JP2009052120A - Stainless steel member - Google Patents

Stainless steel member Download PDF

Info

Publication number
JP2009052120A
JP2009052120A JP2007222522A JP2007222522A JP2009052120A JP 2009052120 A JP2009052120 A JP 2009052120A JP 2007222522 A JP2007222522 A JP 2007222522A JP 2007222522 A JP2007222522 A JP 2007222522A JP 2009052120 A JP2009052120 A JP 2009052120A
Authority
JP
Japan
Prior art keywords
stainless steel
oxidation
mass
high temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007222522A
Other languages
Japanese (ja)
Inventor
Nobue Takamura
伸栄 高村
Hiroshi Izumida
寛 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2007222522A priority Critical patent/JP2009052120A/en
Publication of JP2009052120A publication Critical patent/JP2009052120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive component while satisfying strength properties required in a high-temperature environment by the reduction of an Ni content. <P>SOLUTION: The austenitic stainless steel member comprises, by mass, 0.04 to 0.10% C, 0.8 to 2.0% Si, 1.0 to 2.0% Mn, 17 to 25% Cr, 5 to 10% Ni and 0.15 to 0.30% N, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は自動車用排気系部品等に使用されるステンレス鋼線に係り、特に、高温耐酸化性と高温強度特性に優れるオーステナイト系のステンレス鋼材に関する。   The present invention relates to a stainless steel wire used for automobile exhaust system parts and the like, and more particularly, to an austenitic stainless steel material excellent in high temperature oxidation resistance and high temperature strength characteristics.

自動車のエキゾーストマニホールド等の排気系部品は高温環境での酸化特性、強度特性に優れたステンレス鋼材が採用されている。近年では、窒素酸化物を低減する必要から高温燃焼化が進み、これに伴い、排ガスに曝される部品も高温での耐久性が求められる。このため、フェライト系よりも高温での耐久性に優れるオーステナイト系のステンレス鋼材が採用されている(特許文献1)。
特開2000−291430号公報
Stainless steel materials with excellent oxidation characteristics and strength characteristics in high-temperature environments are used for exhaust system parts such as automobile exhaust manifolds. In recent years, high temperature combustion has progressed due to the need to reduce nitrogen oxides, and accordingly, parts exposed to exhaust gas are also required to have durability at high temperatures. For this reason, an austenitic stainless steel material that is superior in durability at a higher temperature than a ferrite type is employed (Patent Document 1).
JP 2000-291430 A

上述のようにオーステナイト系ステンレス鋼材を採用することで高温環境化での耐久性を満足することができるものの、オーステナイト系ステンレス鋼材に含有されるNiは高価であるため、オーステナイト系ステンレス鋼材を採用した部品のコストが上昇するという問題がある。ステンレス鋼材のコストを下げるためには、Niの含有量を抑えることが考えられるが、オーステナイトの生成に寄与するNiの含有量が低くなると相安定性の低下に繋がる。一方、Niの含有量はステンレス鋼材の強度に影響を与える。例えば、SUS304よりNiの含有量が多いSUS316の強度は、室温環境下ではSUS306よりも低いものの、高温環境下ではSUS306よりも高い。従って、耐熱メッシュが使用される温度域である800℃、900℃、950℃の高温環境下での使用を想定する場合は、Niの含有量が多い方が好ましい。   As described above, the austenitic stainless steel material can be used to satisfy the durability in a high temperature environment. However, since Ni contained in the austenitic stainless steel material is expensive, an austenitic stainless steel material was used. There is a problem that the cost of parts increases. In order to reduce the cost of the stainless steel material, it is conceivable to suppress the Ni content. However, if the Ni content contributing to the formation of austenite is reduced, the phase stability is lowered. On the other hand, the Ni content affects the strength of the stainless steel material. For example, the strength of SUS316 having a higher Ni content than SUS304 is lower than SUS306 in a room temperature environment, but higher than SUS306 in a high temperature environment. Therefore, when it is assumed to be used in a high temperature environment of 800 ° C., 900 ° C., and 950 ° C. in which the heat resistant mesh is used, it is preferable that the Ni content is large.

本発明は、上記事情に鑑みてなされたもので、Niの含有量を抑制したときの相安定性を損なうことなく低コストの部品の提供を可能にすることを目的とする。   This invention is made | formed in view of the said situation, and it aims at enabling provision of a low-cost component, without impairing the phase stability when content of Ni is suppressed.

本発明者らは、オーステナイト生成元素であるNを添加することで、Niの含有量を抑制したときの相安定性を確保することができるとの知見を得た。また、NとSiとが一定の比率を占める場合に、耐酸化性能を向上させることができるとの知見を得た。   The present inventors have obtained knowledge that phase stability when the Ni content is suppressed can be ensured by adding N, which is an austenite-forming element. Moreover, when N and Si accounted for a fixed ratio, the knowledge that oxidation-resistant performance could be improved was acquired.

すなわち、本発明は、質量%でC:0.04〜0.10%、Si:0.8〜2.0%、Mn:1.0〜2.0%、Cr:17〜25%、Ni:5〜10%、N:0.15〜0.30%を含み、残部がFeおよび不可避不純物からなるオーステナイト系のステンレス鋼材であり、質量%で0.125×Si%≦N%≦0.125×Si%+0.15を含み、さらに質量%でMo:0.4〜3.0%、Co:0.2〜1.0%を含む。本発明のステンレス鋼材は、室温での引張り強さが1200MPa以下が好ましい。   That is, the present invention, in mass%, C: 0.04-0.10%, Si: 0.8-2.0%, Mn: 1.0-2.0%, Cr: 17-25%, Ni : 5 to 10%, N: 0.15 to 0.30%, with the balance being Fe and inevitable impurities, austenitic stainless steel material, 0.125 × Si% ≦ N% ≦ 0. It contains 125 × Si% + 0.15, and further contains Mo: 0.4 to 3.0% and Co: 0.2 to 1.0% by mass. The stainless steel material of the present invention preferably has a tensile strength at room temperature of 1200 MPa or less.

以下、上記ステンレス鋼材を構成する各要素の特定理由について説明する。   Hereinafter, the reason for specifying each element constituting the stainless steel material will be described.

Ni:5〜10質量%
通常、高温下でオーステナイト相を安定させるためには、10%以上が必要とされるが、本発明材は0.15〜0.30%のNを含むため、10%未満のNi量で相安定性を確保することができる。但し、SUS316よりも安価な材料を提供するために、10%以下が好ましい。そこで、必要最低限の相安定性を得るため、5%以上、低コストを実現するため、10%未満とした。
Ni: 5 to 10% by mass
Normally, 10% or more is required to stabilize the austenite phase at a high temperature. However, since the material of the present invention contains 0.15 to 0.30% N, the amount of Ni is less than 10%. Stability can be ensured. However, 10% or less is preferable in order to provide a material cheaper than SUS316. Therefore, in order to obtain the necessary minimum phase stability, it is set to 5% or more, and in order to realize low cost, it is set to less than 10%.

N:0.15〜0.30質量%
Nはオーステナイト生成元素であることから、Nを添加することでオーステナイト相を安定化させることができる。また、Nは強度特性にも寄与することから、Nを添加することで、Niの含有量低下による強度特性の向上と相まってステンレス鋼材の強度特性をさらに向上させることができる。相安定化及び強度特性向上のために0.15%以上の添加が好ましい。なお、過剰添加は鋳造時のブローホール発生の原因となり、また、経済的にも不利であるため、0.30%以下が好ましい。
N: 0.15-0.30 mass%
Since N is an austenite generating element, the austenite phase can be stabilized by adding N. Further, since N contributes to the strength characteristics, the addition of N can further improve the strength characteristics of the stainless steel material in combination with the improvement of the strength characteristics due to the decrease in the Ni content. Addition of 0.15% or more is preferable for stabilizing the phase and improving strength properties. In addition, since excessive addition causes blowhole generation at the time of casting and is economically disadvantageous, 0.30% or less is preferable.

Si:0.8〜2.0質量%
Siは脱酸剤であり耐食性向上にも効果がある。Niの含有量を抑制することで低下する耐食性をSiの増量により補償するため、0.8%以上であることが好ましい。なお、Siはフェライト生成元素であるため、固溶強化して機械的特性向上に寄与するが、過剰の添加はオーステナイト相安定性を低下させ、且つ靭性を低下させるため、2.0%以下が好ましい。
Si: 0.8-2.0 mass%
Si is a deoxidizer and is effective in improving corrosion resistance. In order to compensate for the corrosion resistance, which is reduced by suppressing the Ni content, by increasing the Si content, it is preferably 0.8% or more. Since Si is a ferrite-forming element, it contributes to improving the mechanical properties by solid solution strengthening. However, excessive addition decreases the austenite phase stability and decreases the toughness, so 2.0% or less. preferable.

Nとの関係では、0.125×Si(質量%)≦N(質量%)≦0.125×Si(質量%)+0.15の範囲において、耐食性を向上させることができる。   In relation to N, the corrosion resistance can be improved in the range of 0.125 × Si (mass%) ≦ N (mass%) ≦ 0.125 × Si (mass%) + 0.15.

C:0.04〜0.10質量%
CもまたN同様にオーステナイト生成元素であり、相安定性を向上させる効果を有するが、実際の鋼線製造工程においては、炭化物を析出しやすく、あまり相安定性には寄与しない。そこで構造材としてある程度の強度が得られる下限として0.04%とし、靭性を失わない上限として0.10%と規定した。
C: 0.04 to 0.10% by mass
C, as well as N, is an austenite-forming element and has an effect of improving phase stability. However, in an actual steel wire manufacturing process, carbide is likely to precipitate and does not contribute much to phase stability. Therefore, the lower limit for obtaining a certain degree of strength as a structural material is set to 0.04%, and the upper limit for losing toughness is set to 0.10%.

Mn:1.0〜2.0質量%
Mnはオーステナイト生成元素である。Siと同様に溶解精錬時の脱酸剤として使用される。そのため、脱酸剤に必要な添加量として下限を1.0%とした。なお、Mnの過剰添加は耐酸化性劣化の原因となることから上限を2.0%とした。
Mn: 1.0 to 2.0% by mass
Mn is an austenite generating element. Like Si, it is used as a deoxidizer during melting and refining. Therefore, the lower limit is set to 1.0% as an addition amount necessary for the deoxidizer. In addition, since excessive addition of Mn causes deterioration of oxidation resistance, the upper limit was made 2.0%.

Cr:17〜25質量%
Crはステンレス鋼の耐食性に寄与する重要な元素である。Cr濃度が高ければ不働態皮膜が強固になり腐食し難くなるため、その効果を得るために下限を17%とした。しかし、過剰な添加はオーステナイト相の安定性を下げ、機械的特性を低下させるため、上限を25%とした。
Cr: 17 to 25% by mass
Cr is an important element contributing to the corrosion resistance of stainless steel. If the Cr concentration is high, the passive film becomes strong and difficult to corrode. Therefore, in order to obtain the effect, the lower limit was made 17%. However, excessive addition reduces the stability of the austenite phase and lowers the mechanical properties, so the upper limit was made 25%.

Mo:0.4〜3.0質量%
Moは不働態皮膜を補修する機能を有し、耐食性を向上させる元素である。また、強度特性を向上させる元素でもある。従って、Niの含有量の抑制による耐食性の低下及び強度不足を補償することができるため、その効果を得るために下限を0.4%とした。しかし、過剰な添加は靭性を低下させる要因となることから、上限を3.0%とした。
Mo: 0.4-3.0 mass%
Mo is an element that has a function of repairing the passive state film and improves the corrosion resistance. It is also an element that improves strength characteristics. Therefore, since it is possible to compensate for the decrease in corrosion resistance and the lack of strength due to the suppression of the Ni content, the lower limit is made 0.4% in order to obtain the effect. However, excessive addition causes a decrease in toughness, so the upper limit was made 3.0%.

Co:0.2〜1.0質量%
Coは強度特性を向上させる元素である。その効果を得るために上限を0.2%とした。しかし、過剰な添加はコスト高となることから上限を1.0%とした。
Co: 0.2-1.0 mass%
Co is an element that improves strength characteristics. In order to obtain the effect, the upper limit was made 0.2%. However, excessive addition increases the cost, so the upper limit was made 1.0%.

引張り強さ1200MPa以下
如何に高温強度、高温耐酸化性に優れた鋼線といえども、メッシュとして編込めないものでは、その高温での特性を活かせない。耐熱メッシュとしての加工性、歩留を考慮すると、1200MPa以下が望ましい。
Tensile strength of 1200 MPa or less Even if the steel wire is excellent in high temperature strength and high temperature oxidation resistance, if it cannot be knitted as a mesh, its high temperature characteristics cannot be utilized. Considering workability and yield as a heat-resistant mesh, 1200 MPa or less is desirable.

本発明によれば、Ni含有量の抑制による相安定性の低下をNの添加で補償することができるため、Niの含有量を抑えて耐熱メッシュが使用される温度域である800℃、900℃、950℃の高温環境下で求められる耐酸化性と強度特性を満足させながら、低コストの部品の提供が可能になる。   According to the present invention, since the decrease in phase stability due to the suppression of the Ni content can be compensated by the addition of N, the temperature range where the heat resistant mesh is used while suppressing the Ni content is 800 ° C., 900 It is possible to provide low-cost parts while satisfying the oxidation resistance and strength characteristics required in a high temperature environment of 950 ° C. and 950 ° C.

(実施例1)
(高温酸化試験)
表1に示す成分のステンレス鋼(発明材)を用い、線径0.148mmの軟線に加工した後、高温酸化試験を行った。発明材はオーステナイト系ステンレスであるSUS316をベースにNiを減量し、Nを添加し、Si、Mo、Co及びその他元素の添加量を最適化したものである。また図1はステンレス鋼のN量とSi量との関係を示す図であり、発明材のNとSiとの比率は0.125×Si%≦N%≦0.125×Si%+0.15を満たす斜線領域内にある。
(Example 1)
(High temperature oxidation test)
Stainless steel (invention material) having the components shown in Table 1 was processed into a soft wire having a wire diameter of 0.148 mm, and then a high temperature oxidation test was performed. The invented material is based on SUS316, which is an austenitic stainless steel, in which Ni is reduced, N is added, and the addition amounts of Si, Mo, Co and other elements are optimized. FIG. 1 is a graph showing the relationship between the amount of N and the amount of Si in stainless steel, and the ratio of N and Si in the inventive material is 0.125 × Si% ≦ N% ≦ 0.125 × Si% + 0.15. It is in the shaded area that satisfies

高温酸化試験は密着巻きしたコイル状の試料30g程度を陶磁器製の坩堝に入れて行った。耐熱メッシュが使用される温度域である800℃、900℃、950℃の3条件において、試験温度に加熱した後、30分保持し、その後、20分放冷させるサイクルを100回繰り返して行った。試料が150℃以下となる時間に20分、各試験温度での保持時間を30分、温度昇降に5分程度かかるため、各サイクル約55分で試験を行った。各試験温度において昇降時間の違いが見られるが、昇降時間の差は5分以内であるため、この違いによる酸化特性の違いは生じることはない。また、試験温度に昇温させたときの過昇温に関しても、±5℃程度であるため、試料に与える影響は少ない。   The high temperature oxidation test was performed by putting about 30 g of a coiled sample wound tightly into a ceramic crucible. In three conditions of 800 ° C., 900 ° C., and 950 ° C. in which the heat-resistant mesh is used, after heating to the test temperature, a cycle of holding for 30 minutes and then allowing to cool for 20 minutes was repeated 100 times. . Since the sample took 20 minutes to reach 150 ° C. or less, the holding time at each test temperature took 30 minutes, and the temperature rise and fall took about 5 minutes, the test was conducted at about 55 minutes for each cycle. Although there is a difference in ascending / descending time at each test temperature, since the difference in ascending / descending time is within 5 minutes, there is no difference in oxidation characteristics due to this difference. Further, the excessive temperature rise when the temperature is raised to the test temperature is about ± 5 ° C., and therefore, the influence on the sample is small.

図2から図4は酸化増量の変化を示す図であり、縦軸は酸化増量、横軸はサイクル数を示している。●で示す発明材1の酸化増量は800℃で比較材1(SUS316)の1/2程度、900℃で1/6程度、950℃で1/8程度であり、いずれの試験温度においても比較材1よりも少なく、発明材1の酸化特性が良好であることが分かる。また、発明材1及び比較材1(SUS316)の横断面を観察した結果、何れも試験温度が高くなるに従い酸化スケールが増加するが、比較材1は鋼線表面の酸化の他に、鋼線内部でも粒界の酸化が発生して内部酸化が進行し、表面が持ち上がるスポーリングが発生していることが確認できた。このことが比較材1の著しい酸化増量の原因となると考えられる。表2は高温酸化試験における96サイクル後の酸化増量を示している。   2 to 4 are diagrams showing changes in oxidation increase, in which the vertical axis indicates the increase in oxidation and the horizontal axis indicates the number of cycles. The increase in oxidation of Inventive Material 1 indicated by ● is about ½ of Comparative Material 1 (SUS316) at 800 ° C, about 1/6 at 900 ° C, and about 1/8 at 950 ° C. It can be seen that the oxidation characteristics of Invention Material 1 are better than those of Material 1. Moreover, as a result of observing the cross sections of the inventive material 1 and the comparative material 1 (SUS316), the oxide scale increases as the test temperature increases. However, the comparative material 1 has a steel wire in addition to the oxidation of the steel wire surface. It was confirmed that the grain boundary was oxidized inside, the internal oxidation proceeded, and the surface was spalled up. This is considered to cause a significant increase in oxidation of the comparative material 1. Table 2 shows the increase in oxidation after 96 cycles in the high temperature oxidation test.

また、試料表面近傍(横断面)のEPMA(電子線マイクロアナリシス)面分析をした結果、発明材1は950℃においてもCr酸化物の層の存在が確認できた。この層は不働態皮膜として機能することから、高温域でも爆発的な酸化が発生することはないと考えられる。一方、比較材はCrの存在自体は確認できたものの、層として存在しないため、不働態皮膜として機能することはない。さらに、比較材は試料表面より30μm程度の深さに拡散速度が小さいCrの酸化物が確認できたことから、酸化スケールは30μm以上の厚さを持つことが分かった。このことより比較材は、上部へのFe、Niの上向き拡散やOの下向き拡散が促進され、爆発的な酸化が発生したものと考えられる。   Further, as a result of an EPMA (electron beam microanalysis) surface analysis in the vicinity (cross section) of the sample surface, it was confirmed that the inventive material 1 had a Cr oxide layer even at 950 ° C. Since this layer functions as a passive film, it is considered that explosive oxidation does not occur even at high temperatures. On the other hand, although the comparative material has confirmed the presence of Cr itself, it does not function as a passive film because it does not exist as a layer. Furthermore, since the comparative material was confirmed to have a Cr oxide having a low diffusion rate at a depth of about 30 μm from the sample surface, it was found that the oxide scale had a thickness of 30 μm or more. From this fact, it is considered that the comparative material promoted upward diffusion of Fe and Ni and downward diffusion of O, and explosive oxidation occurred.

図5は試料表面近傍の元素のうち耐酸化特性に影響を及ぼすと思われる元素の分布を示しており、図中符号aはCr、符号bはSi、符号cはNiの分布を示している。発明材はCrの存在部とNiの存在部との間にSiの薄い層の存在が確認できた(図中(A))。不働態皮膜であるCrの下側(金属側)に薄いSi酸化層が存在することになるため、不働態皮膜との密着性が向上し、結果として、Oの下向き拡散とFeの上向き拡散を抑制し、耐酸化特性が向上するものと考えられる。一方、比較材には発明材のような層構成は確認できず、Fe酸化物の下にCr、Siの酸化物が存在し、高温酸化が進行した状態が確認できる(図中(B))。   FIG. 5 shows the distribution of elements that are likely to affect the oxidation resistance of the elements in the vicinity of the sample surface. In the figure, symbol a represents Cr, symbol b represents Si, and symbol c represents Ni distribution. . The invention material confirmed the presence of a thin Si layer between the Cr existing portion and the Ni existing portion ((A) in the figure). Since a thin Si oxide layer exists on the lower side (metal side) of Cr, which is a passive film, the adhesion to the passive film is improved. As a result, the downward diffusion of O and the upward diffusion of Fe This is considered to suppress the oxidation resistance and improve the oxidation resistance. On the other hand, the layer structure like the invention material cannot be confirmed in the comparative material, and Cr and Si oxides exist under the Fe oxide, and the state where high-temperature oxidation has progressed can be confirmed ((B) in the figure). .

(高温強度試験)
高温酸化試験で用いたステンレス鋼(発明材)及びSUS316(比較材)を用い、室温、800℃、900℃及び950℃で引張り強さを測定した。測定結果を表3に示す。発明材は、800℃、900℃、950℃のいずれの高温域でも比較材よりも高い強度特性を示すことが確認できる。
(High temperature strength test)
Tensile strength was measured at room temperature, 800 ° C., 900 ° C. and 950 ° C. using stainless steel (invention material) and SUS316 (comparative material) used in the high-temperature oxidation test. Table 3 shows the measurement results. It can be confirmed that the inventive material shows higher strength characteristics than the comparative material at any high temperature range of 800 ° C., 900 ° C., and 950 ° C.

(実施例2)
発明材1を基準にMo、Coの添加量を増減させた表4に示すステンレス鋼(発明材4から10)を用い、実施例1と同様の条件で高温酸化試験及び高温強度試験を行った。表4において、発明材4〜7はMoを可変させたステンレス鋼、発明材8〜10はCoを可変させたステンレス鋼を示している。
(Example 2)
The high temperature oxidation test and the high temperature strength test were performed under the same conditions as in Example 1, using the stainless steel (Invention materials 4 to 10) shown in Table 4 in which the addition amounts of Mo and Co were increased or decreased based on the invention material 1. . In Table 4, invention materials 4 to 7 show stainless steel with variable Mo, and invention materials 8 to 10 show stainless steel with variable Co.

表5は高温酸化試験における96サイクル後の酸化増量を示している。   Table 5 shows the increase in oxidation after 96 cycles in the high temperature oxidation test.

Moの含有量が本発明の特定事項である0.4〜3%の範囲において、Moの含有量が多いほど酸化増量が小さくなることから、高い耐酸化性を示すことが確認できた。なお、Coの含有量と酸化増量との間に大きな相関は確認できなかった。   When the Mo content is in the range of 0.4 to 3%, which is a specific matter of the present invention, the higher the Mo content, the smaller the oxidation increase. Thus, it was confirmed that high oxidation resistance was exhibited. A large correlation could not be confirmed between the Co content and the oxidation increase.

Mo、Coの含有量が多いほど高い引張り強さを示すことが確認できた。なお、Coを含有しない発明材8の引張り強さが小さくなることから、Moは強度特性を向上させるために有効であり、Coはさらに強度を向上させるために有効な元素であることが確認できた。   It was confirmed that the higher the Mo and Co content, the higher the tensile strength. In addition, since the tensile strength of the inventive material 8 containing no Co is reduced, it can be confirmed that Mo is effective for improving the strength characteristics, and Co is an effective element for further improving the strength. It was.

ステンレス鋼のN量とSi量との関係を示す図The figure which shows the relationship between N quantity and Si quantity of stainless steel 酸化増量の変化を示す図(800℃)Diagram showing change in oxidation increase (800 ° C) 酸化増量の変化を示す図(900℃)Diagram showing change in oxidation increase (900 ° C) 酸化増量の変化を示す図(950℃)Diagram showing change in oxidation increase (950 ° C) 試料表面近傍の元素分布(Cr、Si、Ni)Element distribution near the sample surface (Cr, Si, Ni)

Claims (5)

質量%でC:0.04〜0.10%、Si:0.8〜2.0%、Mn:1.0〜2.0%、Cr:17〜25%、Ni:5〜10%、N:0.15〜0.30%を含み、残部がFeおよび不可避不純物からなるオーステナイト系のステンレス鋼材。   C: 0.04 to 0.10% by mass%, Si: 0.8 to 2.0%, Mn: 1.0 to 2.0%, Cr: 17 to 25%, Ni: 5 to 10%, N: An austenitic stainless steel material containing 0.15 to 0.30%, the balance being Fe and inevitable impurities. 質量%で0.125×Si%≦N%≦0.125×Si%+0.15を含む請求項1記載のステンレス鋼材。   The stainless steel material according to claim 1, comprising 0.125 x Si% ≤ N% ≤ 0.125 x Si% + 0.15 by mass%. さらに質量%でMo:0.4〜3.0%を含む請求項1または2に記載のステンレス鋼材。   Furthermore, the stainless steel material of Claim 1 or 2 containing Mo: 0.4-3.0% by mass%. さらに質量%でCo:0.2〜1.0%を含む請求項1から3の何れか一項に記載のステンレス鋼材。   Furthermore, the stainless steel material as described in any one of Claim 1 to 3 which contains Co: 0.2-1.0% by mass%. 室温での引張り強さが1200MPa以下である請求項1から4の何れか一項に記載のステンレス鋼材。   The stainless steel material according to any one of claims 1 to 4, wherein the tensile strength at room temperature is 1200 MPa or less.
JP2007222522A 2007-08-29 2007-08-29 Stainless steel member Pending JP2009052120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222522A JP2009052120A (en) 2007-08-29 2007-08-29 Stainless steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222522A JP2009052120A (en) 2007-08-29 2007-08-29 Stainless steel member

Publications (1)

Publication Number Publication Date
JP2009052120A true JP2009052120A (en) 2009-03-12

Family

ID=40503448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222522A Pending JP2009052120A (en) 2007-08-29 2007-08-29 Stainless steel member

Country Status (1)

Country Link
JP (1) JP2009052120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261730A (en) * 2022-08-12 2022-11-01 安徽富凯特材有限公司 Heat-resistant stainless steel for magnesium smelting reduction tank and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261730A (en) * 2022-08-12 2022-11-01 安徽富凯特材有限公司 Heat-resistant stainless steel for magnesium smelting reduction tank and preparation method thereof
CN115261730B (en) * 2022-08-12 2023-10-20 安徽富凯特材有限公司 Heat-resistant stainless steel for magnesium smelting reduction tank and preparation method thereof

Similar Documents

Publication Publication Date Title
CN104245977B (en) There is the nickel-chromium-alloy of good workability, creep resistant and corrosion resistance
JP6068158B2 (en) Cast products having an alumina barrier layer
JP5600012B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products
TWI737940B (en) Heat-resistant alloy and reaction tube
JP5403192B1 (en) Duplex stainless steel
JP2013199663A (en) Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
JP2005023353A (en) Austenitic stainless steel for high temperature water environment
JPWO2017171050A1 (en) Welded structural members
JP2016153140A (en) Method of manufacturing clad steel
JP2011190468A (en) Ferritic stainless steel sheet superior in heat resistance, and method for manufacturing the same
JP6860410B2 (en) Ni—Cr based alloy brazing material containing a small amount of V
JP4353169B2 (en) Engine exhaust system parts with excellent thermal fatigue resistance
JP5866628B2 (en) Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance
JP4577256B2 (en) Austenitic stainless steel
JP6844486B2 (en) Manufacturing method of austenite alloy material
JP2009052120A (en) Stainless steel member
JP6587881B2 (en) Ferritic stainless steel wire for fastening parts
JP3895089B2 (en) Heat resistant alloy with excellent carburization and metal dusting resistance
JPWO2018025942A1 (en) Austenitic stainless steel
JP6083567B2 (en) Ferritic stainless steel with excellent oxidation resistance and high temperature creep strength
JP2006016669A (en) Austenitic stainless steel for inner side of dual structure exhaust manifold
JP2010053417A (en) Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property and oxidation resistance
JP5547789B2 (en) Austenitic stainless steel
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP6249840B2 (en) Double structure exhaust manifold