JP2009053058A - Method of measuring young's modulus - Google Patents

Method of measuring young's modulus Download PDF

Info

Publication number
JP2009053058A
JP2009053058A JP2007220403A JP2007220403A JP2009053058A JP 2009053058 A JP2009053058 A JP 2009053058A JP 2007220403 A JP2007220403 A JP 2007220403A JP 2007220403 A JP2007220403 A JP 2007220403A JP 2009053058 A JP2009053058 A JP 2009053058A
Authority
JP
Japan
Prior art keywords
film
measured
substrate
young
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007220403A
Other languages
Japanese (ja)
Other versions
JP4995006B2 (en
Inventor
Naoki Yamamoto
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Kochi Prefecture Sangyo Shinko Center
Original Assignee
Casio Computer Co Ltd
Kochi Prefecture Sangyo Shinko Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Kochi Prefecture Sangyo Shinko Center filed Critical Casio Computer Co Ltd
Priority to JP2007220403A priority Critical patent/JP4995006B2/en
Publication of JP2009053058A publication Critical patent/JP2009053058A/en
Application granted granted Critical
Publication of JP4995006B2 publication Critical patent/JP4995006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring a Young's modulus without deforming a measuring object. <P>SOLUTION: By an optical lever method of making a laser beam come into a thin film formed on a substrate, for example, and of measuring the angle variation of the reflected light, deflection of the substrate is measured and internal stress σ of the thin film is determined. Next, by an in-plane method as one type of the X-ray diffraction method, the lattice surface interval of the horizontal surface direction of the thin film is measured, and distortion ε is determined. The Young's modulus E is determined based on the stress σ and distortion ε determined in that manner. This optical lever method allows the Young's modulus to be measured with the laser beam without deforming the measuring object because measurement is performed with X-rays in the in-plane X-ray diffraction method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヤング率の測定方法に関する。   The present invention relates to a method for measuring Young's modulus.

従来、ヤング率は、縦弾性係数とも呼ばれ、材料特性を表す数値であり、機械や構造物を設計する際等、広く用いられている。ヤング率は一方向に引っ張ったり圧縮したときの伸びと力の関係から求められる定数である。また、ある材料のヤング率が大きいときは外部応力に対し変形があまり生じない、換言すればその材料が硬いということを意味する。逆にヤング率が小さいときは外部応力に対し変形が大きく生ずる、つまり柔らかいということを意味する。   Conventionally, Young's modulus is also referred to as a longitudinal elastic modulus, and is a numerical value representing material characteristics, and is widely used when designing machines and structures. Young's modulus is a constant determined from the relationship between elongation and force when pulled or compressed in one direction. Further, when the Young's modulus of a certain material is large, it means that the material does not deform much with respect to external stress, in other words, the material is hard. On the contrary, when the Young's modulus is small, it means that the deformation is large with respect to the external stress, that is, it is soft.

また、ヤング率を測定する方法としては、特許文献1に開示されているように、被測定物に荷重をかけ変形させ、変形量から求める方法が知られている。また、いわゆるナノインテンデーション法等も知られている。ナノインテンデーション法は、薄膜に正三角錐圧子を押し込み、このときに圧子にかかる荷重と圧子下の膜に開いた射影面積から計算によりヤング率を求める方法である。
特開平6−3236号公報
As a method for measuring the Young's modulus, as disclosed in Patent Document 1, a method is known in which a load is deformed by applying a load to an object to be measured and the amount is determined from the amount of deformation. In addition, a so-called nano-intention method is also known. The nanointention method is a method in which a regular triangular pyramid indenter is pushed into a thin film, and a Young's modulus is obtained by calculation from a load applied to the indenter and a projected area opened in the film under the indenter.
JP-A-6-3236

ところで、ナノインテンデーション法は、圧子下の膜に開いた射影面積から計算によりヤング率を求めるため、膜を変形させずにヤング率を測定できないという問題がある。更に、ナノメートルオーダー厚さの膜では圧子が基板面に到達するため、所定程度以上の厚みの膜である必要がある。このように、ナノインテンデーション法では、ナノオーダーの膜、特に100nmより薄い膜では測定が困難であるという問題がある。   By the way, the nanointention method has a problem that the Young's modulus cannot be measured without deforming the film because the Young's modulus is obtained by calculation from the projected area opened on the film under the indenter. Furthermore, in the case of a film having a thickness of nanometer order, the indenter reaches the substrate surface. As described above, the nano-intention method has a problem that it is difficult to measure a nano-order film, particularly a film thinner than 100 nm.

また、特許文献1に開示されている方法でも、紙葉の一方を押さえて、他方に荷重をかけ変形量を測定するため、膜を変形させずにヤング率を測定することは困難である。また、ナノインテンデーション法と同様にナノオーダーの膜について測定するのは困難である。   Further, even in the method disclosed in Patent Document 1, it is difficult to measure the Young's modulus without deforming the film because one side of the paper sheet is pressed and the other is loaded and the amount of deformation is measured. Further, it is difficult to measure a nano-order film as in the nano-intention method.

このように、従来のヤング率の測定方法では被測定物を変形させずにヤング率を測定することが困難であるという問題があった。
また、特に従来のヤング率の測定方法ではナノオーダーの薄膜のヤング率を測定する困難であるという問題がある。
As described above, the conventional Young's modulus measurement method has a problem that it is difficult to measure the Young's modulus without deforming the object to be measured.
In particular, the conventional Young's modulus measurement method has a problem that it is difficult to measure the Young's modulus of a nano-order thin film.

本発明は、上述した実情に鑑みてなされたものであり、被測定物を変形させずにヤング率を測定することが可能な方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method capable of measuring Young's modulus without deforming an object to be measured.

上記目的を達成するため、本発明の第1の観点に係るヤング率の測定方法は、
応力を求める対象となる被測定膜に入射されたレーザ光の反射角を測定することにより、前記被測定膜の応力を求め、
前記被測定膜の面内方向の格子面間隔を測定することにより、前記被測定膜のひずみを求め、
前記被測定膜の応力を前記被測定膜のひずみで割ることにより、前記被測定膜のヤング率を求めることを特徴とする。
In order to achieve the above object, the Young's modulus measurement method according to the first aspect of the present invention comprises:
By measuring the reflection angle of the laser light incident on the film to be measured for which the stress is to be obtained, the stress of the film to be measured is obtained,
By measuring the lattice spacing in the in-plane direction of the film to be measured, the strain of the film to be measured is obtained,
The Young's modulus of the film to be measured is obtained by dividing the stress of the film to be measured by the strain of the film to be measured.

前記被測定膜は、基板上に形成されていてもよい。   The film to be measured may be formed on a substrate.

前記被測定膜の応力を求めることは、前記基板上に前記被測定膜が形成されていない状態で前記被測定膜に入射されたレーザ光の反射角を測定し、次いで、前記基板上に前記被測定膜が形成された状態で前記被測定膜に入射されたレーザ光の反射角を測定することを含んでもよい。   The stress of the film to be measured is obtained by measuring a reflection angle of a laser beam incident on the film to be measured in a state where the film to be measured is not formed on the substrate, and then on the substrate. The method may include measuring a reflection angle of laser light incident on the film to be measured in a state where the film to be measured is formed.

前記基板は、透明基板であってもよい。   The substrate may be a transparent substrate.

前記基板の一方の主面又は他方の主面もしくは前記被測定膜表面に、光の反射性を有する反射膜を備えてもよい。   A reflective film having light reflectivity may be provided on one main surface or the other main surface of the substrate or the surface of the film to be measured.

前記基板は、ガラス基板であってもよい。   The substrate may be a glass substrate.

前記基板は、光の反射性を有する基板であってもよい。   The substrate may be a substrate having light reflectivity.

前記基板は、シリコン基板であってもよい。   The substrate may be a silicon substrate.

前記基板の一方の主面及び他方の主面は、鏡面研磨されていてもよい。   One main surface and the other main surface of the substrate may be mirror-polished.

前記基板の一方の主面及び他方の主面には、前記被測定膜を除いて同じ膜が形成されていてもよい。   The same film may be formed on one main surface and the other main surface of the substrate except for the film to be measured.

前記被測定膜は、ZnOを含んでもよい。   The film to be measured may contain ZnO.

前記被測定膜は、結晶質であってもよい。   The film to be measured may be crystalline.

本発明によれば、膜内に存在する応力とひずみ(例えばした状態で存在する残留応力と残留ひずみ)とを求めることにより、被測定物を変形させることなくヤング率を求めることが可能なヤング率の測定方法を提供することができる。   According to the present invention, the Young's modulus can be obtained without deforming the object to be measured by obtaining the stress and strain existing in the film (for example, residual stress and residual strain existing in the state). A rate measurement method can be provided.

本発明の実施形態に係るヤング率の測定方法について、以下、図面を参照して説明する。また、本実施形態では基板上に薄膜を形成した場合の薄膜のヤング率を測定する方法を例に挙げて説明する。また、基板はシリコン基板、薄膜はZnOを例に挙げて説明する。   A method for measuring Young's modulus according to an embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, a method for measuring the Young's modulus of a thin film when a thin film is formed on a substrate will be described as an example. Further, a silicon substrate will be described as an example, and a thin film will be described using ZnO as an example.

まず、本実施形態では、ヤング率と応力とひずみとの関係を示す式1を用いてヤング率を算出する。ヤング率は応力をσ(Pa)、ひずみをε、ヤング率をΕ(Pa)とすると、これらの値は下記の式を満たす。   First, in the present embodiment, the Young's modulus is calculated using Equation 1 indicating the relationship between the Young's modulus, stress, and strain. When the Young's modulus is σ (Pa) for stress, ε for strain, and Ε (Pa) for Young's modulus, these values satisfy the following formula.

(式1)
σ=Ε・ε
(Formula 1)
σ = Ε ・ ε

応力の測定方法としては、光天秤(光てこ方式)を用いる。光天秤では、被測定物に対し、レーザ光等を照射し、被測定物からの反射光を検出することで曲率半径を測定する。被測定物、例えば基板が撓んで曲率半径が変わった場合、図1(b)および(c)に示すように反射光の角度がわずかに変化し、レーザ光等の光を検出する検出器においては、この角度の変化を光の検出位置の変化として検出することができる(光のてこ)。この反射光の角度変化をセンサで検出し、基板表面の曲率半径を測定する。具体的には、図1(a)に示すように基板11を、支持部材12によって例えば3点で支持し、この基板に対してレーザを所定の角度θ0で照射し、反射光の角度θ1を検出する。これを基板全体で繰り返し行い膜の曲率半径を測定する。 As a method for measuring stress, an optical balance (optical lever method) is used. In the optical balance, the radius of curvature is measured by irradiating the object to be measured with laser light or the like and detecting the reflected light from the object to be measured. When the object to be measured, for example, the substrate bends and the radius of curvature changes, the angle of the reflected light slightly changes as shown in FIGS. 1B and 1C, and the detector detects light such as laser light. Can detect this change in angle as a change in the detection position of light (light lever). The angle change of the reflected light is detected by a sensor, and the curvature radius of the substrate surface is measured. Specifically, as shown in FIG. 1A, a substrate 11 is supported by, for example, three points by a support member 12, and a laser is irradiated to the substrate at a predetermined angle θ 0 , and the reflected light angle θ Detect 1 This is repeated for the entire substrate to measure the radius of curvature of the film.

本実施形態では、基板上に形成されたZnO膜(被測定膜)の応力を求めるため、まずは、図1(b)に示すように、ZnO膜が形成されていない初期状態(第1の状態)のシリコン基板21表面にレーザ光を所定の角度θ0で照射し、反射光の角度θ1を検出することでシリコン基板表面の曲率半径Rを測定する(第1の曲率半径測定)。次に、図1(c)に示すように、このシリコン基板21上にZnO膜22を形成し、その状態(第2の状態)で、レーザ光を所定の角度θ0で照射し、反射光の角度θ2を検出することでシリコン基板の曲率半径Rを測定する(第2の曲率半径測定)。次に、この成膜前後の曲率半径変化量から下記の式2によってRを求め、このRを用いて式3より膜の内部応力σを求めることができる。 In this embodiment, in order to obtain the stress of the ZnO film (film to be measured) formed on the substrate, first, as shown in FIG. 1B, an initial state (first state) in which no ZnO film is formed. The surface of the silicon substrate 21 is irradiated with a laser beam at a predetermined angle θ 0 and the angle θ 1 of the reflected light is detected to measure the curvature radius R 1 of the silicon substrate surface (first curvature radius measurement). Next, as shown in FIG. 1C, a ZnO film 22 is formed on the silicon substrate 21, and in this state (second state), a laser beam is irradiated at a predetermined angle θ 0 , and reflected light By detecting the angle θ 2 , the curvature radius R 2 of the silicon substrate is measured (second curvature radius measurement). Next, R can be obtained from the amount of change in the radius of curvature before and after the film formation according to the following equation 2, and the internal stress σ of the film can be obtained from the equation 3 using this R.

内部応力σ、基板のヤング率ESi、基板の厚みdSi、基板のポアソン比νSi、膜厚dM、曲率半径Rとすると、これらは下記の式2および式3を満たす。 Assuming that the internal stress σ, the substrate Young's modulus E Si , the substrate thickness d Si , the substrate Poisson's ratio ν Si , the film thickness d M , and the radius of curvature R, these satisfy the following expressions 2 and 3.

(式2)

Figure 2009053058
(Formula 2)
Figure 2009053058

(式3)

Figure 2009053058
(Formula 3)
Figure 2009053058

ここで、上記の基板のヤング率ESi、基板の厚みdSi、基板のポアソン比νSi、膜厚dM、は予め与えられる定数である。従って、曲率半径Rを検出することによって応力を算出することができる。このとき得られる応力は膜の面内方向の応力である。ここで、膜の面内方向とは、膜の実質的な法線方向に対して垂直な方向である。 Here, the Young's modulus E Si of the substrate, the thickness d Si of the substrate, the Poisson's ratio ν Si of the substrate, and the film thickness d M are constants given in advance. Therefore, the stress can be calculated by detecting the radius of curvature R. The stress obtained at this time is a stress in the in-plane direction of the film. Here, the in-plane direction of the film is a direction perpendicular to the substantial normal direction of the film.

なお、本実施形態では、ZnO膜が透明であるため、シリコン基板上にZnO膜を形成すると、シリコン基板表面でレーザ光が良好に反射されるため好ましい。   In the present embodiment, since the ZnO film is transparent, it is preferable to form the ZnO film on the silicon substrate because the laser beam is favorably reflected on the surface of the silicon substrate.

なお、光てこ法を用いる場合、基板のそりは、例えばレコード盤のように同心円状に生じることが測定データの再現性や信頼性を確保する点から好ましい。一般にLSI(Large Scale Integration)に用いられるシリコンウエハは、片面のみが鏡面研磨されており表裏の状態が非対称となり、鞍状にそるものの、同心円状にそりが生じない。このため、シリコン基板としては表裏、つまりシリコン基板の両主面が鏡面研磨されていることが好ましく、これによって、基板のそりをほぼ同心円状に生じさせることができる。従って、シリコン基板の両主面は、互いに同様の表面加工が施され、両面が対称なものを用いるのが好ましい。   In the case of using the optical lever method, it is preferable that the warpage of the substrate occurs concentrically like, for example, a record board from the viewpoint of ensuring the reproducibility and reliability of measurement data. In general, a silicon wafer used for LSI (Large Scale Integration) is mirror-polished on one side only, the front and back surfaces are asymmetrical, and it is bent in a bowl shape, but no concentric warpage occurs. For this reason, it is preferable that the silicon substrate is mirror-polished on both the front and back sides, that is, both main surfaces of the silicon substrate, whereby the substrate can be warped substantially concentrically. Accordingly, it is preferable to use a silicon substrate having both main surfaces that are subjected to the same surface processing and that both surfaces are symmetrical.

次に、ひずみの測定方法としては、X線回折法の一種であるin-plane法を用いる。一般的に用いられているX線回折法はout-of-plane法と呼ばれ、膜の法線方向から所定角度傾いた方向からX線を入射し、膜の実質的な法線方向つまり、実質的な法線に対して平行な方向の格子面間隔を測定する方法である。これに対してin-plane法は、図2(b)に示すように基板21上に形成されたZnO膜22のほぼ水平面方向から、つまり膜の法線方向にほぼ直交する方向からX線を入射させるものである。これにより膜の実質的な法線に対して垂直な方向(面内方向)の格子間隔を測定するものである。つまり、in-plane法によれば膜の面内方向のひずみを測定できる。具体的には、図2(a)に示すように、実質的な法線に対して垂直な方向に並ぶ格子面(in-plane法では面内方向に並んだ格子面に対応する)に対し所定角度θからX線を入射させた際、格子面間隔をd、X線入射角をθ、X線の波長をλ、nを整数とし、入射角θを変化させたとき、下記のブラッグの回折式4を満たす角度qc(ブラッグの回折角)となるときに、各格子面で回折されたX線が強められ、図3に示すピークとして検出される。ここで、図2(a)における紙面に垂直な方向が、上述の実質的な法線方向である。なお、図3に示すスペクトルは詳細に後述するようにシリコン基板上に形成した100nmのZnO膜で測定したものである。   Next, as a strain measuring method, an in-plane method which is a kind of X-ray diffraction method is used. A commonly used X-ray diffraction method is called an out-of-plane method, in which X-rays are incident from a direction inclined by a predetermined angle from the normal direction of the film, that is, the substantial normal direction of the film, that is, This is a method of measuring the lattice spacing in the direction parallel to the substantial normal. On the other hand, in-plane method, as shown in FIG. 2B, X-rays are emitted from a substantially horizontal direction of the ZnO film 22 formed on the substrate 21, that is, from a direction substantially perpendicular to the normal direction of the film. Make it incident. This measures the lattice spacing in the direction (in-plane direction) perpendicular to the substantial normal of the film. That is, according to the in-plane method, the strain in the in-plane direction of the film can be measured. Specifically, as shown in FIG. 2A, for lattice planes arranged in a direction perpendicular to a substantial normal (corresponding to lattice planes arranged in the in-plane direction in the in-plane method). When X-rays are incident from a predetermined angle θ, the lattice spacing is d, the X-ray incident angle is θ, the X-ray wavelength is λ, and n is an integer. When the angle qc (Bragg's diffraction angle) satisfies the diffraction formula 4, the X-rays diffracted at each lattice plane are strengthened and detected as a peak shown in FIG. Here, the direction perpendicular to the paper surface in FIG. 2A is the above-described substantially normal direction. The spectrum shown in FIG. 3 was measured with a 100 nm ZnO film formed on a silicon substrate as will be described in detail later.

(式4)
2dsinθc=nλ
(Formula 4)
2dsinθc = nλ

次に、このようにin-plane法によって得られた格子面間隔dからスペクトルを用い、Willson-Hallプロット(式5)によって、ひずみ(ε)を算出する。なお、下記の式において、λはX線の波長であり、図3ではX線源に銅を用いており、λはCu-ka線の0.154184nmである。βは結晶子の大きさとひずみによる回折角の拡がり(ラジアン単位)であり、図3に示すX線回折スペクトルの回折ピークの半価幅である。θcはブラッグの回折角、Dは結晶子の大きさである。   Next, using the spectrum from the lattice spacing d obtained by the in-plane method in this way, the strain (ε) is calculated by the Willson-Hall plot (Equation 5). In the following formula, λ is the wavelength of the X-ray, and in FIG. 3, copper is used for the X-ray source, and λ is 0.154184 nm of the Cu-ka line. β is the expansion of the diffraction angle (in radians) due to the size and strain of the crystallite, and is the half width of the diffraction peak of the X-ray diffraction spectrum shown in FIG. θc is the Bragg diffraction angle, and D is the crystallite size.

(式5)
1/λ・β・cosθc=1/λ・2ε・sinθc+1/D
(Formula 5)
1 / λ ・ β ・ cosθc = 1 / λ ・ 2ε ・ sinθc + 1 / D

式5において、本実施形態ではλは定数である。そして少なくとも二つ以上の回折ピーク、すなわち複数個の格子面間隔に対応した各回折角θcを測定してy軸をβcosθc、x軸をsinθcとしたとき、その傾斜よりひずみεが求まり、y軸との切片から結晶粒径Dが求まる。   In Equation 5, λ is a constant in the present embodiment. Then, when each diffraction angle θc corresponding to at least two diffraction peaks, that is, a plurality of lattice spacings is measured and the y-axis is βcosθc and the x-axis is sinθc, the strain ε is obtained from the inclination, and the y-axis The crystal grain size D is obtained from the above section.

このようにして求めた応力σと、ひずみεとを、上記の式1に代入することでヤング率Εが算出される。   The Young's modulus Ε is calculated by substituting the stress σ and the strain ε obtained in this way into Equation 1 above.

上述したように本実施形態では、応力を光てこ方式によって、ひずみをin-plane法によって求めることにより、ヤング率を算出することができる。また、上述したように本実施形態では、光てこ方式においては基板上に形成された膜をレーザ光によってスキャニングすることによって応力を求める。また、in-plane法ではX線を入射させることによってひずみを求めることが出来る。このように本実施形態では膜を変形させることなくヤング率を測定することが可能である。   As described above, in this embodiment, the Young's modulus can be calculated by obtaining the stress by the optical lever method and the strain by the in-plane method. Further, as described above, in this embodiment, in the optical lever system, the stress is obtained by scanning a film formed on the substrate with a laser beam. In the in-plane method, strain can be obtained by making X-rays incident. Thus, in this embodiment, Young's modulus can be measured without deforming the film.

また、特にナノインテンデーション法では、圧子にかかる荷重と圧子下の膜に開いた射影面積からヤング率を求めるため、ナノオーダーの膜、特に100nm以下の薄膜では、薄膜下の基板の影響が避けられず、ヤング率を測定することは困難であった。しかし、上述したように本実施の形態では、応力およびひずみについて、レーザ光又はX線の照射によって測定することができ、膜を物理的に変形させること、破壊させることがないため、ナノオーダーの極薄い薄膜、特に100nm以下の薄膜でもヤング率を非破壊で測定することが可能である。   In particular, in the nano-indentation method, the Young's modulus is obtained from the load applied to the indenter and the projected area opened to the film under the indenter. It was difficult to measure the Young's modulus. However, as described above, in this embodiment, stress and strain can be measured by laser light or X-ray irradiation, and the film is not physically deformed or destroyed. The Young's modulus can be measured nondestructively even with an extremely thin thin film, particularly a thin film of 100 nm or less.

なお、膜を破壊せずに測定する方法としては、膜の一点に超音波をかけ、一点から離れた膜上の他点で測定し、ヤング率を測定する方法もある。しかし、パラメータとして密度と、厚さと、ヤング率と、があり、測定された音波スペクトルにフィッティングをかけることにより各値を求めるため、ヤング率を正確に求めるのが難しいという問題がある。   In addition, as a method for measuring without breaking the film, there is also a method of measuring Young's modulus by applying ultrasonic waves to one point of the film and measuring at another point on the film away from one point. However, there are a density, a thickness, and a Young's modulus as parameters. Since each value is obtained by fitting the measured sound wave spectrum, there is a problem that it is difficult to accurately obtain the Young's modulus.

しかし、上述したように本願発明では、ヤング率は上述した方法で求めた応力とひずみとによって算出されるため、特に超音波法とは異なりフィッティング等によらず直接求めることが可能であり、ヤング率が一義的に定まる。   However, as described above, in the present invention, the Young's modulus is calculated by the stress and strain obtained by the above-described method. Therefore, unlike the ultrasonic method, the Young's modulus can be directly obtained without depending on the fitting. The rate is uniquely determined.

(実施例)
まず、ZnO膜をシリコン基板上に形成した。ZnO膜は反応性プラズマ蒸着装置で成膜を行った。反応性プラズマ蒸着装置における成膜条件は、ZnO原料はGa23濃度が4wt%のものを用い、基板温度200℃、成膜装置内の圧力は、約3×10-1(Pa)と設定した。また、本実施例では、シリコン基板上に約8nm程度のシリコン酸化膜を形成した上で、上記の条件で堆積速度170nm/分で100nmの膜厚のZnO膜を形成した。そして、この膜について光てこ法とin-planeX線回折法とを併用してヤング率を測定した。
(Example)
First, a ZnO film was formed on a silicon substrate. The ZnO film was formed by a reactive plasma deposition apparatus. As the film forming conditions in the reactive plasma deposition apparatus, the ZnO raw material has a Ga 2 O 3 concentration of 4 wt%, the substrate temperature is 200 ° C., and the pressure in the film forming apparatus is about 3 × 10 −1 (Pa). Set. In this example, a silicon oxide film having a thickness of about 8 nm was formed on a silicon substrate, and a ZnO film having a thickness of 100 nm was formed at a deposition rate of 170 nm / min under the above conditions. Then, the Young's modulus of this film was measured using both the optical lever method and the in-plane X-ray diffraction method.

まず、上述した条件で成膜したZnO膜の応力を測定した。
上述したようにまず、シリコン基板上にシリコン酸化膜を形成した状態(ZnO膜成膜前)で、基板表面をスキャニングし曲率半径を求めた。
First, the stress of the ZnO film formed under the above conditions was measured.
As described above, first, with the silicon oxide film formed on the silicon substrate (before the ZnO film was formed), the substrate surface was scanned to obtain the curvature radius.

次に、ZnO膜を形成し、同様にして成膜後の曲率半径を求めた後に式2を用いてRを求め、式3によって膜応力を算出した。ZnO膜の内部応力が図4に示すように、9.406×108(Pa)と求められた。 Next, a ZnO film was formed, the curvature radius after the film formation was determined in the same manner, R was determined using Expression 2, and the film stress was calculated according to Expression 3. The internal stress of the ZnO film was determined to be 9.406 × 10 8 (Pa) as shown in FIG.

次に、X線回折装置によって、ZnO膜の水平面方向のX線回折スペクトルを測定した。スペクトルは、図3に示すものが得られた。   Next, the X-ray diffraction spectrum of the ZnO film in the horizontal plane direction was measured with an X-ray diffractometer. The spectrum shown in FIG. 3 was obtained.

このスペクトルを元に、回折角の拡がりβを算出し、Willson-Hallプロットの式によってひずみ(ε)を算出した。なお、本実施例において、X線の波長λは、0.154184nmである。これらからひずみεは0.0069と求められた。   Based on this spectrum, the diffraction angle spread β was calculated, and the strain (ε) was calculated by the equation of the Willson-Hall plot. In this embodiment, the X-ray wavelength λ is 0.154184 nm. From these, the strain ε was determined to be 0.0069.

このようにして得られた応力とひずみとを上述した式1に代入し、ヤング率が1.3632×1011(Pa)が求められた。 The stress and strain thus obtained were substituted into the above-described formula 1, and the Young's modulus was obtained as 1.3632 × 10 11 (Pa).

同様に、30nmの膜厚のZnO膜についても、光てこ法で成膜前のシリコン基板の曲率半径R、成膜後のシリコン基板の曲率半径を求め、応力σを求めた。次にin-planeX線回折法にて回折角の拡がりβを求め、ひずみεを求めた。図4に示すように、このようにして求めた、応力1.088×109(Pa)、ひずみ0.0083、を用い、応力をひずみで割ることによってヤング率1.3108×1011 (Pa)が得られた。 Similarly, for a ZnO film having a thickness of 30 nm, the curvature radius R of the silicon substrate before film formation and the curvature radius of the silicon substrate after film formation were determined by the optical lever method, and the stress σ was determined. Next, the diffraction angle spread β was determined by the in-plane X-ray diffraction method, and the strain ε was determined. As shown in FIG. 4, the Young's modulus of 1.3108 × 10 11 (Pa) is obtained by dividing the stress by the strain using the stress of 1.088 × 10 9 (Pa) and the strain of 0.0083 obtained as described above. )was gotten.

このように本願発明では膜厚30nmという極めて薄い膜においてもヤング率を測定することが可能であった。   Thus, in the present invention, it was possible to measure the Young's modulus even in a very thin film having a film thickness of 30 nm.

本発明は上述した実施形態に限られず、様々な変形及び応用が可能である。
例えば、上述した実施形態では、シリコン基板上にZnO膜を形成する構成を例に挙げて説明したが、シリコン基板以外を用いることも可能である。例えば、ガラス等からなる透明基板を用いることができる。図5(a)に示すように、ガラス等からなる透明基板21aを用いる場合、上述したように応力を光てこ方式で測定する際、レーザ光の反射を良好にするため、基板の一方の主面又は他方の主面、もしくは膜の表面に、ZnO膜等の被測定膜とは別に、レーザ光等の光の反射性を有するCr等からなる反射膜23を形成するとよい。なお、シリコン以外の材料からなる基板を用いる場合は式3におけるシリコン関連材料定数をその基板材の値を用いる。
The present invention is not limited to the above-described embodiments, and various modifications and applications are possible.
For example, in the above-described embodiment, the configuration in which the ZnO film is formed on the silicon substrate has been described as an example. However, it is possible to use other than the silicon substrate. For example, a transparent substrate made of glass or the like can be used. As shown in FIG. 5A, when a transparent substrate 21a made of glass or the like is used, when measuring stress by an optical lever method as described above, in order to improve the reflection of laser light, In addition to the film to be measured such as a ZnO film, a reflective film 23 made of Cr or the like having light reflectivity such as laser light may be formed on the surface, the other main surface, or the surface of the film. When a substrate made of a material other than silicon is used, the value of the substrate material is used as the silicon-related material constant in Equation 3.

また、ガラス等からなる透明基板のようにシリコン基板以外を用いる場合も、光てこ法において測定の信頼性を確保する観点から、例えば、図5(b)に示すように、透明基板21aの両主面に、光の反射性を有する反射膜23a,23bを形成されていることが好ましく、これによって、基板のそりをほぼ同心円状に生じさせることができる。従って、ガラス基板の両主面は、測定される薄膜を除いて同じ膜が形成され、両面が対称なものを用いるのが好ましい。   Also, when using a substrate other than a silicon substrate such as a transparent substrate made of glass or the like, from the viewpoint of ensuring measurement reliability in the optical lever method, for example, as shown in FIG. Reflective films 23a and 23b having light reflectivity are preferably formed on the main surface, so that warpage of the substrate can be generated substantially concentrically. Therefore, it is preferable to use the both main surfaces of the glass substrate in which the same film is formed except for the thin film to be measured and the both surfaces are symmetrical.

また、本実施形態では被測定物であるZnO膜がシリコン基板上に形成された構成を例に挙げて説明したが、これに限られず、被測定物は他の基板上に形成されていてもよい。   In the present embodiment, the configuration in which the ZnO film, which is the object to be measured, is formed on the silicon substrate has been described as an example. However, the present invention is not limited to this, and the object to be measured may be formed on another substrate. Good.

上述した実施形態で用いたX線回折法では、回折現象を利用するため結晶質のみ測定することができ、非晶質膜を測定することはできない。しかし、非晶質膜を形成した場合であっても、結晶質の基板を用いた場合には、非晶質膜を成膜する前の基板表面近傍のひずみ(第1のひずみ)を上述のin-planeX線回折法および式5で求めておき、次に非晶質膜を成膜した後の基板表面近傍のひずみ(第2のひずみ)を測定することによって、間接的に非晶質膜のひずみを測定することが可能である。これにより非晶質膜についても、ヤング率を測定することが可能である。   In the X-ray diffraction method used in the above-described embodiment, only a crystalline material can be measured because a diffraction phenomenon is used, and an amorphous film cannot be measured. However, even when an amorphous film is formed, when a crystalline substrate is used, the strain (first strain) in the vicinity of the substrate surface before forming the amorphous film is reduced as described above. An amorphous film is obtained indirectly by measuring the strain (second strain) in the vicinity of the surface of the substrate after the amorphous film is formed, and obtained by the in-plane X-ray diffraction method and Equation 5. It is possible to measure the strain. As a result, the Young's modulus can be measured for an amorphous film.

(a)乃至(c)は光てこ法を説明する図である。(A) thru | or (c) is a figure explaining the optical lever method. (a)及び(b)はin-planeX線回折法を説明する図である。(A) And (b) is a figure explaining the in-plane X-ray-diffraction method. in-planeX線回折法によってZnO膜を測定したX線回折スペクトルである。It is the X-ray diffraction spectrum which measured the ZnO film | membrane by the in-plane X-ray-diffraction method. 本発明の実施形態にかかる応力、ひずみ、ヤング率の関係を示す表である。It is a table | surface which shows the relationship of the stress concerning the embodiment of this invention, distortion, and Young's modulus. (a)及び(b)は反射膜を備える場合の光てこ法を説明する図である。(A) And (b) is a figure explaining the optical lever method in the case of providing a reflecting film.

符号の説明Explanation of symbols

11,21・・・基板、21a・・・透明基板、12・・・支持部材、22・・・ZnO膜(被測定膜)、23,23a,23b・・・反射膜     11, 21 ... substrate, 21a ... transparent substrate, 12 ... support member, 22 ... ZnO film (film to be measured), 23, 23a, 23b ... reflective film

Claims (12)

応力を求める対象となる被測定膜に入射されたレーザ光の反射角を測定することにより、前記被測定膜の応力を求め、
前記被測定膜の面内方向の格子面間隔を測定することにより、前記被測定膜のひずみを求め、
前記被測定膜の応力を前記被測定膜のひずみで割ることにより、前記被測定膜のヤング率を求めることを特徴とするヤング率の測定方法。
By measuring the reflection angle of the laser light incident on the film to be measured for which the stress is to be obtained, the stress of the film to be measured is obtained,
By measuring the lattice spacing in the in-plane direction of the film to be measured, the strain of the film to be measured is obtained,
A Young's modulus measuring method, wherein the Young's modulus of the film to be measured is obtained by dividing the stress of the film to be measured by the strain of the film to be measured.
前記被測定膜は、基板上に形成されていることを特徴とする請求項1に記載のヤング率の測定方法。   The method for measuring Young's modulus according to claim 1, wherein the film to be measured is formed on a substrate. 前記被測定膜の応力を求めることは、前記基板上に前記被測定膜が形成されていない状態で前記被測定膜に入射されたレーザ光の反射角を測定し、次いで、前記基板上に前記被測定膜が形成された状態で前記被測定膜に入射されたレーザ光の反射角を測定することを含むことを特徴とする請求項2に記載のヤング率の測定方法。   The stress of the film to be measured is obtained by measuring a reflection angle of a laser beam incident on the film to be measured in a state where the film to be measured is not formed on the substrate, and then on the substrate. 3. The Young's modulus measurement method according to claim 2, further comprising measuring a reflection angle of laser light incident on the film to be measured in a state where the film to be measured is formed. 前記基板は、透明基板であることを特徴とする請求項2又は3に記載のヤング率の測定方法。   The method for measuring Young's modulus according to claim 2 or 3, wherein the substrate is a transparent substrate. 前記基板の一方の主面又は他方の主面もしくは前記被測定膜表面に、光の反射性を有する反射膜を備えることを特徴とする請求項4に記載のヤング率の測定方法。   5. The Young's modulus measurement method according to claim 4, wherein a reflection film having light reflectivity is provided on one main surface or the other main surface of the substrate or the surface of the film to be measured. 前記基板は、ガラス基板であることを特徴とする請求項4又は5に記載のヤング率の測定方法。   6. The Young's modulus measurement method according to claim 4, wherein the substrate is a glass substrate. 前記基板は、光の反射性を有する基板であることを特徴とする請求項2又は3に記載のヤング率の測定方法。   4. The Young's modulus measurement method according to claim 2, wherein the substrate is a substrate having light reflectivity. 前記基板は、シリコン基板であることを特徴とする請求項7に記載のヤング率の測定方法。   The method for measuring Young's modulus according to claim 7, wherein the substrate is a silicon substrate. 前記基板の一方の主面及び他方の主面は、鏡面研磨されていることを特徴とする請求項2乃至8のいずれか一項に記載のヤング率の測定方法。   The method for measuring Young's modulus according to any one of claims 2 to 8, wherein one main surface and the other main surface of the substrate are mirror-polished. 前記基板の一方の主面及び他方の主面には、前記被測定膜を除いて同じ膜が形成されていることを特徴とする請求項2乃至9のいずれか一項に記載のヤング率の測定方法。   10. The Young's modulus according to claim 2, wherein the same film is formed on one main surface and the other main surface of the substrate except for the film to be measured. Measuring method. 前記被測定膜は、ZnOを含むことを特徴とする請求項1乃至10のいずれか一項に記載のヤング率の測定方法。   The method for measuring a Young's modulus according to claim 1, wherein the film to be measured contains ZnO. 前記被測定膜は、結晶質であることを特徴とする請求項1乃至11のいずれか一項に記載のヤング率の測定方法。
The method of measuring a Young's modulus according to any one of claims 1 to 11, wherein the film to be measured is crystalline.
JP2007220403A 2007-08-27 2007-08-27 Method for measuring Young's modulus, stress and strain of film to be measured Expired - Fee Related JP4995006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220403A JP4995006B2 (en) 2007-08-27 2007-08-27 Method for measuring Young's modulus, stress and strain of film to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220403A JP4995006B2 (en) 2007-08-27 2007-08-27 Method for measuring Young's modulus, stress and strain of film to be measured

Publications (2)

Publication Number Publication Date
JP2009053058A true JP2009053058A (en) 2009-03-12
JP4995006B2 JP4995006B2 (en) 2012-08-08

Family

ID=40504258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220403A Expired - Fee Related JP4995006B2 (en) 2007-08-27 2007-08-27 Method for measuring Young's modulus, stress and strain of film to be measured

Country Status (1)

Country Link
JP (1) JP4995006B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359765A (en) * 2014-12-03 2015-02-18 广州广电运通金融电子股份有限公司 Method for measuring elasticity modulus of bank note and device for measuring maximum bending deflection
JP2017168584A (en) * 2016-03-15 2017-09-21 信越半導体株式会社 Method for evaluating and manufacturing silicon wafer
CN114112656A (en) * 2021-10-21 2022-03-01 上海机电工程研究所 Lattice sandwich material equivalent elastic modulus test analysis system, method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149096A (en) * 2013-03-04 2013-06-12 罗明海 Young modulus measuring device based on multistage optical lever amplification principle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187933A (en) * 1992-01-17 1993-07-27 Shimadzu Corp Instrument for measuring internal stress of thin film
JPH063236A (en) * 1992-06-24 1994-01-11 Fujitsu Ltd Measuring device for young's modulus and measuring method for young's modulus
JP2004028793A (en) * 2002-06-26 2004-01-29 Sony Corp Device for measuring physical property of thin film
JP2006019463A (en) * 2004-07-01 2006-01-19 Hitachi Cable Ltd Epitaxial wafer for semiconductor optical element
JP2006297868A (en) * 2005-04-25 2006-11-02 Dainippon Printing Co Ltd Metal laminate
JP2007071553A (en) * 2005-09-05 2007-03-22 Shinshu Univ Measuring method of thin film, measuring instrument of thin film and contact sensor used therein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187933A (en) * 1992-01-17 1993-07-27 Shimadzu Corp Instrument for measuring internal stress of thin film
JPH063236A (en) * 1992-06-24 1994-01-11 Fujitsu Ltd Measuring device for young's modulus and measuring method for young's modulus
JP2004028793A (en) * 2002-06-26 2004-01-29 Sony Corp Device for measuring physical property of thin film
JP2006019463A (en) * 2004-07-01 2006-01-19 Hitachi Cable Ltd Epitaxial wafer for semiconductor optical element
JP2006297868A (en) * 2005-04-25 2006-11-02 Dainippon Printing Co Ltd Metal laminate
JP2007071553A (en) * 2005-09-05 2007-03-22 Shinshu Univ Measuring method of thin film, measuring instrument of thin film and contact sensor used therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359765A (en) * 2014-12-03 2015-02-18 广州广电运通金融电子股份有限公司 Method for measuring elasticity modulus of bank note and device for measuring maximum bending deflection
JP2017168584A (en) * 2016-03-15 2017-09-21 信越半導体株式会社 Method for evaluating and manufacturing silicon wafer
CN114112656A (en) * 2021-10-21 2022-03-01 上海机电工程研究所 Lattice sandwich material equivalent elastic modulus test analysis system, method and device
CN114112656B (en) * 2021-10-21 2023-12-15 上海机电工程研究所 System, method and device for experimental analysis of equivalent elastic modulus of lattice interlayer material

Also Published As

Publication number Publication date
JP4995006B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US8767918B2 (en) X-ray scattering measurement device and X-ray scattering measurement method
US7124635B2 (en) Evaluation method for coefficient of thermal expansion of ultra-low-expansion glass material
US20080186512A1 (en) Apparatus and Method for Measuring Curvature Using Multiple Beams
US8441651B2 (en) Defect inspection apparatus and defect inspection method
JP4995006B2 (en) Method for measuring Young&#39;s modulus, stress and strain of film to be measured
US11536654B2 (en) Scatterometer and method of scatterometry using acoustic radiation
US7916305B2 (en) Surface reflection encoder scale and surface reflection encoder using the same
JP2017151427A (en) Reflection type mask blank and method of manufacturing reflection type mask blank
US10281345B2 (en) Strain sensor and recording medium
US20180180496A1 (en) Strain sensor and recording medium
JP4898266B2 (en) Method for measuring thin film Poisson&#39;s ratio
Ferreira et al. Development and characterization of coatings on Silicon Pore Optics substrates for the ATHENA mission
JP2007093344A (en) Method and apparatus for measuring stress
JP2006178312A (en) Surface reflection type phase grating
JP2023551818A (en) Surface topography measurement device and method
AU2008243203B2 (en) Measurement method of layer thickness for thin film stacks
JP7064391B2 (en) Scanning plate for optical positioning equipment
JP2009250783A (en) Method for measuring thickness of multilayer thin film
JP2005534024A (en) Solar slits using low density materials.
JP2007139491A (en) Defect measuring method
Jiang et al. Determination of layer-thickness variation in periodic multilayer by x-ray reflectivity
JP2006250688A (en) Stress measuring method and stress analysis program
JP6182677B2 (en) Method for measuring wafer damage depth
Scholze et al. Use of EUV scatterometry for the characterization of line profiles and line roughness on photomasks
US20220390294A1 (en) Method and system for measuring interfacial stress and residual stress in multilayer thin films coated on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees