JP2009051953A - Utilization method for waste food oil - Google Patents

Utilization method for waste food oil Download PDF

Info

Publication number
JP2009051953A
JP2009051953A JP2007220554A JP2007220554A JP2009051953A JP 2009051953 A JP2009051953 A JP 2009051953A JP 2007220554 A JP2007220554 A JP 2007220554A JP 2007220554 A JP2007220554 A JP 2007220554A JP 2009051953 A JP2009051953 A JP 2009051953A
Authority
JP
Japan
Prior art keywords
oil
waste food
zsm
waste
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007220554A
Other languages
Japanese (ja)
Inventor
Hisao Hirota
壽夫 弘田
Michihiko Ikegami
三千彦 池上
Takayuki Taniguchi
隆之 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007220554A priority Critical patent/JP2009051953A/en
Publication of JP2009051953A publication Critical patent/JP2009051953A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective utilization method for a waste food oil generated in a large amount. <P>SOLUTION: After the waste food oil is gasified by a thermal decomposition tank, it is passed through a catalytic cracking tank filled with an alumino-silicate-based catalyst to obtain a fuel oil corresponding to gasoline, kerosine/light oil and heavy oil A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は廃食物油の利用方法の関し、特に、廃食物油からガソリン、灯軽油、A重油を典型例とする石油留分状の燃料油を製造する方法に関する。   The present invention relates to a method for using waste food oil, and more particularly, to a method for producing a fuel oil in the form of petroleum fractions, typically gasoline, kerosene oil, and heavy fuel oil A from waste food oil.

近年、化石燃料の使用に伴って発生する炭酸ガスによる地球温暖化が世界的規模で問題となっており、その解決策が強く望まれている。このような解決策の一つとしてとうもろこしを原料とするガソリン・軽油代替品が開発され、世界的規模で利用されつつある。利用方法の多くは、ガソリン等の化石燃料にわずかに1.5%程度混入して自動車用等の燃料油として利用するものであるが、このことがとうもろこし等の原料植物の相場を高騰させている。とうもろこしは南米大陸、アフリカ、南アジア等の多くの国で主食として利用されており、代替燃料としての利用は、価格および供給量の両面から世界的規模で食糧事情を悪化させるという大きなマイナス効果をもたらしている。   In recent years, global warming due to carbon dioxide gas generated with the use of fossil fuels has become a problem on a global scale, and a solution for this is strongly desired. As one of such solutions, gasoline / light oil substitutes using corn as a raw material have been developed and are being used worldwide. Most of the usage is mixed with fossil fuels such as gasoline only 1.5% and used as fuel oil for automobiles, etc., but this has soared the prices of raw materials such as corn. Yes. Corn is used as a staple food in many countries such as South America, Africa, and South Asia, and its use as an alternative fuel has the major negative effect of deteriorating the food situation on a global scale in terms of both price and supply. Has brought.

一方、食物油はテンプラ等の揚物の料理その他に広く利用されており、使用済の廃食物油の量も膨大な量となっている。その多くは廃棄物として活性汚泥処理等の分解処理に供されているが、再利用についても種々の検討がなされている。その一つとして廃食物油を遠心分離処理して油分のみを燃料として用いることも知られているが、このように廃食物油から分離取得した油分を直接自動車燃料として使用すると、エンジンの目づまり等を起こすことから、軽油や重油に少量添加して燃料として使用しているのが実状である。   On the other hand, dietary oil is widely used for cooking deep-fried foods such as tempura, and the amount of used waste dietary oil is enormous. Many of them are used as a waste for decomposition treatment such as activated sludge treatment, but various studies have been made on reuse. As one of them, it is also known that waste food oil is centrifuged and only the oil content is used as fuel. However, if the oil content separated and obtained from waste food oil is used directly as automobile fuel, engine clogging will occur. In reality, it is used as a fuel by adding a small amount to light oil or heavy oil.

本発明の目的は、大量に発生している廃食物油の有効利用法を提供することにあり、特に廃食物油から自動車燃料としても利用可能な性状をもつ石油留分状の燃料油を効率的に製造する方法を提供することにある。   An object of the present invention is to provide an effective utilization method of waste food oil that is generated in large quantities. In particular, an oil fraction fuel oil having properties that can be used as automobile fuel from waste food oil is efficiently used. It is in providing the method of manufacturing automatically.

本発明は、廃食物油を熱分解槽中で加熱してガス化させ、該ガスを接触分解槽中でアルミノシリケート系触媒と接触させることを特徴とする廃食物油から石油留分状の燃料油を製造する方法である。   According to the present invention, waste food oil is heated to gasify in a pyrolysis tank, and the gas is brought into contact with an aluminosilicate catalyst in the catalytic cracking tank. A method for producing oil.

本発明では廃食物油に廃エンジンオイルを添加して用いることが好ましい。
また本発明では熱分解槽で熱分解して生じたガスのアルミノシリケート系触媒との接触を、分解活性型アルミノシリケート系触媒と接触させた後形状選択型アルミノシリケート触媒と接触することによって行うことが好ましい。
In the present invention, it is preferable to add waste engine oil to waste food oil.
Further, in the present invention, the gas generated by pyrolysis in the pyrolysis tank is brought into contact with the aluminosilicate catalyst, and then brought into contact with the cracking activated aluminosilicate catalyst and then contacted with the shape selective aluminosilicate catalyst. Is preferred.

本発明により、大量に発生している廃食物油を原料として自動車燃料としても利用可能な石油留分状の燃料油を高収率で製造することができ、環境問題上からも社会的意義が極めて高いものである。   According to the present invention, it is possible to produce a high-yield petroleum oil fuel that can be used as an automobile fuel from waste food oil that is generated in large quantities. It is extremely expensive.

本発明で用いる廃食物油は給食センター、料理店、レストラン、さらには家庭その他での調理での使用済食用油であれば適宜のものを用いることができ、その原料源の種類等は問わない。原料源の例としては、ゴマ油、菜種油、オリーブ油、大豆油、べにばな油、とうもろこし油、米ぬか油等種々のものがあり、通常は種々の原物用植物油由来の廃食物油又はその混合物で本発明に提供される。   The waste food oil used in the present invention may be any suitable one as long as it is a used cooking oil for cooking at lunch centers, restaurants, restaurants, and even at home and the like, regardless of the type of raw material source, etc. . Examples of raw material sources include sesame oil, rapeseed oil, olive oil, soybean oil, safflower oil, corn oil, rice bran oil, etc., usually waste food oil derived from various raw vegetable oils or mixtures thereof In the present invention.

廃食物油から必要に応じ夾雑物や分離容易な水分を除いた後熱分解槽に入れる。熱分解槽には通常撹拌機を設け、廃食物油を加熱・撹拌しながら熱分解を伴ってガス化させる。加熱温度は200〜400℃、特に250〜350℃が好ましい。また常温近傍から徐々に加熱し、150℃より低い温度、たとえば70〜140℃で油中に存在しうる水分を除いてから、さらに昇温して廃食物油の熱分解を伴ってガス化させることが望ましい。尚、熱分解槽には、必要に応じ、シリカ、アルミナ、天然ゼオライト等の熱分解助剤を入れることも可能である。   Remove waste food oil from the waste food oil if necessary, and then put it in the pyrolysis tank. The pyrolysis tank is usually provided with a stirrer, and waste food oil is gasified with pyrolysis while heating and stirring. The heating temperature is preferably 200 to 400 ° C, particularly preferably 250 to 350 ° C. Heat gradually from around normal temperature, remove moisture that may be present in the oil at a temperature lower than 150 ° C., for example, 70 to 140 ° C., and further raise the temperature to gasify the waste food oil with thermal decomposition. It is desirable. In addition, if necessary, a pyrolysis aid such as silica, alumina, natural zeolite, etc. can be added to the pyrolysis tank.

かくしてガス化して熱分解槽を出たガス成分は次いで接触分解槽に移しアルミノシリケート系触媒と接触させる。接触分解槽にはアルミノシリケート系触媒が充填されており、通常接触分解槽の下部から、熱分解槽から出た高温に維持されたガス分を順次導入して触媒と接触させ、上部から接触分解して生成したガス状生成物を系外に出し、熱交換機を経て冷却し液化して燃料油を取得する。   The gas component thus gasified and exits the pyrolysis tank is then transferred to the catalytic cracking tank and brought into contact with the aluminosilicate catalyst. The catalytic cracking tank is filled with an aluminosilicate-based catalyst. Normally, gas kept at a high temperature from the thermal cracking tank is sequentially introduced from the lower part of the catalytic cracking tank and brought into contact with the catalyst. The gaseous product thus produced is taken out of the system, cooled through a heat exchanger and liquefied to obtain fuel oil.

アルミノシリケート系触媒としては、シリカとアルミナとを構成成分とするゼオライトが好ましく用いられる。特に好ましいゼオライトはβゼオライト及びZSM型ゼオライトである。ZSM型ゼオライトとしては、ZSM−5、ZSM−11、ZSM−12、ZSM−23、ZSM−35、ZSM−38、ZSM−48等を用いることができるが、特にZSM−5が好ましい。これらのアルミノシリケート系触媒は通常、少なくとも一部を水素型(酸型)にして用いることが好ましく、また必要に応じ、白金族金属等を付加して用いることが好ましい。   As the aluminosilicate catalyst, zeolite containing silica and alumina as constituent components is preferably used. Particularly preferred zeolites are β zeolite and ZSM type zeolite. As the ZSM type zeolite, ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-38, ZSM-48 and the like can be used, and ZSM-5 is particularly preferable. These aluminosilicate-based catalysts are usually preferably used at least partly in a hydrogen type (acid type), and it is preferable to add a platinum group metal or the like if necessary.

かくしてガソリン、灯軽油及び/又はA重油に相当な石油留分状の燃料油を高収率で得ることができるが、本発明では用いる触媒の選択により得られる燃料油の特性を調整することも可能である。即ちアルミノシリケート系触媒には、活性主体(酸型主体)のものから活性を低くし(酸型又は酸点の割合を少なくし)選択性(形状選択性)を高めたものまでが存在し、それらの選択や組合せにより、たとえば生成物中のガソリン分を多くしたり灯軽油分やA重油分を多くしたりすることができる。これは燃料油の需要動向や使用者側の要求に応じた製品調整が可能であることを意味し実用上の大きな利点である。特に触媒層を2段以上とし、最初に分解活性型アルミノシリケート系触媒を後段に形状選択型触媒を配することにより、生成物の炭素数や蒸溜分布や比重等の性状が化石燃料である一般的なガソリン、灯軽油、A重油に極めて近い生成物を得ることができる。   Thus, it is possible to obtain a petroleum fraction-like fuel oil corresponding to gasoline, kerosene oil, and / or heavy fuel oil A with a high yield. However, in the present invention, the characteristics of the fuel oil obtained can be adjusted by selecting the catalyst to be used. Is possible. In other words, aluminosilicate-based catalysts range from active (acid-based) to low (low acid type or acid point ratio) and high selectivity (shape selectivity). By selecting and combining them, for example, the gasoline content in the product can be increased, or the kerosene oil content or the A heavy oil content can be increased. This means that the product can be adjusted according to the demand trend of the fuel oil and the user's demand, which is a great practical advantage. In particular, fossil fuel has properties such as carbon number, distillation distribution, and specific gravity of the product by making the catalyst layer into two or more stages and arranging the cracking activated aluminosilicate catalyst first with the shape selective catalyst in the latter stage. A product very close to typical gasoline, kerosene, and heavy oil A can be obtained.

分解活性型アルミノシリケート系触媒は前記したように酸活性点の多い(好ましくは50%以上が酸型である)ものであり、一例として分解活性型のベータ型ゼオライト等が例示される。形状選択型アルミノシリケート系触媒は分解活性点の少ないものであり、特に白金族金属を含むZSM−5が好ましく用いられる。   As described above, the cracking activated aluminosilicate catalyst has many acid active sites (preferably 50% or more is in the acid form). Examples of the cracking activated aluminosilicate catalyst include cracking activated beta zeolite. The shape-selective aluminosilicate catalyst has few decomposition active sites, and ZSM-5 containing a platinum group metal is particularly preferably used.

本発明では廃食物油だけを熱分解に供することもできるが、廃エンジンオイルを併用することが好ましい。廃エンジンオイルの添加量は5〜20重量%、特に10〜15重量%が好ましい。廃エンジンオイルを併用することにより、自動車燃料油に適する生成物を取得することが可能となる。これはエンジンオイル中の成分であるオレフィン系長鎖炭化水素が廃食物油の熱分解時にその成分と化学的な相互作用をすることに由来するものと思われる。   In the present invention, only waste food oil can be subjected to thermal decomposition, but it is preferable to use waste engine oil in combination. The amount of waste engine oil added is preferably 5 to 20% by weight, more preferably 10 to 15% by weight. By using waste engine oil in combination, a product suitable for automobile fuel oil can be obtained. This is probably because the olefinic long-chain hydrocarbon, which is a component in engine oil, chemically interacts with the component during the thermal decomposition of waste food oil.

かくしてガス化して熱分解槽を出たガス成分は次いで接触分解槽に移しアルミノシリケート系触媒と接触させる。接触分解槽にはアルミノシリケート系触媒が充填されており、通常接触分解槽の下部から、熱分解槽から出た高温に維持されたガス分を順次導入して触媒と接触させ、上部から接触分解して生成したガス状生成物を系外に出し、熱交換機を経て冷却し液化して燃料油を取得する。   The gas component thus gasified and exits the pyrolysis tank is then transferred to the catalytic cracking tank and brought into contact with the aluminosilicate catalyst. The catalytic cracking tank is filled with an aluminosilicate-based catalyst. Normally, gas kept at a high temperature from the thermal cracking tank is sequentially introduced from the lower part of the catalytic cracking tank and brought into contact with the catalyst. The gaseous product thus produced is taken out of the system, cooled through a heat exchanger and liquefied to obtain fuel oil.

アルミノシリケート系触媒としては、シリカとアルミナとを構成成分とするゼオライトが好ましく用いられる。特に好ましいゼオライトはβゼオライト及びZSM型ゼオライトである。ZSM型ゼオライトとしては、ZSM−5、ZSM−11、ZSM−12、ZSM−23、ZSM−35、ZSM−38、ZSM−48等を用いることができるが、特にZSM−5が好ましい。これらのアルミノシリケート系触媒は通常、少なくとも一部を水素型(酸型)にして用いることが好ましく、また必要に応じ、白金族金属等を付加して用いることが好ましい。   As the aluminosilicate catalyst, zeolite containing silica and alumina as constituent components is preferably used. Particularly preferred zeolites are β zeolite and ZSM type zeolite. As the ZSM type zeolite, ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-38, ZSM-48 and the like can be used, and ZSM-5 is particularly preferable. These aluminosilicate-based catalysts are usually preferably used at least partly in a hydrogen type (acid type), and it is preferable to add a platinum group metal or the like if necessary.

かくしてガソリン、灯軽油から主としてなる燃料油を高収率で得ることができるが、本発明では用いる触媒の選択により得られる燃料油の特性を調整することも可能である。即ちアルミノシリケート系触媒には、活性主体(酸型主体)のものから活性を低くし(酸型又は酸点の割合を少なくし)選択性(形状選択性)を高めたものまでが存在し、それらの選択や組合せにより、たとえば生成物中のガソリン分を多くしたり灯軽油分やA重油分を多くしたりすることができる。これは燃料油の需要動向や使用者側の要求に応じた製品調整が可能であることを意味し実用上の大きな利点である。特に触媒層を2段以上とし、最初に分解活性型アルミノシリケート系触媒を後段に形状選択型触媒を配することにより、生成物の炭素数や蒸溜分布や比重等の性状が化石燃料である一般的なガソリン・灯軽油に極めて近い生成物を得ることができる。   Thus, although the fuel oil mainly composed of gasoline and kerosene oil can be obtained in a high yield, the characteristics of the fuel oil obtained by selecting the catalyst to be used can be adjusted in the present invention. In other words, aluminosilicate-based catalysts range from active (acid-based) to low (low acid type or acid point ratio) and high selectivity (shape selectivity). By selecting and combining them, for example, the gasoline content in the product can be increased, or the kerosene oil content or the A heavy oil content can be increased. This means that the product can be adjusted according to the demand trend of the fuel oil and the user's demand, which is a great practical advantage. In particular, fossil fuel has properties such as carbon number, distillation distribution, and specific gravity of the product by making the catalyst layer into two or more stages and arranging the cracking activated aluminosilicate catalyst first with the shape selective catalyst in the latter stage. A product very close to typical gasoline and kerosene can be obtained.

分解活性型アルミノシリケート系触媒は前記したように酸活性点の多い(好ましくは50%以上が酸型である)ものであり、一例として分解活性型のベータ型ゼオライト等が例示される。形状選択型アルミノシリケート系触媒は分解活性点の少ないものであり、特に白金族金属を含むZSM−5が好ましく用いられる。   As described above, the cracking activated aluminosilicate catalyst has many acid active sites (preferably 50% or more is in the acid form). Examples of the cracking activated aluminosilicate catalyst include cracking activated beta zeolite. The shape-selective aluminosilicate catalyst has few decomposition active sites, and ZSM-5 containing a platinum group metal is particularly preferably used.

尚、本発明方法は被処理原料としてパーム油を用いた場合に特に効果が大きいが、ゴマ油、菜種油、大豆油、とうもろこし油等の植物油も使用可能である。またパーム油によって代表される被処理原料に廃エンジンオイルを少量(たとえば1〜10重量%)混入しておくことも好ましい。
次に実施例によって本発明を例証する。
The method of the present invention is particularly effective when palm oil is used as the material to be treated, but vegetable oils such as sesame oil, rapeseed oil, soybean oil, corn oil and the like can also be used. Moreover, it is also preferable to mix a small amount (for example, 1 to 10% by weight) of waste engine oil into the material to be treated represented by palm oil.
The following examples illustrate the invention.

撹拌翼を備えた内容積約51の円筒状熱分解槽に学校給食センターの使用済食物油700gを入れ、最初、常温から80℃まで昇温し、その段階で水分の多くが蒸発し終わるまで維持し、さらに5℃ずつ昇温して140℃まで昇温して水蒸気の発生が全く認められなくなったことを確認してから20℃ずつ昇温していき約330℃まで昇温しその温度を維持した。その間廃食物油のガス化が進行し、熱分解槽の頂部から出たガスを接触分解槽に導いた。接触分解槽は内容積約1.51の円筒体からなり、そのなかに約500gのベータ型ゼオライトを充填したものである。   In a cylindrical pyrolysis tank with an inner volume of about 51 equipped with a stirring blade, 700g of spent cooking oil from the school feeding center is put, and the temperature is first raised from room temperature to 80 ° C, until most of the water has evaporated at that stage. The temperature is further increased by 5 ° C., and the temperature is increased to 140 ° C. After confirming that generation of water vapor is not observed at all, the temperature is increased by 20 ° C. and the temperature is increased to about 330 ° C. Maintained. Meanwhile, gasification of waste food oil progressed, and the gas emitted from the top of the pyrolysis tank was led to the catalytic cracking tank. The catalytic cracking tank is a cylindrical body having an internal volume of about 1.51, and is filled with about 500 g of beta zeolite.

接触分解槽の頂部からのガスを熱交換器を通して冷却し液化して生成物を取得した。全体の液収率は約80%であった。
生成物は石油留分の灯油相当のものである。その蒸留性状試験結果を表1に示す。
The gas from the top of the catalytic cracking tank was cooled through a heat exchanger and liquefied to obtain the product. The total liquid yield was about 80%.
The product is equivalent to kerosene in the petroleum fraction. The distillation property test results are shown in Table 1.

実施例1において廃食物油に約10重量%の廃エンジンオイルを添加し同様の実験を行った。但し接触分解槽の触媒層にはZSM−5ゼオライトを充填して用いた。
その結果、ガソリン相当分の割合が倍増した。
In Example 1, about 10% by weight of waste engine oil was added to waste food oil, and the same experiment was conducted. However, the catalyst layer of the catalytic cracking tank was filled with ZSM-5 zeolite.
As a result, the gasoline equivalent was doubled.

Claims (3)

廃食物油を熱分解槽中で加熱してガス化させ、該ガスを接触分解槽中でアルミノシリケート系触媒と接触させることを特徴とする廃食物油から石油留分状の燃料油を製造する方法。   Production of petroleum distillate fuel oil from waste food oil, characterized in that waste food oil is heated to gasify in a pyrolysis tank and the gas is brought into contact with an aluminosilicate catalyst in the catalytic cracking tank. Method. 廃食物油に廃エンジンオイルを添加して熱分解槽に供給する請求項1記載の方法。   The method according to claim 1, wherein waste engine oil is added to waste food oil and supplied to the pyrolysis tank. 該ガスのアルミノシリケート系触媒との接触を、分解活性型アルミノシリケート系触媒と接触させた後形状選択型アルミノシリケート触媒と接触することによって行う請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the contact of the gas with the aluminosilicate catalyst is carried out by contacting with the shape-selective aluminosilicate catalyst after contacting with the cracking activated aluminosilicate catalyst.
JP2007220554A 2007-08-28 2007-08-28 Utilization method for waste food oil Pending JP2009051953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220554A JP2009051953A (en) 2007-08-28 2007-08-28 Utilization method for waste food oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220554A JP2009051953A (en) 2007-08-28 2007-08-28 Utilization method for waste food oil

Publications (1)

Publication Number Publication Date
JP2009051953A true JP2009051953A (en) 2009-03-12

Family

ID=40503313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220554A Pending JP2009051953A (en) 2007-08-28 2007-08-28 Utilization method for waste food oil

Country Status (1)

Country Link
JP (1) JP2009051953A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962694A (en) * 1982-10-02 1984-04-10 Honda Motor Co Ltd Preparation of gasoline
JPH07138578A (en) * 1993-11-15 1995-05-30 Kyoritsu Plant Konsutorakuto Kk Apparatus for converting used edible oil into fuel oil
JP2006097671A (en) * 2004-09-02 2006-04-13 Takamine Tsukamoto Power generation method using waste cooking oil and waste lubricating oil as fuel, and device therefor
JP3136082U (en) * 2007-07-30 2007-10-11 株式会社タカオテック Vegetable oil production equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962694A (en) * 1982-10-02 1984-04-10 Honda Motor Co Ltd Preparation of gasoline
JPH07138578A (en) * 1993-11-15 1995-05-30 Kyoritsu Plant Konsutorakuto Kk Apparatus for converting used edible oil into fuel oil
JP2006097671A (en) * 2004-09-02 2006-04-13 Takamine Tsukamoto Power generation method using waste cooking oil and waste lubricating oil as fuel, and device therefor
JP3136082U (en) * 2007-07-30 2007-10-11 株式会社タカオテック Vegetable oil production equipment

Similar Documents

Publication Publication Date Title
Sotelo-Boyas et al. Renewable diesel production from the hydrotreating of rapeseed oil with Pt/Zeolite and NiMo/Al2O3 catalysts
Ooi et al. Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts
Dujjanutat et al. Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/palm kernel oils
JP4925653B2 (en) Method for producing liquefied fuel gas composition
CN105102589B (en) Reproducible compositions of hydrocarbons
Rao et al. Fluid catalytic cracking: Processing opportunities for Fischer–Tropsch waxes and vegetable oils to produce transportation fuels and light olefins
Vu et al. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass
CN105378034B (en) The method for preparing hydrocarbon
Oya et al. Catalytic production of branched small alkanes from biohydrocarbons
Hormozi Jangi Low-temperature destructive hydrodechlorination of long-chain chlorinated paraffins to diesel and gasoline range hydrocarbons over a novel low-cost reusable ZSM-5@ Al-MCM nanocatalyst: a new approach toward reuse instead of common mineralization
JP6887445B2 (en) Bio-renewable kerosene, jet fuel, jet fuel blend stock, and manufacturing methods
BRPI0707890B1 (en) fluid catalytic cracking process for the preparation of cracked products
ES2714870T3 (en) Method for preparing fuel using oils and biological fats
CN102264869A (en) Process for producing aviation fuel oil base
EP3696250B1 (en) Conversion of naphtha to lpg in renewable hydroprocessing units
Chen et al. Comparison of canola oil conversion over MFI, BEA, and FAU
JP2022540531A (en) Method for producing synthetic jet fuel
EP2823022A1 (en) Heavy synthetic fuel
Makertihartha et al. Biogasoline production from palm oil: optimization of catalytic cracking parameters
Wise et al. Ex-situ catalytic fast pyrolysis of Beetle-killed lodgepole pine in a novel ablative reactor
NO344183B1 (en) Process for the production of an aviation fuel and an autodiesel
JPH02113092A (en) High-performance kerosine
TW202003820A (en) Method of processing a bio-based material and apparatus for processing the same
JP2009235313A (en) Contact decomposition method for fats and oils
Doronin et al. Conversion of vegetable oils under conditions of catalytic cracking

Legal Events

Date Code Title Description
A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20090113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507