JP2009053263A - Optical control element and panel, and optical control device using the same - Google Patents

Optical control element and panel, and optical control device using the same Download PDF

Info

Publication number
JP2009053263A
JP2009053263A JP2007217384A JP2007217384A JP2009053263A JP 2009053263 A JP2009053263 A JP 2009053263A JP 2007217384 A JP2007217384 A JP 2007217384A JP 2007217384 A JP2007217384 A JP 2007217384A JP 2009053263 A JP2009053263 A JP 2009053263A
Authority
JP
Japan
Prior art keywords
light
light control
control element
hole
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007217384A
Other languages
Japanese (ja)
Inventor
Tomohiko Fujishima
智彦 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40504422&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2009053263(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to JP2007217384A priority Critical patent/JP2009053263A/en
Publication of JP2009053263A publication Critical patent/JP2009053263A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical control element capable of obtaining clear and bright optical images without generating deformation, and to provide an optical control panel using the same. <P>SOLUTION: The optical control element 11 arranged to face paraboloidal mirrors 14, 15 by being matched with an optical axes L is provided with an incoming light hole 12 in the center of a bottom part of one paraboloidal mirror 14 and an outgoing light hole 13 in the center of a bottom part of the other paraboloidal mirror 15 respectively wherein the focal points of the paraboloidal mirrors 14, 15 are at the bottom center of the facing paraboloidal mirrors 15, 14, respectively. In addition, the optical control panel 10 arranges the optical control element 11 to juxtapose the optical axes L of the optical control element 11 on a plane toward a prescribed direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、物体からの散乱光を受光して1点から放出する光制御素子、及びこの光制御素子を用いて物体からの散乱光を1点に収束させて物体の光学像を別の位置に結像する光制御パネル、並びに光制御パネルを用いて物体の光学像を別の位置に立体像として結像する光制御装置に関する。 The present invention relates to a light control element that receives scattered light from an object and emits it from one point, and uses this light control element to converge the scattered light from the object to one point so that an optical image of the object is located at another position. And a light control device that forms an optical image of an object as a stereoscopic image at another position using the light control panel.

物体から放出された光を受光して1点から放出する光制御素子を利用した光制御パネルとして、透明ガラス質の短い円柱体の側周面に鏡面処理を施して内側を反射面にすると共に、一方の端面を中央部に微小透光孔(例えば、円柱体直径の1/100〜1/5程度の内径)が形成され不透光シートで被って形成した円筒反射素子をその光軸が平行になるように平面上に隙間なく配置した光制御パネルが提案されている(例えば、特許文献1参照)。 As a light control panel that uses a light control element that receives light emitted from an object and emits it from a single point, the side surface of a transparent glassy short cylindrical body is mirror-finished to make the inside a reflective surface A cylindrical reflecting element formed with a small light-transmitting hole (for example, an inner diameter of about 1/100 to 1/5 of the diameter of a cylindrical body) in the center of one end surface and covered with a light-impermeable sheet has an optical axis There has been proposed a light control panel that is arranged on a plane without a gap so as to be parallel (see, for example, Patent Document 1).

特開平10−239507号公報JP-A-10-239507

しかしながら、特許文献1では、微小透光孔が有限の大きさのため、微小透光孔を通過した異なる入射角度の光線は、それぞれ円筒反射素子の側周面の軸方向に異なる位置で反射する。このため、円筒反射素子で構成した光制御パネルでは反射光が複数の点で収束することになって、光学像が不鮮明になる(光学像にボケが生じる)という問題が生じる。また、微小透光孔を通過した光だけを用いて結像させるため、光制御パネルを通過する光量が少なくなって光学像が暗くなるという問題も生じる。更に、微小透光孔を通過したある太さを有する光束が側周面に入射して反射する場合、円筒反射素子の光軸に直交する面内における反射は円周内面(凹面)における反射となるため、円筒反射素子の光軸に直交する面内では反射光が広がる(反射角度が増大する)ことになり、得られる光学像が歪むという問題が生じる。 However, in Patent Document 1, since the minute light transmitting hole has a finite size, light beams having different incident angles that have passed through the minute light transmitting hole are reflected at different positions in the axial direction of the side circumferential surface of the cylindrical reflecting element. . For this reason, in the light control panel constituted by the cylindrical reflection elements, the reflected light is converged at a plurality of points, which causes a problem that the optical image becomes unclear (the optical image is blurred). In addition, since the image is formed using only the light that has passed through the minute light transmitting holes, there is a problem that the amount of light passing through the light control panel is reduced and the optical image becomes dark. Furthermore, when a light beam having a certain thickness that has passed through the minute light transmitting hole is incident on the side peripheral surface and reflected, the reflection in the plane perpendicular to the optical axis of the cylindrical reflection element is the reflection on the inner circumferential surface (concave surface). For this reason, the reflected light spreads (increases the reflection angle) in a plane orthogonal to the optical axis of the cylindrical reflection element, causing a problem that the obtained optical image is distorted.

本発明はかかる事情に鑑みてなされたもので、鮮明で、明るく、歪みの生じない光学像を得ることが可能な光制御素子及び光制御パネル並びにそれを用いた光制御装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a light control element, a light control panel, and a light control device using the light control element that can obtain a clear, bright, and distortion-free optical image. Objective.

前記目的に沿う第1の発明に係る光制御素子は、光軸を合わせて放物面鏡を対向して配置した光制御素子であって、
前記それぞれの放物面鏡の焦点は対向する側の放物面鏡の底中心にあって、しかも、一方の前記放物面鏡の底部中央には入光孔が、他方の前記放物面鏡の底部中央には出光孔がそれぞれ設けられている。
The light control element according to the first invention that meets the above-mentioned object is a light control element in which the parabolic mirrors are arranged facing the optical axis,
The focal point of each of the parabolic mirrors is at the bottom center of the parabolic mirror on the opposite side, and a light incident hole is formed at the center of the bottom of one of the parabolic mirrors, and the other parabolic surface. A light exit hole is provided in the center of the bottom of the mirror.

第1の発明に係る光制御素子において、前記対向する放物面鏡の外側両側に光軸を合わせて光学レンズをそれぞれ配置し、しかも、該各光学レンズの焦点位置をそれぞれ前記放物面鏡の前記入光孔の中心位置及び前記出光孔の中心位置とすることができる。
ここで、光学レンズとは、球面凸レンズ、非球面凸レンズ、球面凸レンズを組合わせた組合せレンズ、非球面凸レンズを組合わせた組合せレンズ、球面凸レンズに球面凹レンズ、非球面凸レンズ、及び非球面凹レンズのいずれか1以上を組み合わせた組合せレンズを指す。なお、球面凸レンズ、非球面凸レンズは、片面が平面となった平凸レンズを含む。
In the light control element according to the first aspect of the present invention, optical lenses are respectively arranged on both outer sides of the opposing parabolic mirrors so that the optical axes are aligned, and the focal positions of the optical lenses are respectively set to the parabolic mirrors. The center position of the light incident hole and the center position of the light exit hole.
Here, the optical lens is any one of a spherical convex lens, an aspheric convex lens, a combination lens combining a spherical convex lens, a combination lens combining an aspheric convex lens, a spherical convex lens, a spherical concave lens, an aspheric convex lens, and an aspheric concave lens. Or a combination lens combining one or more. In addition, the spherical convex lens and the aspherical convex lens include a plano-convex lens in which one side is a flat surface.

前記目的に沿う第2の発明に係る光制御パネルは、第1の発明に係る光制御素子を、該光制御素子の光軸を所定の方向に向けて平面上に並べて配置している。
ここで、前記光制御素子の光軸は、該光制御パネルに対して直交するのが好ましい。
In the light control panel according to the second aspect of the invention, the light control element according to the first aspect is arranged on a plane with the optical axis of the light control element facing a predetermined direction.
Here, it is preferable that the optical axis of the light control element is orthogonal to the light control panel.

前記目的に沿う第3の発明に係る光制御装置は、第2の発明に係る光制御パネルが2枚隙間を設けて配置されている。 In the light control device according to the third aspect of the invention that meets the above object, the light control panel according to the second aspect of the invention is arranged with a gap.

請求項1、2記載の光制御素子においては、一方の放物面鏡の底中心にある入光孔から入射する光束の中で入光孔の中心(他方の放物面鏡の焦点)を通過する光束だけが、他方の放物面鏡で反射されて光軸(入光孔中心と出光孔中心を通過する直線)に平行な光束となって一方の放物面鏡に入射するので、一方の放物面鏡に入射した光束は一方の放物面鏡の焦点位置にある出光孔の中心に向けて反射される。その結果、この光制御素子の入光孔に入射する光束は全て出光孔の中心から放出されることになり、見掛け上、光制御素子に照射される光は全て出光孔で反射されることになって、反射位置にずれが発生しない。 In the light control element according to claim 1, the center of the light incident hole (focal point of the other parabolic mirror) is selected from the light incident from the light incident hole at the bottom center of the one parabolic mirror. Only the light beam passing through is reflected by the other parabolic mirror and becomes a light beam parallel to the optical axis (straight line passing through the light incident hole center and the light emission hole center) and enters one parabolic mirror. The light beam incident on one parabolic mirror is reflected toward the center of the light exit hole at the focal position of the one parabolic mirror. As a result, all the light beams incident on the light entrance hole of this light control element are emitted from the center of the light exit hole, and apparently all the light irradiated to the light control element is reflected by the light exit hole. Thus, no deviation occurs in the reflection position.

特に、請求項2記載の光制御素子においては、光制御素子の入光孔の前方に入光孔の中心位置が焦点となる光学レンズを、出光孔の後方に出光孔の中心位置が焦点となる光学レンズをそれぞれ配置することで、光学レンズの口径内で光学レンズの光軸に平行となる広範囲の光束を光制御素子の入光孔の中心位置に収束させて光制御素子内に入光させ、放物面鏡間で反射させて光制御素子の出光孔の中心位置に収束させることができるので、出光孔から均一に拡大した光束として放出することができる。 In particular, in the light control element according to claim 2, an optical lens having the center position of the light entrance hole as a focal point is disposed in front of the light entrance hole of the light control element, and the center position of the light exit hole is defined as a focus behind the light exit hole. By arranging each of the optical lenses, a wide range of light flux parallel to the optical axis of the optical lens within the aperture of the optical lens is converged to the center position of the light entrance hole of the light control element, and enters the light control element. Since the light beam is reflected between the parabolic mirrors and converged to the center position of the light exit hole of the light control element, it can be emitted as a uniformly expanded light beam from the light exit hole.

請求項3記載の光制御パネルにおいては、光制御素子の入光孔に照射される光は全て出光孔で反射されることになって反射位置にずれが発生しないので、光制御パネルでは鮮明で歪みのない光学像を形成することができる。そして、光制御素子と光学レンズを組み合わせることで、広範囲の光束を入光孔から光制御素子に入光させ出光孔に収束させてから拡大して放出することができるので、光制御パネルでより明るい光学像を形成することができる。
特に、請求項4記載の光制御パネルにおいては、光制御素子の光軸は、光制御パネルに対して直交するので、物体の光学像を光制御パネルで別の位置に結像することができる。
In the light control panel according to claim 3, since all the light irradiated to the light entrance hole of the light control element is reflected by the light exit hole, there is no deviation in the reflection position. An optical image without distortion can be formed. By combining the light control element and the optical lens, a wide range of light flux can enter the light control element from the light incident hole, converge on the light output hole, and then be expanded and emitted. A bright optical image can be formed.
Particularly, in the light control panel according to claim 4, since the optical axis of the light control element is orthogonal to the light control panel, an optical image of the object can be formed at another position by the light control panel. .

請求項5記載の光制御装置においては、物体からの散乱光を光制御装置に入光させると、物体側に配置した光制御パネルが散乱光を受光して再生する光学像は反射光を結像させるため凹凸が逆転した再生像となる。そして、物体側に配置した光制御パネルより形成された凹凸が逆転した再生像を更に光制御パネルで受光して再生すると、凹凸が逆転した再生像の凹凸が再度逆転されるため、正常な凹凸を有する再生像が得られる。 In the light control device according to claim 5, when scattered light from an object is incident on the light control device, the optical control panel disposed on the object side receives the scattered light and reproduces the optical image. In order to form an image, a reconstructed image in which the unevenness is reversed is obtained. Then, when the reproduced image formed by the light control panel arranged on the object side with the unevenness reversed is further received and reproduced by the light control panel, the unevenness of the reproduced image with the unevenness reversed is reversed again. A reproduced image having is obtained.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の第1の実施の形態に係る光制御パネルの側面図、図2(A)は同光制御パネルの正面図、(B)、(C)はそれぞれ変形例に係る光制御素子の正面図、光制御パネルの拡大正面図、図3は本発明の第2の実施の形態に係る光制御パネルの部分拡大側面図、図4は同光制御パネルで使用する光制御素子の側面図、図5は変形例に係る凸レンズの説明図、図6は別の変形例に係る光制御パネルの説明図、図7は本発明の第3の実施の形態に係る光制御装置42の説明図、図8は変形例に係る光制御装置の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a side view of the light control panel according to the first embodiment of the present invention, FIG. 2 (A) is a front view of the light control panel, and (B) and (C) are modifications. FIG. 3 is a partially enlarged side view of the light control panel according to the second embodiment of the present invention, and FIG. 4 is the light used in the light control panel. FIG. 5 is an explanatory view of a convex lens according to a modification, FIG. 6 is an explanatory view of a light control panel according to another modification, and FIG. 7 is a light control according to the third embodiment of the present invention. FIG. 8 is an explanatory diagram of the light control device according to a modification.

図1、図2(A)に示すように、本発明の第1の実施の形態に係る光制御パネル10は、光制御素子11が、その入光孔12を表側に、出光孔13を裏側にそれぞれ向けて一定間隔sで平面上に並べて配置されており、入光孔12及び出光孔13の各中心を通る光制御素子11の光軸Lは光制御パネル10に対して直交している。以下、詳細に説明する。 As shown in FIGS. 1 and 2A, in the light control panel 10 according to the first embodiment of the present invention, the light control element 11 has the light incident hole 12 on the front side and the light output hole 13 on the back side. Are arranged side by side on a plane at regular intervals s, and the optical axis L of the light control element 11 passing through the centers of the light incident hole 12 and the light exit hole 13 is orthogonal to the light control panel 10. . Details will be described below.

ここで、光制御素子11は、光軸Lを合わせて放物面鏡14、15を対向して配置したもので、それぞれの放物面鏡14、15の焦点は対向する側の放物面鏡15、14の底中心にあって(すなわち、放物面鏡15、14の底中心間の距離が焦点距離に一致するようにして)、しかも、一方の放物面鏡14の底部中央には入光孔12が、他方の放物面鏡15の底部中央には出光孔13がそれぞれ設けられている。そして、光制御素子11の外径Dは、例えば1〜20mmであり、入光孔12の直径d及び出光孔13の直径d’の下限値は、光制御素子11の外径Dの1/50である。また、入光孔12の直径d及び出光孔13の直径d’の上限値は、外径Dの1/5である。 Here, the light control element 11 is configured by arranging the parabolic mirrors 14 and 15 so as to face each other with the optical axis L aligned, and the focal points of the parabolic mirrors 14 and 15 are parabolic surfaces on the opposite side. At the bottom center of the mirrors 15 and 14 (ie, the distance between the bottom centers of the parabolic mirrors 15 and 14 matches the focal length) and at the center of the bottom of one parabolic mirror 14 Is provided with a light entrance hole 12 and a light exit hole 13 at the center of the bottom of the other parabolic mirror 15. The outer diameter D of the light control element 11 is, for example, 1 to 20 mm, and the lower limit value of the diameter d of the light incident hole 12 and the diameter d ′ of the light emission hole 13 is 1 / out of the outer diameter D of the light control element 11. 50. Further, the upper limit value of the diameter d of the light entrance hole 12 and the diameter d ′ of the light exit hole 13 is 1/5 of the outer diameter D.

ここで、入光孔12の直径d及び出光孔13の直径d’を光制御素子11の外径Dの1/50以上、好ましくは1/20以上とすることで、入光孔12の中心(放物面鏡15の焦点)を通過する種々の入射角度の光束を光制御素子11内に導入させて、出光孔13の中心(放物面鏡14の焦点)を通過する種々の入射角度の光束を光制御素子11内から放出することができる。一方、入光孔12の直径d及び出光孔13の直径d’を光制御素子11の外径Dの1/5以下、好ましくは1/6以下、より好ましくは1/7以下、更に好ましくは1/10以下とすることで、光制御素子11内に焦点外れの(入光孔12の中心を外れた)過剰な光束が進入するのを防止すると共に、光制御素子11の出光孔13から焦点外れの(出光孔13の中心を外れた)過剰な光束が放出されるのを防止できる。その結果、光制御パネル10で明るく、滲みのない鮮明な光学像を表示することができる。 Here, by setting the diameter d of the light entrance hole 12 and the diameter d ′ of the light exit hole 13 to be 1/50 or more, preferably 1/20 or more of the outer diameter D of the light control element 11, the center of the light entrance hole 12 is obtained. Light beams having various incident angles passing through (the focal point of the parabolic mirror 15) are introduced into the light control element 11, and various incident angles passing through the center of the light exit hole 13 (the focal point of the parabolic mirror 14). Can be emitted from the light control element 11. On the other hand, the diameter d of the light entrance hole 12 and the diameter d ′ of the light exit hole 13 are 1/5 or less, preferably 1/6 or less, more preferably 1/7 or less, and further preferably, the outer diameter D of the light control element 11. By setting it to 1/10 or less, it is possible to prevent an excessive light beam out of focus (out of the center of the light incident hole 12) from entering the light control element 11 and from the light exit hole 13 of the light control element 11. It is possible to prevent an excessive light beam out of focus (out of the center of the light exit hole 13) from being emitted. As a result, a bright optical image with no blur can be displayed on the light control panel 10.

光制御素子11は、平面上に隙間なく均一に並べる必要があり、例えば、図2(A)に示すように、光制御素子11は、入光孔12(出光孔13)の中心が、1辺の長さが光制御素子11の外径Dに等しい正三角形の各頂点位置に配置されるように並べることができる(正三角形頂点配置)。また、入光孔12(出光孔13)の中心が、1辺の長さが外径Dに等しい正方形の各頂点位置に配置されるように平面上に並べることもできる(正方形頂点配置)。なお、正三角形頂点配置と正方形頂点配置を比較した場合、正三角形頂点配置の方が平面上での充填率が高くなるので、正三角形頂点配置を採用すると、光制御パネル10で精緻な像を表示することができる。
なお、図2(B)に示すように、光制御素子11aを正面視して外形寸法Eの正六角形状とし、図2(C)に示すように、光制御素子11aをその入光孔12b(出光孔13b)の中心が、1辺の長さFが(1/2)・31/2・Eに等しい正三角形の各頂点位置に配置されるように並べる(ハニカム構造とする)こともできる。
For example, as shown in FIG. 2A, the light control element 11 has the center of the light incident hole 12 (light exit hole 13) as 1 on the plane. It can arrange so that the length of a side may be arrange | positioned at each vertex position of the equilateral triangle equal to the outer diameter D of the light control element 11 (regular triangle vertex arrangement | positioning). Further, the centers of the light incident holes 12 (light emitting holes 13) can be arranged on a plane so as to be disposed at respective vertex positions of a square in which the length of one side is equal to the outer diameter D (square vertex arrangement). Note that when the equilateral triangle vertex arrangement is compared with the square vertex arrangement, the equilateral triangle vertex arrangement has a higher filling rate on the plane. Therefore, if the equilateral triangle vertex arrangement is adopted, the light control panel 10 displays a precise image. Can be displayed.
As shown in FIG. 2B, the light control element 11a is formed in a regular hexagonal shape with an outer dimension E when viewed from the front, and the light control element 11a is formed in its light entrance hole 12b as shown in FIG. The centers of the (light exit holes 13b) are arranged so as to be arranged at the apex positions of equilateral triangles having a side length F equal to (1/2) · 3 1/2 · E (a honeycomb structure). You can also.

図1に示すように、光制御パネル10は、光軸と交わる底部中心に設けられた入光孔12の中心から光軸上で焦点距離の1/2の距離の位置で光軸に直交する平面上に開口部14aが存在する正面視して円形の放物面鏡14を並べて(例えば、光軸の方向を揃えて、隣り合う放物面鏡14の開口部14a同士が密接するように並べて)形成した第1の素子形成部材16と、光軸と交わる底部中心に設けられた出光孔13の中心から光軸上で焦点距離の1/2の距離の位置で光軸Lに直交する平面上に開口部15aが存在する正面視して円形の放物面鏡15を並べて(例えば、光軸の方向を揃えて、隣り合う放物面鏡15の開口部15a同士が密接するように並べて)形成した第2の素子形成部材17とを、入光孔12及び出光孔13をそれそれ外側に向けて各放物面鏡14、15の光軸同士が互いに一致するように対向させて密接配置して形成されている。 As shown in FIG. 1, the light control panel 10 is orthogonal to the optical axis at a position half the focal length on the optical axis from the center of the light incident hole 12 provided at the center of the bottom that intersects the optical axis. The circular paraboloidal mirrors 14 are arranged in a plan view when the opening 14a exists on the plane (for example, the openings 14a of the adjacent parabolic mirrors 14 are in close contact with each other by aligning the direction of the optical axis). The first element forming member 16 formed side by side and the center of the light exit hole 13 provided at the center of the bottom that intersects the optical axis are orthogonal to the optical axis L at a position that is ½ of the focal length on the optical axis. A circular paraboloidal mirror 15 is arranged in a plan view when the opening 15a exists on a plane (for example, the openings 15a of adjacent parabolic mirrors 15 are in close contact with each other with the direction of the optical axis aligned. The second element forming member 17 formed side by side, and the light incident hole 12 and the light emitting hole 13 respectively. To face so that the optical axes of the respective parabolic mirrors 14, 15 toward the outside coincide with each other are formed closely arranged.

ここで、入光孔12及び出光孔13に連通する光路12a、13aの光軸方向の長さcは、放物面鏡14、15の焦点距離をpとした場合、例えば、0〜p/10の範囲に設定される。なお、第1、第2の素子形成部材16、17は、先ず、透光性プラスチックのプレス成形又は射出成形により、放物面鏡14、15の元になる放物面が形成された素部材を形成し、次いで、素部材の放物面に底部中央に形成される入光孔12、出光孔13に相当する部分を除いて鏡面処理(めっき処理又は金属蒸着処理)を施し、入光孔12、出光孔13が並んでいる素部材の表面に不透光処理(不透光シートの貼着)を施すことにより形成される。 Here, the length c in the optical axis direction of the optical paths 12a and 13a communicating with the light entrance hole 12 and the light exit hole 13 is, for example, 0 to p / p when the focal length of the parabolic mirrors 14 and 15 is p. A range of 10 is set. The first and second element forming members 16 and 17 are element members in which a paraboloid that is a base of the parabolic mirrors 14 and 15 is formed by press molding or injection molding of translucent plastic. Then, the parabolic surface of the element member is subjected to mirror surface treatment (plating treatment or metal vapor deposition treatment) except for the portions corresponding to the light entrance hole 12 and the light exit hole 13 formed at the center of the bottom, and the light entrance hole 12 and formed by subjecting the surface of the element member in which the light exit holes 13 are lined up to an opaque process (adhering an opaque sheet).

続いて、本発明の第1の実施の形態に係る光制御パネル10の作用について説明する。
図1に示すように、物体18からの散乱光の一部は光制御パネル10に照射され、各光制御素子11の入光孔12から光制御素子11内に進行する。ここで、入光孔12の中心は放物面鏡15の焦点にあり、出光孔13の中心は放物面鏡14の焦点にあるので、入光孔12を通過して光制御素子11内に進行した散乱光の光束は放物面鏡15で反射されて光軸Lに平行な光束になって放物面鏡14に入射し、放物面鏡14では出光孔13に向けて反射される。その結果、入光孔12から光制御素子11に入射した光束は、光制御素子11の出光孔13から放出されることになって、見掛け上、出光孔13で反射されることになって、反射位置にずれが発生しない。
Next, the operation of the light control panel 10 according to the first embodiment of the present invention will be described.
As shown in FIG. 1, a part of the scattered light from the object 18 is irradiated to the light control panel 10 and travels into the light control element 11 from the light incident hole 12 of each light control element 11. Here, since the center of the light incident hole 12 is at the focal point of the parabolic mirror 15 and the center of the light emitting hole 13 is at the focal point of the parabolic mirror 14, it passes through the light incident hole 12 and is inside the light control element 11. The scattered light beam that has traveled in the direction is reflected by the parabolic mirror 15, becomes a light beam parallel to the optical axis L, enters the parabolic mirror 14, and is reflected toward the light exit hole 13 by the parabolic mirror 14. The As a result, the light beam incident on the light control element 11 from the light entrance hole 12 is emitted from the light exit hole 13 of the light control element 11 and apparently reflected by the light exit hole 13. There is no deviation in the reflection position.

一方、入光孔12から光制御素子11内に入光した光の中で、入光孔12の中心を通過しない光束も放物面鏡15で反射して放物面鏡14に入射する。ここで、実際は、放物面鏡14、15の焦点は点状ではなく有限の面積を持つため、光制御素子11内に入光する際に入光孔12の中心(放物面鏡15の焦点)を通過しなかった光は、光制御素子11の出光孔13の中心から外れた位置(放物面鏡14の焦点から外れた位置)を通過して行く。更に、入光孔12の直径dと出光孔13の直径d’を光制御素子11の外径Dに対して所定範囲内に設定しているため、光制御素子11内に焦点外れの過剰な光量の光束が入光するのを防止すると共に、光制御素子11から焦点外れの過剰な光量の光束が放出されるのを防止でき、光制御パネル10で形成した光学像が滲む(光学像の囲りが白くぼやける)のが防止できる。その結果、図1に示すように、物体18のA点で散乱した散乱光は光制御パネル10によってA’点に収束し、B点で散乱した散乱光は光制御パネル10によってB’点に収束することができ、鮮明で歪み、滲みのない実像19(ただし、凹凸が逆転)として観察される。 On the other hand, of the light that enters the light control element 11 from the light incident hole 12, the light beam that does not pass through the center of the light incident hole 12 is also reflected by the parabolic mirror 15 and enters the parabolic mirror 14. Here, in reality, the focal points of the parabolic mirrors 14 and 15 are not point-like but have a finite area. Therefore, when the light enters the light control element 11, the center of the light incident hole 12 (of the parabolic mirror 15). The light that has not passed through the focal point passes through a position deviated from the center of the light exit hole 13 of the light control element 11 (a position deviated from the focal point of the parabolic mirror 14). Further, since the diameter d of the light entrance hole 12 and the diameter d ′ of the light exit hole 13 are set within a predetermined range with respect to the outer diameter D of the light control element 11, excessive defocusing is caused in the light control element 11. It is possible to prevent a light beam having a light amount from entering, and to prevent a light beam having an excessive light amount out of focus from being emitted from the light control element 11, so that an optical image formed by the light control panel 10 is blurred (the optical image is blurred). It is possible to prevent the surrounding area from blurring white). As a result, as shown in FIG. 1, the scattered light scattered at the point A of the object 18 is converged to the point A ′ by the light control panel 10, and the scattered light scattered at the point B is moved to the point B ′ by the light control panel 10. It can be converged, and is observed as a clear, distorted, non-bleeded real image 19 (where the irregularities are reversed).

図3、図4に示すように、本発明の第2の実施の形態に係る光制御パネル20は、光制御素子21を、その入光孔22を表側に、出光孔23を裏側にそれぞれ向けて一定間隔で平面上に並べて配置したもので、入光孔22及び出光孔23の各中心を通る光制御素子21の光軸Mは光制御パネル20に対して直交している。ここで、光制御素子21は、対向する放物面鏡24、25の外側両側に光軸Mを合わせて光学レンズの一例である球面凸レンズ(以下、凸レンズという)26、27をそれぞれ配置し、しかも、各凸レンズ26、27の焦点位置をそれぞれ放物面鏡24、25の入光孔22の中心位置及び出光孔23の中心位置としている。 As shown in FIGS. 3 and 4, the light control panel 20 according to the second embodiment of the present invention has the light control element 21 facing the light incident hole 22 on the front side and the light output hole 23 on the back side. The optical axes M of the light control elements 21 passing through the centers of the light incident holes 22 and the light output holes 23 are orthogonal to the light control panel 20. Here, the light control element 21 arranges spherical convex lenses (hereinafter referred to as convex lenses) 26 and 27, which are examples of optical lenses, by aligning the optical axes M on both outer sides of the opposing parabolic mirrors 24 and 25, respectively. Moreover, the focal positions of the convex lenses 26 and 27 are the center position of the light incident hole 22 and the center position of the light exit hole 23 of the parabolic mirrors 24 and 25, respectively.

光制御素子21の外径Fは、例えば1〜20mmであり、入光孔22の直径f及び出光孔23の直径f’の下限値は、光制御素子21の外径Fの1/50、好ましくは1/20である。また、入光孔22の直径f及び出光孔23の直径f’の上限値は、外径Fの1/5以下、好ましくは1/6以下、より好ましくは1/7以下、更に好ましくは1/10以下である。これによって、光制御パネル20で明るく、滲みのない鮮明な光学像を表示することができる。また、光制御素子21は、平面上に隙間なく均一に並べる必要があり、例えば、光制御素子21の入光孔22(出光孔23)の中心が、1辺の長さが光制御素子21の外径Fに等しい正三角形の各頂点位置に配置されるように平面上に並べる正三角形頂点配置、あるいは入光孔22(出光孔23)の中心が、1辺の長さが外径Fに等しい正方形の各頂点位置に配置されるように平面上に並べる正方形頂点配置を採用する。なお、正三角形頂点配置と正方形頂点配置を比較した場合、正三角形頂点配置の方が平面上での充填率が高くなるので、正三角形頂点配置を採用すると、光制御パネルで精緻な像を表示することができる。 The outer diameter F of the light control element 21 is, for example, 1 to 20 mm, and the lower limit values of the diameter f of the light incident hole 22 and the diameter f ′ of the light emission hole 23 are 1/50 of the outer diameter F of the light control element 21; Preferably it is 1/20. The upper limit of the diameter f of the light entrance hole 22 and the diameter f ′ of the light exit hole 23 is 1/5 or less, preferably 1/6 or less, more preferably 1/7 or less, and further preferably 1 of the outer diameter F. / 10 or less. Thereby, a bright optical image with no blur can be displayed on the light control panel 20. Further, the light control elements 21 need to be arranged uniformly on the plane without any gap. For example, the center of the light incident hole 22 (light exit hole 23) of the light control element 21 is one side long. An equilateral triangle apex arranged on a plane so as to be arranged at each apex position of an equilateral triangle equal to the outer diameter F of the light source, or the center of the light incident hole 22 (light exit hole 23) has a length of one side of the outer diameter F. Adopt a square vertex arrangement that arranges on a plane so that it is arranged at each vertex position of a square equal to. In addition, when the equilateral triangle vertex arrangement is compared with the square vertex arrangement, the equilateral triangle vertex arrangement has a higher filling rate on the plane, so if the equilateral triangle vertex arrangement is adopted, a precise image is displayed on the light control panel. can do.

図3に示すように、光制御パネル20は、一側に光軸と交わる底部中心に設けられた入光孔22の中心から光軸上で焦点距離の1/2の距離の位置で光軸に直交する平面上に開口部24aが存在する正面視して円形の放物面鏡24を並べて(例えば、光軸の方向を揃えて、隣り合う放物面鏡24の開口部24a同士が密接するように並べて)形成され、一側に拡径側が開口し縮径側が入光孔22に接続する円錐台状の空間部28が形成された第1の素子形成部材29と、他側に光軸と交わる底部中心に設けられた出光孔23の中心から光軸上で焦点距離の1/2の距離の位置で光軸に直交する平面上に開口部25aが存在する正面視して円形の放物面鏡25を並べて(例えば、光軸の方向を揃えて、隣り合う放物面鏡25の開口部25a同士が密接するように並べて)形成され、他側に拡径側が開口し縮径側が出光孔23に接続する円錐台状の空間部30が形成された第2の素子形成部材31とを、入光孔22及び出光孔23を外側に向けて各放物面鏡24、25の光軸同士が互いに一致するように対向させて接合し、第1の素子形成部材29の一側に空間部28の開口中心位置に合わせて凸レンズ26が配置されている第1のレンズ板32を、第2の素子形成部材31の他側に空間部30の開口中心位置に合わせて凸レンズ27が配置されている第2のレンズ板33をそれぞれ取付けることにより形成されている。 As shown in FIG. 3, the light control panel 20 has an optical axis at a position half the focal length on the optical axis from the center of the light incident hole 22 provided at the center of the bottom that intersects the optical axis on one side. The circular paraboloid mirrors 24 are arranged in a plane when viewed from the front where the opening 24a exists on a plane orthogonal to the plane (for example, the openings 24a of the adjacent parabolic mirrors 24 are in close contact with each other with the direction of the optical axis aligned. A first element forming member 29 formed with a truncated cone-shaped space portion 28 having a diameter-expanded side opened on one side and a diameter-reduced side connected to the light incident hole 22, and light on the other side. The opening 25a exists on a plane perpendicular to the optical axis at a position half the focal length on the optical axis from the center of the light exit hole 23 provided at the center of the bottom that intersects the axis. The parabolic mirrors 25 are arranged side by side (for example, the openings 25a of the adjacent parabolic mirrors 25 are aligned with the direction of the optical axis aligned. A second element forming member 31 formed with a frustoconical space 30 formed on the other side and having a diameter-expanded side opened on the other side and connected to the light-emitting hole 23 on the other side. The parabolic mirrors 24 and 25 face each other so that the optical axes of the paraboloid mirrors 24 and 25 coincide with each other, and are joined to one side of the first element forming member 29. A first lens plate 32 on which a convex lens 26 is arranged in accordance with the center position is a second lens in which a convex lens 27 is arranged on the other side of the second element forming member 31 in accordance with the opening center position of the space 30. The lens plates 33 are attached to each other.

空間部28の光軸方向の長さは凸レンズ26の焦点距離と同一長さ、空間部30の光軸方向の長さは凸レンズ27の焦点距離と同一長さになっている。また、空間部28、30の拡径側の直径、及び凸レンズ26、27の外径は、光制御素子21の外径Fに一致している。
ここで、第1(第2)の素子形成部材29(31)は、先ず、放物面鏡24(25)の元になる放物面が形成された素部材を透光性プラスチックのプレス成形又は射出成形により形成し、次いで、素部材の放物面に底部中央に形成される入光孔22(出光孔23)に相当する部分を除いて鏡面処理(めっき処理又は金属蒸着処理)を施すことにより形成される。また、第1のレンズ板32(第2のレンズ板33)は、透光性プラスチックのプレス成形又は射出成形により形成する。
なお、図5に示すように、第1、第2のレンズ板34、35に設ける凸レンズ36、37を平凸レンズとして、空間部28、30に取付けられる側を凸面となるようにしてもよい。また、空間部28、30に取付けられる側を平面としてもよい。
The length of the space 28 in the optical axis direction is the same as the focal length of the convex lens 26, and the length of the space 30 in the optical axis direction is the same as the focal length of the convex lens 27. Further, the diameters of the space portions 28 and 30 on the enlarged diameter side and the outer diameters of the convex lenses 26 and 27 coincide with the outer diameter F of the light control element 21.
Here, the first (second) element forming member 29 (31) is first formed by translucent plastic press-molding the element member on which the parabolic surface on which the parabolic mirror 24 (25) is formed. Alternatively, it is formed by injection molding, and then a mirror surface treatment (plating treatment or metal vapor deposition treatment) is performed on the parabolic surface of the element member except for the portion corresponding to the light entrance hole 22 (light exit hole 23) formed at the center of the bottom. Is formed. Further, the first lens plate 32 (second lens plate 33) is formed by press molding or injection molding of translucent plastic.
As shown in FIG. 5, the convex lenses 36 and 37 provided on the first and second lens plates 34 and 35 may be plano-convex lenses, and the side attached to the space portions 28 and 30 may be convex. Moreover, it is good also considering the side attached to the space parts 28 and 30 as a plane.

続いて、本発明の第2の実施の形態に係る光制御パネル20の作用について説明する。
光制御素子21においては、物体からの散乱光の中で凸レンズ26の光軸Mに平行な入射角度を有する光束は、凸レンズ26を通過すると入光孔22の中心位置(凸レンズ26の焦点)に収束するので、入光孔22を通過し光制御素子21内を進行して放物面鏡25で反射された光束は光軸Mに平行になって放物面鏡24に入射する。また、放物面鏡24に入射した光束は出光孔23に向けて反射されるため、出光孔23の中心位置(凸レンズ27の焦点)に収束する。そして、出光孔23の中心位置に収束した光束は凸レンズ27により光軸Mに平行な光束に戻されて放出される。その結果、光制御素子21では、光制御素子11と比較して、凸レンズ26で多量の光束を集めて入光孔22から光制御素子21に入射させて出光孔23から放出することができる。
Next, the operation of the light control panel 20 according to the second embodiment of the present invention will be described.
In the light control element 21, a light beam having an incident angle parallel to the optical axis M of the convex lens 26 in the scattered light from the object passes through the convex lens 26 and reaches the center position of the light incident hole 22 (focal point of the convex lens 26). Since the light converges, the light beam that has passed through the light entrance hole 22, traveled through the light control element 21, and was reflected by the parabolic mirror 25 is parallel to the optical axis M and enters the parabolic mirror 24. Further, since the light beam incident on the parabolic mirror 24 is reflected toward the light exit hole 23, it converges at the center position of the light exit hole 23 (the focal point of the convex lens 27). Then, the light beam converged at the center position of the light exit hole 23 is returned to the light beam parallel to the optical axis M by the convex lens 27 and emitted. As a result, in the light control element 21, compared to the light control element 11, a larger amount of light flux can be collected by the convex lens 26, incident on the light control element 21 from the light entrance hole 22, and emitted from the light exit hole 23.

一方、物体からの散乱光の中で凸レンズ26の光軸Mに平行でない入射角度を有する光束は、凸レンズ26で曲げられて入光孔22の中心(放物面鏡25の焦点)とは異なる位置を通過して光制御素子21内に入光し、放物面鏡25で反射して放物面鏡24に入射する。そして、放物面鏡24に入射した光は出光孔23の中心(放物面鏡24の焦点)とは異なる位置を通過して光制御素子21から放出される。更に、入光孔22の直径fと出光孔23の直径f’を光制御素子21の外径Fに対して所定範囲内に設定しているので、光制御素子21内に焦点外れの過剰な光量の光束が入光するのを防止すると共に、光制御素子21から焦点外れの過剰な光量の光束が放出されるのを防止でき、光制御パネル20で形成した光学像が滲むのが防止できる。その結果、物体で散乱した散乱光から、鮮明で歪み滲みのない光学像を形成することができる。 On the other hand, a light beam having an incident angle that is not parallel to the optical axis M of the convex lens 26 in the scattered light from the object is bent by the convex lens 26 and is different from the center of the light incident hole 22 (the focal point of the parabolic mirror 25). The light passes through the position, enters the light control element 21, is reflected by the parabolic mirror 25, and enters the parabolic mirror 24. The light incident on the parabolic mirror 24 is emitted from the light control element 21 through a position different from the center of the light exit hole 23 (the focal point of the parabolic mirror 24). Further, since the diameter f of the light entrance hole 22 and the diameter f ′ of the light exit hole 23 are set within a predetermined range with respect to the outer diameter F of the light control element 21, excessive defocusing is caused in the light control element 21. It is possible to prevent a light beam having a light amount from entering and to prevent a light beam having an excessive light amount out of focus from being emitted from the light control element 21 and to prevent an optical image formed by the light control panel 20 from bleeding. . As a result, a clear optical image free from distortion blur can be formed from the scattered light scattered by the object.

ここで、図6に示すように、放物面鏡24の外側に配置する凸レンズ38の直径を放物面鏡24の直径又は入光孔22のピッチより小さく(例えば、放物面鏡24の直径又は入光孔22のピッチの1/5〜3/4)、放物面鏡25の外側に配置する凸レンズ39の直径を放物面鏡25の直径又は出光孔23のピッチより小さく(例えば、放物面鏡25の直径又は出光孔23のピッチの1/5〜3/4)した光制御素子40を備えた光制御パネル41を形成することもできる。
凸レンズ38の直径を小さくすることで、凸レンズ38に近い物体からの散乱光は凸レンズ38を通過せずに直接入光孔22に到達して光制御素子40内に入光することができ、凸レンズ39の直径を小さくすることで、光制御素子40の出光孔23から凸レンズ39を通過しないで直接放出することができる。一方、凸レンズ38に遠い物体からの散乱光は凸レンズ38を通過して入光孔22に到達して光制御素子40内に入光し、光制御素子40の出光孔23から出た光は凸レンズ39を通過して放出する。その結果、光制御パネル41では遠方の物体、近接した物体に対しても立体像を結像することができ、遠近両用の光制御パネルを形成できる。なお、凸レンズ38、39の焦点距離は同一で、凸レンズ38の光軸と凸レンズ39の光軸は一致していることが望ましい。
Here, as shown in FIG. 6, the diameter of the convex lens 38 arranged outside the parabolic mirror 24 is smaller than the diameter of the parabolic mirror 24 or the pitch of the light incident holes 22 (for example, the parabolic mirror 24 The diameter or the diameter of the convex lens 39 arranged outside the parabolic mirror 25 is smaller than the diameter of the parabolic mirror 25 or the pitch of the light emitting holes 23 (for example, 1/5 to 3/4 of the diameter or the pitch of the light incident holes 22). Alternatively, the light control panel 41 including the light control element 40 having a diameter of the parabolic mirror 25 or 1/5 to ¾ of the pitch of the light exit holes 23 may be formed.
By reducing the diameter of the convex lens 38, the scattered light from an object close to the convex lens 38 can reach the light incident hole 22 directly without passing through the convex lens 38 and can enter the light control element 40. By reducing the diameter of 39, the light can be directly emitted from the light exit hole 23 of the light control element 40 without passing through the convex lens 39. On the other hand, scattered light from an object far from the convex lens 38 passes through the convex lens 38 and reaches the light incident hole 22 and enters the light control element 40, and light emitted from the light output hole 23 of the light control element 40 is convex lens. 39 is discharged. As a result, the light control panel 41 can form a three-dimensional image even on a distant object or a close object, thereby forming a far and near light control panel. The focal lengths of the convex lenses 38 and 39 are preferably the same, and the optical axis of the convex lens 38 and the optical axis of the convex lens 39 are preferably coincident.

図7に示すように、本発明の第3の実施の形態に係る光制御装置42は、第1又は第2の実施の形態で説明した光制御パネル43、44が隙間を設けて互いに平行に配置され、各光制御パネル43、44に配置された図示しない光制御素子の光軸はそれぞれ一致している。ここで、光制御パネル43は物体45側に配置され、光制御パネル44は、光制御パネル43の背面側で、光制御パネル43により形成される物体45の再生像46の形成位置より外側に配置されている。そして、物体45からの散乱光を物体側に配置した光制御パネル43が受光して再生する再生像46は、反射光を結像させるため凹凸が逆転した光学像となる。そして、再生像46を更に光制御パネル44で受光して再生すると、再生像46の凹凸が再度逆転されるため、正常な凹凸を有する再生像47が得られる。なお、各光制御パネル43、44に配置された図示しない光制御素子の光軸はそれぞれ一致しなくてもよい。
更に、図8に示すように、物体45に対向させて配置する2枚の光制御パネル43、44を互いに平行ではなく角度を付けて配置して光制御装置48を構成することもできる。
As shown in FIG. 7, in the light control device 42 according to the third embodiment of the present invention, the light control panels 43 and 44 described in the first or second embodiment are parallel to each other with a gap. The optical axes of the light control elements (not shown) arranged on the respective light control panels 43 and 44 coincide with each other. Here, the light control panel 43 is disposed on the object 45 side, and the light control panel 44 is on the back side of the light control panel 43 and outside the position where the reproduced image 46 of the object 45 formed by the light control panel 43 is formed. Has been placed. A reproduced image 46 reproduced by receiving and reproducing the scattered light from the object 45 on the object side is an optical image in which the unevenness is reversed in order to form the reflected light. When the reproduced image 46 is further received by the light control panel 44 and reproduced, the unevenness of the reproduced image 46 is reversed again, so that a reproduced image 47 having normal unevenness is obtained. Note that the optical axes of the light control elements (not shown) arranged in the light control panels 43 and 44 do not have to coincide with each other.
Further, as shown in FIG. 8, the light control device 48 may be configured by arranging two light control panels 43, 44 arranged to face the object 45 at an angle rather than parallel to each other.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、第1の実施の形態で、屈折率及び光吸収率の低い透明材(例えばアクリル樹脂)を、入、出光孔、又は入、出光孔及び放物面鏡で囲まれた空間内に充填してもよい。これによって入、出光孔及び前記空間内に異物が進入するのを防止できる。
また、第1の実施の形態で、第1、第2の素子形成部材の代りに、外形状が光軸を合わせて対向配置した放物面鏡の外形状と同一となるように透明材質で形成され、各放物面の底中心部に入光孔、出光孔に相当する領域を除いて鏡面処理が施された紡錘形の立体が光軸を揃え並べて配置された一枚の大放物面鏡部材を形成し、大放物面鏡部材と同一外形状で各放物面の底部中心と同一の間隔で中心位置が配置された孔が並べて設けられた一枚の大孔形成部材とを、大放物面鏡部材の各入、出光孔と孔形成部材の各孔が連通するように密接させて光制御パネルを形成することもできる。
更に、第2の実施の形態で、光学レンズとして球面凸レンズを使用したが、非球面凸レンズ、球面凸レンズを組合わせた組合せレンズ、非球面凸レンズを組合わせた組合せレンズ、球面凸レンズに球面凹レンズ、非球面凸レンズ、及び非球面凹レンズのいずれか1以上を組み合わせた組合せレンズを使用することもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, in the first embodiment, a transparent material (for example, acrylic resin) having a low refractive index and a low light absorption rate is filled into the space surrounded by the entrance / exit holes or the entrance / exit holes and the parabolic mirror. May be. As a result, foreign matter can be prevented from entering the light entrance / exit hole and the space.
Further, in the first embodiment, instead of the first and second element forming members, a transparent material is used so that the outer shape is the same as the outer shape of the parabolic mirror arranged opposite to each other with the optical axis aligned. One large paraboloid in which spindle-shaped solids that are formed and are mirror-finished except for the areas corresponding to the light entrance and exit holes at the bottom center of each paraboloid are arranged with the optical axes aligned. Forming a mirror member, and a single large hole forming member provided with a hole arranged side by side with the same outer shape as the large paraboloid mirror member and having the same center position as the bottom center of each paraboloid It is also possible to form the light control panel by bringing the large parabolic mirror members into close contact so that the light emitting holes and the holes of the hole forming member communicate with each other.
Furthermore, in the second embodiment, a spherical convex lens is used as an optical lens. However, an aspheric convex lens, a combination lens combining a spherical convex lens, a combination lens combining an aspheric convex lens, a spherical concave lens, a non-spherical concave lens, A combination lens obtained by combining any one or more of a spherical convex lens and an aspheric concave lens can also be used.

本発明の第1の実施の形態に係る光制御パネルの側面図である。It is a side view of the light control panel which concerns on the 1st Embodiment of this invention. (A)は同光制御パネルの正面図、(B)、(C)はそれぞれ変形例に係る光制御素子の正面図、光制御パネルの拡大正面図である。(A) is a front view of the light control panel, (B) and (C) are a front view of a light control element according to a modification, and an enlarged front view of the light control panel, respectively. 本発明の第2の実施の形態に係る光制御パネルの部分拡大側面図である。It is a partial expanded side view of the light control panel which concerns on the 2nd Embodiment of this invention. 同光制御パネルで使用する光制御素子の側面図である。It is a side view of the light control element used with the same light control panel. 変形例に係る凸レンズの説明図である。It is explanatory drawing of the convex lens which concerns on a modification. 別の変形例に係る光制御パネルの説明図である。It is explanatory drawing of the light control panel which concerns on another modification. 本発明の第3の実施の形態に係る光制御装置の説明図である。It is explanatory drawing of the light control apparatus which concerns on the 3rd Embodiment of this invention. 変形例に係る光制御装置の説明図である。It is explanatory drawing of the light control apparatus which concerns on a modification.

符号の説明Explanation of symbols

10:光制御パネル、11、11a:光制御素子、12:入光孔、12a:光路、12b:入光孔、13:出光孔、13a:光路、13b:出光孔、14:放物面鏡、14a:開口部、15:放物面鏡、15a:開口部、16:第1の素子形成部材、17:第2の素子形成部材、18:物体、19:実像、20:光制御パネル、21:光制御素子、22:入光孔、23:出光孔、24:放物面鏡、24a:開口部、25:放物面鏡、25a:開口部、26、27:球面凸レンズ、28:空間部、29:第1の素子形成部材、30:空間部、31:第2の素子形成部材、32:第1のレンズ板、33:第2のレンズ板、34:第1のレンズ板、35:第2のレンズ板、36、37:凸レンズ、38、39:凸レンズ、40:光制御素子、41:光制御パネル、42:光制御装置、43、44:光制御パネル、45:物体、46、47:再生像、48:光制御装置 DESCRIPTION OF SYMBOLS 10: Light control panel 11, 11a: Light control element, 12: Light entrance hole, 12a: Light path, 12b: Light entrance hole, 13: Light exit hole, 13a: Light path, 13b: Light exit hole, 14: Parabolic mirror 14a: opening, 15: parabolic mirror, 15a: opening, 16: first element forming member, 17: second element forming member, 18: object, 19: real image, 20: light control panel, 21: Light control element, 22: Light entrance hole, 23: Light exit hole, 24: Parabolic mirror, 24a: Opening part, 25: Parabolic mirror, 25a: Opening part, 26, 27: Spherical convex lens, 28: Space part, 29: First element forming member, 30: Space part, 31: Second element forming member, 32: First lens plate, 33: Second lens plate, 34: First lens plate, 35: second lens plate, 36, 37: convex lens, 38, 39: convex lens, 40: light control element, 41: Control panel, 42: light control device, 43 and 44: light control panel, 45: object, 47: reproduced image 48: Light control device

Claims (5)

光軸を合わせて放物面鏡を対向して配置した光制御素子であって、
前記それぞれの放物面鏡の焦点は対向する側の放物面鏡の底中心にあって、しかも、一方の前記放物面鏡の底部中央には入光孔が、他方の前記放物面鏡の底部中央には出光孔がそれぞれ設けられていることを特徴とする光制御素子。
A light control element in which a parabolic mirror is arranged opposite to the optical axis,
The focal point of each of the parabolic mirrors is at the bottom center of the parabolic mirror on the opposite side, and a light incident hole is formed at the center of the bottom of one of the parabolic mirrors, and the other parabolic surface. A light control element characterized in that a light exit hole is provided in the center of the bottom of the mirror.
請求項1記載の光制御素子において、前記対向する放物面鏡の外側両側に光軸を合わせて光学レンズをそれぞれ配置し、しかも、該各光学レンズの焦点位置をそれぞれ前記放物面鏡の前記入光孔の中心位置及び前記出光孔の中心位置としたことを特徴とする光制御素子。 2. The light control element according to claim 1, wherein optical lenses are respectively arranged on both outer sides of the opposing parabolic mirrors so that optical axes are aligned, and the focal positions of the optical lenses are respectively set to the parabolic mirrors. A light control element characterized by having a center position of the light entrance hole and a center position of the light exit hole. 請求項1及び2のいずれか1項に記載の光制御素子を、該光制御素子の光軸を所定の方向に向けて平面上に並べて配置したことを特徴とする光制御パネル。 The light control panel according to claim 1, wherein the light control element according to claim 1 is arranged on a plane with the optical axis of the light control element facing a predetermined direction. 請求項3記載の光制御パネルにおいて、前記光制御素子の光軸は、該光制御パネルに対して直交することを特徴とする光制御パネル。 4. The light control panel according to claim 3, wherein the optical axis of the light control element is orthogonal to the light control panel. 請求項3及び4のいずれか1項に記載の光制御パネルが2枚隙間を設けて配置されていることを特徴とする光制御装置。 The light control device according to claim 3, wherein two light control panels are arranged with a gap.
JP2007217384A 2007-08-23 2007-08-23 Optical control element and panel, and optical control device using the same Withdrawn JP2009053263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217384A JP2009053263A (en) 2007-08-23 2007-08-23 Optical control element and panel, and optical control device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217384A JP2009053263A (en) 2007-08-23 2007-08-23 Optical control element and panel, and optical control device using the same

Publications (1)

Publication Number Publication Date
JP2009053263A true JP2009053263A (en) 2009-03-12

Family

ID=40504422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217384A Withdrawn JP2009053263A (en) 2007-08-23 2007-08-23 Optical control element and panel, and optical control device using the same

Country Status (1)

Country Link
JP (1) JP2009053263A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101086A1 (en) 2009-03-06 2010-09-10 Ntn株式会社 Navigation system for remotely operated actuator
US9256060B2 (en) 2012-06-27 2016-02-09 Hitachi Maxell, Ltd. Pinhole array and display device using same
WO2018014010A1 (en) 2016-07-15 2018-01-18 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
US11579465B2 (en) 2018-01-14 2023-02-14 Light Field Lab, Inc. Four dimensional energy-field package assembly
US11719864B2 (en) 2018-01-14 2023-08-08 Light Field Lab, Inc. Ordered geometries for optomized holographic projection
US12032180B2 (en) 2023-06-21 2024-07-09 Light Field Lab, Inc. Energy waveguide system with volumetric structure operable to tessellate in three dimensions

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101086A1 (en) 2009-03-06 2010-09-10 Ntn株式会社 Navigation system for remotely operated actuator
US9256060B2 (en) 2012-06-27 2016-02-09 Hitachi Maxell, Ltd. Pinhole array and display device using same
US11733448B2 (en) 2016-07-15 2023-08-22 Light Field Lab, Inc. System and methods for realizing transverse Anderson localization in energy relays using component engineered structures
WO2018014010A1 (en) 2016-07-15 2018-01-18 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
JP2019523445A (en) * 2016-07-15 2019-08-22 ライト フィールド ラボ、インコーポレイテッド Selective propagation of energy in light field and holographic waveguide arrays.
EP3485322A4 (en) * 2016-07-15 2020-08-19 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
JP2023015039A (en) * 2016-07-15 2023-01-31 ライト フィールド ラボ、インコーポレイテッド Energy selective propagation in light field and holographic waveguide array
US11668869B2 (en) 2016-07-15 2023-06-06 Light Field Lab, Inc. Holographic superimposition of real world plenoptic opacity modulation through transparent waveguide arrays for light field, virtual and augmented reality
US11681092B2 (en) 2016-07-15 2023-06-20 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
US11796733B2 (en) 2016-07-15 2023-10-24 Light Field Lab, Inc. Energy relay and Transverse Anderson Localization for propagation of two-dimensional, light field and holographic energy
US11726256B2 (en) 2016-07-15 2023-08-15 Light Field Lab, Inc. High-density energy directing devices for two-dimensional, stereoscopic, light field and holographic displays
US11579465B2 (en) 2018-01-14 2023-02-14 Light Field Lab, Inc. Four dimensional energy-field package assembly
US11719864B2 (en) 2018-01-14 2023-08-08 Light Field Lab, Inc. Ordered geometries for optomized holographic projection
US11885988B2 (en) 2018-01-14 2024-01-30 Light Field Lab, Inc. Systems and methods for forming energy relays with transverse energy localization
US12032180B2 (en) 2023-06-21 2024-07-09 Light Field Lab, Inc. Energy waveguide system with volumetric structure operable to tessellate in three dimensions

Similar Documents

Publication Publication Date Title
JP4680202B2 (en) Single point of view solid catadioptric lens
JP5608048B2 (en) Lighting lens
JP6823817B2 (en) Head-up display device
JP6949207B2 (en) Automotive irradiator with micro optical system with segmented micro incident optics
JP2008216409A (en) Light guide body, and two-branch linear light source device
JP6490432B2 (en) Lighting device
JP2017146602A (en) Device for shaping laser beam
CN111801603B (en) Optical device, luminaire and method of manufacturing an optical device
JPWO2004049059A1 (en) Transmission screen and projection display device
JP2009053263A (en) Optical control element and panel, and optical control device using the same
JP2018098162A (en) Surface light source device and display device
JP2015079660A (en) Vehicle lighting appliance
JP6481298B2 (en) Head-up display device
KR20180094581A (en) Light collimation and projection optical system with full angle range for lamp of car, car lamp with the same
CN200986618Y (en) Non-diffraction light large focus depth imaging optical system
CN102590998A (en) Condenser lens and lens group
KR20090086618A (en) Wide angle display device
JP2009158177A (en) Lighting device
SE544143C2 (en) A device, system and method for changing the direction of emitted light cones
JP2009053262A (en) Retroreflective element and retroreflective device, and retroreflector using the same
CN100442103C (en) Non-diffraction large depth field imaging optical system
JP2009047883A (en) Screen
JP6741089B2 (en) Head up display device
CN108469008B (en) Light uniformizing device and lighting device
CN116125736A (en) Projection system and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102