JP2009050533A - Self-walking supporting apparatus, and program being used for it - Google Patents

Self-walking supporting apparatus, and program being used for it Download PDF

Info

Publication number
JP2009050533A
JP2009050533A JP2007221220A JP2007221220A JP2009050533A JP 2009050533 A JP2009050533 A JP 2009050533A JP 2007221220 A JP2007221220 A JP 2007221220A JP 2007221220 A JP2007221220 A JP 2007221220A JP 2009050533 A JP2009050533 A JP 2009050533A
Authority
JP
Japan
Prior art keywords
disturbance
unit
axis
walking support
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007221220A
Other languages
Japanese (ja)
Inventor
Buni Yu
文偉 兪
Yoko Hagane
容子 羽金
Sadami Saito
制海 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2007221220A priority Critical patent/JP2009050533A/en
Publication of JP2009050533A publication Critical patent/JP2009050533A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rehabilitation Tools (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-walking supporting apparatus which can more quickly correspond to a disturbance, and to provide a program which is used for the apparatus. <P>SOLUTION: This self-walking supporting apparatus includes a sensor section, a disturbance responding section, and an electric stimulation section. In this case, the sensor section is arranged on the leg section of a walk supporting subject. The disturbance responding section identifies a disturbance conforming to the output from the sensor section and prepares and outputs a stimulation signal for coping with the disturbance. The electric stimulation section can apply an electric stimulation to the leg section of the walk supporting subject conforming to the stimulation signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自立歩行支援装置及びそれに用いられるプログラムに関する。   The present invention relates to an independent walking support device and a program used therefor.

高齢者、半身麻痺者を含む歩行機能低下者は、歩行に関する感覚及び神経筋骨格機能の障害により歩行環境の変化への対応能力が弱化し、障害物や不整地等に基づく外乱に対応しきれず、歩行時においてこれら外乱による転倒が大きなリスク要因となっている。したがって、歩行機能低下者に対しこれら外乱に対応可能な自立歩行支援は極めて重要な事項である。   Elderly people and those with reduced gait function, including those with hemiplegia, are unable to cope with disturbances based on obstacles, rough terrain, etc. due to weak sensation related to walking and impaired neuromuscular skeletal function. The fall caused by these disturbances during walking is a major risk factor. Therefore, self-supporting walking support that can cope with these disturbances is a very important matter for persons with reduced walking function.

従来、歩行時において発生する外乱の計測については、筋電図計測、間接角計測等複数の計測が提案されてきている。しかしながら、上記はいずれも計測精度において課題が残るだけでなく、外乱であると判断するまでの時間において課題を残している。すなわち、外乱であると判断し、その外乱に対し迅速に対応して歩行機能低下者の外乱により崩れた姿勢を回復させるためには未だ解決すべき課題を残している。   Conventionally, a plurality of measurements such as electromyogram measurement and indirect angle measurement have been proposed for measuring disturbances that occur during walking. However, all of the above not only have a problem in measurement accuracy, but also have a problem in the time until it is determined that it is a disturbance. That is, in order to judge that it is a disturbance and to respond quickly to the disturbance and recover the posture collapsed by the disturbance of the person with reduced walking function, there are still problems to be solved.

そこで、本発明は、上記課題を解決し、外乱に対しより迅速に対応可能な自立歩行支援装置及びそれに用いられるプログラムを提供することを目的とする。   In view of the above, an object of the present invention is to solve the above-described problems and provide an independent walking support device that can respond more quickly to disturbances and a program used therefor.

本発明の一手段に係る自立歩行支援装置は、歩行支援対象者の脚部に配置するためのセンサ部と、センサ部からの出力に基づき外乱を識別し、外乱に対応するための刺激信号を作成及び出力する外乱識別部と、刺激信号に基づき歩行支援対象者の脚部に電気刺激を与えることが可能な電気刺激部と、を有する。   A self-supporting walking support device according to one means of the present invention is configured to identify a disturbance based on an output from a sensor unit and a sensor unit for placing on a leg of a walking support target person, and to provide a stimulation signal for dealing with the disturbance. A disturbance identification unit to be created and output, and an electrical stimulation unit capable of applying electrical stimulation to the leg of the walking support target person based on the stimulation signal.

また本発明の他の一手段に係る自立歩行支援用プログラムは、コンピュータに、加速度センサからのデータを時系列的に取得するデータ取得部、時系列的なデータに基づき特徴量を抽出する特徴抽出部、特徴量に基づき外乱であるか否かを識別する判別部、判別部が外乱であると判断した場合に刺激信号を作成する刺激作成部、として機能させる。   In addition, the independent walking support program according to another aspect of the present invention includes a data acquisition unit that acquires data from an acceleration sensor in a time series in a computer, and a feature extraction that extracts a feature amount based on the time series data. And a determination unit for identifying whether or not the disturbance is based on the feature amount, and a stimulus generation unit that generates a stimulus signal when the determination unit determines that the disturbance is present.

以上、本発明により、外乱に対し迅速に対応可能な自立歩行支援装置及びそれに用いられるプログラムを提供することができる。   As described above, according to the present invention, it is possible to provide an independent walking support apparatus that can quickly cope with disturbance and a program used therefor.

以下、本発明の実施の形態の一例について、図面を用いて説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る自立歩行支援装置の概略を示す図である。図1に示すように、本実施形態に係る自立歩行支援装置1は、センサ部2と、このセンサ部2からの信号の出力を受け、外乱の識別及び刺激信号の作成を行う外乱応答部3と、外乱応答部3からの信号に基づき電気刺激を与える電気刺激部4と、を少なくとも有して構成される。   FIG. 1 is a diagram illustrating an outline of an independent walking support device according to the present embodiment. As shown in FIG. 1, an independent walking support device 1 according to this embodiment includes a sensor unit 2 and a disturbance response unit 3 that receives an output of a signal from the sensor unit 2 and identifies a disturbance and creates a stimulus signal. And an electrical stimulation unit 4 that applies electrical stimulation based on a signal from the disturbance response unit 3.

本実施形態に係るセンサ部2は、自立歩行支援対象者の足、好ましくは足首近傍に取り付けられるものであり、複数の加速度センサ及び角速度センサの少なくともいずれかを有して構成されることが好ましい態様である。またここにおいて複数の加速度センサは、歩行機能低下者の歩行方向(進行方向)をX軸とし、歩行面(地面)に平行であってこのX軸に対して垂直な軸をY軸、歩行面に垂直であって、X軸に対して垂直な軸をZ軸とした場合に、これらX軸、Y軸及びZ軸それぞれにおける加速度を測定できるように配置されたものであることが好ましく、角速度センサは、これらX軸、Y軸、Z軸を中心に回転する角速度を測定できるように配置されたものであることが好ましい。なお図2に、本実施形態に係る加速度センサ、角速度センサの配置に関する概略図を示す。なお加速度センサ、角速度センサの構成としては、特に限定されることなく、市販される周知のものを採用することができるが、上記機能を実現する観点から、加速度計測定範囲+5g、角速度計測定範囲±200degree/s程度のものが好ましい。   The sensor unit 2 according to the present embodiment is attached to the foot of an independent walking support target person, preferably in the vicinity of the ankle, and preferably includes at least one of a plurality of acceleration sensors and angular velocity sensors. It is an aspect. In addition, the plurality of acceleration sensors here uses the walking direction (traveling direction) of the person with reduced walking function as the X-axis, the axis parallel to the walking surface (ground) and perpendicular to the X-axis as the Y-axis, and the walking surface. When the axis perpendicular to the X axis is the Z axis, it is preferably arranged so that the acceleration on each of the X axis, the Y axis, and the Z axis can be measured. The sensor is preferably arranged so as to be able to measure angular velocities that rotate about these X, Y, and Z axes. FIG. 2 shows a schematic diagram regarding the arrangement of the acceleration sensor and the angular velocity sensor according to the present embodiment. The configurations of the acceleration sensor and the angular velocity sensor are not particularly limited, and a commercially available well-known one can be adopted. From the viewpoint of realizing the above functions, the accelerometer measurement range +5 g, the angular velocity meter measurement range Those of about ± 200 degrees / s are preferred.

図3は、本実施形態に係る外乱応答部3の機能ブロック図である。本実施形態に係る外乱応答部3は、外乱の識別を行う外乱識別部31と、この外乱識別部31が外乱であると識別した場合に、この外乱に対応できるよう電気刺激部4に出力する信号(刺激信号)を作成する刺激作成部32と、を有して構成される。なお本実施形態において、センサ部2が出力する信号はアナログデータであるのが一般的であるため、外乱応答部3の前段に、このアナログデータをデジタルデータに変換するアナログ/デジタル変換器(以下「AD変換器」という。)を有することが好ましい。   FIG. 3 is a functional block diagram of the disturbance response unit 3 according to the present embodiment. The disturbance response unit 3 according to the present embodiment outputs a disturbance identification unit 31 that identifies a disturbance and the electrical stimulation unit 4 so that the disturbance identification unit 31 can cope with the disturbance when the disturbance identification unit 31 identifies the disturbance. And a stimulus creating unit 32 that creates a signal (stimulus signal). In this embodiment, since the signal output from the sensor unit 2 is generally analog data, an analog / digital converter (hereinafter, referred to as “analog / digital converter”) that converts the analog data into digital data before the disturbance response unit 3. It is preferable to have “AD converter”.

外乱識別部31は、外乱が発生しているか否かを識別する部である。外乱識別部31は、図3で示すとおり、複数の加速度センサ又は角速度センサのそれぞれから出力されるデータを時系列的に取得するデータ取得部311と、このデータ取得部311が取得したそれぞれの時系列的なデータから特徴量を抽出する特徴抽出部312と、この特徴抽出量に基づき外乱であるか否かを識別する判別部313と、を少なくとも有して構成される。   The disturbance identification unit 31 is a unit that identifies whether or not a disturbance has occurred. As shown in FIG. 3, the disturbance identification unit 31 includes a data acquisition unit 311 that acquires data output from each of a plurality of acceleration sensors or angular velocity sensors in time series, and each time acquired by the data acquisition unit 311. It comprises at least a feature extraction unit 312 that extracts feature amounts from serial data and a determination unit 313 that identifies whether or not there is a disturbance based on the feature extraction amounts.

本実施形態に係るデータ取得部311は、加速度又は角速度の経時的な変化をデータとして取得する。図4は、一例として、踵に付されたX軸方向の加速度を示す図であり、図中横軸は時間を、縦軸は加速度に応じた電圧値を示している。また本図の例では、踵接地に起因すると思われる加速度の大きな変化が見て取れる。   The data acquisition unit 311 according to the present embodiment acquires changes over time in acceleration or angular velocity as data. FIG. 4 is a diagram showing acceleration in the X-axis direction attached to the collar as an example, in which the horizontal axis represents time and the vertical axis represents a voltage value corresponding to the acceleration. Also, in the example in this figure, a large change in acceleration, which can be attributed to the ground contact, can be seen.

本実施形態に係る特徴抽出部312は、データ取得部311が取得した時系列データに基づき特徴量を抽出する。特徴量としては、限定されるわけではないが、上記データ取得部311により取得した時系列のデータのうち、歩行における踵の接地に起因すると思われる加速度又は角速度の変化から一定期間経過後の加速度の値又は角速度の値を採用することが好適である。なお、本実施形態において、上記期間としては、踵の接地に起因すると思われる時から100ms以下の範囲内であることが好ましい。この範囲内とすることで、概ね外乱発生後200ms以下の範囲で歩行機能低下者に対し適切な支援を行うことができ、適切な姿勢への回復を行うことができるようになると考えられる。   The feature extraction unit 312 according to the present embodiment extracts feature amounts based on the time series data acquired by the data acquisition unit 311. Although it is not necessarily limited as the feature amount, among the time-series data acquired by the data acquisition unit 311, the acceleration after a certain period of time has elapsed from the change in acceleration or angular velocity that is considered to be caused by the ground contact of the heel during walking. It is preferable to adopt the value of or the angular velocity. In the present embodiment, the period is preferably within a range of 100 ms or less from the time considered to be caused by ground contact of the bag. By setting it within this range, it is considered that appropriate support can be provided to persons with reduced walking function within a range of 200 ms or less after the occurrence of a disturbance, and recovery to an appropriate posture can be performed.

また本実施形態において、抽出する特徴量としては、Y軸に対する角速度であることが特に好ましい。本発明者らは、外乱であるか否かをより効率的に判断するための種々の方法について、歩行時における頭、腰、脚の加速度及び角速度を含めて詳細に検討を行ったところ、デイビスのクラスタ分類法を用いた場合においてデイビス値が低い瞬間のセンサが外乱であるか否かを識別しやすいことを発見し、特にY軸に対する角速度がより効率的に分類できることを発見している。   In the present embodiment, the feature quantity to be extracted is particularly preferably an angular velocity with respect to the Y axis. The inventors of the present invention have studied in detail about various methods for more efficiently determining whether or not a disturbance is present, including the acceleration and angular velocity of the head, hips, and legs during walking. In the case of using the above cluster classification method, it has been found that it is easy to identify whether or not the sensor at the moment when the Davis value is low is a disturbance, and in particular, it has been found that the angular velocity with respect to the Y axis can be classified more efficiently.

本実施形態に係る判別部313は、抽出した特徴量に基づき、外乱であるか否かを判別する。この判別の方法としては、限定されるわけではないが、例えばいわゆる判別分析が好適である。ここで判別分析とは、限定されるわけではないが、たとえば図5の概念図で示すように、特徴量の分布に対し、一本の直線を基準としてこの直線により分けられる領域のいずれ側にあるかで各特徴量が外乱であるか否かを判別していく分析をいう。   The determination unit 313 according to the present embodiment determines whether or not the disturbance is based on the extracted feature amount. This discriminating method is not limited, but so-called discriminant analysis is suitable, for example. Here, the discriminant analysis is not limited, but, for example, as shown in the conceptual diagram of FIG. 5, on one side of the region divided by this straight line with respect to the distribution of the feature amount with reference to a single straight line. An analysis that determines whether each feature is a disturbance or not.

刺激作成部32は、判別部313が外乱であると識別した場合に、電気刺激部4に対する刺激信号を作成する部である。刺激信号は限定されるわけではないが、例えば下肢主要筋群を刺激するための電気的な信号であることが好ましく、例えば上記筋群に麻痺症状を有する症状患者の場合は、アキレス腱と膝裏の総腓骨胚骨神経を刺激する刺激信号であることが好ましい(これにより足腿上げ動作が容易になり、外乱に対して応答が容易になる)。   The stimulus creating unit 32 is a unit that creates a stimulus signal for the electrical stimulating unit 4 when the determining unit 313 identifies a disturbance. The stimulation signal is not limited, but is preferably an electrical signal for stimulating the main muscle groups of the lower limbs. For example, in the case of a symptomatic patient having paralysis symptoms in the muscle groups, the Achilles tendon and the back of the knee It is preferable that the signal is a stimulation signal for stimulating the total rib embryonic nerve (this makes it easier to raise the thigh and makes it easier to respond to disturbance).

本実施形態に係る電気刺激部4は、外乱応答部3からの信号の入力を受け、下肢主要筋群を刺激するためのものである。この構成としては数や位置については、当該支援対象者の状態等により適宜調整されることが必要となるが、例えば歩行機能低下者の脚に配置されることが好ましく、例えば下肢主要筋群に麻痺症状を有する症状患者の場合の一例として、膝裏及びアキレス腱近傍に配置する例を挙げることができる。なお電気刺激部4の構成としては限定されることなく周知な構造を採用することができ、例えばいわゆる電気パッドであることは好ましい一態様である。   The electrical stimulation unit 4 according to the present embodiment is for receiving signals from the disturbance response unit 3 and stimulating the lower limb major muscle groups. As this configuration, the number and position need to be appropriately adjusted depending on the state of the support target person, etc., but it is preferably arranged on the leg of a person with reduced walking function, for example, in the lower limb major muscle group. As an example in the case of a symptomatic patient having a paralytic symptom, an example in which the patient is placed near the knee sole and the Achilles tendon can be given. In addition, as a structure of the electric stimulation part 4, a well-known structure can be employ | adopted without being limited, For example, it is a preferable aspect that it is what is called an electric pad.

ここで本実施形態に係る自立歩行支援装置の使用形態について説明する。まず、自立歩行支援対象者は、足にセンサ部及び電気刺激部を装着し、これらと外乱応答部とを接続する。そして自立歩行支援対象者は歩行を開始するとともに、外乱応答部は歩行により生じる加速度や角速度の時系列データを取得する。そして外乱応答部は上記取得する時系列データのうち、踵接地時から一定期間(たとえば100ms)経過した後の加速度又は角速度の値を特徴量として取得する。そして外乱応答部はこの特徴量に対し判別分析を行い、外乱であるか否かについて認識を行い、外乱であると判定した場合、刺激信号を作成し、電気刺激部に刺激信号を出力する。なお外乱でないと判定した場合は、刺激信号の作成を行わず、上記の時系列データの取得処理に移行する。   Here, the usage pattern of the independent walking support device according to the present embodiment will be described. First, the independent walking support target wears a sensor unit and an electrical stimulation unit on his / her foot and connects them to a disturbance response unit. The independent walking support target starts walking, and the disturbance response unit acquires time-series data of acceleration and angular velocity generated by walking. And a disturbance response part acquires the value of the acceleration or angular velocity after progress for a fixed period (for example, 100 ms) from the time of heel contact among the time series data acquired as a feature amount. Then, the disturbance response unit performs discriminant analysis on the feature amount, recognizes whether or not it is a disturbance, and if it is determined as a disturbance, creates a stimulation signal and outputs the stimulation signal to the electrical stimulation unit. If it is determined that there is no disturbance, the process proceeds to the time-series data acquisition process without creating a stimulus signal.

以上の動作により、外乱に対し迅速に対応可能な自立歩行支援装置及びそれに用いられるプログラムを提供することができる。特に本実施形態に係る自立歩行支援装置によると、センサ部、外乱応答部、電気刺激部といった必要最小限の構成で実現でき、日常生活の利便性、計算の高速性を確保できる。   By the above operation, it is possible to provide an independent walking support device that can quickly respond to disturbances and a program used therefor. In particular, the self-sustained walking support device according to the present embodiment can be realized with the minimum necessary configuration such as a sensor unit, a disturbance response unit, and an electrical stimulation unit, and can ensure the convenience of daily life and the high speed of calculation.

(実施形態2)
本実施形態に係る自立歩行支援装置は、外乱応答部3における判別部313の判別方式が異なる以外はほぼ実施形態1と同じである。以下、異なる部分を主として説明する。なおそれ以外の部分については説明を省略する。
(Embodiment 2)
The independent walking support device according to the present embodiment is substantially the same as that of the first embodiment except that the determination method of the determination unit 313 in the disturbance response unit 3 is different. Hereinafter, different parts will be mainly described. The description of other parts is omitted.

本実施形態に係る判別部313は、判別処理にニューラルネットワーク(NN)を用いている点が実施形態1と異なる。本実施形態において用いるニューラルネットワークとしては、限定されるわけではないが、バックプロパゲーション法であることが好ましい一態様である。ニューラルネットワークの概略を図6に示しておく。   The discrimination unit 313 according to the present embodiment is different from the first embodiment in that a neural network (NN) is used for discrimination processing. The neural network used in the present embodiment is not limited, but a back propagation method is a preferred aspect. An outline of the neural network is shown in FIG.

以上、本実施形態によると外乱に対しより迅速に対応可能な自立歩行支援装置及びそれに用いられるプログラムを提供することが可能となり、また、本実施形態によるニューラルネットワークを用いると、速度に対するロバスト性を有するとともに、個人差を吸収することができるといった利点もある。   As described above, according to the present embodiment, it is possible to provide an independent walking support apparatus that can respond more quickly to disturbances and a program used therefor, and the use of the neural network according to the present embodiment increases the robustness with respect to speed. In addition, there is an advantage that individual differences can be absorbed.

また、本実施形態に係る判別方式と上記実施形態1に係る判別方式とは同時に用いることができるし、一方のみの採用であってもよく、特に限定されるわけではない。   In addition, the determination method according to the present embodiment and the determination method according to the first embodiment can be used at the same time, or only one of them can be adopted, and there is no particular limitation.

(実施例1)
上記した実施形態に係る自立歩行支援装置について、実際に作成を行い、その動作について確認を行った。以下に説明する。
(Example 1)
About the self-supporting walking assistance apparatus which concerns on above-described embodiment, it created actually and confirmed about the operation | movement. This will be described below.

まず実験参加に同意を得た健常者9名(22〜37歳、いずれも男性)に対し、頭、腰、足のそれぞれに加速度センサ及び角速度センサを取り付け、X軸、Y軸、Z軸に対しいずれも測定が可能となるようにし、そのそれぞれのセンサを情報処理装置に接続し、AD変換器を介してこれらセンサからの出力を取り込めるようにした。また、本実施例の判別部では、判別分析及びニューラルネットワークによる分析の両方について行った。   First, for 9 healthy persons (22 to 37 years old, all male) who agreed to participate in the experiment, acceleration sensors and angular velocity sensors were attached to the head, waist, and feet, respectively, and the X, Y, and Z axes were attached. In either case, measurement is possible, each sensor is connected to an information processing apparatus, and outputs from these sensors can be captured via an AD converter. Further, the discriminating unit of this embodiment performed both discriminant analysis and analysis by a neural network.

次に、各健常者に対し、両側分離型トレッドミル上を3km/hで歩行させ、歩行が安定したら踵が接地するタイミングを見図り、左側の速度を1秒間だけ0.5km/hにし、歩行の変化を観測した。なおこの作業は各健常者15回行った。この結果のうち、足、腰、頭のそれぞれから抽出した特徴量と、その抽出した特徴量が外乱による変化が生じているか、正常な歩行であるかについての判定の成功数を下記表1に、更にその中で足のY軸に基づく角速度のみを特徴量として抽出し、ニュートラルネットワークを用いた結果の判別成功数を表2に示す。また、図7に、足のY軸を基準とする角速度の時間変化を記載しておく。
Next, for each healthy person, walk on the separate treadmill on both sides at 3 km / h. When the walking is stable, look at the timing when the heel touches down, and the left side speed is 0.5 km / h for 1 second. We observed changes in walking. This operation was performed 15 times for each healthy person. Of these results, the feature quantities extracted from each of the feet, hips, and head, and the number of successful judgments as to whether the extracted feature quantities have changed due to disturbance or normal walking are shown in Table 1 below. In addition, only the angular velocity based on the Y axis of the foot is extracted as a feature amount, and the number of successful discrimination results as a result of using the neutral network is shown in Table 2. FIG. 7 shows the change in angular velocity with respect to the Y axis of the foot over time.

この結果、いずれも極めて高い判断率であることが確認でき、特に足角速度では、踵接地時から複数の特徴量を抽出すれば、ほぼ100%で外乱を判定することができることを確認した。   As a result, it was confirmed that all of them had a very high judgment rate. In particular, in the case of the foot angular velocity, it was confirmed that if a plurality of feature amounts were extracted from the time of heel contact, disturbance could be determined at almost 100%.

なお、本実施例に基づき更に検討を行ったところ、通常の歩行において歩行速度を変化させた場合、与える外乱の速度を変更させた場合においても、非常に高い判別結果を示していることが確認できた。   Further examination based on the present example confirmed that even when the walking speed was changed during normal walking and the speed of the disturbance applied was changed, a very high discrimination result was shown. did it.

(実施例2)
本実施例では、実験参加に同意を得た女性の麻痺患者に対し、足にY軸に対する測定が可能となるよう角速度センサを取りつけ、このセンサを情報処理装置に接続し、AD変換器を介してこれらセンサからの出力を取り込めるようにした。また本実施例では、情報処理装置に接続された電気刺激装置(NIHON MEDIX)及び電気パッド(テクノゲル、SR−5050、セキスイ)をアキレス腱及び膝裏に装着し、左足腿上げのタイミングを測定し、このタイミングで上記2箇所を電気刺激した場合(FES支援)としない場合の双方について実験を行った。
(Example 2)
In this example, for a female paralyzed patient who has consented to participate in the experiment, an angular velocity sensor is attached to the foot so that measurement on the Y axis is possible, this sensor is connected to an information processing device, and an AD converter is used. The output from these sensors can be captured. In this embodiment, an electrical stimulation device (NIHON MEDIA) and an electrical pad (Technogel, SR-5050, Sekisui) connected to the information processing device are attached to the Achilles tendon and the back of the knee, and the timing of raising the left leg is measured. Experiments were performed for both cases where the two locations were electrically stimulated (FES support) and not at this timing.

本実施例では、被験者に対し、両側分離型トレッドミル上を0.4km/hで歩行させ、歩行が安定したら踵が接地するタイミングを見図り左側の速度を0.1km/hにし、歩行の変化を観測した。なおこの作業は5回行った。この結果のうち、足のY軸に基づく角速度の特徴量及びその判別成功数を表4に示す。なお本実施例では、踵接地時間から経過した時間を異ならせた結果を複数組み合わせて判定を行った。
In this example, the subject is walked on a treadmill on both sides separated at 0.4 km / h, and when walking is stabilized, the timing at which the heel touches the ground is set, the speed on the left side is set to 0.1 km / h, Changes were observed. This operation was performed 5 times. Among these results, Table 4 shows the feature quantity of angular velocity based on the Y axis of the foot and the number of successful discriminations. In this example, the determination was performed by combining a plurality of results obtained by changing the time elapsed from the saddle contact time.

この結果、いずれも極めて高い判断率であることが確認できた。特に、本実施例ではニューラルネットワークによる判断を用いているため、個人差にも対応できることが確認できた。更に、FES支援を行った場合においても、外乱を確実に検出することができ、精度の高い自立歩行支援装置となっていることが確認できた。   As a result, it was confirmed that all of them had a very high judgment rate. In particular, in this example, since the judgment by the neural network is used, it was confirmed that individual differences can be dealt with. Furthermore, even when FES support was performed, it was possible to reliably detect disturbances and to confirm that the device was a highly accurate independent walking support device.

本発明は、自立歩行支援装置として産業上利用可能性があり、またそれに用いられるプログラムも当然に産業上利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability as a self-supporting walking support device, and the program used there naturally has industrial applicability.

実施形態1に係る自立歩行支援装置の概略を示す図である。It is a figure which shows the outline of the self-supporting walking assistance apparatus which concerns on Embodiment 1. FIG. 実施形態1に係るセンサ部の配置に関する概略を示す図である。FIG. 4 is a diagram illustrating an outline regarding the arrangement of sensor units according to the first embodiment. 実施形態1に係る外乱応答部の機能ブロック図である。3 is a functional block diagram of a disturbance response unit according to Embodiment 1. FIG. 実施形態1に係る時系列のデータの一例を示す図である。6 is a diagram illustrating an example of time-series data according to the first embodiment. FIG. 実施形態1に係る判別部の判別分析の概略を示す図である。It is a figure which shows the outline of discriminant analysis of the discrimination | determination part concerning Embodiment 1. FIG. 実施形態2に係る判別部のニューラルネットワークの概略を示す図である。It is a figure which shows the outline of the neural network of the discrimination | determination part concerning Embodiment 2. FIG. 実施例1に係るY軸に対する角速度の時系列データの例を示す図である。It is a figure which shows the example of the time series data of the angular velocity with respect to the Y-axis which concerns on Example 1. FIG.

符号の説明Explanation of symbols

1…自立歩行支援装置、2…センサ部、3…外乱識別部、4…電気刺激部

DESCRIPTION OF SYMBOLS 1 ... Independent walking assistance apparatus, 2 ... Sensor part, 3 ... Disturbance discrimination part, 4 ... Electrical stimulation part

Claims (9)

歩行支援対象者の脚部に配置するためのセンサ部と、
前記センサ部からの出力に基づき外乱を識別し、前記外乱に対応するための刺激信号を作成及び出力する外乱応答部と、
前記刺激信号に基づき歩行支援対象者の脚部に電気刺激を与えることが可能な電気刺激部と、を有する自立歩行支援装置。
A sensor unit for placement on the legs of the walking support target person;
A disturbance response unit that identifies a disturbance based on an output from the sensor unit, creates and outputs a stimulus signal for responding to the disturbance, and
An independent walking support device comprising: an electrical stimulation unit capable of applying electrical stimulation to a leg of a walking support target person based on the stimulation signal.
前記センサ部は、加速度センサ又は角速度センサを有する請求項1記載の自立歩行支援装置。   The independent walking support device according to claim 1, wherein the sensor unit includes an acceleration sensor or an angular velocity sensor. 前記加速度センサは、歩行支援対象者の進行方向をX軸、前記X軸に対して垂直な2軸をY軸及びZ軸とした場合に、前記それぞれの軸における加速度を検出できるよう配置される請求項2記載の自立歩行支援装置。   The acceleration sensor is arranged to detect accelerations on the respective axes when the walking direction of the walking support target is the X axis and the two axes perpendicular to the X axis are the Y axis and the Z axis. The self-supporting walking support device according to claim 2. 前記角速度センサは、歩行支援対象者の進行方向をX軸、前記X軸に対して垂直な軸をY軸及びZ軸とした場合に、前記それぞれの軸に対する角速度を検出できるよう配置される請求項2記載の自立歩行支援装置。   The angular velocity sensor is arranged to detect angular velocities with respect to the respective axes when the traveling direction of the walking support target is the X axis and the axes perpendicular to the X axis are the Y axis and the Z axis. Item 3. The self-supporting walking support device according to Item 2. 前記外乱応答部は、前記加速度センサから出力されるデータを時系列的に取得するデータ取得部と、前記データ取得部が取得した時系列的なデータにおける特徴量を抽出する特徴抽出部と、前記特徴量に基づき外乱であるか否かを識別する判別部と、前記判別部が外乱であると判断した場合に刺激信号を作成する刺激作成部と、を有する請求項1記載の自立歩行支援装置。   The disturbance response unit includes a data acquisition unit that acquires data output from the acceleration sensor in a time series, a feature extraction unit that extracts a feature amount in the time series data acquired by the data acquisition unit, and The independent walking support device according to claim 1, further comprising: a determination unit that identifies whether the disturbance is based on a feature amount; and a stimulus creation unit that creates a stimulus signal when the determination unit determines that the disturbance is a disturbance. . 前記特徴量は、前記Y軸に対する角速度である請求項5記載の自立歩行支援装置。   The autonomous walking support device according to claim 5, wherein the feature amount is an angular velocity with respect to the Y axis. 前記特徴量は、踵接地時から100ms以内におけるY軸に対する角速度である請求項4記載の自立歩行支援装置。   The autonomous walking support device according to claim 4, wherein the feature amount is an angular velocity with respect to the Y axis within 100 ms from when the heel is touched. コンピュータに、
加速度センサからのデータを時系列的に取得するデータ取得部、
前記時系列的なデータに基づき特徴量を抽出する特徴抽出部、
前記特徴量に基づき外乱であるか否かを識別する判別部、
前記判別部が外乱であると判断した場合に刺激信号を作成する刺激作成部、として機能させるための自立歩行支援用プログラム。
On the computer,
A data acquisition unit for acquiring data from the acceleration sensor in time series,
A feature extraction unit that extracts a feature amount based on the time-series data;
A discriminating unit for identifying whether the disturbance is based on the feature amount;
An independent walking support program for functioning as a stimulus creating unit that creates a stimulus signal when the discriminating unit judges that it is a disturbance.
前記特徴量は、ヒトの足に設置される角速度センサのY軸に対する角速度である請求項7記載の自立歩行支援用プログラム。






The self-supporting walking support program according to claim 7, wherein the feature amount is an angular velocity with respect to a Y-axis of an angular velocity sensor installed on a human foot.






JP2007221220A 2007-08-28 2007-08-28 Self-walking supporting apparatus, and program being used for it Withdrawn JP2009050533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221220A JP2009050533A (en) 2007-08-28 2007-08-28 Self-walking supporting apparatus, and program being used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221220A JP2009050533A (en) 2007-08-28 2007-08-28 Self-walking supporting apparatus, and program being used for it

Publications (1)

Publication Number Publication Date
JP2009050533A true JP2009050533A (en) 2009-03-12

Family

ID=40502155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221220A Withdrawn JP2009050533A (en) 2007-08-28 2007-08-28 Self-walking supporting apparatus, and program being used for it

Country Status (1)

Country Link
JP (1) JP2009050533A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059489A (en) * 2011-09-13 2013-04-04 Toshiba Corp Apparatus for evaluating walking
JP2014042605A (en) * 2012-08-24 2014-03-13 Panasonic Corp Body-motion detection device, and electro-stimulator having the same
WO2015111110A1 (en) * 2014-01-24 2015-07-30 パナソニックIpマネジメント株式会社 Electrostimulator
JP2016526979A (en) * 2013-06-28 2016-09-08 コチ・ウニヴェルシテシKoc Universitesi Electrical stimulation device
WO2020152817A1 (en) * 2019-01-24 2020-07-30 富士通株式会社 Information processing program, information processing method, and information processing system
WO2023157161A1 (en) * 2022-02-17 2023-08-24 日本電気株式会社 Detection device, detection system, gait measurement system, detection method, and recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059489A (en) * 2011-09-13 2013-04-04 Toshiba Corp Apparatus for evaluating walking
JP2014042605A (en) * 2012-08-24 2014-03-13 Panasonic Corp Body-motion detection device, and electro-stimulator having the same
JP2016526979A (en) * 2013-06-28 2016-09-08 コチ・ウニヴェルシテシKoc Universitesi Electrical stimulation device
WO2015111110A1 (en) * 2014-01-24 2015-07-30 パナソニックIpマネジメント株式会社 Electrostimulator
EP3097947A4 (en) * 2014-01-24 2017-01-11 Panasonic Intellectual Property Management Co., Ltd. Electrostimulator
WO2020152817A1 (en) * 2019-01-24 2020-07-30 富士通株式会社 Information processing program, information processing method, and information processing system
TWI716258B (en) * 2019-01-24 2021-01-11 日商富士通股份有限公司 Information processing program, information processing method and information processing system
JPWO2020152817A1 (en) * 2019-01-24 2021-09-30 富士通株式会社 Information processing program, information processing method and information processing system
JP7092216B2 (en) 2019-01-24 2022-06-28 富士通株式会社 Information processing program, information processing method and information processing system
WO2023157161A1 (en) * 2022-02-17 2023-08-24 日本電気株式会社 Detection device, detection system, gait measurement system, detection method, and recording medium

Similar Documents

Publication Publication Date Title
Chang et al. A wearable inertial measurement system with complementary filter for gait analysis of patients with stroke or Parkinson’s disease
Owings et al. Mechanisms of failed recovery following postural perturbations on a motorized treadmill mimic those associated with an actual forward trip
Nüesch et al. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system
Barroso et al. Combining muscle synergies and biomechanical analysis to assess gait in stroke patients
Maffiuletti et al. Concurrent validity and intrasession reliability of the IDEEA accelerometry system for the quantification of spatiotemporal gait parameters
Schmitz et al. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system
Pappas et al. A reliable gait phase detection system
Watt et al. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects
Smith et al. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy
Auvinet et al. Validity and sensitivity of the longitudinal asymmetry index to detect gait asymmetry using Microsoft Kinect data
Sejdić et al. Extraction of stride events from gait accelerometry during treadmill walking
KR102010898B1 (en) System and method for Gait analysis
Pfusterschmied et al. Effects of 4-week slackline training on lower limb joint motion and muscle activation
Rinaldi et al. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis
JP2009050533A (en) Self-walking supporting apparatus, and program being used for it
Hurt et al. Age-related differences in the maintenance of frontal plane dynamic stability while stepping to targets
Agostini et al. Wearable sensors for gait analysis
Cimolin et al. Computation of spatio-temporal parameters in level walking using a single inertial system in lean and obese adolescents
Havens et al. Accelerations from wearable accelerometers reflect knee loading during running after anterior cruciate ligament reconstruction
JP2008173365A (en) Gait analysis system
Catena et al. Does the anthropometric model influence whole-body center of mass calculations in gait?
Nazarahari et al. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection
Song et al. Three-dimensional kinematic analysis of pelvic and lower extremity differences during trunk rotation in subjects with and without chronic low back pain
Weiss et al. Can a single lower trunk body-fixed sensor differentiate between level-walking and stair descent and ascent in older adults? Preliminary findings
Chen et al. Speed-adaptive control of functional electrical stimulation for dropfoot correction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102