiment of the present invention. 図4は、構造体の一例を示す図である。FIG. 4 is a diagram illustrating an example of a structure. 図5は、ある着目点の加振点コンプライアンスが変動した場合の、性能評価点の振動・騒音レベルの変動ΔHabを示す図である。FIG. 5 is a diagram illustrating the vibration ΔNab of the performance / evaluation point when the excitation point compliance at a certain point of interest fluctuates. 図6は、ある周波数における確率分布を示す図である。FIG. 6 is a diagram showing a probability distribution at a certain frequency.

符号の説明Explanation of symbols

1 振動解析システム
10 伝達関数行列取得部
11 変動特性取得部
12 影響算出部
13 出力部
a、A 入力点
b、B 性能評価点
c、C1〜C5 着目点
DESCRIPTION OF SYMBOLS 1 Vibration analysis system 10 Transfer function matrix acquisition part 11 Fluctuation characteristic acquisition part 12 Influence calculation part 13 Output part a, A input point b, B performance evaluation point c, C1-C5 attention point

Claims (5)

振動が加えられる入力点、応答が評価される評価点、及び、着目点を有する構造体について、前記入力点と前記着目点との間の第1の伝達関数、前記評価点と前記着目点との間の第2の伝達関数、及び、前記着目点と同一着目点との間の第3の伝達関数を取得する伝達関数取得手段と、
前記第3の伝達関数の変動特性を取得する変動特性取得手段と、
前記第1乃至第3の伝達関数、及び、前記第3の伝達関数の変動特性に基づいて、前記第3の伝達関数の変動が前記評価点の応答に与える影響を算出する影響算出手段と、
前記評価点の応答への前記影響を出力する出力手段と、
を備えることを特徴とする振動解析システム。
For a structure having an input point to which vibration is applied, an evaluation point at which response is evaluated, and a point of interest, a first transfer function between the input point and the point of interest, the evaluation point and the point of interest Transfer function acquisition means for acquiring a second transfer function between and a third transfer function between the point of interest and the same point of interest;
Fluctuation characteristic acquisition means for acquiring fluctuation characteristics of the third transfer function;
Based on the first to third transfer functions and the fluctuation characteristics of the third transfer function, an influence calculating means for calculating the influence of the fluctuation of the third transfer function on the response of the evaluation point;
Output means for outputting the influence on the response of the evaluation point;
A vibration analysis system comprising:
前記第3の伝達関数の変動特性が、確率分布で与えられ、
前記評価点の応答への前記影響が、前記評価点の応答の確率分布で表される
ことを特徴とする請求項1に記載の振動解析システム。
The variation characteristic of the third transfer function is given by a probability distribution,
The vibration analysis system according to claim 1, wherein the influence on the response of the evaluation point is represented by a probability distribution of the response of the evaluation point.
前記第3の伝達関数の変動特性が、前記着目点の特性に応じて設定されている
ことを特徴とする請求項1又は2に記載の振動解析システム。
The vibration analysis system according to claim 1, wherein a variation characteristic of the third transfer function is set according to a characteristic of the point of interest.
前記構造体が、前記着目点を複数有しており、
前記複数の着目点のそれぞれについて、前記第3の伝達関数及びその変動特性が取得され、
前記複数の着目点のそれぞれの第3の伝達関数の変動について、前記評価点の応答への影響が算出される
ことを特徴とする請求項1乃至3のうちいずれか1項に記載の振動解析システム。
The structure has a plurality of the points of interest,
For each of the plurality of points of interest, the third transfer function and its variation characteristics are acquired,
4. The vibration analysis according to claim 1, wherein an influence on a response of the evaluation point is calculated with respect to a variation of the third transfer function of each of the plurality of points of interest. 5. system.
コンピュータが、
振動が加えられる入力点、応答が評価される評価点、及び、着目点を有する構造体について、前記入力点と前記着目点との間の第1の伝達関数、前記評価点と前記着目点との間の第2の伝達関数、及び、前記着目点と同一着目点との間の第3の伝達関数を取得する処理と、
前記第3の伝達関数の変動特性を取得する処理と、
前記第1乃至第3の伝達関数、及び、前記第3の伝達関数の変動特性に基づいて、前記第3の伝達関数の変動が前記評価点の応答に与える影響を算出する処理と、
前記評価点の応答への前記影響を出力する処理と、
を実行することを特徴とする振動解析方法。
Computer
For a structure having an input point to which vibration is applied, an evaluation point at which response is evaluated, and a point of interest, a first transfer function between the input point and the point of interest, the evaluation point and the point of interest A second transfer function between and a third transfer function between the point of interest and the same point of interest; and
Processing for obtaining a variation characteristic of the third transfer function;
A process of calculating an influence of a variation of the third transfer function on a response of the evaluation point based on the first to third transfer functions and a variation characteristic of the third transfer function;
Processing to output the influence on the response of the evaluation point;
The vibration analysis method characterized by performing.
JP2007219475A 2007-08-27 2007-08-27 Vibration analysis system and vibration analysis method Expired - Fee Related JP4844502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219475A JP4844502B2 (en) 2007-08-27 2007-08-27 Vibration analysis system and vibration analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007219475A JP4844502B2 (en) 2007-08-27 2007-08-27 Vibration analysis system and vibration analysis method

Publications (2)

Publication Number Publication Date
JP2009053900A true JP2009053900A (en) 2009-03-12
JP4844502B2 JP4844502B2 (en) 2011-12-28

Family

ID=40504940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219475A Expired - Fee Related JP4844502B2 (en) 2007-08-27 2007-08-27 Vibration analysis system and vibration analysis method

Country Status (1)

Country Link
JP (1) JP4844502B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081543A (en) * 2009-10-06 2011-04-21 Suzuki Motor Corp Contribution degree analysis method and apparatus
WO2018163640A1 (en) * 2017-03-08 2018-09-13 株式会社日立製作所 System for estimating cause of vibration or noise problem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618376A (en) * 1992-07-01 1994-01-25 Mitsubishi Electric Corp Method for automatic reduction of degree of freedom
JPH0689322A (en) * 1992-09-08 1994-03-29 Toyota Motor Corp Optimum designing system
JP2002149714A (en) * 2000-08-31 2002-05-24 Toshiba Corp Device and method for supporting reliable design, medium recorded with program, and program product
JP2003075248A (en) * 2001-09-07 2003-03-12 Takeshi Toi Acoustic vibration analysis method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618376A (en) * 1992-07-01 1994-01-25 Mitsubishi Electric Corp Method for automatic reduction of degree of freedom
JPH0689322A (en) * 1992-09-08 1994-03-29 Toyota Motor Corp Optimum designing system
JP2002149714A (en) * 2000-08-31 2002-05-24 Toshiba Corp Device and method for supporting reliable design, medium recorded with program, and program product
JP2003075248A (en) * 2001-09-07 2003-03-12 Takeshi Toi Acoustic vibration analysis method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081543A (en) * 2009-10-06 2011-04-21 Suzuki Motor Corp Contribution degree analysis method and apparatus
WO2018163640A1 (en) * 2017-03-08 2018-09-13 株式会社日立製作所 System for estimating cause of vibration or noise problem

Also Published As

Publication number Publication date
JP4844502B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
Langer et al. More than six elements per wavelength: The practical use of structural finite element models and their accuracy in comparison with experimental results
Liu et al. Explicit form of an implicit method for inverse force identification
US8401827B2 (en) Processing device and method for structure data representing a physical structure
JPH0510846A (en) Device and method for performing vibration test on structure and vibration response analyzing device
Ni et al. Fast Bayesian approach for modal identification using free vibration data, Part II—Posterior uncertainty and application
Rixen Substructuring using impulse response functions for impact analysis
Cianetti et al. The effort of the dynamic simulation on the fatigue damage evaluation of flexible mechanical systems loaded by non-Gaussian and non stationary loads
Zhu et al. Removing mass loading effects of multi-transducers using Sherman-Morrison-Woodbury formula in modal test
Sjövall et al. Component system identification and state-space model synthesis
JP4844502B2 (en) Vibration analysis system and vibration analysis method
JP4973296B2 (en) Vibration countermeasure support system, vibration countermeasure support method, vibration countermeasure support program
Kim et al. Design sensitivity analysis of a system under intact conditions using measured response data
Rixen A Substructuring Technique Based on Measured and Com-puted Impulse Response Functions of Components.
JP4844507B2 (en) Vibration analysis system and vibration analysis method
JP4961955B2 (en) Structure simulation method
Hamza et al. Pre-designing of a mechatronic system using an analytical approach with dymola
Hosoya et al. Estimation of the auto frequency response function at unexcited points using dummy masses
Gagliardini Dispersed vibroacoustic responses of industrial products: what are we able to predict
Senthil Kumar et al. Vibration analysis and improvement of a vehicle chassis structure
Yunus et al. Response surface reconciliation method of bolted joints structure
Goh et al. Uncertainty modelling of a suspension unit
Munson et al. Improving the accuracy of dynamic vibration fatigue simulation
Platz Approach to Assess Basic Deterministic Data and Model Form Uncertaint in Passive and Active Vibration Isolation
JP6578973B2 (en) Tire vibration performance evaluation method and tire simulation apparatus
US20130179132A1 (en) Analysis Method, Apparatus and Software for a System With Frequency Dependent Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4844502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees