JP2009053362A - Development device in image forming apparatus - Google Patents

Development device in image forming apparatus Download PDF

Info

Publication number
JP2009053362A
JP2009053362A JP2007218820A JP2007218820A JP2009053362A JP 2009053362 A JP2009053362 A JP 2009053362A JP 2007218820 A JP2007218820 A JP 2007218820A JP 2007218820 A JP2007218820 A JP 2007218820A JP 2009053362 A JP2009053362 A JP 2009053362A
Authority
JP
Japan
Prior art keywords
magnetic
roller
developer
magnetic roller
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007218820A
Other languages
Japanese (ja)
Inventor
Futoshi Hatano
太 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2007218820A priority Critical patent/JP2009053362A/en
Publication of JP2009053362A publication Critical patent/JP2009053362A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a development device in an image forming apparatus where, without increasing the precision and cost of components forming a nap cutting gap between a nap cutting blade regulating a magnetic nap and a magnetic roller, the components equal to the conventional ones are used, the stabilization of the carrying amount of a two-component developer on a magnetic roller and the uniformization of the carrying amount of the developer to the axial direction of the magnetic roller are achieved, and the stabilization of image quality and the uniformization of the image quality in axial direction of the magnetic roller are achieved. <P>SOLUTION: A nap cutting blade is composed of a magnetic substance, a nap cutting pole in a magnetic roller is provided at a position confronted with the nap cutting blade, further, as a carrier, the one having a particle diameter of 30 to 50 μm and a saturation magnetization of 55 to 80 emu/g is used, the magnetism of the nap cutting pole is controlled to 60 to 90 mT, and the nap cutting gap between the magnetic roller and the nap cutting blade is controlled to 150 to 250 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子写真方式を利用した複写機、プリンタ、ファクシミリ、それらの複合機などの画像形成装置における現像装置に係り、特に、磁性キャリアを用いて非磁性のトナーを帯電させる2成分現像剤で磁気ローラ上に磁気穂を形成し、該磁気穂の高さを穂切板で規制して、静電潜像を形成された感光体、若しくはトナー担持体を含む非磁性ローラにトナーを転移させるようにした、画像形成装置における現像装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a developing device in an image forming apparatus such as a copying machine, a printer, a facsimile, or a composite machine using an electrophotographic method, and more particularly, a two-component developer that charges a nonmagnetic toner using a magnetic carrier. The magnetic brush is formed on the magnetic roller, the height of the magnetic brush is regulated by a cutting plate, and the toner is transferred to the non-magnetic roller including the photosensitive member on which the electrostatic latent image is formed or the toner carrier. The present invention relates to a developing device in an image forming apparatus.

従来から、内部に複数の磁極を有した磁気ローラ上に非磁性トナーと磁性キャリアとからなる2成分現像剤の磁気穂を担持し、穂切板により層厚を規制しながら感光体やトナー担持体などの非磁性ローラにトナーを転移させて、感光体上に形成された静電潜像の現像、若しくはトナー薄層を形成したトナー担持体から感光体にトナーを飛翔させ、静電潜像を現像するようにした現像装置においては、画像品質の安定化、及び磁気ローラ軸方向の画像品質の均一化を目指す上で、磁気ローラ上の現像剤搬送量の安定化、磁気ローラの軸方向に対する現像剤搬送量の均一化が大変重要である。   Conventionally, a magnetic brush of a two-component developer consisting of a non-magnetic toner and a magnetic carrier is carried on a magnetic roller having a plurality of magnetic poles inside, and a photosensitive member and a toner are carried while controlling the layer thickness by a cutting plate. The toner is transferred to a non-magnetic roller such as a body to develop the electrostatic latent image formed on the photosensitive member, or the toner is ejected from the toner carrying member on which the toner thin layer is formed to the electrostatic latent image. In the developing device that develops the toner, in order to stabilize the image quality and to make the image quality uniform in the axial direction of the magnetic roller, the developer transport amount on the magnetic roller is stabilized, and the axial direction of the magnetic roller. It is very important to make the developer transport amount uniform with respect to the toner.

例えば、磁気ローラ上に形成した磁気穂からトナー担持体にトナーを転移させてトナー薄層を形成し、現像を行う現像装置においては、磁気ローラの現像剤搬送量が低下すると、磁気穂の現像剤担持体へのトナー薄層形成能力が低下して画像濃度の低下、現像剤担持体上で前回現像した時にトナーが使用された部分が残像履歴として次の現像の時に現れる現像ゴースト性の悪化などの原因となる。また、逆に現像剤搬送量が増大すると磁気ローラと現像剤担持体間のギャップでの現像剤溢れ落ちなどが発生する。   For example, in a developing device that develops toner by transferring toner from a magnetic spike formed on a magnetic roller to a toner carrier to form a thin toner layer, if the developer transport amount of the magnetic roller decreases, the development of the magnetic spike is performed. The ability to form a toner thin layer on the agent carrier is reduced, resulting in a decrease in image density. Deterioration in development ghosting that appears when the toner is used on the developer carrier last time as the afterimage history during the next development. Cause. Conversely, when the developer conveyance amount increases, the developer overflows in the gap between the magnetic roller and the developer carrier.

こういった不具合の一因に、穂切板が一般的にその両端部をビスによって現像装置に固定していることがあげられる。すなわち、穂切板の両端部をビスに固定することで、搬送する現像剤の押圧力によって穂切板中央部がたわみ、軸方向中央部における磁気ローラとのギャップが端部側に対して広がってしまい、磁気ローラ軸方向の画像品質の均一化が難しくなる。   One reason for these problems is that the end plate is generally fixed to the developing device with screws at both ends. In other words, by fixing both ends of the cutting plate to the screws, the central portion of the cutting plate is deflected by the pressing force of the developer being conveyed, and the gap with the magnetic roller at the central portion in the axial direction is widened toward the end portion. This makes it difficult to make the image quality uniform in the magnetic roller axial direction.

そのため、穂切板先端を真直ではなく、上記たわみ分を考慮して両端部に対して中央部を凸形状にすることが考案されている。さらに、磁気ローラを一般的な製作精度で製作すると、芯ブレによって前記ギャップが例えば30μm程度変動する。そのため、高精度の穂切ギャップ管理を目指して構成部品の部品精度のアップ、例えば、穂切板先端部の真直度/ソリ規制、磁気ローラ外径/振れ公差、及び、穂切ギャップ組立て公差の縮小など、種々のことが行われてきた。   Therefore, it has been devised that the front end of the cutting plate is not straight, but the central part is convex with respect to both ends in consideration of the above-mentioned deflection. Further, when the magnetic roller is manufactured with a general manufacturing accuracy, the gap fluctuates by about 30 μm, for example, due to the core blur. Therefore, aiming at high-accuracy hot-cut gap management, improve component accuracy of components, for example, straightness / warp regulation at the tip of the hot-cut plate, magnetic roller outer diameter / run-out tolerance, and ho-cut gap assembly tolerance Various things such as reduction have been performed.

また、こういった磁気ローラに2成分現像剤の磁気穂を担持させ、穂切板により層厚を規制しながら非磁性ローラにトナーを転移させる現像装置においては、穂切板を磁性体で形成して磁気ローラ中に穂切板に対向して設けた穂切極に向け、垂直磁力を発生させて磁気穂を規制することが行われているが、この垂直磁力があまりに強いと穂切板と磁気穂の摩擦力が増大し、現像剤の劣化によって形成する画像の画質劣化を招く。そのため、穂切板を非磁性板で形成し、薄い磁性体の板を張り付けて磁力が強くならないようにすることも行われている。   In addition, in the developing device in which the magnetic roller of the two-component developer is supported on such a magnetic roller and the toner is transferred to the non-magnetic roller while controlling the layer thickness by the cutting plate, the cutting plate is made of a magnetic material. In the magnetic roller, the magnetic head is regulated by generating a vertical magnetic force toward the head cutting pole provided opposite to the head cutting plate in the magnetic roller, but if this vertical magnetic force is too strong, the head cutting plate As a result, the frictional force of the magnetic spikes increases and the quality of the formed image is deteriorated due to the deterioration of the developer. For this reason, it is also practiced that the cutting plate is formed of a non-magnetic plate and a thin magnetic plate is attached so as not to increase the magnetic force.

そして前記したように、現像スリーブとドクタとの隙間が軸方向で一定でなくなるような条件下でも、ドクタギャップを通過する現像剤量を軸方向で一定となるようにするため特許文献1には、ドクタブレード45aに磁性材料からなる磁性部材45bを固定し、磁性部材45bの中央部の断面積を端部の断面積より大きくして中央部付近の磁界を端部付近の磁界に比べて大きくすることで、ドクタ中央部の磁界を高めて磁性ブラシの穂切り量を端部に比べて多くし、ドクタギャップを通過する現像剤の量を軸方向で一定とするようにした現像装置が提案されている。   As described above, Patent Document 1 discloses that the amount of developer passing through the doctor gap is constant in the axial direction even under the condition that the gap between the developing sleeve and the doctor is not constant in the axial direction. The magnetic member 45b made of a magnetic material is fixed to the doctor blade 45a, the cross-sectional area of the central part of the magnetic member 45b is made larger than the cross-sectional area of the end part, and the magnetic field near the central part is larger than the magnetic field near the end part. Providing a developing device that increases the magnetic field at the center of the doctor to increase the amount of brushing of the magnetic brush compared to the end, and makes the amount of developer passing through the doctor gap constant in the axial direction. Has been.

また特許文献2には、穂切板に関するものではないが、現像時におけるトナー飛散を防止すると共に、現像時における潜像担持体へのキャリアの付着を防止し、緻密で滑らか、さらに地肌汚れの無い高品質なトナー像を得るため、キャリアの体積平均粒径をトナーの体積平均粒径以下とし、ドクタブレードによって規制された直後のトナー供給ローラ上に供給された現像剤のキャリア表面のトナー被覆率が100%以下であり、現像剤の空隙部分を除く単位体積当りの平均磁化率が50emu/cc以上になるように、現像剤におけるトナーとキャリアとの割合を制御する制御手段を備えた現像装置が示されている。   Patent Document 2 does not relate to a cutting plate, but prevents toner scattering during development, prevents carrier from adhering to the latent image carrier during development, and is dense and smooth. In order to obtain a high-quality toner image with no toner, the volume average particle diameter of the carrier is set to be equal to or smaller than the volume average particle diameter of the toner, and the toner coating on the carrier surface of the developer supplied on the toner supply roller immediately after being regulated by the doctor blade Development with a control means for controlling the ratio of toner to carrier in the developer so that the rate is 100% or less and the average magnetic susceptibility per unit volume excluding voids of the developer is 50 emu / cc or more The device is shown.

さらに特許文献3には、現像ゴーストを防止するため、現像ローラ上のトナー薄層を磁気ローラの磁気穂ではぎ取って除去するに際し、現像装置を複雑にすることなく、現像ローラ上へのトナー層再形成時に層ムラが発生するのを防止するため、記録紙の紙間に対応する任意の潜像イメージ間の非現像間隔時に現像ローラと磁気ローラ間の電位差を異ならせて回転させ、現像ローラ上のトナー薄層をはぎ取った後、トナー薄層を現像ローラに再形成するトナー層はぎ取り及び再形成工程を設け、少なくとも前記トナー層はぎ取り工程時の両ローラの線速を、一方のローラが1回転するときの時間内に、他方のローラが周長にして±2mm以下の範囲の過不足で1回転するよう制御する、画像形成装置における現像方法及び装置が示されている。   Further, in Patent Document 3, in order to prevent a development ghost, the toner layer on the developing roller can be removed without complicating the developing device when the toner thin layer on the developing roller is stripped off by the magnetic spike of the magnetic roller. In order to prevent occurrence of layer unevenness at the time of re-formation, the developing roller is rotated by changing the potential difference between the developing roller and the magnetic roller at the non-development interval between any latent image corresponding to the space between the recording papers. After the toner thin layer is peeled off, a toner layer peeling and re-forming step for re-forming the toner thin layer on the developing roller is provided. At least the linear speed of both rollers during the toner layer peeling step is set to 1 A developing method and apparatus in an image forming apparatus is shown in which the other roller is controlled to rotate once in excess or deficiency in the range of ± 2 mm or less in the circumference when rotating.

特開2005−091953号公報JP-A-2005-091953 特開2003−228229号公報JP 2003-228229 A 特開2005−055840号公報JP 2005-055840 A

しかしながら、特許文献1に示された穂切板中央部のたわみによる現像剤搬送量の不均一対策は、穂切板先端部の凸形状、或いは、穂切板の長手方向磁界強度を両端部に対して中央部が強くなるよう磁性体、あるいは磁石を設けるというコストアップを伴う方法であり、特許文献2、特許文献3に示された方法は、現像時におけるトナー飛散や潜像担持体へのキャリアの付着を防止したり、現像ゴースト防止に関するものであって、磁気ローラ上の現像剤搬送量の安定化、磁気ローラの軸方向に対する現像剤搬送量の均一化に関するものではない。   However, the countermeasure for non-uniformity in the developer conveyance amount due to the deflection of the center part of the cutting plate shown in Patent Document 1 is that the convex shape of the leading edge of the cutting plate or the longitudinal magnetic field strength of the cutting plate at both ends. On the other hand, it is a method accompanied by an increase in cost by providing a magnetic body or magnet so that the central portion is strong. The methods disclosed in Patent Document 2 and Patent Document 3 are used to scatter toner at the time of development and to apply to the latent image carrier. This relates to prevention of carrier adhesion and development ghost prevention, and does not relate to stabilization of the developer conveyance amount on the magnetic roller and equalization of the developer conveyance amount in the axial direction of the magnetic roller.

そのため本発明においては、従来技術のように、磁気穂を規制する穂切板と磁気ローラとの穂切ギャップを形成する構成部品の精度アップやコストアップをせず、従来と同等の精度の部品を用いて、磁気ローラ上の現像剤搬送量の安定化、及び磁気ローラ軸方向に対する現像剤搬送量の均一化を実現し、画像品質の安定化、及び磁気ローラ軸方向の画像品質の均一化を実現する、画像形成装置における現像装置を提供することが課題である。   Therefore, in the present invention, as in the prior art, a component with the same accuracy as the conventional one without increasing the accuracy and cost of the component that forms the gap between the cutting plate that regulates the magnetic spike and the magnetic roller. Is used to stabilize the developer conveyance amount on the magnetic roller and to make the developer conveyance amount uniform in the magnetic roller axial direction, to stabilize the image quality and to make the image quality in the magnetic roller axial direction uniform. It is an object to provide a developing device in an image forming apparatus that realizes the above.

上記課題を解決するため本願出願人は、従来と同等の精度の部品を用いて磁気ローラと穂切板とを製作し、それでも磁気ローラ上の現像剤搬送量を安定化させ、かつ、磁気ローラ軸方向に対する現像剤搬送量の均一化させるためにはどのようにしたらよいかを考察するため、まず、非磁性体の穂切板(ブレード)と磁性体の穂切板(ブレード)とを用意し、穂切板(ブレード)と磁気ローラとの間隔(ブレードギャップ)を変えて現像剤の流量を調べた。   In order to solve the above problem, the applicant of the present application manufactured a magnetic roller and a scissor plate using parts having the same accuracy as the conventional one, and still stabilized the developer conveyance amount on the magnetic roller, and the magnetic roller. In order to consider how to make the developer transport amount uniform in the axial direction, first prepare a non-magnetic body cutting plate (blade) and a magnetic body cutting plate (blade). Then, the flow rate of the developer was examined by changing the interval (blade gap) between the cutting plate (blade) and the magnetic roller.

その結果、非磁性体の穂切板(ブレード)を用いた場合、現像剤の流量がブレードギャップの増大に伴ってほぼ直線的に増大し、磁気ローラの芯ブレが担持する磁気穂の規制量に大きく影響すると考えられるのに対し、磁性体の穂切板(ブレード)を用いた場合、穂切りギャップが150μmから250μmの間は現像剤流量変化が比較的少なく、250μmを越えると流量が増大することがわかった。   As a result, when a non-magnetic spike plate (blade) is used, the flow rate of the developer increases almost linearly as the blade gap increases, and the amount of magnetic spikes carried by the core blur of the magnetic roller is restricted. However, when using a magnetic cutting plate (blade), the change in developer flow rate is relatively small when the ear cutting gap is between 150 μm and 250 μm, and the flow rate increases when it exceeds 250 μm. I found out that

これは、穂切極に対向する位置に磁性体の穂切板(ブレード)を設けると、穂切極と穂切板との間に磁界が発生して磁力線に沿って現像剤の穂立ちができ、それを穂切板で切るために穂切量が多くなり、現像剤搬送量が少なくなるためと考えられる。それに対して非磁性ブレードでは、穂切部での磁力線が接線方向に傾いているため、穂立ちが傾いて穂切量が少なくなり、現像剤搬送量が多くなると考えられる。   This is because when a magnetic cutting plate (blade) is provided at a position opposite to the panning electrode, a magnetic field is generated between the panning plate and the panning plate so that the developer spikes along the lines of magnetic force. This is considered to be because the amount of cutting is increased and the amount of developer transported is reduced in order to cut it with a cutting plate. On the other hand, in the non-magnetic blade, since the magnetic lines of force at the ear cutting part are inclined in the tangential direction, it is considered that the ear rising is inclined, the amount of ear cutting is reduced, and the developer conveyance amount is increased.

また、磁気ローラの磁力は距離の二乗に比例して変化するが、穂切りギャップが150μmから250μmの間は距離が短いために比較的磁力が大きく、磁力変化も緩やかであるのに対し、250μmを越えると穂切りギャップの二乗に比例して磁力がどんどん小さくなり、現像剤搬送量が大きくなっていくと考えられる。そのため、穂切りギャップが250μmを超えると、磁気ローラの芯ブレの影響が磁気ローラの現像剤搬送量に大きく影響することがわかった。   In addition, the magnetic force of the magnetic roller changes in proportion to the square of the distance. However, since the distance is short between 150 μm and 250 μm, the magnetic force is relatively large and the change in magnetic force is gradual, whereas the change in magnetic force is 250 μm. It is considered that the magnetic force is gradually reduced in proportion to the square of the head gap, and the developer conveyance amount is increased. For this reason, it has been found that when the ear gap exceeds 250 μm, the influence of the core blur of the magnetic roller greatly affects the developer conveyance amount of the magnetic roller.

次に、磁気ローラの芯ブレによってこの流量がどのように変化するかと、磁気ローラの周速を変化させることで流量にどのような影響が出るかを調べた。この調査では、芯ブレに起因する磁気ローラと穂切板(ブレード)との最大間隔と最小間隔とにより生じる流量を、最大流量と最小流量の差として調べたが、その結果は前記した磁性体穂切板の場合と同様、穂切りギャップが150μmから250μmの間は比較的小さく、磁気ローラの芯ブレの影響が小さいと考えられるのに対し、穂切りギャップが250μmを越えると最大流量と最小流量との差が大きくなり、さらに最大流量の場合、トナー担持体(現像ローラ)や感光体などの非磁性ローラとのギャップ間で現像剤溢れ落ちなどが発生した。   Next, it was examined how the flow rate changes due to the core blur of the magnetic roller and how the flow rate is affected by changing the peripheral speed of the magnetic roller. In this investigation, the flow rate caused by the maximum and minimum gaps between the magnetic roller and the chopping board (blade) caused by the core blur was examined as the difference between the maximum and minimum flow rates. As in the case of the head cutting plate, the head cutting gap is relatively small between 150 μm and 250 μm, and the influence of the core blur of the magnetic roller is considered to be small, whereas when the head cutting gap exceeds 250 μm, the maximum flow rate and minimum The difference from the flow rate increased, and at the maximum flow rate, the developer overflowed between the gaps with the non-magnetic rollers such as the toner carrier (developing roller) and the photosensitive member.

これは、前記したように穂切りギャップが150μmから250μmの間は磁気ローラの磁力が強いと共に変化が比較的緩やかで、最大流量と最小流量の差(すなわち芯ブレの影響)が比較的小さいのに対し、穂切りギャップが250μmを越えると、磁力が小さくなって現像剤流量が多くなった(すなわち芯ブレの影響が大きくなった)ためと考えられる。また磁気ローラの周速は、現像剤の流量に大きな影響は与えないことがわかった。   This is because, as described above, when the head gap is between 150 μm and 250 μm, the magnetic force of the magnetic roller is strong and the change is relatively slow, and the difference between the maximum flow rate and the minimum flow rate (that is, the influence of the core blur) is relatively small. On the other hand, it is considered that when the ear cutting gap exceeds 250 μm, the magnetic force is reduced and the developer flow rate is increased (that is, the influence of the core blur is increased). Further, it was found that the peripheral speed of the magnetic roller does not greatly affect the flow rate of the developer.

そのため本発明では、穂切板を磁性体で構成し、少なくとも、感光体又は現像ローラなどの非磁性ローラに対向する位置にトナー転移極を、そのトナー転移極の磁気ローラにおける回転スリーブ回転方向上流側であって前記穂切板と対向する位置に穂切極を、その穂切極の回転スリーブ回転方向さらに上流側に磁気穂の分離極をそれぞれ設け、この穂切板に対向する穂切極の磁力を60〜90mTとし、磁気ローラと穂切板との穂切ギャップを150〜250μmとした。穂切極の磁力を60〜90mTとしたのは、磁力が60mT未満では磁気ブラシ形成に対する磁力が弱すぎ、90mT超の磁力では磁力が強すぎて磁気穂と穂切板との摩擦により現像剤の劣化、それによる画質の悪化が懸念される上、高価な希土類元素などを使わないと通常のフェライトではそれだけの磁力を発生できず、高価になるからである。   Therefore, in the present invention, the cutting plate is made of a magnetic material, and the toner transfer pole is disposed at least at a position facing a non-magnetic roller such as a photoconductor or a developing roller. A head-cutting pole on the side facing the head-cutting plate, and a magnetic pole separation pole on the upstream side of the rotation direction of the rotation sleeve of the head-cutting pole, and on the upstream side. Was set to 60 to 90 mT, and the gap between the magnetic roller and the cutting plate was set to 150 to 250 μm. The reason why the magnetic force of the panicle pole is 60 to 90 mT is that if the magnetic force is less than 60 mT, the magnetic force for forming the magnetic brush is too weak, and if the magnetic force exceeds 90 mT, the magnetic force is too strong. This is because there is a concern about the deterioration of the image quality and the deterioration of the image quality due to this, and if an expensive rare earth element is not used, an ordinary ferrite cannot generate such a magnetic force and becomes expensive.

キャリアとしては、従来から使われている粒径が30〜50μmの比較的小径のキャリアを用い、飽和磁化を55〜80emu/gとした。キャリアとして従来から使われている粒径が30〜50μmの比較的小径のキャリアを用いた場合、飽和磁化の値を小さくすると磁気ローラによる拘束力が小さくなり、感光体に飛んでしまう。逆にこの飽和磁化を大きくするためには、材質として高価なものを使う必要があり、その場合は現像剤が高価になる。   As the carrier, a carrier with a relatively small diameter of 30 to 50 μm, which has been used conventionally, was used, and the saturation magnetization was 55 to 80 emu / g. When a carrier having a relatively small diameter of 30 to 50 μm conventionally used as the carrier is used, if the saturation magnetization value is reduced, the restraining force by the magnetic roller is reduced and the carrier is flew to the photoreceptor. Conversely, in order to increase the saturation magnetization, it is necessary to use an expensive material, and in this case, the developer becomes expensive.

そのため本発明になる画像形成装置における現像装置は、
内部に複数の磁極を配した回転スリーブに非磁性トナーと磁性キャリアとからなる2成分現像剤の磁気穂を担持した磁気ローラと、前記磁気穂の層厚を規制する穂切板と、前記磁気ローラに対面し、前記磁気穂からトナーを転移させて薄層が形成され、該薄層により電子写真方式で感光体上に形成された静電潜像を現像するトナー担持体とを有する画像形成装置における現像装置において、
前記磁気ローラは、少なくとも、前記トナー担持体に対向する位置にトナー転移極が、該トナー転移極の前記回転スリーブ回転方向上流側であって前記穂切板と対向する位置に穂切極が、該穂切極の前記回転スリーブ回転方向上流側に汲み上げ極がそれぞれ設けられ、前記穂切板は磁性体で構成されて、前記キャリアは粒径を30〜50μm、飽和磁化を55〜80emu/gとし、前記穂切極の磁力を60〜90mTとして、前記磁気ローラと穂切板との穂切ギャップを150〜250μmとしたことを特徴とする。
Therefore, the developing device in the image forming apparatus according to the present invention is
A magnetic roller carrying a magnetic spike of a two-component developer composed of a non-magnetic toner and a magnetic carrier on a rotating sleeve having a plurality of magnetic poles disposed therein, a spike plate for regulating the layer thickness of the magnetic spike, and the magnetic Image formation comprising a toner carrier that develops an electrostatic latent image formed on a photoreceptor by electrophotography with the thin layer formed by facing the roller and transferring toner from the magnetic ears In the developing device in the apparatus,
The magnetic roller has a toner transfer pole at least at a position facing the toner carrier, and a panning pole at a position upstream of the toner transfer pole in the rotational direction of the rotating sleeve and facing the panning plate, A pumping pole is provided on the upstream side of the rotating sleeve in the rotational direction of the rotating sleeve, the cutting plate is made of a magnetic material, the carrier has a particle size of 30 to 50 μm, and a saturation magnetization of 55 to 80 emu / g. In addition, the magnetic force of the cutting electrode is 60 to 90 mT, and the cutting gap between the magnetic roller and the cutting plate is 150 to 250 μm.

また同様に、
内部に複数の磁極を配した回転スリーブに非磁性トナーと磁性キャリアとからなる2成分現像剤の磁気穂を担持し、電子写真方式で感光体上に形成された静電潜像を前記磁気穂で現像する磁気ローラを有する画像形成装置における現像装置において、
前記磁気ローラは、少なくとも、前記感光体に対向する位置にトナー転移極が、該トナー転移極の前記回転スリーブ回転方向上流側であって前記穂切板と対向する位置に穂切極が、該穂切極の前記回転スリーブ回転方向上流側に汲み上げ極がそれぞれ設けられ、前記穂切板は磁性体で構成されて、前記キャリアは粒径を30〜50μm、飽和磁化を55〜80emu/gとし、前記穂切極の磁力を60〜90mTとして、前記磁気ローラと穂切板との穂切ギャップを150〜250μmとしたことを特徴とする。
Similarly,
A rotating sleeve having a plurality of magnetic poles disposed therein carries a magnetic spike of a two-component developer composed of a non-magnetic toner and a magnetic carrier, and the electrostatic latent image formed on the photosensitive member by an electrophotographic method is used as the magnetic spike. In the developing device in the image forming apparatus having a magnetic roller for developing in
The magnetic roller has at least a toner transfer pole at a position facing the photoconductor, and a panning pole at a position upstream of the toner transfer pole in the rotational direction of the rotating sleeve and facing the panning plate, A pumping pole is provided on the upstream side of the rotating sleeve rotating direction of the rotating sleeve, the cutting plate is made of a magnetic material, the carrier has a particle size of 30 to 50 μm, and a saturation magnetization of 55 to 80 emu / g. The magnetic force of the ear cutting pole is 60 to 90 mT, and the ear cutting gap between the magnetic roller and the head cutting plate is 150 to 250 μm.

このようにすることにより本発明になる画像形成装置における現像装置は、従来技術のように磁気穂を規制する穂切板と磁気ローラとの穂切ギャップを形成する構成部品の精度アップやコストアップを必要とせず、従来と同等の精度の部品を用いて、磁気ローラ上の現像剤搬送量の安定化、及び磁気ローラ軸方向に対する現像剤搬送量の均一化を実現し、画像品質の安定化、及び磁気ローラ軸方向の画像品質の均一化を安価に実現して高画質な画像形成を行える、画像形成装置における現像装置を提供することができる。   By doing so, the developing device in the image forming apparatus according to the present invention can increase the accuracy and cost of the components that form the gap between the cutting plate and the magnetic roller that regulate the magnetic spike as in the prior art. The quality of the image is stabilized by stabilizing the developer conveyance amount on the magnetic roller and making the developer conveyance amount uniform in the axial direction of the magnetic roller using parts with the same accuracy as before. In addition, it is possible to provide a developing device in an image forming apparatus capable of forming a high quality image by realizing uniform image quality in the axial direction of the magnetic roller at low cost.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明になる画像形成装置における現像装置の一例の、主要部分の断面図と磁極配置、及び磁力の及ぶ範囲を示した図である。この図1に示した現像装置10は、一例として、磁気ローラ11上に形成された二成分現像剤による磁気穂で、非磁性ローラたるトナー坦持体(現像ローラ)15上にトナーのみの薄層を形成し、現像ローラ15に印加される直流と交流とを重畳した現像バイアスにより、トナーを図示していない感光体上に形成された静電潜像に飛翔させて現像を行う、所謂タッチダウン現像方式の現像装置である。この方式の現像装置では、感光体は現像ローラ15に対面して設けられるが、本発明はこのタッチダウン現像方式の現像装置だけでなく、現像ローラ15の位置に、非磁性ローラたる感光体を設置した通常の二成分現像装置にも適用できることは明らかである。   FIG. 1 is a cross-sectional view of main parts, an arrangement of magnetic poles, and a range covered by a magnetic force in an example of a developing device in an image forming apparatus according to the present invention. As an example, the developing device 10 shown in FIG. 1 is a thin layer of toner only on a toner carrier (developing roller) 15 that is a non-magnetic roller, using magnetic spikes formed by a two-component developer formed on a magnetic roller 11. A so-called touch is formed in which a layer is formed and toner is caused to fly to an electrostatic latent image formed on a photoreceptor (not shown) by a development bias in which direct current and alternating current applied to the developing roller 15 are superimposed. This is a developing device of a down development system. In this type of developing device, the photoconductor is provided facing the developing roller 15. However, in the present invention, not only the touchdown developing type developing device but also a photoconductor as a non-magnetic roller is provided at the position of the developing roller 15. It is obvious that the present invention can also be applied to an installed ordinary two-component developing device.

この図1において、11は、内部に反時計回りに、現像ローラ15に対向する位置に磁極N1のトナー転移極が、そのトナー転移極N1の磁気ローラにおける回転スリーブ回転方向上流側であって穂切板12と対向する位置にS2の穂切極が、その穂切極S2のさらに上流側にN3の汲み上げ極が、更に上流にそれぞれN2、S1極が設けられた固定磁石を有し、回転スリーブ上に二成分現像剤の磁気穂を形成する磁気ローラ、12はこの磁気ローラ11上の磁気穂の高さを規制する穂切板(ブレード)で、例えばSUS430などの磁性体でL字状に形成され、磁気ローラ11の軸方向に延在して現像装置10の筐体16に固定されている。13、14は攪拌ミキサで、例えば長手方向両端が筐体16に接しないよう短くされた仕切り壁161で仕切られた、現像剤室161、162中の現像剤を攪拌、搬送しながら帯電させる。15は磁気ローラ11上に形成された磁気穂により、トナー薄層が形成されるトナー坦持体(現像ローラ)である。   In FIG. 1, reference numeral 11 denotes a toner transfer pole of the magnetic pole N1 counterclockwise inside, at a position facing the developing roller 15, on the upstream side in the rotation sleeve rotation direction of the magnetic roller of the toner transfer pole N 1. There is a S2 ear-cutting pole at a position facing the cut plate 12, a N3 pumping pole further upstream of the head-cutting pole S2, and a stationary magnet provided with N2 and S1 poles further upstream. A magnetic roller 12 for forming a magnetic spike of the two-component developer on the sleeve, 12 is a spike plate (blade) for regulating the height of the magnetic spike on the magnetic roller 11, and is L-shaped with a magnetic material such as SUS430. And extends in the axial direction of the magnetic roller 11 and is fixed to the housing 16 of the developing device 10. Reference numerals 13 and 14 denote stirring mixers that charge the developer in the developer chambers 161 and 162, which are partitioned by a partition wall 161 that is shortened so that both ends in the longitudinal direction do not contact the housing 16, while stirring and transporting. Reference numeral 15 denotes a toner carrier (developing roller) in which a thin toner layer is formed by magnetic spikes formed on the magnetic roller 11.

この現像装置10の筐体16には、下部に現像剤室162、163が、上部に磁気ローラ11、トナー坦持体(現像ローラ)15が設けられた縦型の現像装置で、現像剤室162中の現像剤を攪拌ミキサ13と汲み上げ極N3により汲み上げ、上部に設けられた磁気ローラ11に現像剤を供給して磁気穂を形成させる形式のため、図上、左右方向長さを比較的短く構成できる。   The housing 16 of the developing device 10 is a vertical developing device in which developer chambers 162 and 163 are provided in the lower portion and a magnetic roller 11 and a toner carrier (developing roller) 15 are provided in the upper portion. The developer in 162 is pumped up by the stirring mixer 13 and the pumping pole N3, and the developer is supplied to the magnetic roller 11 provided in the upper part to form a magnetic spike. Can be configured short.

図中、前記した各磁極N1、S1、N2、N3、S2により生じる磁力が及ぶ範囲を、それぞれ17N1、17S1、17N2、17N3、17S2で示し、穂切板(ブレード)12は、磁気ローラ11の穂切極S2に対して図の場合は3〜5度、反時計回りにズレた位置に対向して設けられている。そのため、この穂切極S2から穂切板(ブレード)12に対して略垂直な磁力が形成され、磁気ローラ11上に形成された磁気穂は、磁気ローラ11と穂切板12とで形成されるブレードギャップとこの垂直磁力によって穂切りされ、現像剤搬送量と磁気ローラ11の軸方向に対する現像剤搬送量の均一化を実現するようになっている。   In the figure, the ranges covered by the magnetic forces generated by the magnetic poles N1, S1, N2, N3, and S2 are indicated by 17N1, 17S1, 17N2, 17N3, and 17S2, respectively. In the case of the figure, it is provided opposite to the position shifted by 3 to 5 degrees counterclockwise with respect to the head cutting pole S2. Therefore, a magnetic force substantially perpendicular to the cutting plate (blade) 12 is formed from the cutting blade pole S 2, and the magnetic spike formed on the magnetic roller 11 is formed by the magnetic roller 11 and the cutting plate 12. The blade gap is cut by this vertical magnetic force and the developer conveyance amount and the developer conveyance amount in the axial direction of the magnetic roller 11 are made uniform.

また、前記したようにこの穂切極S2のさらに反時計回りに下流側に、トナー転移極N1がトナー坦持体(現像ローラ)15に対して数度の角度差を有して設けられ、更に反時計回りの下流側には、磁極S1、更に下流に分離極N2、汲み上げ極N3が設けられている。   Further, as described above, the toner transfer pole N1 is provided with an angular difference of several degrees with respect to the toner carrier (developing roller) 15 further downstream in the counterclockwise direction of the ear-cut pole S2. Further, a magnetic pole S1 is provided on the downstream side in the counterclockwise direction, and a separation pole N2 and a pumping pole N3 are provided further downstream.

このように構成した本発明になる画像形成装置における現像装置10において、本願出願人は、前記したように、穂切板12と磁気ローラ11との穂切ギャップを形成する構成部品の精度アップやコストアップをせず、従来と同等の精度の部品を用いて、磁気ローラ11上の現像剤搬送量の安定化、及び磁気ローラ11の軸方向に対する現像剤搬送量の均一化を実現するためにはどうしたらよいか、を考察するため、まず、非磁性体の穂切板(ブレード)と磁性体の穂切板(ブレード)とを用意し、穂切板(ブレード)と磁気ローラ11との間隔(ブレードギャップ)を変えて現像剤の流量を調べた。その結果を示したのが図2に示したグラフである。   In the developing device 10 in the image forming apparatus according to the present invention configured as described above, the applicant of the present application can increase the accuracy of the components that form the gap between the cutting plate 12 and the magnetic roller 11 as described above. To stabilize the developer conveyance amount on the magnetic roller 11 and make the developer conveyance amount uniform in the axial direction of the magnetic roller 11 by using parts with the same accuracy as before without increasing the cost. In order to consider what should be done, first, a non-magnetic body cutting board (blade) and a magnetic body cutting board (blade) are prepared. The developer flow rate was examined by changing the interval (blade gap). The result is the graph shown in FIG.

この図2に示したグラフは、横軸が磁気ローラ11と穂切板(ブレード)12との間隔(ブレードギャップ:単位mm)、縦軸が現像剤流量(単位:mg/cm)であり、実線に■をプロットしたラインは磁性ブレードの、波線に◆をプロットしたラインは非磁性ブレードの実験結果を示している。 In the graph shown in FIG. 2, the horizontal axis represents the distance between the magnetic roller 11 and the scissor plate (blade) 12 (blade gap: unit mm), and the vertical axis represents the developer flow rate (unit: mg / cm 2 ). The solid line plotted with ■ indicates the magnetic blade, and the broken line with ◆ indicates the non-magnetic blade.

なお、実験に用いた画像形成装置は京セラミタ製のKM−C2520改造機であり、飽和磁化が69emu/gで平均粒径が35μmのMn−Mg系キャリアと平均粒径が7μmのトナーを混合した二成分現像剤を用い、現像容器内の現像剤重量を185gとした。磁気ローラは、穂切極の磁力が70mTで、周速420mm/secとし、穂切板の材質は磁性体の穂切り板としてはSUS430で厚さ1.5mmのもの、また非磁性体の穂切板としてはSUS304の厚さ1.5mmのものをそれぞれ用いた。   The image forming apparatus used in the experiment is a modified KM-C2520 manufactured by Kyocera Mita, which is a mixture of a Mn-Mg carrier having a saturation magnetization of 69 emu / g and an average particle diameter of 35 μm and a toner having an average particle diameter of 7 μm. The developer weight in the developing container was set to 185 g using the two-component developer. The magnetic roller has a magnetic force of 70 mT at the cutting edge and a peripheral speed of 420 mm / sec. The material of the cutting board is SUS430 as a magnetic cutting board and is 1.5 mm thick. As the cutting plate, SUS304 having a thickness of 1.5 mm was used.

この図2のグラフから分かるとおり、非磁性ブレードを用いた場合、ブレードギャップが0.15mmの時点で現像剤の流量が7.8mg/cmあり、そのブレードギャップが0.2mm、0.25mm、3.0mm.3.5mmと大きくなるにつれ、現像剤流量も、9.6mg/cm、12.7mg/cm、14.6mg/cm、17.0mg/cmと、ほぼ直線的に増えている。 As can be seen from the graph of FIG. 2, when a non-magnetic blade is used, the flow rate of the developer is 7.8 mg / cm 2 when the blade gap is 0.15 mm, and the blade gap is 0.2 mm and 0.25 mm. 3.0 mm. As larger and 3.5 mm, the developer flow rate also, 9.6mg / cm 2, 12.7mg / cm 2, 14.6mg / cm 2, and 17.0 mg / cm 2, has increased substantially linearly.

それに対して磁性ブレードを用いた場合、ブレードギャップが0.15mmの時点で現像剤の流量は6.0mg/cmと非磁性ブレードに比して少なく、ブレードギャップが0.2mmの場合は6.6mg/cm、0.25mmの場合は7.5mg/cmと、ブレードギャップが0.25mmまでは流量が大きく増えていない。そしてブレードギャップが3.0mmになると現像剤流量が9.7mg/cmと今までの増分よりも多い現像剤量となり、さらに、ブレードギャップが3.5mmと大きくなると、現像剤流量は12.1mg/cmと3.0mm以後はほぼ直線的に増えている。 On the other hand, when a magnetic blade is used, when the blade gap is 0.15 mm, the developer flow rate is 6.0 mg / cm 2 , which is smaller than that of the non-magnetic blade, and when the blade gap is 0.2 mm, 6 .6mg / cm 2, and 7.5mg / cm 2 in the case of 0.25mm, blade gap is not increased flow rate is increased to 0.25mm. When the blade gap is 3.0 mm, the developer flow rate is 9.7 mg / cm 2, which is a larger developer amount than before, and when the blade gap is 3.5 mm, the developer flow rate is 12. 1 mg / cm 2 and 3.0mm after is growing almost linearly.

これは、前記したように穂切極に対向する位置に磁性体の穂切板(ブレード)を設けると、穂切極と穂切板との間に発生した磁力線に沿って現像剤の穂立ちができ、それをブレードで切るために穂切量が多くなって現像剤搬送量が少なくなるのに対し、非磁性ブレードでは穂切部での磁力線が接線方向に傾いているため、穂立ちが傾いて穂切量が少なくなり、現像剤搬送量が多くなるためと考えられる。従って、非磁性ブレードを用いた場合、磁気ローラ11の少しの芯ブレで現像剤の流量が大きく変化することになる。   This is because, as described above, when a magnetic cutting plate (blade) is provided at a position facing the panning pole, the developer spikes along the lines of magnetic force generated between the panning plate and the panning plate. In order to cut it with a blade, the amount of cutting is increased and the amount of developer transported is reduced.On the other hand, with a non-magnetic blade, the magnetic lines of force at the cutting end are inclined in the tangential direction. It is considered that the amount of cutting is reduced and the developer transport amount is increased. Therefore, when a nonmagnetic blade is used, the flow rate of the developer greatly changes with a slight core blur of the magnetic roller 11.

また、磁力は距離の二乗に比例して変化するため、穂切りギャップが0.15mm(150μm)から0.25mm(250μm)の間は、距離が短いために比較的磁力が大きくて磁力変化も緩やかであるのに対し、0.25mm(250μm)を越えると、穂切りギャップの二乗に比例して磁力がどんどん小さくなり、現像剤搬送量が大きくなっていくと考えられる。そのためこの場合は、磁気ローラの芯ブレの影響が磁気ローラの現像剤搬送量に大きく影響すると考えられる。   In addition, since the magnetic force changes in proportion to the square of the distance, when the head gap is between 0.15 mm (150 μm) and 0.25 mm (250 μm), since the distance is short, the magnetic force is relatively large and the magnetic force change is also large. On the other hand, if it exceeds 0.25 mm (250 μm), the magnetic force is gradually decreased in proportion to the square of the ear-cut gap, and the developer conveyance amount is increased. Therefore, in this case, it is considered that the influence of the core blur of the magnetic roller greatly affects the developer conveyance amount of the magnetic roller.

以上の結果から、穂切板(ブレード)12の材料として磁性体を用い、穂切りギャップを150μmから250μmの間とすると、多少穂切りギャップが変動しても現像剤搬送量に大きな変化がないことがわかったが、さらに磁気ローラ11の芯ブレによりこの現像剤流量がどのように変化するかを調べるため、芯ブレによる磁気ローラと穂切板(ブレード)との間隔変動を、穂切板と磁気ローラとの間隔(ブレードギャップ)に代え、現像剤の最大流量(バラツキ上限)と最小流量(バラツキ下限)を調べた。その結果を示したグラフが図3である。   From the above results, when a magnetic material is used as the material of the trimming plate (blade) 12 and the trimming gap is between 150 μm and 250 μm, there is no significant change in the developer transport amount even if the trimming gap varies somewhat. However, in order to investigate how the developer flow rate changes due to the core blur of the magnetic roller 11, the variation in the distance between the magnetic roller and the blade (blade) due to the core blur is determined by Instead of the distance between the magnetic roller and the magnetic roller (blade gap), the maximum flow rate (variation upper limit) and the minimum flow rate (variation lower limit) of the developer were examined. A graph showing the results is shown in FIG.

この図3に示したグラフは、前記図2のグラフと同様横軸が磁気ローラ11と穂切板(ブレード)との間隔(ブレードギャップ:単位mm)、縦軸が現像剤流量(単位:mg/cm)であり、実線に■をプロットしたライン(以下、標準ラインと称する)は前記図2に示したのと同じラインで、点線に◆をプロットしたラインは現像剤の最大流量(バラツキ上限)を示し、一点鎖線に◆をプロットしたラインは現像剤の最小流量(バラツキ下限)を示している。この実験に用いた画像形成装置や現像剤などは前記したとおりである。 In the graph shown in FIG. 3, the horizontal axis is the distance between the magnetic roller 11 and the cutting plate (blade) (blade gap: unit mm), and the vertical axis is the developer flow rate (unit: mg) as in the graph of FIG. / cm 2), the line obtained by plotting the ■ the solid line (hereinafter, referred to as standard line) is the maximum flow rate (variations in the the same line, the line obtained by plotting the ◆ dotted developer shown in FIG. 2 (Upper limit), and a line in which a dot is plotted on the alternate long and short dash line indicates the minimum flow rate (variation lower limit) of the developer. The image forming apparatus and developer used in this experiment are as described above.

この図3のグラフにおけるバラツキの上限と下限は、前記したように磁気ローラ11を一般的な製作精度で形成すると、例えば30μm程度の芯ブレが生じるため、それを想定して現像剤流量を調べたものである。   The upper and lower limits of the variation in the graph of FIG. 3 are as follows. When the magnetic roller 11 is formed with general manufacturing accuracy, for example, a core blur of about 30 μm occurs. It is a thing.

その結果、ブレードギャップが0.15mmでは上限の現像剤流量が6.4mg/cm、標準ラインは6.0mg/cm、下限の現像剤流量が5.6mg/cmであり、ブレードギャップが0.2mmでは上限の現像剤流量が7.0mg/cm、標準ラインは6.6mg/cm、下限の現像剤流量が6.0mg/cm、ブレードギャップが0.25mmでは上限の現像剤流量が8.2mg/cm、標準ラインは7.5mg/cm、下限の現像剤流量が6.7mg/cmと、この図3のグラフから分かるとおり、ここまではブレードギャップが増えても流量が大きく増えず、差もそれほど広がっていない。 As a result, when the blade gap is 0.15 mm, the upper limit developer flow rate is 6.4 mg / cm 2 , the standard line is 6.0 mg / cm 2 , and the lower limit developer flow rate is 5.6 mg / cm 2. There upper limit of developer flow rate 7.0 mg / cm 2 in 0.2 mm, the standard line 6.6 mg / cm 2, the developer flow rate lower limit is 6.0 mg / cm 2, the blade gap is maximum at 0.25mm The developer flow rate is 8.2 mg / cm 2 , the standard line is 7.5 mg / cm 2 , and the lower limit developer flow rate is 6.7 mg / cm 2 . Even if it increases, the flow rate does not increase greatly, and the difference does not spread so much.

しかしブレードギャップが3.0mmになると、上限の現像剤流量が11.2mg/cm、標準ラインは9.7mg/cm、下限の現像剤流量が7.9mg/cmとそれぞれ今までの増分よりも多い現像剤が流れ、さらに、ブレードギャップが3.5mmと大きくなると、上限の現像剤流量が13.8mg/cm、標準ラインは12.1mg/cm、下限の現像剤流量が10.1mg/cmと、3.0mm以後はほぼ直線的に増え、それぞれの差も大きくなって、芯ブレによる影響が大きくなることがわかる。 But the blade gap is 3.0 mm, the developer flow rate 11.2 mg / cm 2 of the upper limit, the standard line 9.7 mg / cm 2, the developer flow rate lower limit is ever respectively 7.9 mg / cm 2 developer flows greater than increment further and the blade gap is as large as 3.5 mm, the developer flow rate 13.8 mg / cm 2 of the upper limit, the standard line 12.1 mg / cm 2, the developer flow rate lower limit From 10.1 mg / cm 2 and after 3.0 mm, it increases almost linearly, the difference between them increases, and the influence of the core blur increases.

これは、前記図2で説明したように、磁力が距離の二乗に比例して変化するため、穂切りギャップが0.15mm(150μm)から0.25mm(250μm)の間は、例え磁気ローラ11に芯ブレがあっても現像剤流量に大きな差が生じず、0.25mm(250μm)を越えると磁力が急激に小さくなるため、穂切りギャップに比例して現像剤搬送量が大きくなり、差が広がっていったものと考えられる。   As described with reference to FIG. 2, since the magnetic force changes in proportion to the square of the distance, the magnetic roller 11 has a gap between 0.15 mm (150 μm) and 0.25 mm (250 μm). There is no significant difference in the developer flow rate even if there is core blurring, and the magnetic force suddenly decreases beyond 0.25 mm (250 μm). Is thought to have spread.

次に図4は、磁性体の穂切板(ブレード)を用い、穂切板と磁気ローラとの間隔(ブレードギャップ)と磁気ローラの周速とを変え、現像剤の流量を調べた結果を示したグラフである。この図4に示したグラフも、前記図2、図3のグラフと同様横軸が磁気ローラと穂切板(ブレード)との間隔(ブレードギャップ:単位mm)、縦軸が現像剤流量(単位:mg/cm)であり、実線に■をプロットしたライン(以下、標準ラインと称する)は、磁気ローラ11の周速を前記図2、図3の場合と同じ420mm/secとした場合の現像剤流量のラインであり、二点鎖線に◆をプロットしたラインは210mm/secと下限値の周速の現像剤流量ライン、破線に◆をプロットしたラインは500mm/secと上限値の周速の現像剤流量ラインをそれぞれ示している。この実験に用いた画像形成装置や現像剤などは前記したとおりである。 Next, FIG. 4 shows the result of examining the flow rate of the developer by using a magnetic cutting plate (blade), changing the spacing (blade gap) between the cutting plate and the magnetic roller, and the peripheral speed of the magnetic roller. It is the shown graph. In the graph shown in FIG. 4, as in the graphs of FIGS. 2 and 3, the horizontal axis is the distance between the magnetic roller and the scissor plate (blade) (blade gap: mm), and the vertical axis is the developer flow rate (unit). : Mg / cm 2 ), and a line (hereinafter referred to as a standard line) in which ■ is plotted on a solid line is a case where the peripheral speed of the magnetic roller 11 is 420 mm / sec, which is the same as in FIGS. This is a developer flow line. The line plotted with ◆ on the two-dot chain line is 210 mm / sec, the developer flow line at the lower limit of the peripheral speed, and the line plotted with ◆ on the broken line is the peripheral speed of 500 mm / sec, the upper limit. The developer flow lines are respectively shown. The image forming apparatus and developer used in this experiment are as described above.

この図4のグラフからわかるとおり、下限値の周速の現像剤流量ライン、標準ライン、上限値の周速の現像剤流量ラインをそれぞれは、いずれのブレードギャップにおいてもほとんど同じ値を示し、磁気ローラの周速は現像剤流量に殆ど影響を与えていないと考えられる。   As can be seen from the graph in FIG. 4, the lower limit peripheral speed developer flow line, the standard line, and the upper limit peripheral speed developer flow line show almost the same values in any blade gap, and the magnetic It is considered that the peripheral speed of the roller hardly affects the developer flow rate.

このように、穂切板(ブレード)の材質として磁性体を用い、磁気ローラ11と穂切板12との間隔(ブレードギャップ)を150〜250μmとすることで、30μm程度の芯ブレのある磁気ローラ11を用いても現像剤流量に大きな変動が生じないと考えられる。以上の結果は前記したように、平均粒径が7μmのトナーと平均粒径が35μmのMn−Mg系の飽和磁化が69emu/gのキャリアとを混合した二成分現像剤を用い、磁気ローラの穂切極S2の磁力を70mTとした場合の結果であるが、これらキャリアの平均粒径、飽和磁化、穂切り極S2の磁力を変化させた場合、現像剤流量がどのようになるかも調査した。   In this way, a magnetic material is used as the material of the cutting plate (blade), and the distance (blade gap) between the magnetic roller 11 and the cutting plate 12 is set to 150 to 250 μm, so that the magnetic with a core blur of about 30 μm is obtained. Even when the roller 11 is used, it is considered that the developer flow rate does not change greatly. As described above, the above results are obtained by using a two-component developer in which a toner having an average particle diameter of 7 μm and a carrier having an average particle diameter of 35 μm and a Mn—Mg-based saturation magnetization of 69 emu / g are mixed. The results are obtained when the magnetic force of the hogiri pole S2 is set to 70 mT, and the developer flow rate is examined when the average particle diameter, saturation magnetization, and magnetic force of the hogiri pole S2 are changed. .

その結果を示したのが図5の表である。この図5に示した表において、実施例1は以上説明してきた、磁気ローラ11と穂切板12との最適な間隔を調査するために用いたキャリアの平均粒径(35μm)、飽和磁化(69emu/g)、磁気ローラの穂切極S2の磁力(70mT)であり、それに対して実施例2は、磁気ローラの穂切極S2の磁力(70mT)を実施例1と同一として、キャリアの平均粒径を35μmに、飽和磁化を64emu/gとしたものであり、この範囲の変化は「現像剤流量安定性」に○が付してあるように、現像剤流量に問題はなかった。   The results are shown in the table of FIG. In the table shown in FIG. 5, Example 1 has been described above, the average particle diameter (35 μm) and saturation magnetization (35 μm) of the carrier used for investigating the optimum distance between the magnetic roller 11 and the scissor plate 12. 69 emu / g), which is the magnetic force (70 mT) of the head roller pole S2 of the magnetic roller, whereas in Example 2, the magnetic force (70 mT) of the head roller pole S2 of the magnetic roller is the same as in Example 1, The average particle size was 35 μm, the saturation magnetization was 64 emu / g, and the change in this range had no problem with the developer flow rate, as indicated by the circle in “Developer flow rate stability”.

実施例3、4、比較例1は、実施例1、2で問題の無かった平均粒径35μm及び50μmのキャリアと磁力70mTの磁気ローラの穂切極S2を用い、キャリアの飽和磁化を変化させたもので、飽和磁化を57emu/g、75emu/gとした実施例3、4は問題を生ぜずに「現像剤流量安定性」が○となったが、飽和磁化を39emu/gとした比較例1は、飽和磁化が小さいために磁気ローラ11上の磁気ブラシが弱く、濃度ムラが生じて「現像剤流量安定性」に問題が生じ、×となっている。   Examples 3 and 4 and Comparative Example 1 use the carrier having average particle diameters of 35 μm and 50 μm, which was not problematic in Examples 1 and 2, and the magnetic cutting head S2 of a magnetic roller having a magnetic force of 70 mT, and changing the saturation magnetization of the carrier. In Examples 3 and 4 in which the saturation magnetization was 57 emu / g and 75 emu / g, the “developer flow rate stability” was ○ without causing a problem, but the comparison was made with the saturation magnetization of 39 emu / g. In Example 1, since the saturation magnetization is small, the magnetic brush on the magnetic roller 11 is weak, density unevenness occurs, causing a problem in “developer flow rate stability”, and x.

そして、実施例1で問題の無かった平均粒径35μmと飽和磁化69emu/gのキャリアを用い、磁気ローラ11の穂切極S2の磁力を変化させた実施例5、6と比較例2では、穂切極S2の磁力を80mT、60mTとした実施例5、6は問題を生ぜずに「現像剤流量安定性」が○となったが、50mTとした比較例1では、穂切極S2を通過する磁気ブラシの量が多すぎ、やはり「現像剤流量安定性」が×となっている。   In Examples 5 and 6 and Comparative Example 2 in which the magnetic force of the head cutting pole S2 of the magnetic roller 11 was changed using a carrier having an average particle diameter of 35 μm and a saturation magnetization of 69 emu / g, which had no problem in Example 1, In Examples 5 and 6 in which the magnetic force of the hogiri pole S2 was set to 80 mT and 60 mT, “developer flow rate stability” became “O” without causing a problem. The amount of the magnetic brush that passes is too large, and the “developer flow rate stability” is still “x”.

以上の結果からして、キャリアとしてMn−Mg系を用いる場合、飽和磁化が55〜80emu/gで平均粒径が30〜50μmの間であることが好ましく、また磁気ローラ11の穂切極S2の磁力は60〜90mTの間であることが好ましいことがわかった。   From the above results, when using a Mn—Mg system as the carrier, it is preferable that the saturation magnetization is 55 to 80 emu / g and the average particle diameter is between 30 and 50 μm. It has been found that the magnetic force of is preferably between 60 and 90 mT.

従って、この実験結果から好ましいと考えられて通常市販されている、安価な、例えば飽和磁化が69emu/gで平均粒径が35μmのMn−Mg系キャリアと、平均粒径が7μmのトナーを混合した二成分現像剤を用い、前記したように磁気ローラ11における穂切極の磁力が70mTで、周速420mm/secとし、厚さ1.5mmの穂切板12を用いた場合、まず図2のグラフの結果から、穂切板(ブレード)の材質としては磁性体が好ましく、また、磁気ローラ11と穂切板12との間隔(ブレードギャップ)を150〜250μmとすると、現像剤流量の変動が少なくなると考えられる。   Therefore, it is considered that it is preferable based on the experimental results, and is usually mixed with an inexpensive Mn—Mg-based carrier having a saturation magnetization of 69 emu / g and an average particle diameter of 35 μm and a toner having an average particle diameter of 7 μm. When the two-component developer is used, and as described above, the magnetic force of the cutting edge in the magnetic roller 11 is 70 mT, the peripheral speed is 420 mm / sec, and the cutting board 12 having a thickness of 1.5 mm is used, first, FIG. From the results of this graph, the material of the cutting plate (blade) is preferably a magnetic material, and if the distance (blade gap) between the magnetic roller 11 and the cutting plate 12 is 150 to 250 μm, the developer flow rate fluctuates. Is expected to decrease.

また、図3のグラフの結果から、通常の公差で作られた構成部品で例え30μm程度の芯ブレのある磁気ローラ11を用いても、磁気ローラ11と穂切板12との間隔(ブレードギャップ)を、150〜250μmとすると現像剤流量の大きな変動が生ぜず、更に図4のグラフの結果から、磁気ローラ11の周速が210mm/secから500mm/secの間であれば、現像剤流量に違いが生じないと考えられる。   Further, from the result of the graph of FIG. 3, even if a magnetic roller 11 having a core blur of about 30 μm is used with a component made with a normal tolerance, the distance (blade gap) between the magnetic roller 11 and the scissor cutting plate 12 is used. ) Is set to 150 to 250 μm, the developer flow rate does not fluctuate greatly. From the result of the graph of FIG. 4, if the peripheral speed of the magnetic roller 11 is between 210 mm / sec and 500 mm / sec, the developer flow rate It is considered that there will be no difference.

そのため本発明においては、キャリアとして従来から使われている、粒径が30〜50μmと比較的小径で飽和磁化が55〜80emu/gのものを用い、穂切板を磁性体で構成して、磁気ローラと穂切板との穂切ギャップを150〜250μm、磁気ローラ側の穂切極の磁力を60〜90mTとし、構成部品の精度アップやコストアップをせずに従来と同等の精度の部品を用いて、磁気ローラ上の現像剤搬送量の安定化、及び磁気ローラ軸方向に対する現像剤搬送量の均一化を実現し、画像品質の安定化、及び磁気ローラ軸方向の画像品質の均一化を安価に実現したものである。   Therefore, in the present invention, a carrier having a particle diameter of 30 to 50 μm and a relatively small diameter and a saturation magnetization of 55 to 80 emu / g, which has been used conventionally as a carrier, is used, and the cutting plate is made of a magnetic material. Parts with the same precision as before without increasing the precision and cost of the components by setting the gap between the magnetic roller and the cutting plate to 150 to 250 μm and the magnetic force of the cutting roller on the magnetic roller side to 60 to 90 mT. Is used to stabilize the developer conveyance amount on the magnetic roller and to make the developer conveyance amount uniform in the magnetic roller axial direction, to stabilize the image quality and to make the image quality in the magnetic roller axial direction uniform. Is realized at low cost.

本発明によれば、磁気穂を規制する穂切板と磁気ローラとの穂切ギャップを形成する構成部品の精度アップやコストアップをせず、従来と同等の精度の部品を用いて、磁気ローラ上の現像剤搬送量の安定化、及び磁気ローラ軸方向に対する現像剤搬送量の均一化を実現することができ、画像品質や磁気ローラ軸方向の画像品質の均一化を実現した画像形成装置を提供することができる。   According to the present invention, without increasing the accuracy and cost of the components that form the gap between the cutting plate and the magnetic roller that regulates the magnetic spike, the magnetic roller can be used by using components with the same accuracy as before. An image forming apparatus capable of stabilizing the upper developer conveyance amount and uniforming the developer conveyance amount in the magnetic roller axial direction, and realizing uniform image quality and image quality in the magnetic roller axial direction. Can be provided.

本発明になる画像形成装置における現像装置の一例の、主要部分の断面図と磁極配置、及び磁力の及ぶ範囲を示した図である。FIG. 2 is a diagram illustrating a cross-sectional view of main parts, a magnetic pole arrangement, and a range of magnetic force, as an example of a developing device in the image forming apparatus according to the present invention. 非磁性体の穂切板(ブレード)と磁性体の穂切板(ブレード)とのそれぞれにおける穂切板(ブレード)と磁気ローラとの間隔(ブレードギャップ)を変え、現像剤の流量を調べた結果を示したグラフである。The flow rate of the developer was examined by changing the spacing (blade gap) between the non-magnetic spike plate (blade) and the magnetic spike plate (blade) between the spike plate and the magnetic roller. It is the graph which showed the result. 磁性体の穂切板(ブレード)を用い、穂切板と磁気ローラとの間隔(ブレードギャップ)を変え、現像剤の最大流量(バラツキ上限)と最小流量(バラツキ下限)を調べた結果を示したグラフである。The result of examining the maximum flow rate (variation upper limit) and the minimum flow rate (variation lower limit) of the developer by changing the distance (blade gap) between the blade cutting plate and the magnetic roller, using a magnetic cutting plate (blade). It is a graph. 磁性体の穂切板(ブレード)を用い、穂切板と磁気ローラとの間隔(ブレードギャップ)と磁気ローラの周速とを変え、現像剤の流量を調べた結果を示したグラフである。5 is a graph showing the results of examining the developer flow rate by using a magnetic cutting plate (blade) and changing the spacing (blade gap) between the cutting plate and the magnetic roller and the peripheral speed of the magnetic roller. キャリアの粒径、飽和磁化、穂切極の磁力を変化させ、現像剤流量安定性の安定性を調査した結果を纏めた表である。6 is a table summarizing the results of investigating the stability of developer flow rate stability by changing the particle size of the carrier, saturation magnetization, and magnetic force of the head cutting pole.

符号の説明Explanation of symbols

10 現像装置
11 磁気ローラ
12 穂切板(ブレード)
13 攪拌ミキサ
14 攪拌ミキサ
15 トナー坦持体(現像ローラ)
16 筐体
17 各磁極における磁力の及ぶ範囲
DESCRIPTION OF SYMBOLS 10 Developing device 11 Magnetic roller 12 Bread cutting board (blade)
13 Stirring Mixer 14 Stirring Mixer 15 Toner Carrier (Developing Roller)
16 Case 17 Range of magnetic force in each magnetic pole

Claims (2)

内部に複数の磁極を配した回転スリーブに非磁性トナーと磁性キャリアとからなる2成分現像剤の磁気穂を担持した磁気ローラと、前記磁気穂の層厚を規制する穂切板と、前記磁気ローラに対面し、前記磁気穂からトナーを転移させて薄層が形成され、該薄層により電子写真方式で感光体上に形成された静電潜像を現像するトナー担持体とを有する画像形成装置における現像装置において、
前記磁気ローラは、少なくとも、前記トナー担持体に対向する位置にトナー転移極が、該トナー転移極の前記回転スリーブ回転方向上流側であって前記穂切板と対向する位置に穂切極が、該穂切極の前記回転スリーブ回転方向上流側に分離極がそれぞれ設けられ、前記穂切板は磁性体で構成されて、前記キャリアは粒径を30〜50μm、飽和磁化を55〜80emu/gとし、前記穂切極の磁力を60〜90mTとして、前記磁気ローラと穂切板との穂切ギャップを150〜250μmとしたことを特徴とする画像形成装置における現像装置。
A magnetic roller carrying a magnetic spike of a two-component developer composed of a non-magnetic toner and a magnetic carrier on a rotating sleeve having a plurality of magnetic poles disposed therein, a spike plate for regulating the layer thickness of the magnetic spike, and the magnetic Image formation comprising a toner carrier that develops an electrostatic latent image formed on a photoreceptor by electrophotography with the thin layer formed by facing the roller and transferring toner from the magnetic ears In the developing device in the apparatus,
The magnetic roller has a toner transfer pole at least at a position facing the toner carrier, and a panning pole at a position upstream of the toner transfer pole in the rotational direction of the rotating sleeve and facing the panning plate, Separation poles are provided on the upstream side of the rotation direction of the rotating sleeve of the spiked pole, the spiked plate is made of a magnetic material, the carrier has a particle size of 30 to 50 μm, and a saturation magnetization of 55 to 80 emu / g. A developing device in an image forming apparatus, wherein a magnetic force of the cutting electrode is 60 to 90 mT, and a cutting gap between the magnetic roller and the cutting plate is 150 to 250 μm.
内部に複数の磁極を配した回転スリーブに非磁性トナーと磁性キャリアとからなる2成分現像剤の磁気穂を担持し、電子写真方式で感光体上に形成された静電潜像を前記磁気穂で現像する磁気ローラを有する画像形成装置における現像装置において、
前記磁気ローラは、少なくとも、前記感光体に対向する位置にトナー転移極が、該トナー転移極の前記回転スリーブ回転方向上流側であって前記穂切板と対向する位置に穂切極が、該穂切極の前記回転スリーブ回転方向上流側に分離極がそれぞれ設けられ、前記穂切板は磁性体で構成されて、前記キャリアは粒径を30〜50μm、飽和磁化を55〜80emu/gとし、前記穂切極の磁力を60〜90mTとして、前記磁気ローラと穂切板との穂切ギャップを150〜250μmとしたことを特徴とする画像形成装置における現像装置。
A rotating sleeve having a plurality of magnetic poles disposed therein carries a magnetic spike of a two-component developer composed of a non-magnetic toner and a magnetic carrier, and the electrostatic latent image formed on the photosensitive member by an electrophotographic method is used as the magnetic spike. In the developing device in the image forming apparatus having a magnetic roller for developing in
The magnetic roller has at least a toner transfer pole at a position facing the photoconductor, and a panning pole at a position upstream of the toner transfer pole in the rotational direction of the rotating sleeve and facing the panning plate, Separation poles are provided on the upstream side of the rotation direction of the rotating sleeve of the spiked pole, the spiked plate is made of a magnetic material, the carrier has a particle size of 30-50 μm, and a saturation magnetization of 55-80 emu / g. A developing device in an image forming apparatus, wherein a magnetic force of the cutting electrode is 60 to 90 mT and a cutting gap between the magnetic roller and the cutting plate is 150 to 250 μm.
JP2007218820A 2007-08-24 2007-08-24 Development device in image forming apparatus Pending JP2009053362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218820A JP2009053362A (en) 2007-08-24 2007-08-24 Development device in image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218820A JP2009053362A (en) 2007-08-24 2007-08-24 Development device in image forming apparatus

Publications (1)

Publication Number Publication Date
JP2009053362A true JP2009053362A (en) 2009-03-12

Family

ID=40504511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218820A Pending JP2009053362A (en) 2007-08-24 2007-08-24 Development device in image forming apparatus

Country Status (1)

Country Link
JP (1) JP2009053362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231073A (en) * 2009-03-27 2010-10-14 Fuji Xerox Co Ltd Developing device and image forming apparatus
JP2017021126A (en) * 2015-07-09 2017-01-26 富士ゼロックス株式会社 Developing device and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346726A (en) * 1992-06-15 1993-12-27 Matsushita Electric Ind Co Ltd Image forming device
JPH09251219A (en) * 1996-03-14 1997-09-22 Minolta Co Ltd Developing method
JP2001296736A (en) * 2000-04-13 2001-10-26 Canon Inc Image forming device
JP2003208028A (en) * 2002-01-16 2003-07-25 Ricoh Co Ltd Developing method, image forming method and image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346726A (en) * 1992-06-15 1993-12-27 Matsushita Electric Ind Co Ltd Image forming device
JPH09251219A (en) * 1996-03-14 1997-09-22 Minolta Co Ltd Developing method
JP2001296736A (en) * 2000-04-13 2001-10-26 Canon Inc Image forming device
JP2003208028A (en) * 2002-01-16 2003-07-25 Ricoh Co Ltd Developing method, image forming method and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231073A (en) * 2009-03-27 2010-10-14 Fuji Xerox Co Ltd Developing device and image forming apparatus
US8185024B2 (en) 2009-03-27 2012-05-22 Fuji Xerox Co., Ltd. Developing unit having a magnet member and image forming apparatus including the developing unit
JP2017021126A (en) * 2015-07-09 2017-01-26 富士ゼロックス株式会社 Developing device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4882641B2 (en) Developing device and image forming apparatus using the same
JP2006267891A (en) Developing device and image forming apparatus
JP6025383B2 (en) Development device
JP2009053362A (en) Development device in image forming apparatus
US8406661B2 (en) Developing device and image forming apparatus provided therewith
JP4951223B2 (en) Development device
JP2005055674A (en) Developing magnet roller, developing apparatus, process cartridge and image forming apparatus
KR100605170B1 (en) Developing unit for image forming apparatus
JP5359766B2 (en) Image forming apparatus
JP3060763B2 (en) Developing device
JP5346869B2 (en) Developing device and image forming apparatus having the same
US6718153B2 (en) Developing device for preventing thickening of the developer at both ends of a sleeve
JP4746378B2 (en) Development device
JP2005077540A (en) Developing device
JP2006235328A (en) Developing device and electrostatic recording apparatus using the same
JP2006047840A (en) Developing device and image forming apparatus using the same
JP2005275069A (en) Development apparatus, and processing cartridge and picture forming device using the development apparatus
JPH1124407A (en) Image forming device
JP2010128182A (en) Developing roller, developing device, process cartridge, and image forming apparatus
JP2018116242A (en) Developing device
JP2007219400A (en) Developer conveyance amount restricting member, developing device, image forming apparatus, and replacing method for development body
JP2012042839A (en) Development device and image forming apparatus
JP3677443B2 (en) Development device
JP5514615B2 (en) Developing device and image forming apparatus having the same
JPH04330475A (en) Developing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904