JP2009052628A - Using method of molded bellows and vacuum valve - Google Patents

Using method of molded bellows and vacuum valve Download PDF

Info

Publication number
JP2009052628A
JP2009052628A JP2007218714A JP2007218714A JP2009052628A JP 2009052628 A JP2009052628 A JP 2009052628A JP 2007218714 A JP2007218714 A JP 2007218714A JP 2007218714 A JP2007218714 A JP 2007218714A JP 2009052628 A JP2009052628 A JP 2009052628A
Authority
JP
Japan
Prior art keywords
bellows
molded bellows
molded
side wall
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007218714A
Other languages
Japanese (ja)
Inventor
Yoshinao Kato
由尚 加藤
Takashi Ota
剛史 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2007218714A priority Critical patent/JP2009052628A/en
Publication of JP2009052628A publication Critical patent/JP2009052628A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms And Bellows (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded bellows reduced in its length by a thinner thickness, a higher crest, a narrower pitch and the smaller number of the crests than a conventional pressure type molded bellows. <P>SOLUTION: The using method of the molded bellows having the plurality of crests is provided with a step for inward expanding an outward protruded shape of a side wall part constituting a part between a trough part and a crest part of the crest into a protruded shape by applying a fluid pressure to the outer side of the molded bellows, and a step for compressing or expanding the molded bellows in such the displacement that the side wall parts expanded in the inward protruded shape are not abutted on each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、成型ベローズの使用方法及びその成型ベローズを有する真空バルブに関するものである。   The present invention relates to a method for using a molded bellows and a vacuum valve having the molded bellows.

成型ベローズは、金属素材で筒(パイプ)をつくり、その金属パイプを金型に入れ、金属パイプの内側に高圧流体を導入することで成型加工した金属性の伸縮管であり、その山を複数設けることで伸縮性、気密性、バネ性を持たせた、気体又は液体の気密封止シール部材として、配管用伸縮継手、メカニカルシール、真空バルブ等、様々な用途で使用されている。   Molded bellows are metallic expansion and contraction pipes made by forming a cylinder (pipe) from a metal material, placing the metal pipe in a mold, and introducing a high-pressure fluid inside the metal pipe. As a gas or liquid hermetic sealing member provided with stretchability, airtightness, and spring property, it is used in various applications such as expansion joints for piping, mechanical seals, vacuum valves, and the like.

また、成型ベローズが使用される真空遮断器用真空バルブは、絶縁性ガスが封入されるガス絶縁開閉装置(以下「GIS」と言う。)の中においても、絶縁性ガスよりも真空の方が遮断性能が高いため、使用される場合がある。その場合、絶縁性ガスは圧力が高い(例えば0.3MPa以上)ため、真空遮断器用真空バルブに使用される成型ベローズは、その高い圧力に耐える構造的特徴を有する必要がある。   In addition, vacuum valves for vacuum circuit breakers that use molded bellows shut off the vacuum rather than the insulating gas in the gas insulated switchgear (hereinafter referred to as “GIS”) in which the insulating gas is sealed. Because of its high performance, it may be used. In that case, since the pressure of the insulating gas is high (for example, 0.3 MPa or more), the molded bellows used for the vacuum valve for a vacuum circuit breaker needs to have a structural feature that can withstand the high pressure.

以下に、真空バルブに使用される成型ベローズの例として、内側に高圧流体を通す場合の成型ベローズである内圧型成型ベローズを、図1を用いて説明する。
図1に示す真空バルブでは、絶縁筒1と固定側フランジ2と可動側フランジ3から真空容器が構成され、内圧型成型ベローズ10により可動電極6の移動と真空保持の気密構造が確保される。絶縁筒1の一端部は固定側フランジ2により封着され、他端部には可動側フランジ3が封着されている。内圧型成型ベローズ10は、絶縁筒1内に入り込んだ状態で、先端部が可動リード棒7に封着され、基端部が可動側フランジ3に封着されている。固定電極5は固定リード棒4の先端に固定され、固定リード棒4は固定側フランジ2を貫通し封着されている。先端に可動電極6を固着した可動リード棒7は内圧型成型ベローズ10を貫通しており、固定電極5と可動電極6を接触・解離するために、矢印18のように可動電極6を平行移動させる。
Hereinafter, as an example of a molded bellows used for a vacuum valve, an internal pressure type molded bellows which is a molded bellows when a high-pressure fluid is passed inside will be described with reference to FIG.
In the vacuum valve shown in FIG. 1, a vacuum vessel is constituted by the insulating cylinder 1, the fixed side flange 2, and the movable side flange 3, and an airtight structure for moving the movable electrode 6 and maintaining a vacuum is secured by the internal pressure molded bellows 10. One end of the insulating cylinder 1 is sealed with a fixed flange 2 and a movable flange 3 is sealed with the other end. The internal pressure type molded bellows 10 is sealed in the movable lead rod 7 and sealed in the movable side flange 3 at the distal end portion in a state of entering the insulating cylinder 1. The fixed electrode 5 is fixed to the tip of the fixed lead rod 4, and the fixed lead rod 4 penetrates the fixed side flange 2 and is sealed. The movable lead rod 7 having the movable electrode 6 fixed to the tip penetrates the internal pressure type molded bellows 10 and moves the movable electrode 6 in parallel as indicated by an arrow 18 in order to contact and dissociate the fixed electrode 5 and the movable electrode 6. Let

このような内圧型成型ベローズは、大気中仕様(0.1MPa)の通常の真空バルブには採用される。しかし、内圧型成型ベローズ内側11の圧力が、GISの絶縁性能を向上させるためGIS内に封入されたSF6ガスなどの絶縁性ガスの圧力が0.3MPa以上の高圧になり、かつ、内圧型成型ベローズ外側12の圧力が真空となるように、成型ベローズの内側と外側で差圧が大きい場合、半径方向への不均一な変形が生じ、更に谷部14が反転して山部13のように変形するという座屈現象を生じることが知られている。そのため、内圧型成型ベローズは、成型ベローズ内側の圧力が高くなるケースでは極端に寿命が短くなる。   Such an internal pressure-type molded bellows is employed for a normal vacuum valve of atmospheric specification (0.1 MPa). However, the pressure inside the internal pressure mold bellows 11 increases the pressure of an insulating gas such as SF6 gas sealed in the GIS to improve the insulation performance of the GIS, and the internal pressure mold. When the pressure difference between the inside and outside of the molded bellows is large so that the pressure on the outside 12 of the bellows becomes a vacuum, non-uniform deformation occurs in the radial direction, and the valley portion 14 is reversed to form a peak portion 13. It is known to cause a buckling phenomenon of deformation. Therefore, the internal pressure type molded bellows has an extremely short life in the case where the pressure inside the molded bellows becomes high.

そこで高気圧ガスに耐える成型ベローズには、高差圧に対しても座屈し難い成型ベローズとして外圧型の成型ベローズが用いられる。図2は、GIS内に設置された真空バルブに採用される外圧型成型ベローズを示す図である。図2に示す真空バルブ30は、絶縁筒1と固定側フランジ2と可動側フランジ3から真空容器が構成され、外圧型成型ベローズ20により可動電極6の移動と真空保持の気密構造が確保される。絶縁筒1の一端部は固定側フランジ2により封着され、他端部には可動側フランジ3が封着されている。外圧型成型ベローズ20は、真空容器外に配置され、その基端部は可動側フランジ3に封着され、他端部は先端に可動電極6を固着した可動リード棒7を貫通させて封着されている。即ち、外圧型成型ベローズ20が絶縁筒1内に外付けされた状態で、その先端部である可動電極6が可動リード棒7に固定されている。可動リード棒7は、可とう導体26そして導体27を介して高圧回路に接続されている集電装置25に接続され、さらに、可動リード棒7は、リンク28を介して図示しない操作器で駆動される。固定電極5は固定リード棒4の先端に固定され、固定リード棒4は固定側フランジ2を貫通し封着されている。操作器で駆動することで、可動リード棒7は、矢印18のように動き、そして、可動電極6を平行移動することで、固定電極5と可動電極6は、接触・解離する。   Therefore, an external pressure-type molded bellows is used as a molded bellows that is resistant to buckling even with a high differential pressure. FIG. 2 is a diagram showing an external pressure molded bellows employed in a vacuum valve installed in the GIS. The vacuum valve 30 shown in FIG. 2 includes a vacuum vessel composed of the insulating cylinder 1, the fixed flange 2, and the movable flange 3, and the external pressure molded bellows 20 ensures an airtight structure for moving the movable electrode 6 and holding the vacuum. . One end of the insulating cylinder 1 is sealed with a fixed flange 2 and a movable flange 3 is sealed with the other end. The external pressure molded bellows 20 is disposed outside the vacuum container, and its base end is sealed to the movable flange 3 and the other end is sealed by penetrating a movable lead rod 7 having a movable electrode 6 fixed to the tip. Has been. That is, the movable electrode 6 that is the tip of the external pressure molded bellows 20 is fixed to the movable lead rod 7 in a state where the external pressure molded bellows 20 is externally attached to the insulating cylinder 1. The movable lead bar 7 is connected to a current collector 25 connected to a high-voltage circuit via a flexible conductor 26 and a conductor 27, and the movable lead bar 7 is driven by an operating device (not shown) via a link 28. Is done. The fixed electrode 5 is fixed to the tip of the fixed lead rod 4, and the fixed lead rod 4 penetrates the fixed side flange 2 and is sealed. By driving with the operating device, the movable lead rod 7 moves as indicated by an arrow 18, and by moving the movable electrode 6 in parallel, the fixed electrode 5 and the movable electrode 6 come into contact / dissociation.

真空バルブ30は、SF6ガスなどの絶縁性ガスをその内部に封入したGIS内に、設置されているため、外圧型成型ベローズ内側21の圧力が真空になり、外圧型成型ベローズ外側22の圧力が絶縁性ガスの圧力0.3MPa以上の高圧になる。矢印18の右方向に可動リード棒7が移動する解離動作を行う場合、外圧型成型ベローズ内側21は真空であるため、上述したような変形は生じにくい。そのため、高圧の絶縁性ガスを充填したGIS内に、真空バルブ用の成型ベローズを設置する場合、外圧型成型ベローズが使用される(例えば、特許文献1)。   Since the vacuum valve 30 is installed in a GIS in which an insulating gas such as SF6 gas is sealed, the pressure inside the external pressure molding bellows 21 becomes a vacuum, and the pressure outside the external pressure molding bellows 22 The pressure of the insulating gas becomes a high pressure of 0.3 MPa or more. When performing the dissociation operation in which the movable lead bar 7 moves to the right of the arrow 18, the external pressure molded bellows inner side 21 is in a vacuum, so that the deformation as described above is unlikely to occur. Therefore, when a molded bellows for a vacuum valve is installed in a GIS filled with a high-pressure insulating gas, an external pressure-type molded bellows is used (for example, Patent Document 1).

以下、成型ベローズの形状を図3を用いて説明する。
図3(a)は、外圧型成型ベローズの軸方向断面形状を示す図であり、(b)は、外圧型成型ベローズが、外圧により側壁反転現象が生じた状態での圧縮伸張を示す図である。図3(a)に示す成型ベローズ40は、金型にそって成型されることで、山部M1a、谷部V1a、側壁部S1aを有し、山部M1a間のピッチQと、山の高さWが決まる。また、成型ベローズ40は、成型時にパイプに生じた残留応力が駆動力となり、弾性回復する変形であるスプリングバックが生じ、成型ベローズ40の側壁部S1aは、幅bで示すように外側に凸状に膨らんでいる。
Hereinafter, the shape of the molded bellows will be described with reference to FIG.
FIG. 3A is a diagram showing an axial cross-sectional shape of an external pressure molded bellows, and FIG. 3B is a diagram showing compression and expansion of the external pressure molded bellows in a state where a side wall inversion phenomenon occurs due to external pressure. is there. The molded bellows 40 shown in FIG. 3 (a) is molded along the mold, and has a peak portion M1a, a valley portion V1a, and a side wall portion S1a. The pitch Q between the peak portions M1a and the peak height W is determined. Further, in the molded bellows 40, a residual stress generated in the pipe at the time of molding becomes a driving force, and a spring back which is a deformation that recovers elastically occurs, and the side wall portion S1a of the molded bellows 40 is convex outward as indicated by a width b. Is inflated.

図3(b)に示す成型ベローズC1は、外圧がかかっていない状態の成型ベローズ40を示す。C2は、外圧を過剰にかけることで、側壁の凸部を外側から内側に反転させ、かつ、圧縮させた状態の成型ベローズ形状である。図3(b)に示すように、外圧型成型ベローズは、高気圧ガス中に置かれることで、成型ベローズの内側と外側の間に圧力差が生じると、山部が圧縮され谷部には拡張する力が加わり、更に圧力を上げていくと外側に凸であった外圧型成型ベローズの側壁が、内側に凸に変形する現象が生じる(以下、「側壁反転現象」と言う。)。このため、成型ベローズC2のように、側壁同士の接近部は外側から内側に移動し、内側の側壁は隣同士が接近する。   A molded bellows C1 shown in FIG. 3B shows the molded bellows 40 in a state where no external pressure is applied. C2 has a molded bellows shape in which the convex portion of the side wall is inverted from the outside to the inside and compressed by applying an external pressure excessively. As shown in FIG. 3 (b), when the external pressure molded bellows is placed in a high-pressure gas, when a pressure difference is generated between the inside and outside of the molded bellows, the peak is compressed and the valley is expanded. When the pressure is increased and the pressure is further increased, the side wall of the external pressure-type molded bellows that is convex outwards is deformed inwardly (hereinafter referred to as “side wall inversion phenomenon”). For this reason, like the molding bellows C2, the approaching part between the side walls moves from the outside to the inside, and the side walls on the inside approach each other.

通常の外圧型成型ベローズは、このような側壁反転現象を避けるため、通常は板厚を厚く、山の高さを低くして、ピッチを広げ、山数を増す等により高耐圧力化する。つまり、通常の外圧型成型ベローズは、第1の設計条件として、高差圧により生じる側壁反転現象を回避するために板厚、山の高さ、ピッチ等の山の形状を決定し、次に、第2の設計条件として、必要な設計変位量から山数を決定するという順番で成型ベローズを設計している。そのため、第1の設計条件を無視して設計される非外圧型成型ベローズと比較して、通常の外圧型成型ベローズは、厚い板厚と、低い山により、一山当たりの変位量は小さくなるため、山の数が増加し、設計変位量に対してベローズ長が長くなる。つまり、通常の外圧型成型ベローズは、設計変位量に対して、差圧が大きくなるほどベローズ長が長くなる傾向がある。   In order to avoid such a side wall inversion phenomenon, a normal external pressure molded bellows usually has a high pressure resistance by increasing the plate thickness, decreasing the height of the peaks, increasing the pitch, and increasing the number of peaks. In other words, the normal external pressure molded bellows determines, as the first design condition, the shape of the mountain such as the plate thickness, the height of the mountain, the pitch, etc. in order to avoid the side wall inversion phenomenon caused by the high differential pressure, As a second design condition, the molded bellows is designed in the order of determining the number of peaks from the required design displacement. Therefore, compared with the non-external pressure type molded bellows that is designed ignoring the first design condition, the normal external pressure type molded bellows has a small plateau and a small displacement amount due to a thick plate thickness. Therefore, the number of peaks increases, and the bellows length becomes longer with respect to the design displacement. That is, the normal external pressure molded bellows tends to have a longer bellows length as the differential pressure increases with respect to the design displacement.

しかしながら、そのようなベローズ長の長い外圧型成型ベローズを使用する真空バルブ等の機器は、外圧型成型ベローズの大型化により製作コストが高くなる不都合を生じるとともに、真空バルブ等を収納するGIS等の装置内における真空バルブの占有容積が大きくなり、装置の大形化を招き、装置全体の寸法を大きくし、かつ、装置の製作コストも高くするという不都合を生じていた。   However, devices such as a vacuum valve using an external pressure molded bellows having a long bellows length cause a disadvantage that the manufacturing cost is increased due to an increase in the size of the external pressure molded bellows, and a GIS that houses a vacuum valve or the like. The occupied volume of the vacuum valve in the apparatus is increased, leading to an increase in size of the apparatus, increasing the overall dimensions of the apparatus, and increasing the manufacturing cost of the apparatus.

特開昭60−205926号公報JP-A-60-205926

上述のような問題点に鑑み、本発明は、高差圧状態において成型ベローズに生じる側壁反転現象を許容し、成型ベローズの有する弾性変形を最大限利用することで、従来の加圧型成型ベローズと比較して薄い板厚、高い山、狭いピッチ、少ない山数等により成型ベローズを短縮化する成型ベローズを提供することを課題とする。   In view of the above-described problems, the present invention allows a side wall reversal phenomenon that occurs in a molded bellows in a high differential pressure state, and makes maximum use of the elastic deformation of the molded bellows, It is an object of the present invention to provide a molded bellows that shortens the molded bellows by a thin plate thickness, a high peak, a narrow pitch, a small number of peaks, and the like.

上記課題を解決するために、本発明に係る複数の山を有する成型ベローズの使用方法は、山の谷部及び山部の間を構成する側壁部が外側に凸状に膨らんだ形状を、成型ベローズの外側に流体圧力を負荷して内側に凸状に膨らませるステップと、内側に凸状に膨らんだ側壁部が互いに接触しない変位で成型ベローズを圧縮又は伸張するステップと、を有することを特徴とする。   In order to solve the above-mentioned problem, the method of using a molded bellows having a plurality of peaks according to the present invention is to mold a shape in which the side wall portions between the valleys of the peaks and the peaks are bulged outwardly. And a step of applying fluid pressure to the outside of the bellows to inflate in a convex shape, and a step of compressing or expanding the molded bellows with a displacement in which the side walls inflated in a convex shape do not contact each other. And

圧縮又は伸張するステップは、成型ベローズの圧縮変位量を伸張変位量以下にすることで、内側に凸状に膨らんだ側壁部が互いに接触しないように圧縮又は伸張するステップを含んでも良い。   The step of compressing or expanding may include the step of compressing or expanding so that the side wall portions bulging inwardly in a convex shape do not contact each other by setting the amount of compression displacement of the molded bellows to be equal to or less than the amount of expansion displacement.

また、上記課題を解決するために、本発明に係る真空バルブは、複数の山を有する成型ベローズであって、山の谷部および山部の間を構成し、かつ、山の外側に流体圧力を負荷して内側に凸状に膨らんだ形状を有する側壁部を有する成型ベローズと、成型ベローズを外部に配置する真空容器と、成型ベローズの内側に気密接合することで真空容器内に貫通し、先端部に可動電極を備え、且つ、内側に凸状に膨らんだ側壁部が互いに接触しない変位で成型ベローズを圧縮又は伸張することで、可動電極を移動させる可動リード棒と、真空容器内で可動電極に対向方向に配置され、かつ、可動リード棒の移動により可動電極と接続又は解離する固定電極と、を有することを特徴とする。   In order to solve the above-mentioned problem, a vacuum valve according to the present invention is a molded bellows having a plurality of peaks, which forms a valley between peaks and a peak, and fluid pressure outside the peaks. A molded bellows having a side wall portion that has a shape bulging inward by loading, a vacuum container in which the molded bellows is arranged outside, and airtightly joined to the inside of the molded bellows to penetrate into the vacuum container, A movable lead rod that moves the movable electrode by moving or moving the movable electrode by compressing or expanding the molded bellows with a movable electrode at the tip and a side wall that bulges inwardly so as not to contact each other. And a fixed electrode that is disposed in a direction opposite to the electrode and that is connected to or disconnected from the movable electrode by movement of the movable lead rod.

また、成型ベローズの圧縮又は伸張は、成型ベローズの圧縮変位量を伸張変位量以下にすることで、内側に凸状に膨らんだ側壁部が互いに接触しないように圧縮又は伸張させても良い。   In addition, the compression or expansion of the molded bellows may be performed by compressing or expanding the side walls of the molded bellows that protrude inward so as not to contact each other by setting the compression displacement amount of the molded bellows to be equal to or less than the expansion displacement amount.

上記のように、本発明は、高差圧状態において成型ベローズに生じる側壁反転現象を許容し、成型ベローズの有する弾性変形変位を最大限利用することで、従来の加圧型成型ベローズと比較して薄い板厚、高い山、狭いピッチ、少ない山数等により成型ベローズを短縮化する外圧型成型ベローズを提供することが可能である。   As described above, the present invention allows the side wall reversal phenomenon that occurs in the molded bellows in a high differential pressure state, and makes maximum use of the elastic deformation displacement of the molded bellows, compared with the conventional pressure-type molded bellows. It is possible to provide an external pressure type molded bellows that shortens the molded bellows with a thin plate thickness, a high peak, a narrow pitch, a small number of peaks, and the like.

以下、図面を参照して、本発明の実施の形態を説明する。
図4は、本発明に係る側壁反転成型ベローズを示す図である。
C1は、外圧がかかっていない状態の成型ベローズを示し、金型にそって成型されることで、山部M1b、谷部V1b、側壁部S1bを有し、山部M1b間のピッチQと、山の高さWが決まる。また、成型ベローズは、成型時にパイプに生じた残留応力が駆動力となり、弾性回復する変形であるスプリングバックが生じ、成型ベローズの側壁部S1bは、幅bで示すように外側に凸に膨らんでいる。C2は、外圧をかけて、側壁部S1bを反転させ、かつ、圧縮させた状態のベローズ形状であり、E2は、C2から伸張させた場合の外圧型成型ベローズの形態である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 4 is a view showing a side wall inversion molded bellows according to the present invention.
C1 shows a molded bellows in a state where no external pressure is applied, and is formed along the mold to have a peak portion M1b, a valley portion V1b, a side wall portion S1b, and a pitch Q between the peak portions M1b; The height W of the mountain is determined. Further, in the molded bellows, the residual stress generated in the pipe at the time of molding becomes a driving force, and a spring back that is a deformation that recovers elastically occurs, and the side wall portion S1b of the molded bellows bulges outward as shown by the width b. Yes. C2 is a bellows shape in which the side wall portion S1b is reversed and compressed by applying an external pressure, and E2 is a form of an external pressure molded bellows when it is expanded from C2.

C3は、C2からさらに圧縮させた場合の外圧型成型ベローズの形態である。C3で示された状態では、反転した側壁部S1cが互いに密着しており、この状態でさらに外圧型成型ベローズを圧縮させる力をかけると、ベローズは圧縮せず、谷部V1cに応力がかかるため、外圧型成型ベローズの短寿命化を招くことになる。
したがって、本発明に係る成型ベローズの使用方法は、C2に示される側壁密着前の外圧型成型ベローズの圧縮状態と、E2に示される外圧型成型ベローズの伸張状態との間で圧縮伸張を繰り返す。
C3 is a form of an external pressure molded bellows when further compressed from C2. In the state indicated by C3, the inverted side wall portions S1c are in close contact with each other. If a force for compressing the external pressure molded bellows is further applied in this state, the bellows is not compressed and stress is applied to the valley portion V1c. The life of the external pressure molded bellows will be shortened.
Therefore, the method for using the molded bellows according to the present invention repeats compression and expansion between the compressed state of the external pressure molded bellows before the side wall contact shown in C2 and the expanded state of the external pressure molded bellows shown in E2.

図5(a)は、本発明に係る側壁反転成型ベローズの形態を示す図であり、(b)は、側壁部が外側に凸に膨らんだ通常の成型ベローズの形態を示す図である。
ベローズの山部は、金属パイプが最も延ばされた部分であるため、板厚が薄くてしなやかな(弾性変形範囲が大きい)状態となっており、反対にベローズの谷部は、パイプが延ばされた部分ではないため、板厚が厚くて剛性の高い状態となっている。また、図5(b)に示される通常の成型ベローズ55の側壁が外側に凸に膨らんだベローズを圧縮した場合の応力集中部は谷部V1dであり、谷部V1dは、上記のように圧縮方向に高い剛性があるため疲労破壊の原因となる応力集中が生じ易いが、通常の成型ベローズでは、圧縮側で大きな変位量で使用され、例えば、必要変位量に対して、圧縮時57で60%、伸張時56で40%程度の割合で使用される。
Fig.5 (a) is a figure which shows the form of the side wall inversion shaping | molding bellows which concerns on this invention, (b) is a figure which shows the form of the normal shaping | molding bellows in which the side wall part protruded convexly outside.
The peak of the bellows is the portion where the metal pipe is most extended, so the plate thickness is thin and supple (the elastic deformation range is large). Since it is not a stretched portion, the plate is thick and has a high rigidity. In addition, when the bellows in which the side wall of the normal molded bellows 55 shown in FIG. 5 (b) is bulged outward is compressed, the stress concentration portion is the valley portion V1d, and the valley portion V1d is compressed as described above. Stress concentration that causes fatigue failure is likely to occur due to the high rigidity in the direction. However, a normal molded bellows is used with a large amount of displacement on the compression side. %, And at the time of extension 56, it is used at a ratio of about 40%.

図5(a)に示すように、本発明に係る成型ベローズ51は、通常の外圧型成型ベローズ55と比較して、山が高く、及び/又は、薄い板厚であるため、成型ベローズが使用される所定の圧力をかけると、成型ベローズの外側と内側の圧力差により側壁が反転する。さらに、本発明に係る成型ベローズ51は、通常の外圧型成型ベローズ55と比較して、山が高く、及び/又は、板厚が薄いため、山部M1e、谷部V1e共に最大許容曲げ変形量が大きくなり、伸張時の成型ベローズ52に示すように、一山当たりの変位量を大きくすることが可能である。そのため、成型ベローズの設計変位量に対して、通常の高圧型成型ベローズ55よりも山の数を減少することが出来る。   As shown in FIG. 5 (a), the molded bellows 51 according to the present invention is higher than the normal external pressure molded bellows 55 and / or has a thin plate thickness, so that the molded bellows is used. When a predetermined pressure is applied, the side wall is reversed by the pressure difference between the outside and inside of the molded bellows. Further, the molded bellows 51 according to the present invention is higher in the peak and / or thinner than the normal external pressure-type molded bellows 55, so that the maximum allowable bending deformation amount for both the peak M1e and the valley V1e. As shown in the molded bellows 52 when stretched, it is possible to increase the amount of displacement per mountain. Therefore, the number of peaks can be reduced with respect to the design displacement amount of the molded bellows, compared to the normal high-pressure molded bellows 55.

一方で、本発明に係る圧縮時の側壁反転成型ベローズ53は、側壁部が内側に膨らんでいるため、圧縮方向に対して側壁が接触しやすい。しかし、スプリングバックによる変形量は、自由長ピッチに対して20%未満であるため、後述するように、通常の成型ベローズの圧縮側変位量60%の場合でも、内壁が接触することは無い。ただし、本発明に係る側壁反転成型ベローズ51は、一山当たりの許容変位量が大きくなるが、圧縮側の変位量は、最大許容曲げ変形量未満で側壁接触を避ける変位量とする必要がある。
また、内壁の接触を回避するためには、設計変位量の中間の値をベローズの自然長とせずに、側壁反転成型ベローズは、一山当たりの許容変位量が伸張側に大きいため、中間値を伸張側にシフトさせることで、圧縮側変位が小さく、伸張側変位が大きい使用が可能である。
On the other hand, since the side wall portion of the side wall inversion molded bellows 53 during compression according to the present invention swells inward, the side wall easily comes into contact with the compression direction. However, since the deformation amount due to the spring back is less than 20% with respect to the free length pitch, as will be described later, the inner wall does not come into contact even when the compression side displacement amount of the normal molded bellows is 60%. However, the side wall inversion molded bellows 51 according to the present invention has a large permissible displacement amount per mountain, but the displacement amount on the compression side needs to be a displacement amount that is less than the maximum permissible bending deformation amount and avoids side wall contact. .
In order to avoid contact with the inner wall, the intermediate value of the design displacement is not set to the natural length of the bellows. By shifting to the expansion side, the compression side displacement is small and the expansion side displacement is large.

下記、表1は、JIS B 2352−2005 付属書2 (参考)ベローズ形伸縮管継手の強度評価基準(3.4項 単層、補強リング無しベローズの強度計算(ASME/ANSI B 31.3 APPENDIX X 準拠))に基づいて計算した成型ベローズの物性値である。   Table 1 below shows JIS B 2352-2005 Annex 2 (Reference) Strength Evaluation Criteria for Bellows Type Expansion Pipe Joints (Section 3.4: Strength Calculation for Bellows Without Reinforcement Ring (ASME / ANSI B 31.3 APPENDIX) X is a physical property value of a molded bellows calculated based on the following.

Figure 2009052628
Figure 2009052628

Figure 2009052628
Figure 2009052628

表1の右欄が、本発明に係る側壁反転が生じたと考えられる成型ベローズの物性値であり、左欄が、通常の成型ベローズに関する物性値である。この計算においては、表1右欄に示す成型ベローズの物性値において、ベローズ山の高さWを、通常の成型ベローズと比較して高くし(7.75mmから10.0mm)、ベローズの表面積を相対的に大きくした。それにより、圧力による軸方向曲げ応力(圧力による軸方向膜応力S3と圧力による軸方向曲げ応力S4の和)は、左欄のベローズのS3+S4の値である695N/mm2から、右欄のベローズのS3+S4の値である1243N/mm2へ大きくなり、そのS3+S4が、表1のShbとCmの積により得られる許容応力1200N/mm2を超えたため、表1右欄に示す成型ベローズは、側壁反転現象が生じていると考えられる。   The right column of Table 1 is a physical property value of the molded bellows considered to have undergone side wall inversion according to the present invention, and the left column is a physical property value related to a normal molded bellows. In this calculation, in the physical properties of the molded bellows shown in the right column of Table 1, the height W of the bellows mountain is made higher than that of a normal molded bellows (7.75 mm to 10.0 mm), and the surface area of the bellows is increased. Made relatively large. Accordingly, the axial bending stress due to pressure (the sum of axial film stress S3 due to pressure and axial bending stress S4 due to pressure) is 695 N / mm2 which is the value of S3 + S4 of the bellows in the left column, and the bellows of the bellows in the right column. The S3 + S4 value is increased to 1243 N / mm2, and the S3 + S4 exceeds the allowable stress 1200 N / mm2 obtained by the product of Shb and Cm in Table 1. Therefore, the molded bellows shown in the right column of Table 1 has a side wall inversion phenomenon. It is thought that it has occurred.

また、表1右欄の成型ベローズは、表1左欄の成型ベローズと比してSt(圧力とベローズの毎山全動きによる応力範囲)に大きな違いがないため(左欄が1388(N/mm2)に対して、右欄が1465(N/mm2))、表1右欄及び左欄に示す成型ベローズは、ベローズ寿命に大きな差はないと考えられる。   Also, the molded bellows in the right column of Table 1 has no significant difference in St (stress range due to the total movement of the pressure and bellows) compared to the molded bellows in the left column of Table 1 (the left column is 1388 (N / For the mm2), the right column is 1465 (N / mm2)), and the molded bellows shown in the right column and the left column of Table 1 are considered to have no significant difference in the bellows life.

Figure 2009052628
Figure 2009052628

表2を用いて、表1で算定した結果に基づき計算した成型ベローズの変位を示す。表2の下行が、表1の右欄に示す側壁反転が生じたと考えられる成型ベローズの圧縮伸張の変位を示し、表2の上行が、表1の左欄に示す通常の成型ベローズの圧縮伸張の変位を示す。表1に示したように、側壁反転が生じたと考えられる成型ベローズは、通常の成型ベローズと比して、山の高さWを大きくした(7.75mmから10.0mm)ために山のピッチqが小さくなり(4.35mmから4.21mm)、x全軸方向変位量40mmに対する必要な山の数Nも減少する(23.0から22.0)。そのため、表2に示すように、側壁反転が生じると考えられる成型ベローズは、通常の成型ベローズより、圧縮、自然長、伸張のそれぞれの長さが短小化していることがわかる。
以上より、表1及び表2で示したように、JISに基づいて計算した成型ベローズの物性値から、成型ベローズの側壁反転現象を許容することで成型ベローズの圧縮、自然長、伸張のそれぞれの長さを短小化させることが可能であることがわかる。
Table 2 shows the displacement of the molded bellows calculated based on the result calculated in Table 1. The lower row of Table 2 shows the displacement of compression / extension of the molded bellows considered to have caused the side wall inversion shown in the right column of Table 1, and the upper row of Table 2 shows the compression / extension of the normal molded bellows shown in the left column of Table 1. Indicates the displacement. As shown in Table 1, the molded bellows in which side wall inversion is considered to occur has a mountain pitch W higher than that of a normal molded bellows (7.75 mm to 10.0 mm). The q becomes smaller (4.35 mm to 4.21 mm), and the number N of necessary peaks for the total axial displacement 40 mm is also reduced (23.0 to 22.0). Therefore, as shown in Table 2, it can be seen that the molded bellows in which side wall inversion is considered to have a shorter length of compression, natural length, and extension than a normal molded bellows.
From the above, as shown in Table 1 and Table 2, from the physical properties of the molded bellows calculated based on JIS, by allowing the side wall inversion phenomenon of the molded bellows, each of the compression bellows compression, natural length, and extension It can be seen that the length can be shortened.

さらに、上述したように、側壁反転成型ベローズでは、材料力学観点から側壁反転による山部谷部の形状の変化で一山当たりの最大許容曲げ変形量が通常の高圧型成型ベローズと比して大きくなるため、側壁反転成型ベローズの設計変位量に対する山の数は、通常の成型ベローズと比して少なくなる。しかし、JISの計算式では、山部谷部の形状変化に基づく許容曲げ変形量の変化は考慮されていないため、実際の側壁反転成型ベローズは、表2に示す側壁反転が生じると考えられる成型ベローズの変位計算結果より、圧縮、自然長、伸張の全てにおいて小さくなることは明らかである。   Furthermore, as described above, in the side wall inverted molded bellows, the maximum allowable bending deformation amount per mountain is larger than that of a normal high pressure type molded bellows due to the change in the shape of the ridges and valleys due to the side wall inversion from the viewpoint of material mechanics. Therefore, the number of peaks with respect to the design displacement amount of the side wall inverted molded bellows is smaller than that of a normal molded bellows. However, since the change in the allowable bending deformation amount based on the change in the shape of the peaks and valleys is not taken into account in the JIS calculation formula, the actual sidewall inversion molding bellows is a molding in which the side wall inversion shown in Table 2 occurs. From the bellows displacement calculation results, it is clear that the compression, natural length, and extension are all small.

図6は、本発明に係る側壁反転成型ベローズの耐久性を検証する実験装置を示す図である。この装置は、部材63を中心として、側壁反転成型ベローズ61aと側壁反転成型ベローズ61bが向かい合って接続されており、各々の側壁反転成型ベローズが真空バルブを模擬した真空容器62aと真空容器62bに接続されている。これら2つの側壁反転成型ベローズを、図示しない駆動装置によって水平方向に一定の変位で往復動作させることで、側壁反転成型ベローズの耐久性実験を行う。   FIG. 6 is a diagram showing an experimental apparatus for verifying the durability of the sidewall inversion molded bellows according to the present invention. In this apparatus, a side wall inversion molded bellows 61a and a side wall inversion molding bellows 61b are connected to each other around a member 63, and each side wall inversion molding bellows 61b is connected to a vacuum vessel 62a and a vacuum vessel 62b simulating a vacuum valve. Has been. The durability test of the sidewall-reversed molded bellows is performed by reciprocating these two sidewall-reversed molded bellows with a fixed displacement in the horizontal direction by a driving device (not shown).

図7は、本発明に係る側壁反転成型ベローズの寿命を検討した実験結果を示すグラフを表す図である。このベローズ寿命の検討のために行った実験例を下記に示す。   FIG. 7 is a diagram showing a graph showing experimental results of examining the lifetime of the sidewall-reversed molded bellows according to the present invention. An example of an experiment conducted for examining the bellows life is shown below.

実験例1
真空容器61bに外圧型の成型ベローズ61b、全長122mm、金具長29mm、ベローズ長Lb=93mm、ピッチq=4.67mm、山数N=20、山の高さW=10mm、QW値(q/[2W])=0.233(QW値とは、ベローズの形状を示す指標となる数である。)、QDT値(q/[2.2√(Dmtp)])=0.78、を付加して、ベローズ長Lbから27mm伸ばした状態で高圧容器内にセットし、0.7MPaの絶縁性ガスを充気して側壁反転成型べローズとした後で、ストローク40mm(伸張側27mm、圧縮側13mm)の連続伸縮試験をした。側壁反転成型ベローズの伸縮回数結果71bは、50000回(グラフ上でN=11)で亀裂発生し、同じQW値の通常の高圧型成型ベローズの伸縮回数結果72bと比べて、同等の耐久性を確認した。
Experimental example 1
External vacuum type molded bellows 61b, vacuum tube 61b, overall length 122mm, metal fitting length 29mm, bellows length Lb = 93mm, pitch q = 4.67mm, number of peaks N = 20, peak height W = 10mm, QW value (q / [2W]) = 0.233 (QW value is an index indicating the shape of the bellows), QDT value (q / [2.2√ (Dmtp)]) = 0.78 Then, after setting it in a high pressure vessel in a state extended 27 mm from the bellows length Lb and filling a 0.7 MPa insulating gas to form a side wall inversion molded bellows, a stroke 40 mm (extension side 27 mm, compression side) 13 mm) continuous stretch test. The side wall inversion molded bellows expansion / contraction result 71b cracks at 50000 times (N = 11 on the graph), and has the same durability as the expansion / contraction number result 72b of a normal high-pressure molded bellows with the same QW value. confirmed.

実験例2
同様に外圧型の成型ベローズ61aを、ベローズ長Lb93mmから32mmまで圧縮し61mmとした状態で、0.7MPaの絶縁性ガスを充気して側壁反転成型べローズとした後で、ストローク40mm(伸張側8mm、圧縮側32mm)の連続伸縮試験をした。側壁反転成型ベローズの伸縮回数結果71aは、4500回(グラフ上でN=1)で亀裂発生し、通常の高圧型成型ベローズの伸縮回数結果71bと比べて、耐久性で劣ることを確認した。
Experimental example 2
Similarly, after compressing the external pressure type molded bellows 61a from the bellows length Lb 93 mm to 32 mm to 61 mm and filling it with 0.7 MPa insulating gas to form a sidewall-reversed molded bellows, the stroke 40 mm (extension) A continuous expansion and contraction test of 8 mm on the side and 32 mm on the compression side was performed. The expansion / contraction frequency result 71a of the side wall inversion molded bellows cracked at 4500 times (N = 1 on the graph), and it was confirmed that the durability was inferior to the expansion / contraction frequency result 71b of the normal high-pressure molded bellows.

表1に示したJISに基づく計算結果より、また、側壁反転が生じた成型ベローズは、通常の成型ベローズと比してSt(圧力とベローズの毎山全動きによる応力範囲)に大きな違いがないためベローズ寿命に大きな差はないと考えられるが、実験例1からわかるように、側壁反転成型ベローズは、ベローズ長Lb(93mm)に対して、伸張67%(27mm/40mm)、圧縮側33%(13mm/40mm)で使用した場合、圧縮側における側壁接触が生じないため、ベローズ寿命が、通常の高圧型成型ベローズとほぼ同じ結果となっており、側壁反転させた場合であってもベローズ寿命に大きな差は生じないことが実験により確認できた。   From the calculation results based on JIS shown in Table 1, the molded bellows in which the side wall inversion occurred has no significant difference in St (stress range due to the total movement of the pressure and bellows) compared to the normal molded bellows. Therefore, it is considered that there is no big difference in the bellows life, but as can be seen from Experimental Example 1, the side wall inversion molded bellows has an extension of 67% (27 mm / 40 mm) and a compression side of 33% with respect to the bellows length Lb (93 mm). When used at (13 mm / 40 mm), the side wall contact on the compression side does not occur, so the bellows life is almost the same as the normal high-pressure molded bellows, and even if the side wall is inverted, the bellows life It was confirmed by experiments that there was no significant difference in

また、実験例2からわかるように、ベローズ長Lb(93mm)に対して、圧縮80%(32mm/40mm)、伸張側20%(8mm/40mm)で使用した場合、圧縮側における側壁接触が生じて、ベローズ寿命が、通常の高圧型成型ベローズより短くなっていることがわかる。したがって、側壁反転成型ベローズは、側壁接触が生じた場合、通常の成型ベローズより寿命が短くなることが実験により確認できた。   As can be seen from Experimental Example 2, when the bellows length Lb (93 mm) is used at a compression of 80% (32 mm / 40 mm) and an expansion side of 20% (8 mm / 40 mm), side wall contact on the compression side occurs. It can be seen that the lifetime of the bellows is shorter than that of a normal high-pressure molded bellows. Therefore, it has been confirmed by experiments that the side wall-reversed molded bellows has a shorter lifetime than the normal molded bellows when the side wall contact occurs.

以上より、本発明に係る側壁反転成型ベローズは、高差圧状態においてベローズに生じる側壁反転現象を許容し圧縮伸張させ、圧縮側変位を側壁接触が生じない変位とすると共に伸張側により大きな変位をとることで、通常の成型ベローズと同等の寿命が得られる。そして、表1及び表2に関連して説明したように、本発明に係る側壁反転成型ベローズは、従来の加圧型成型ベローズと比較して高い山、少ない山数等により成型ベローズを短縮化可能である。   As described above, the side wall inversion molded bellows according to the present invention allows the side wall reversal phenomenon that occurs in the bellows in a high differential pressure state to compress and expand, and the compression side displacement becomes a displacement that does not cause side wall contact, and a larger displacement is caused on the expansion side. By taking it, the same life as a normal molded bellows can be obtained. And as demonstrated in relation to Table 1 and Table 2, the side wall inversion molding bellows which concerns on this invention can shorten a molding bellows by a high peak, a small peak number, etc. compared with the conventional pressure type molding bellows. It is.

図3〜5に示す本発明に係る側壁反転成型ベローズは、図2に示す真空バルブ30の成型ベローズ20として適用可能であることはもちろんであるが、その適用は真空バルブ30に限られるものではなく、成型ベローズの内外に差圧が生じ、シールが必要な配管用伸縮継手、メカニカルシール等のいかなるものに対しても適用可能である。   The side wall inverted molded bellows according to the present invention shown in FIGS. 3 to 5 can be applied as the molded bellows 20 of the vacuum valve 30 shown in FIG. 2, but the application is not limited to the vacuum valve 30. However, the present invention is applicable to any expansion joint for piping, mechanical seal, and the like that require a seal because a differential pressure is generated inside and outside the molded bellows.

内圧型成型ベローズを示す図である。It is a figure which shows an internal pressure type shaping | molding bellows. GIS内に設置された真空バルブに採用される外圧型成型ベローズを示す図である。It is a figure which shows the external pressure type | mold shaping | molding bellows employ | adopted as the vacuum valve installed in GIS. 成型ベローズの形状を示す図である。It is a figure which shows the shape of a shaping | molding bellows. 本発明に係る側壁反転成型ベローズを示す図である。It is a figure which shows the side wall inversion molding bellows which concerns on this invention. (a)は、本発明に係る側壁反転成型ベローズの形態を示す図であり、(b)は側壁部が外側に凸に膨らんだ通常の成型ベローズの形態を示す図である。(A) is a figure which shows the form of the side wall inversion shaping | molding bellows which concerns on this invention, (b) is a figure which shows the form of the normal shaping | molding bellows which the side wall part bulged convexly outside. 本発明に係る側壁反転成型ベローズの耐久性を検証する実験装置を示す図である。It is a figure which shows the experimental apparatus which verifies durability of the side wall inversion molding bellows which concerns on this invention. 本発明に係る側壁反転成型ベローズの寿命を検討した実験結果を示すグラフを表す図である。It is a figure showing the graph which shows the experimental result which examined the lifetime of the side wall inversion molding bellows which concerns on this invention.

符号の説明Explanation of symbols

1 絶縁筒
2 固定側フランジ
3 可動側フランジ
4 固定リード棒
5 固定電極
6 可動電極
7 可動リード棒
10 内圧型成型ベローズ
20 外圧型成型ベローズ
25 集電装置
26 可とう導体
27 導体
28 リンク
30 真空バルブ
40 成型ベローズ
61a、61b 側壁反転成型ベローズ
62a、62b 真空容器
63 部材
DESCRIPTION OF SYMBOLS 1 Insulation cylinder 2 Fixed side flange 3 Movable side flange 4 Fixed lead rod 5 Fixed electrode 6 Movable electrode 7 Movable lead rod 10 Internal pressure type bellows 20 External pressure type bellows 25 Current collector 26 Flexible conductor 27 Conductor 28 Link 30 Vacuum valve 40 Molded bellows 61a, 61b Side wall inversion molded bellows 62a, 62b Vacuum container 63 Member

Claims (4)

複数の山を有する成型ベローズの使用方法であって、
前記山の谷部及び山部の間を構成する側壁部が外側に凸状に膨らんだ形状を、前記成型ベローズの外側に流体圧力を負荷して内側に凸状に膨らませるステップと、
前記内側に凸状に膨らんだ側壁部が互いに接触しない変位で前記成型ベローズを圧縮又は伸張するステップと、
を有することを特徴とする成型ベローズの使用方法。
A method of using a molded bellows having a plurality of peaks,
The step of inflating the outer side of the molded bellows with the fluid pressure on the outer side of the molded bellows, and the side wall constituting the valley between the peaks and the ridges bulges inward.
Compressing or expanding the molded bellows with a displacement in which the side walls protruding inwardly do not contact each other;
A method of using a molded bellows characterized by comprising:
前記圧縮又は伸張ステップは、前記成型ベローズの圧縮変位量を伸張変位量以下にすることで、前記内側に凸状に膨らんだ側壁部が互いに接触しないように圧縮又は伸張するステップを含む請求項1に記載の方法。   2. The compression or expansion step includes a step of compressing or expanding the side wall portions bulging in a convex shape so as not to contact each other by setting the compression displacement amount of the molded bellows to be equal to or less than the expansion displacement amount. The method described in 1. 複数の山を有する成型ベローズであって、前記山の谷部および山部の間を構成し、かつ、前記山の外側に流体圧力を負荷して内側に凸状に膨らんだ形状を有する側壁部を有する成型ベローズと、
前記成型ベローズを外部に配置する真空容器と、
前記成型ベローズの内側に気密接合することで前記真空容器内に貫通し、先端部に可動電極を備え、且つ、前記内側に凸状に膨らんだ側壁部が互いに接触しない変位で前記成型ベローズを圧縮又は伸張することで該可動電極を移動させる可動リード棒と、
前記真空容器内で前記可動電極に対向方向に配置され、かつ、前記可動リード棒の移動により前記可動電極と接続又は解離する固定電極と、
を有することを特徴とする真空バルブ。
A molded bellows having a plurality of peaks, the side wall having a shape that is formed between the valleys of the peaks and the peaks and is bulged inward by applying fluid pressure to the outside of the peaks A molded bellows having
A vacuum container for arranging the molded bellows outside;
Airtightly joined to the inside of the molded bellows, penetrates into the vacuum vessel, has a movable electrode at the tip, and compresses the molded bellows with a displacement in which the side walls that bulge inwardly do not contact each other Or a movable lead bar that moves the movable electrode by stretching;
A fixed electrode that is disposed in a direction opposite to the movable electrode in the vacuum vessel and is connected to or dissociated from the movable electrode by movement of the movable lead rod;
A vacuum valve characterized by comprising:
前記成型ベローズの圧縮又は伸張は、前記成型ベローズの圧縮変位量を伸張変位量以下にすることで、前記内側に凸状に膨らんだ側壁部が互いに接触しないように圧縮又は伸張する請求項3に記載の真空バルブ。   The compression or expansion of the molded bellows is performed by compressing or expanding the side wall portions bulging inwardly so as not to contact each other by setting the compression displacement amount of the molded bellows to be equal to or less than the expansion displacement amount. The vacuum valve described.
JP2007218714A 2007-08-24 2007-08-24 Using method of molded bellows and vacuum valve Withdrawn JP2009052628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218714A JP2009052628A (en) 2007-08-24 2007-08-24 Using method of molded bellows and vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218714A JP2009052628A (en) 2007-08-24 2007-08-24 Using method of molded bellows and vacuum valve

Publications (1)

Publication Number Publication Date
JP2009052628A true JP2009052628A (en) 2009-03-12

Family

ID=40503878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218714A Withdrawn JP2009052628A (en) 2007-08-24 2007-08-24 Using method of molded bellows and vacuum valve

Country Status (1)

Country Link
JP (1) JP2009052628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170092A (en) * 2018-03-22 2018-06-15 苏州金纬机械制造有限公司 For the interbedded gas of corrugated pipe forming machine and internal layer gas control system
CN110310851A (en) * 2019-06-14 2019-10-08 平高集团有限公司 Arc extinguishing chamber bellows processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170092A (en) * 2018-03-22 2018-06-15 苏州金纬机械制造有限公司 For the interbedded gas of corrugated pipe forming machine and internal layer gas control system
CN110310851A (en) * 2019-06-14 2019-10-08 平高集团有限公司 Arc extinguishing chamber bellows processing method

Similar Documents

Publication Publication Date Title
JP5160559B2 (en) Bend-shaped lithium-ion battery with improved safety
CN203880095U (en) Pressure resisting type U-shaped spring energy accumulation lip-shaped sealing ring
JP2004150606A (en) Hose with bellows metallic conduit
JP2009052628A (en) Using method of molded bellows and vacuum valve
CN109882390B (en) Barrel-shaped diaphragm compressor without residual clearance
WO2013000310A1 (en) Inner and outer bellow structure for dry and highly-pressurized air or nitrogen-insulated vacuum interrupter
CN108825791B (en) A kind of combined sealed circle in hole
JP2009180090A (en) Piston ring of pressure boosting pump for low temperature fluid
KR102119263B1 (en) Pressure Bellows and its Manufacturing method
CN104786037A (en) Embedding method for end-gap-free L-shaped nonmetal piston ring and piston and none-clearance structure forming compressor
JP2010073635A (en) Usage of formed bellows, formed bellows, and vacuum valve
CN217819201U (en) Performance testing device for spring energy storage ring
KR101933176B1 (en) Pressure-resistant bellows
CN113532761B (en) Full-automatic leakage detection system of crystal resonator
JP5598206B2 (en) air compressor
US20130001200A1 (en) Vacuum Valve and Switchgear Equipped with Said Vacuum Valve
CN201430052Y (en) Diaphragm type elastic corrugated oil conservator
EP3865738A1 (en) Metal gasket
JP6053463B2 (en) Vacuum valve
JP2023511718A (en) Seal sets for sealing pumps and stator components of such pumps
CN101630573A (en) Diaphragm type elastic corrugated oil conservator
Cramer et al. Pneumatic strain energy accumulators for exhaust gas recycling
CN201118139Y (en) Sealing device for pneumatic electric cabinet switch and outside device linkage rod
CN218267214U (en) Ultrahigh pressure-resistant corrosion-resistant sealing element
RU2511845C2 (en) Kashigin&#39;s separator of two media (versions)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102