JP2009050078A - Device and method for determining abnormality of machine and equipment - Google Patents

Device and method for determining abnormality of machine and equipment Download PDF

Info

Publication number
JP2009050078A
JP2009050078A JP2007213297A JP2007213297A JP2009050078A JP 2009050078 A JP2009050078 A JP 2009050078A JP 2007213297 A JP2007213297 A JP 2007213297A JP 2007213297 A JP2007213297 A JP 2007213297A JP 2009050078 A JP2009050078 A JP 2009050078A
Authority
JP
Japan
Prior art keywords
frequency
current
removal
component
load current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007213297A
Other languages
Japanese (ja)
Other versions
JP5051528B2 (en
Inventor
Teruji Miyatake
照司 宮竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007213297A priority Critical patent/JP5051528B2/en
Publication of JP2009050078A publication Critical patent/JP2009050078A/en
Application granted granted Critical
Publication of JP5051528B2 publication Critical patent/JP5051528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality determining device of a machine and equipment, which can highly precisely determine abnormality and with which a result of abnormality determination is difficult to be affected by a change of an operation situation of the other motor sharing a power supply with a subject motor. <P>SOLUTION: The abnormality determining device of machine and equipment is provided with a current detecting means 2 detecting load current supplied to the motor 102, a removal frequency determining means 6 determining a frequency whose voltage component is the largest in voltage components of respective frequencies forming load voltage applied to the motor for supplying load current or a frequency whose voltage component is not less than a first threshold TH1 as a removal frequency, a removing means 7 removing a current component of the removal frequency from load current detected by the current detecting means, a first deciding means 9 deciding whether the current component of not less than a second threshold TH2 is included in load current from which the current component of the removal frequency is removed and an abnormality determining means 10 determining abnormality of machine and equipment when the first deciding means decides that it is included. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電動機によって駆動される機械設備の異常判定装置及び機械設備の異常判定方法に関する。   The present invention relates to an abnormality determination device for machine equipment driven by an electric motor and an abnormality determination method for machine equipment.

電動機によって駆動される機械設備として、ブロワ、ポンプ及びベルトコンベヤ駆動装置などの回転機械を挙げることができる。これらの機械設備の異常として、部品アライメントの異常や、ベアリング等に生じる疵、部品の欠損等を挙げることができる。このような機械設備の異常判定は、当該機械設備にセンサを多数設置して、機械設備の異常を直接検出することで行うことができる。   Examples of mechanical equipment driven by the electric motor include rotating machines such as a blower, a pump, and a belt conveyor driving device. Examples of abnormalities in these mechanical facilities include abnormalities in parts alignment, wrinkles that occur in bearings, and missing parts. Such an abnormality determination of a mechanical facility can be performed by installing a number of sensors in the mechanical facility and directly detecting the abnormality of the mechanical facility.

上述の異常判定方法は、多数のセンサや信号ケーブルを要するため、センサの調達コスト、当該機械設備から電気室までの信号ケーブルの配線工事費及びセンサや信号ケーブルの維持費が高い等の実用上の欠点を有する。そこで、次のような異常判定方法が特許文献1及び2に提案されている。   The above-described abnormality determination method requires a large number of sensors and signal cables. Therefore, the procurement cost of the sensors, the wiring work cost of the signal cables from the mechanical equipment to the electrical room, and the maintenance costs of the sensors and signal cables are high in practical use. Have the disadvantages. Therefore, Patent Documents 1 and 2 have proposed the following abnormality determination methods.

特許文献1に提案されている異常判定方法は、電動機に供給される負荷電流を検出し、当該負荷電流が、予め設定されている固定設定上限値以上、又は、予め設定されている固定設定下限値以下の場合、機械設備の異常と判定する方法である。   The abnormality determination method proposed in Patent Document 1 detects a load current supplied to an electric motor, and the load current is equal to or higher than a preset fixed setting upper limit value or a preset fixed setting lower limit. If the value is less than or equal to the value, it is a method of determining that the mechanical equipment is abnormal.

一方、特許文献2に提案されている異常判定方法は、電動機に供給される負荷電流を周波数解析し、当該周波数解析によって得られた負荷電流を形成する各周波数の電流成分に基づいて機械設備が異常か否かを判定する方法である。
特公平6−95059号公報 特開平11−83686号公報
On the other hand, in the abnormality determination method proposed in Patent Document 2, frequency analysis is performed on the load current supplied to the motor, and the mechanical equipment is based on the current component of each frequency forming the load current obtained by the frequency analysis. This is a method for determining whether or not there is an abnormality.
Japanese Patent Publication No. 6-95059 Japanese Patent Laid-Open No. 11-83686

しかしながら、特許文献1の異常判定方法では、高精度に異常判定をすることができない。これは、特許文献1の異常判定方法では、負荷電流の大きさに与える影響の小さい異常を検知することが困難なためである。特許文献1の異常判定方法で、このような異常を検知するためには、固定設定上限値、及び、固定設定下限値を機械設備が正常な状態のときの負荷電流値に近づける必要がある。しかし、固定設定上限値、及び、固定設定下限値を機械設備が正常な状態のときの負荷電流値に近づけると、ノイズの発生等による電流の誤検知によって、機械設備が正常であっても誤って異常と判定される可能性が高くなる。よって、特許文献1の異常判定方法では、高精度に異常判定をすることができない。   However, the abnormality determination method of Patent Document 1 cannot perform abnormality determination with high accuracy. This is because it is difficult for the abnormality determination method of Patent Document 1 to detect an abnormality that has a small effect on the magnitude of the load current. In order to detect such an abnormality by the abnormality determination method of Patent Document 1, it is necessary to make the fixed setting upper limit value and the fixed setting lower limit value close to the load current value when the mechanical equipment is in a normal state. However, if the fixed setting upper limit value and the fixed setting lower limit value are brought close to the load current value when the machine equipment is in a normal state, an error may occur even if the machine equipment is normal due to erroneous detection of current due to noise or the like. This increases the possibility of being judged as abnormal. Therefore, the abnormality determination method disclosed in Patent Document 1 cannot perform abnormality determination with high accuracy.

また、特許文献2の異常判定方法では、異常判定の対象となる機械設備を駆動する電動機と電源を共用する他の電動機等の運転状況が変化すると、異常判定を正確に行うことができない恐れがある。これは、周波数解析によって得られた負荷電流の高調波成分は、他の電動機等の運転状況の変化によって、変動し易いためである。   Moreover, in the abnormality determination method of patent document 2, there is a possibility that the abnormality determination cannot be performed accurately if the operating conditions of the motor that drives the mechanical equipment that is the target of abnormality determination and other motors that share the power supply change. is there. This is because the harmonic component of the load current obtained by frequency analysis is likely to fluctuate due to changes in the operating conditions of other motors and the like.

本発明は、高精度に異常判定を行え、且つ、異常判定の対象となる機械設備を駆動する電動機と電源を共用する他の電動機等の運転状況の変化に異常判定の結果が影響され難い機械設備の異常判定装置及び機械設備の異常判定方法を提供することを課題とする。   The present invention is capable of performing abnormality determination with high accuracy, and the result of abnormality determination is not easily affected by changes in the operating status of other motors that share a power source with the motor that drives the machine equipment to be subjected to abnormality determination. It is an object of the present invention to provide an equipment abnormality determination device and an equipment abnormality determination method.

本発明は、特許請求の範囲の請求項1に記載の如く、機械設備を駆動する電動機に供給される負荷電流を検出する電流検出手段と、前記電動機に前記負荷電流を供給するために前記電動機に印加される負荷電圧を形成する各周波数の電圧成分のうち、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値以上の周波数の少なくとも一方を除去周波数と決定する除去周波数決定手段と、前記電流検出手段によって検出された前記負荷電流を形成する各周波数の電流成分から、前記除去周波数の電流成分を除去する除去手段と、前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流に第2しきい値以上の大きさの電流成分が含まれるか否かを判断する第1判断手段と、前記第1判断手段によって第2しきい値以上の大きさの電流成分が含まれると判断されると、前記機械設備の異常と判定する異常判定手段とを備えることを特徴とする機械設備の異常判定装置を提供する。   According to a first aspect of the present invention, there is provided a current detecting means for detecting a load current supplied to an electric motor for driving mechanical equipment, and the electric motor for supplying the electric load to the electric motor. Among the voltage components of each frequency forming the load voltage applied to the frequency, the frequency having the largest voltage component and at least one of the frequencies having the voltage component greater than or equal to the first threshold value as the removal frequency A removal frequency determining means for determining; a removing means for removing a current component of the removal frequency from a current component of each frequency forming the load current detected by the current detecting means; and a removal frequency of the removal frequency by the removing means. First determination means for determining whether or not the load current from which the current component has been removed includes a current component having a magnitude greater than or equal to a second threshold value, and the first determination means When it is determined to include the current component of size greater than the threshold value, to provide a malfunction determining device for a machinery, characterized in that it comprises an abnormality determination means for determining an abnormality of the mechanical equipment.

本発明に係る機械設備の異常判定装置は、除去手段によって除去周波数の電流成分が除去された負荷電流(以下、「除去後負荷電流」という。)に第2しきい値以上の大きさの電流成分が含まれるか否かを判断し、含まれると判断すると、電動機によって駆動される機械設備の異常と判定する。この除去周波数は、電動機に負荷電流を供給するために、電動機に印加される負荷電圧を形成する電圧成分のうち、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値以上の周波数の少なくとも一方である。即ち、除去周波数は、負荷電圧を形成する電圧成分の中で、大きさが比較的大きな電圧成分の周波数である。機械設備が正常な場合において、同じ周波数の負荷電圧と負荷電流とは正の相関関係を有する。従って、除去周波数の電流成分の大きさは、機械設備が正常な場合において比較的大きく、除去後負荷電流を形成する電流成分の大きさは、機械設備が正常な場合において比較的小さい。よって、除去後負荷電流に、大きさが比較的大きな(第2しきい値以上の)電流成分が含まれる場合は、機械設備の異常と判断できる。従って、本発明に係る機械設備の異常判定装置は、電動機によって駆動される機械設備の異常を判定することができる。   The abnormality determination device for mechanical equipment according to the present invention has a current greater than or equal to a second threshold value to the load current from which the current component of the removal frequency has been removed by the removal means (hereinafter referred to as “the post-removal load current”). It is determined whether or not a component is included. If it is determined that the component is included, it is determined that there is an abnormality in the mechanical equipment driven by the electric motor. In order to supply a load current to the electric motor, the removal frequency is a frequency having the largest voltage component among the voltage components forming the load voltage applied to the electric motor, and the voltage component having the first magnitude. At least one of the frequencies above the threshold. That is, the removal frequency is a frequency of a voltage component having a relatively large size among the voltage components forming the load voltage. When the mechanical equipment is normal, the load voltage and the load current having the same frequency have a positive correlation. Therefore, the magnitude of the current component of the removal frequency is relatively large when the mechanical equipment is normal, and the magnitude of the current component forming the post-removal load current is relatively small when the mechanical equipment is normal. Therefore, when the post-removal load current includes a current component that is relatively large (greater than or equal to the second threshold), it can be determined that the mechanical equipment is abnormal. Therefore, the abnormality determination apparatus for mechanical equipment according to the present invention can determine abnormality of mechanical equipment driven by the electric motor.

上述のように、除去後負荷電流を形成する電流成分の大きさは、機械設備が正常な場合において比較的小さい。機械設備が正常な場合において大きさが比較的小さい電流成分は、負荷電流の大きさに与える影響の小さい異常が発生した場合であっても、電流成分の大きさ自体が小さいため、変化割合が比較的大きい。よって、本発明に係る機械設備の異常判定装置は、負荷電流の大きさに与える影響の小さい異常を容易に検知することができる。従って、本発明に係る機械設備の異常判定装置は、高精度に異常判定を行うことができる。   As described above, the magnitude of the current component forming the post-removal load current is relatively small when the mechanical equipment is normal. When the mechanical equipment is normal, the current component having a relatively small magnitude has a small change rate because the magnitude of the current component itself is small even when an abnormality having a small effect on the magnitude of the load current occurs. Relatively large. Therefore, the abnormality determination device for mechanical equipment according to the present invention can easily detect an abnormality having a small influence on the magnitude of the load current. Therefore, the abnormality determination apparatus for mechanical equipment according to the present invention can perform abnormality determination with high accuracy.

また、異常判定の対象となる機械設備を駆動する電動機と電源を共用する他の電動機等の運転状況が変化しても、負荷電流を形成する電流成分のうち、電圧成分の大きさが比較的小さい周波数の電流成分は変動し難い。従って、電圧成分の大きさが比較的大きい除去周波数の電流成分が除去された除去後負荷電流は、他の電動機等の運転状況が変化しても変化し難い。よって、除去後負荷電流に基づいて機械設備の異常判定をする本発明に係る機械設備の異常判定装置は、他の電動機等の運転状況の変化に異常判定の結果が影響され難い。   In addition, even if the operating status of the motor that drives the mechanical equipment subject to abnormality determination and other motors that share the power supply change, the magnitude of the voltage component among the current components that form the load current is relatively Small frequency current components are unlikely to fluctuate. Therefore, the post-removal load current from which the current component of the removal frequency having a relatively large voltage component has been removed is unlikely to change even if the operating conditions of other motors or the like change. Therefore, the abnormality determination device for mechanical equipment according to the present invention that determines the abnormality of the mechanical equipment based on the load current after removal is less susceptible to the result of the abnormality determination due to changes in the operating status of other motors and the like.

好ましくは、特許請求の範囲の請求項2に記載の如く、前記負荷電圧の基本周波数をf、正の整数をα(f>α)とすると、前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流が下記条件(1)及び(2)を同時に満足するか否かを判断する第2判断手段を備え、前記第2判断手段によって満足しないと判断された場合、前記電流検出手段は、前記負荷電流を検出し直し、前記除去手段は、検出し直された前記負荷電流から、前記除去周波数の電流成分を除去し、前記第2判断手段によって満足すると判断された場合、前記第1判断手段は、前記第2判断手段によって満足すると判断された前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流に第2しきい値以上の電流成分が含まれるか否かの判断を行う構成とされる。
(1)…前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流を形成し、且つ、大きさが第3しきい値以上の電流成分を有する診断用周波数に、f±αが共に含まれていること。
(2)…前記診断用周波数のうち3f以上の診断用周波数が、fの整数倍の間隔をおいて存在していること。
Preferably, as described in claim 2 of the claims, when the basic frequency of the load voltage is f and the positive integer is α (f> α), the current component of the removal frequency is removed by the removal means. A second determination unit that determines whether or not the load current thus satisfied satisfies the following conditions (1) and (2) at the same time, and when the second determination unit determines that the load current is not satisfied, Re-detects the load current, and the removal means removes the current component of the removal frequency from the re-detected load current, and the second determination means determines that the load current is satisfied. 1 determination means determines whether or not the load current from which the current component of the removal frequency has been removed by the removal means determined to be satisfied by the second determination means includes a current component equal to or higher than a second threshold value. Size It is set as the structure which performs interruption.
(1) ... f ± α is a diagnostic frequency that forms the load current from which the current component of the removal frequency has been removed by the removal means and has a current component whose magnitude is not less than a third threshold value. It must be included together.
(2) The diagnostic frequency of 3f or more among the diagnostic frequencies exists at an interval that is an integral multiple of f.

かかる好ましい構成によれば、除去手段によって除去周波数の電流成分が除去された負荷電流(除去後負荷電流)が条件(1)及び(2)を同時に満足しない場合、電流検出手段は負荷電流を検出し直す。このように、条件(1)及び(2)を同時に満足しない場合、負荷電流を検出し直すのは、条件(1)及び(2)を同時に満足しない場合、負荷電流に他の信号ケーブルからノイズが入ること、また電流検出手段自身の故障等によって、電流検出手段が正確に負荷電流を検出していないためである。これは、負荷電流を形成し、且つ、大きさが比較的大きい(第3しきい値以上である)電流成分を有する診断用周波数には、周波数f±αが共に含まれ、更に、診断用周波数のうち3f以上の診断用周波数が、fの整数倍の間隔をおいて存在するためである。尚、条件(1)及び(2)を同時に満足するか否かの判断対象を除去後負荷電流とするのは、上述のように、除去後負荷電流は、他の電動機等の運転状況が変化しても変化し難いからである。   According to such a preferable configuration, when the load current from which the current component of the removal frequency is removed by the removal means (the load current after removal) does not satisfy the conditions (1) and (2) at the same time, the current detection means detects the load current. Try again. As described above, when the conditions (1) and (2) are not satisfied at the same time, the load current is detected again when the conditions (1) and (2) are not satisfied at the same time. This is because the current detection means does not accurately detect the load current due to the occurrence of a fault or a failure of the current detection means itself. This is because both the frequency f ± α is included in the diagnostic frequency that forms the load current and has a current component that is relatively large (greater than or equal to the third threshold value), and for diagnostic purposes. This is because a diagnostic frequency of 3f or more of the frequencies exists at intervals of an integral multiple of f. Note that the post-removal load current is used as the determination target whether or not the conditions (1) and (2) are satisfied simultaneously. As described above, the post-removal load current varies depending on the operating conditions of other motors and the like. This is because it is difficult to change.

また、本発明は、特許請求の範囲の請求項3に記載の如く、機械設備を駆動する電動機に供給される負荷電流を検出する電流検出工程と、前記電動機に前記負荷電流を供給するために前記電動機に印加される負荷電圧を形成する各周波数の電圧成分のうち、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値以上の周波数の少なくとも一方を除去周波数と決定する除去周波数決定工程と、前記電流検出工程によって検出された前記負荷電流を形成する各周波数の電流成分から、前記除去周波数の電流成分を除去する除去工程と、前記除去工程によって前記除去周波数の電流成分が除去された前記負荷電流に第2しきい値以上の大きさの電流成分が含まれるか否かを判断する第1判断工程と、前記第1判断工程によって第2しきい値以上の大きさの電流成分が含まれると判断されると、前記機械設備の異常と判定する異常判定工程とを含むことを特徴とする機械設備の異常判定方法を提供する。   According to a third aspect of the present invention, there is provided a current detection step for detecting a load current supplied to an electric motor that drives mechanical equipment, and a method for supplying the load current to the electric motor. Of the voltage components of each frequency forming the load voltage applied to the motor, at least one of the frequency having the largest voltage component and the frequency having the voltage component greater than or equal to the first threshold is removed. A removal frequency determination step for determining a frequency, a removal step for removing a current component of the removal frequency from a current component of each frequency forming the load current detected by the current detection step, and the removal by the removal step. A first determination step for determining whether or not the load current from which the frequency current component has been removed includes a current component having a magnitude greater than or equal to a second threshold value; and the first determination step. And an abnormality determination step of determining that the machine equipment is abnormal when it is determined that a current component having a magnitude greater than or equal to a second threshold value is included. .

本発明によれば、高精度に異常判定を行え、且つ、異常判定の対象となる機械設備を駆動する電動機と電源を共用する他の電動機等の運転状況の変化に異常判定の結果が影響され難い機械設備の異常判定装置及び機械設備の異常判定方法を提供することができる。   According to the present invention, the abnormality determination result is affected by a change in the operation status of the electric motor that drives the mechanical equipment that is the target of the abnormality determination and the other electric motor that shares the power supply with the abnormality determination with high accuracy. It is possible to provide a machine equipment abnormality determination device and a machine equipment abnormality determination method that are difficult.

図1は本実施形態に係る機械設備の異常判定装置1の機能ブロック図である。図1に示すように、機械設備の異常判定装置1は、電流検出手段2、除去周波数決定手段6、除去手段7、第1判断手段9及び異常判定手段10を備える。更に、機械設備の異常判定装置1は、電流A/D変換手段3、電圧検出手段4、電圧A/D変換手段5、第2判断手段8、警報手段11及び表示手段12を備える。   FIG. 1 is a functional block diagram of a machine facility abnormality determination apparatus 1 according to the present embodiment. As shown in FIG. 1, the abnormality determination device 1 for mechanical equipment includes a current detection unit 2, a removal frequency determination unit 6, a removal unit 7, a first determination unit 9, and an abnormality determination unit 10. Furthermore, the machine facility abnormality determination device 1 includes a current A / D conversion unit 3, a voltage detection unit 4, a voltage A / D conversion unit 5, a second determination unit 8, an alarm unit 11, and a display unit 12.

電流検出手段2は、機械設備101を駆動する電動機102に電源103から供給される負荷電流Iを検出する。この負荷電流Iとは、電動機102と電源103とを接続した信号ケーブル104を電源103から電動機102に流れる電流である。電流検出手段2としては、例えば、電動機102の負荷電流回路に挿入して負荷電流を検出する電流クランププローブ(架線電流計)を用いることができる。また、機械設備101は、特に限定されるものでなく、例えば、ブロワ、ポンプ及びベルトコンベヤ駆動装置などの回転機械とすることができる。 The current detection unit 2 detects a load current I 0 supplied from the power source 103 to the electric motor 102 that drives the mechanical equipment 101. The load current I 0 is a current that flows from the power source 103 to the motor 102 through the signal cable 104 that connects the motor 102 and the power source 103. As the current detection means 2, for example, a current clamp probe (overhead ammeter) that is inserted into the load current circuit of the electric motor 102 and detects the load current can be used. The machine equipment 101 is not particularly limited, and can be a rotary machine such as a blower, a pump, and a belt conveyor driving device.

電流A/D変換手段3は、電流検出手段2によって検出された負荷電流IをA/D変換する。 The current A / D conversion unit 3 performs A / D conversion on the load current I 0 detected by the current detection unit 2.

電圧検出手段4は、電動機102に負荷電流Iを供給するために、電源103によって電動機102に印加される負荷電圧を検出する。 The voltage detection unit 4 detects a load voltage applied to the motor 102 by the power source 103 in order to supply the load current I 0 to the motor 102.

電圧A/D変換手段5は、電圧検出手段4によって検出された負荷電圧をA/D変換する。   The voltage A / D conversion means 5 performs A / D conversion on the load voltage detected by the voltage detection means 4.

除去周波数決定手段6は、電圧A/D変換手段5によってA/D変換された負荷電圧を形成する各周波数の電圧成分のうち、電圧成分の大きさ(スペクトル強さ)が最も大きい周波数、及び、電圧成分の大きさが第1しきい値以上の周波数の少なくとも一方を除去周波数と決定する。除去周波数の決定は、下記のようにして行われる。除去周波数決定手段6は、まず、電圧A/D変換手段5によってA/D変換された負荷電圧を周波数解析し、図2に示すような負荷電圧の周波数スペクトル(以下、「電圧スペクトル」という。)を得る。尚、周波数解析は、公知のフーリエ変換(FFT)手法によって行うことができる。また、図2に示す電圧スペクトルは、後述する実施例1の電圧スペクトルである。次に、除去周波数決定手段6は、電圧スペクトルにおいて、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値TH1以上の周波数の少なくとも一方を除去周波数と決定する。図2においては、○が付いた周波数が電圧成分の大きさが最も大きい周波数であり、×が付いた周波数が電圧成分の大きさが第1しきい値TH1以上の周波数である。尚、図2においては、○が付いた周波数は、電圧成分の大きさが最も大きい共に、電圧成分の大きさが第1しきい値TH1以上の周波数である。また、図2においては、見易さを考慮して、○が付いた周波数の近傍における周波数については、電圧成分の大きさが第1しきい値TH1より大きい周波数であっても×を付けていない。第1しきい値TH1は、除去周波数決定手段6が読み取ることが可能な記録媒体に記録されている。このような第1しきい値TH1は、例えば、160dBとすることができる。   The removal frequency determination means 6 is a frequency having the largest voltage component magnitude (spectrum strength) among the voltage components of each frequency forming the load voltage A / D converted by the voltage A / D conversion means 5, and Then, at least one of the frequencies having a voltage component magnitude equal to or higher than the first threshold is determined as a removal frequency. The removal frequency is determined as follows. The removal frequency determination means 6 first performs frequency analysis on the load voltage A / D converted by the voltage A / D conversion means 5, and the frequency spectrum of the load voltage (hereinafter referred to as "voltage spectrum") as shown in FIG. ) The frequency analysis can be performed by a known Fourier transform (FFT) method. Moreover, the voltage spectrum shown in FIG. 2 is a voltage spectrum of Example 1 mentioned later. Next, the removal frequency determining means 6 determines at least one of the frequency having the largest voltage component and the frequency having the voltage component greater than or equal to the first threshold TH1 in the voltage spectrum as the removal frequency. . In FIG. 2, the frequency with a circle is the frequency with the largest voltage component, and the frequency with a cross is a frequency with the voltage component having a magnitude equal to or greater than the first threshold value TH1. In FIG. 2, the frequency marked with ◯ is the frequency having the largest voltage component and the voltage component magnitude equal to or higher than the first threshold value TH1. In FIG. 2, for ease of viewing, the frequency in the vicinity of the frequency with a circle is marked with × even if the magnitude of the voltage component is a frequency greater than the first threshold value TH1. Absent. The first threshold value TH1 is recorded on a recording medium that can be read by the removal frequency determining means 6. Such a first threshold value TH1 can be set to 160 dB, for example.

また、除去周波数は、下記式(1)によって算出される上限値X及び下限値Xによって規定される範囲内に含まれる周波数とすることもできる。
X=fp±(f/(2×fp)×β)…(1)
式(1)のfpは、電圧A/D変換手段5によってA/D変換された負荷電圧を形成する各周波数の電圧成分のうち、電圧成分の大きさが最も大きい周波数、及び、電圧成分が第1しきい値TH1以上の周波数の少なくとも一方である。すなわち、図2において、○が付いた周波数、及び、×が付いた周波数の少なくとも一方である。式(1)のfは、電源周波数、即ち、電源103によって電動機102に印加される負荷電圧の基本周波数である。式(1)のβは、0<β<1を満足する係数である。
Further, the removal frequency may be a frequency included in a range defined by the upper limit value X and the lower limit value X calculated by the following equation (1).
X = fp ± (f 2 / (2 × fp) × β) (1)
The fp in the expression (1) is the frequency component having the largest voltage component among the voltage components of each frequency forming the load voltage A / D converted by the voltage A / D conversion means 5, and the voltage component is At least one of the frequencies equal to or higher than the first threshold value TH1. That is, in FIG. 2, it is at least one of the frequency with a circle and the frequency with a cross. F in Expression (1) is a power supply frequency, that is, a fundamental frequency of a load voltage applied to the motor 102 by the power supply 103. Β in Equation (1) is a coefficient that satisfies 0 <β <1.

除去手段7は、電流検出手段2によって検出された負荷電流Iを形成する各周波数の電流成分から除去周波数の電流成分を除去する。除去周波数の電流成分の除去は、下記のようにして行われる。除去手段7は、まず、電流A/D変換手段3によってA/D変換された負荷電流Iを周波数解析し、図3に示すような負荷電流の周波数スペクトル(以下、「電流スペクトル」という。)を得る。尚、周波数解析は、公知のフーリエ変換(FFT)手法によって行うことができる。また、図3に示す電流スペクトルは、後述する実施例1の電流スペクトルである。次に、除去手段7は、電流スペクトルを用いて、電流A/D変換手段3によってA/D変換された負荷電流Iから、除去周波数の電流成分を除去する。図4は、除去手段7によって除去周波数の電流成分が除去された除去後負荷電流の周波数スペクトル(以下、「除去後負荷電流スペクトル」という。)を示す。尚、図4に示す除去後負荷電流電流スペクトルは、後述する実施例1の除去後負荷電流スペクトルである。図4の除去後負荷電流スペクトルは、図2において、○が付いた周波数、及び、×が付いた周波数を除去後周波数とした場合に得られた除去後負荷電流スペクトルである。 The removal means 7 removes the current component of the removal frequency from the current component of each frequency forming the load current I 0 detected by the current detection means 2. The removal of the current component of the removal frequency is performed as follows. The removing unit 7 first analyzes the frequency of the load current I 0 A / D converted by the current A / D converting unit 3, and the frequency spectrum of the load current as shown in FIG. 3 (hereinafter referred to as “current spectrum”). ) The frequency analysis can be performed by a known Fourier transform (FFT) method. Moreover, the current spectrum shown in FIG. 3 is a current spectrum of Example 1 described later. Next, the removal means 7 removes the current component of the removal frequency from the load current I 0 A / D converted by the current A / D conversion means 3 using the current spectrum. FIG. 4 shows a frequency spectrum of the post-removal load current from which the current component of the removal frequency has been removed by the removal means 7 (hereinafter referred to as “post-removal load current spectrum”). The post-removal load current spectrum shown in FIG. 4 is a post-removal load current spectrum of Example 1 described later. The post-removal load current spectrum in FIG. 4 is the post-removal load current spectrum obtained when the frequency with ◯ and the frequency with x in FIG.

第2判断手段8は、負荷電圧の基本周波数をf、正の整数をα(f>α)とすると、除去後負荷電流が下記条件(1)及び(2)を同時に満足するか否かを判断する。
(1)…除去後負荷電流を形成し、且つ、大きさが第3しきい値TH3以上の電流成分を有する診断用周波数に、f±αが共に含まれていること。
(2)…診断用周波数のうち3f以上の診断用周波数が、fの整数倍の間隔をおいて存在していること。
条件(1)におけるf±αは、負荷電圧の基本周波数fを60Hzとすれば、60Hzに対する差分が同一の0Hzを超えて60Hz未満の周波数と、60Hzを超えて120Hz未満の周波数との両方の周波数を指している。尚、図4に除去後負荷電流スペクトルを示す実施例1の除去後負荷電流においては、大きさが第3しきい値TH3以上の電流成分を有する診断用周波数が1〜7ある。実施例1においては、負荷電圧の基本周波数fが60Hzであり、従って、診断用周波数1は30(f−30)Hz、診断用周波数2は90(f+30)Hzであり、よって、実施例1の除去後負荷電流には、f±α(ここでは30)の診断用周波数が含まれている。よって、実施例1の除去後負荷電流は、条件(1)を満足する。
The second determination means 8 determines whether or not the load current after removal satisfies the following conditions (1) and (2) simultaneously, where f is the basic frequency of the load voltage and α is a positive integer (f> α). to decide.
(1) ... f ± α is included in the diagnostic frequency that forms the post-removal load current and has a current component whose magnitude is equal to or greater than the third threshold value TH3.
(2) The diagnostic frequency of 3f or more among the diagnostic frequencies exists at intervals of an integral multiple of f.
In the condition (1), if the basic frequency f of the load voltage is 60 Hz, the difference with respect to 60 Hz is the same as 0 Hz and less than 60 Hz, and both the frequency exceeding 60 Hz and less than 120 Hz. Refers to the frequency. In addition, in the post-removal load current of Example 1 showing the post-removal load current spectrum in FIG. 4, there are 1 to 7 diagnostic frequencies having a current component whose magnitude is equal to or greater than the third threshold value TH3. In the first embodiment, the basic frequency f of the load voltage is 60 Hz. Therefore, the diagnostic frequency 1 is 30 (f-30) Hz, and the diagnostic frequency 2 is 90 (f + 30) Hz. The load current after removal includes a diagnostic frequency of f ± α (here, 30). Therefore, the post-removal load current in Example 1 satisfies the condition (1).

条件(2)は、例えば、負荷電圧の基本周波数fを60Hzとすれば、180Hz以上の診断用周波数が、(60Hz×K(K:正の整数))の間隔をおいて存在していることを意味する。尚、上述のように、実施例1においては、負荷電圧の基本周波数fが60Hzであり、従って、図4に示す診断用周波数1〜7のうち、診断用周波数4(1013Hz)、診断用周波数5(1133Hz)、診断用周波数6(1373Hz)、診断用周波数7(1493Hz)が、3f以上の診断用周波数である。診断用周波数4と診断用周波数5との間隔は120(60×2)Hz、診断用周波数5と診断用周波数6との間隔は240(60×4)Hz、診断用周波数6と診断用周波数7との間隔は120(60×2)Hzであり、よって、実施例1の除去後負荷電流は、条件(2)を満足する。   Condition (2) is that, for example, if the basic frequency f of the load voltage is 60 Hz, diagnostic frequencies of 180 Hz or more exist at intervals of (60 Hz × K (K: positive integer)). Means. As described above, in Example 1, the basic frequency f of the load voltage is 60 Hz. Therefore, among the diagnostic frequencies 1 to 7 shown in FIG. 4, the diagnostic frequency 4 (1013 Hz), the diagnostic frequency 5 (1133 Hz), diagnostic frequency 6 (1373 Hz), and diagnostic frequency 7 (1493 Hz) are diagnostic frequencies of 3f or more. The interval between the diagnostic frequency 4 and the diagnostic frequency 5 is 120 (60 × 2) Hz, the interval between the diagnostic frequency 5 and the diagnostic frequency 6 is 240 (60 × 4) Hz, the diagnostic frequency 6 and the diagnostic frequency 7 is 120 (60 × 2) Hz, and thus the load current after removal in Example 1 satisfies the condition (2).

上記条件(1)及び(2)を同時に満足しないと判断された場合は、電流検出手段2は、負荷電流Iを検出し直し、除去手段7は、検出し直された負荷電流Iから、除去周波数の電流成分を除去する。このように、除去手段7によって除去周波数の電流成分が除去された除去後負荷電流は、再び、第2判断手段8によって、上記条件(1)及び(2)を同時に満たすか否かが判断される。 When it is determined that the above conditions (1) and (2) are not satisfied at the same time, the current detection means 2 re-detects the load current I 0 , and the removal means 7 starts from the re-detected load current I 0. The current component of the removal frequency is removed. Thus, the post-removal load current from which the current component of the removal frequency has been removed by the removal means 7 is again judged by the second determination means 8 whether or not the above conditions (1) and (2) are simultaneously satisfied. The

このように、条件(1)及び(2)を同時に満足しない場合、負荷電流Iを検出し直すのは、条件(1)及び(2)を同時に満足しない場合、負荷電流に他の信号ケーブルからノイズが入ること、また電流検出手段自身の故障等によって、電流検出手段2が正確に負荷電流Iを検出できていないためである。これは、負荷電流Iを形成し、且つ、大きさが比較的大きい(第3しきい値TH3以上である)電流成分を有する診断用周波数には、周波数f±αが共に含まれ、更に、診断用周波数のうち3f以上の診断用周波数が、fの整数倍の間隔をおいて存在するためである。尚、図4に示すように、第3しきい値TH3は、例えば、110dBとすることができる。 As described above, when the conditions (1) and (2) are not satisfied at the same time, the load current I 0 is detected again when the conditions (1) and (2) are not satisfied at the same time. This is because the current detection unit 2 cannot accurately detect the load current I 0 due to noise from the current detection unit or a failure of the current detection unit itself. This is because the diagnostic frequency that forms the load current I 0 and has a current component that is relatively large (greater than or equal to the third threshold value TH3) includes both frequencies f ± α, This is because, among the diagnostic frequencies, diagnostic frequencies of 3f or more exist at intervals of an integral multiple of f. As shown in FIG. 4, the third threshold value TH3 can be set to 110 dB, for example.

また、負荷電流Iは、f±f/(電動機102のポール数(極数)/2)の近傍の周波数の電流成分が比較的に大きい。よって、条件(1)のαは、f/(電動機102のポール数/2)とすることができる。尚、条件(1)のαをf/(電動機102のポール数/2)とする場合において、電動機のポール数が4であり、負荷電圧の基本周波数fが60Hzであるときは、条件1のf±αは60/(4/2)、すなわち60±30Hzである。 The load current I 0 has a relatively large current component at a frequency in the vicinity of f ± f / (number of poles (number of poles) / 2 of the motor 102). Therefore, α in the condition (1) can be f / (number of poles of the motor 102/2). When α in the condition (1) is f / (number of poles of the motor 102/2), when the number of poles of the motor is 4 and the basic frequency f of the load voltage is 60 Hz, the condition 1 f ± α is 60 / (4/2), that is, 60 ± 30 Hz.

尚、負荷電圧の基本周波数f、第3しきい値TH3、及び、電動機102のポール数は、第2判断手段8が読み取ることが可能な記録(図示しない)に記録されている。   The basic frequency f of the load voltage, the third threshold value TH3, and the number of poles of the electric motor 102 are recorded in a record (not shown) that can be read by the second determination means 8.

第1判断手段9は、第2判断手段8によって満足すると判断された除去後負荷電流に第2しきい値TH2以上の大きさの電流成分が含まれるか否かを判断する。また、本実施形態においては、第2しきい値TH2以上の大きさの電流成分が含まれるか否かの判断対象は、除去後負荷電流を形成する電流成分のうち、診断用周波数の電流成分とされる。第2しきい値TH2は、第1判断手段9が読み取ることが可能な記録(図示しない)に記録されている。   The first determination unit 9 determines whether or not the post-removal load current determined to be satisfied by the second determination unit 8 includes a current component having a magnitude greater than or equal to the second threshold value TH2. In the present embodiment, whether or not a current component having a magnitude equal to or greater than the second threshold value TH2 is included is a current component of the diagnostic frequency among the current components that form the post-removal load current. It is said. The second threshold value TH2 is recorded in a record (not shown) that can be read by the first determination means 9.

異常判定手段10は、第1判断手段9によって除去後負荷電流に第2しきい値TH2以上の電流成分が含まれると判断されると、機械設備101の異常と判定する。このように判定できるのは、次の通りである。除去後負荷電流は、負荷電流Iから除去周波数の電流成分が除去されたものである。除去周波数は、負荷電圧を形成する電圧成分のうち、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値以上の周波数の少なくとも一方である。即ち、除去周波数は、負荷電圧を形成する電圧成分の中で、大きさが比較的大きな電圧成分の周波数である。機械設備101が正常な場合において、同じ周波数の負荷電圧と負荷電流とは正の相関関係を有する。従って、除去周波数の電流成分の大きさは、機械設備101が正常な場合において比較的大きく、除去後負荷電流を形成する電流成分の大きさは、機械設備101が正常な場合において比較的小さい。よって、除去後負荷電流に、大きさが比較的大きな(第2しきい値TH2以上の)電流成分が含まれる場合は、機械設備101の異常と判断できる。尚、機械設備101の異常が発生したとき、第2しきい値TH2以上の電流成分が除去後負荷電流に含まれるようにするため、第2しきい値TH2は、例えば、機械設備101の異常が発生したときのみ、除去後負荷電流に含まれる電流成分が、超えることができる大きさとされる。 The abnormality determining means 10 determines that the mechanical equipment 101 is abnormal when it is determined by the first determining means 9 that the post-removal load current includes a current component equal to or greater than the second threshold value TH2. The determination can be made as follows. After removal load current, in which current component rejection frequency from the load current I 0 has been removed. The removal frequency is at least one of the frequency having the largest voltage component among the voltage components forming the load voltage and the frequency having the voltage component having the first threshold value or more. That is, the removal frequency is a frequency of a voltage component having a relatively large size among the voltage components forming the load voltage. When the mechanical equipment 101 is normal, the load voltage and the load current having the same frequency have a positive correlation. Therefore, the magnitude of the current component of the removal frequency is relatively large when the mechanical equipment 101 is normal, and the magnitude of the current component forming the post-removal load current is relatively small when the mechanical equipment 101 is normal. Therefore, when the post-removal load current includes a current component that is relatively large (greater than or equal to the second threshold value TH2), it can be determined that the mechanical equipment 101 is abnormal. When the abnormality of the mechanical equipment 101 occurs, the second threshold value TH2 is set to, for example, an abnormality of the mechanical equipment 101 so that a current component greater than or equal to the second threshold value TH2 is included in the post-removal load current. Only when this occurs, the current component included in the post-removal load current is set to a magnitude that can be exceeded.

警報手段11は、異常判定手段10が機械設備101の異常と判定すると、機械設備101の異常を知らせる警報音等を発する。表示手段12は、異常判定手段10が機械設備101の異常と判定すると、モニタ(図示しない)の画面に機械設備101の異常が発生した旨を表示する。   When the abnormality determination unit 10 determines that the mechanical equipment 101 is abnormal, the warning means 11 emits an alarm sound or the like that notifies the abnormality of the mechanical equipment 101. When the abnormality determining means 10 determines that the mechanical equipment 101 is abnormal, the display means 12 displays on the screen of a monitor (not shown) that an abnormality of the mechanical equipment 101 has occurred.

次に、以上に説明した本実施形態に係る機械設備の異常判定装置1が行う機械設備101の異常判定の手順を説明する。図5は、本実施形態に係る機械設備の異常判定装置1が行う機械設備101の異常判定の手順を示すフロー図である。   Next, the abnormality determination procedure of the mechanical equipment 101 performed by the mechanical equipment abnormality determination device 1 according to the present embodiment described above will be described. FIG. 5 is a flowchart showing an abnormality determination procedure for the machine equipment 101 performed by the machine equipment abnormality determination device 1 according to the present embodiment.

まず、機械設備の異常判定装置1は、初期設定を行う(図5、S501)。この初期設定においては、第2判断手段8は、負荷電圧の基本周波数f、第3しきい値TH3、及び、電動機102のポール数が記憶された記憶媒体から、負荷電圧の基本周波数f、第3しきい値TH3、及び、電動機102のポール数を読み出し、第1判断手段9は、第2しきい値TH2が記憶された記憶媒体から、第2しきい値TH2を読み出す。尚、電圧成分の大きさが第1しきい値TH1以上の周波数を除去周波数と決定する場合と、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値TH1以上の周波数を除去周波数と決定する場合とは、当該初期設定において、除去周波数決定手段6は、第1しきい値TH1が記憶された記録媒体から第1しきい値TH1を読み出す。   First, the abnormality determination device 1 for mechanical equipment performs initial setting (FIG. 5, S501). In this initial setting, the second determination means 8 uses the basic frequency f of the load voltage, the third threshold TH3, and the storage medium in which the number of poles of the motor 102 is stored, the basic frequency f of the load voltage, The third threshold value TH3 and the number of poles of the electric motor 102 are read, and the first determination means 9 reads the second threshold value TH2 from the storage medium storing the second threshold value TH2. It should be noted that the frequency where the magnitude of the voltage component is greater than or equal to the first threshold TH1 is determined as the removal frequency, the frequency where the magnitude of the voltage component is the largest, and the magnitude of the voltage component is the first threshold TH1. In the case where the above frequency is determined as the removal frequency, in the initial setting, the removal frequency determination means 6 reads the first threshold value TH1 from the recording medium in which the first threshold value TH1 is stored.

初期設定が行われると、電流検出手段2は、負荷電流Iを検出する(図5、S502)。電流検出手段2によって負荷電流Iが検出されると、電流A/D変換手段3は、検出された負荷電流IをA/D変換する(図5、S503)。次に、除去手段7は、電流A/D変換手段3からA/D変換された負荷電流Iを周波数解析し、図3に示すような電流スペクトルを得る(図5、S504)。 When the initial setting is performed, the current detection unit 2 detects the load current I 0 (FIG. 5, S502). When the load current I 0 is detected by the current detection unit 2, the current A / D conversion unit 3 performs A / D conversion on the detected load current I 0 (FIG. 5, S503). Then, removing means 7, the load current I 0 of A / D conversion from the current A / D converter 3 and the frequency analysis to obtain the current spectra as shown in FIG. 3 (FIG. 5, S504).

次に、電圧検出手段4は、負荷電圧を検出する(図5、S505)。電圧検出手段4によって負荷電圧が検出されると、電圧A/D変換手段5は、検出された負荷電圧をA/D変換する(図5、S506)。次に、除去周波数決定手段6は、電圧A/D変換手段5がA/D変換した負荷電圧を周波数解析し(図5、S507)、除去周波数を決定する(図5、S508)尚、図5のステップS502〜S504と、図5のステップS505〜S508とは、何れを先に行っても、両方同時に行ってもよい。   Next, the voltage detection means 4 detects a load voltage (FIG. 5, S505). When the load voltage is detected by the voltage detection unit 4, the voltage A / D conversion unit 5 performs A / D conversion on the detected load voltage (S506 in FIG. 5). Next, the removal frequency determination means 6 performs frequency analysis on the load voltage A / D converted by the voltage A / D conversion means 5 (FIG. 5, S507), and determines the removal frequency (FIG. 5, S508). Steps S502 to S504 in FIG. 5 and steps S505 to S508 in FIG. 5 may be performed first or both may be performed simultaneously.

除去周波数が決定されると、除去手段7は、電流A/D変換手段3がA/D変換した負荷電流Iを形成する各周波数の電流成分から除去周波数の電流成分を除去し、図4に示すような除去後電流スペクトルを得る(図5、S509)。 When the removal frequency is determined, the removal unit 7 removes the current component of the removal frequency from the current component of each frequency forming the load current I 0 A / D converted by the current A / D conversion unit 3. A post-removal current spectrum as shown in FIG. 5 is obtained (FIG. 5, S509).

次に、第2判断手段8は、除去後負荷電流が上記条件(1)及び(2)を同時に満足するか否かを判断する。この判断をするため、まず、第2判断手段8は、除去後電流スペクトルを用いて、診断用周波数(大きさが第3しきい値TH3以上の電流成分の周波数)を特定する(図5、S510)。次に、診断用周波数にf±αが共に含まれていること、及び、診断用周波数のうち3f以上である診断用周波数がfの整数倍の間隔をおいて存在していることが同時に満たされているか否かを判断する(図5、S511)。この判断によって、電流検出手段2が負荷電流Iを正確に検出したか否かが判断される。 Next, the second determination means 8 determines whether or not the post-removal load current satisfies the above conditions (1) and (2) at the same time. In order to make this determination, first, the second determination means 8 uses the post-removal current spectrum to specify the diagnostic frequency (the frequency of the current component having a magnitude equal to or greater than the third threshold value TH3) (FIG. 5, S510). Next, it is simultaneously satisfied that the diagnostic frequency includes both f ± α and that the diagnostic frequency that is 3f or more of the diagnostic frequencies exists at intervals of an integral multiple of f. It is determined whether it has been performed (FIG. 5, S511). This determination, whether the current detection means 2 to accurately detect the load current I 0 is judged.

判断ステップS511において、満足しないと判断された場合、負荷電流Iの検出からやり直される(図5、S502〜S510)。尚、負荷電流Iの検出をし直す場合は、負荷電圧の検出は、し直しても、し直さなくてもよい。 In decision S511, if it is determined not satisfied, it starts over from the detection of the load current I 0 (Fig. 5, S502~S510). In the case re-detection of the load current I 0 is the detection of the load voltage, even if re may not re.

判断ステップS511において、満足すると判断された場合、第1判断手段9は、除去後負荷電流に第2しきい値TH2以上の電流成分が含まれるか否かを判断する(図5、S512)。   When it is determined that the condition is satisfied in the determination step S511, the first determination unit 9 determines whether or not the current component equal to or greater than the second threshold value TH2 is included in the post-removal load current (FIG. 5, S512).

判断ステップ512において、除去後負荷電流に第2しきい値TH2以上の電流成分が含まれていると判断されると、異常判定手段10は、機械設備101の異常と判定する(図5、S513)。機械設備101の異常と判定されると、警報手段11は機械設備101の異常を知らせる警報音等を発し、表示手段12は、モニタの画面に機械設備101の異常が発生した旨を表示する(図5、S514)。   If it is determined in the determination step 512 that the post-removal load current includes a current component equal to or greater than the second threshold value TH2, the abnormality determination means 10 determines that the mechanical equipment 101 is abnormal (FIG. 5, S513). ). If it is determined that the mechanical equipment 101 is abnormal, the alarm means 11 emits an alarm sound or the like notifying the abnormality of the mechanical equipment 101, and the display means 12 displays on the monitor screen that the abnormality of the mechanical equipment 101 has occurred ( FIG. 5, S514).

一方、判断ステップ512において、除去後負荷電流に第2しきい値TH2以上の電流成分が含まれていないと判断されると、異常判定手段10は、機械設備101は正常と判定する(図5、S515)。   On the other hand, if it is determined in the determination step 512 that the post-removal load current does not include a current component equal to or greater than the second threshold value TH2, the abnormality determination unit 10 determines that the mechanical equipment 101 is normal (FIG. 5). , S515).

以上のように、本実施形態に係る機械設備の異常判定装置1は、除去後負荷電流に第2しきい値TH2以上の電流成分が含まれるか否かを判断し、含まれると判断すると、電動機102が駆動する機械設備101の異常と判定する。上述のように、除去周波数の電流成分は機械設備101が正常な場合において比較的大きい電流成分である。よって、負荷電流Iから除去周波数の電流成分が除去された除去後負荷電流を形成する電流成分は、機械設備101が正常な場合は比較的小さい。機械設備101が正常な場合において比較的小さい電流成分は、負荷電流の大きさに与える影響の小さい異常が発生した場合であっても、電流成分自体が小さいため、変化割合が比較的大きい。よって、本実施形態に係る機械設備の異常判定装置1は、負荷電流の大きさに与える影響の小さい異常を容易に検知することができる。従って、本実施形態に係る機械設備の異常判定装置1は、高精度に異常判定を行うことができる。 As described above, the machine equipment abnormality determination device 1 according to the present embodiment determines whether or not a current component equal to or greater than the second threshold value TH2 is included in the post-removal load current. It is determined that the mechanical equipment 101 driven by the electric motor 102 is abnormal. As described above, the current component of the removal frequency is a relatively large current component when the mechanical equipment 101 is normal. Therefore, the current component forming the post-removal load current obtained by removing the current component of the removal frequency from the load current I 0 is relatively small when the mechanical equipment 101 is normal. When the mechanical equipment 101 is normal, a relatively small current component has a relatively large change rate because the current component itself is small even when an abnormality having a small effect on the magnitude of the load current occurs. Therefore, the abnormality determination device 1 for mechanical equipment according to the present embodiment can easily detect an abnormality having a small influence on the magnitude of the load current. Therefore, the machine equipment abnormality determination device 1 according to the present embodiment can perform abnormality determination with high accuracy.

また、電動機102と電源103を共用する他の電動機等の運転状況が変化しても、負荷電流Iを形成する電流成分のうち、電圧成分が比較的小さい周波数の電流成分は変動し難い。即ち、他の電動機等の運転状況が変化しても、周波数が除去周波数でない電流成分は変動し難い。従って、除去後負荷電流は、他の電動機等の運転状況が変化しても変化し難い。よって、本実施形態に係る機械設備の異常判定装置1は、電動機102と電源103を共用する他の電動機等の運転状況の変化によって異常判定の結果が影響され難い。 In addition, even if the operating conditions of other motors that share the motor 102 and the power source 103 change, among the current components forming the load current I 0 , the current component having a frequency with a relatively small voltage component is unlikely to fluctuate. That is, even if the operation status of other electric motors or the like changes, the current component whose frequency is not the removal frequency hardly changes. Accordingly, the post-removal load current is unlikely to change even if the operating conditions of other electric motors or the like change. Therefore, the abnormality determination device 1 for mechanical equipment according to the present embodiment is less likely to be affected by the abnormality determination result due to changes in the operating conditions of other motors that share the electric motor 102 and the power source 103.

尚、本実施形態では、電圧検出手段4は、電動機102に印加される負荷電圧を検出しているが、電圧検出手段4が検出する負荷電圧は、当該負荷電圧に限定されるものでない。電圧検出手段4が検出する負荷電圧として、例えば、電圧成分の構成が、電動機102に印加される負荷電圧と同じ負荷電圧を挙げることができる。電圧成分の構成が電動機102に印加される負荷電圧と同じ負荷電圧としては、例えば、電動機102と電源103を共用する他の電動機に、電源103によって印加される負荷電圧を挙げることができる。   In the present embodiment, the voltage detection unit 4 detects the load voltage applied to the motor 102, but the load voltage detected by the voltage detection unit 4 is not limited to the load voltage. Examples of the load voltage detected by the voltage detection unit 4 include a load voltage having the same voltage component as the load voltage applied to the electric motor 102. Examples of the load voltage having the same voltage component configuration as the load voltage applied to the motor 102 include a load voltage applied by the power source 103 to another motor sharing the motor 102 and the power source 103.

また、本実施形態では、除去周波数決定手段6は、負荷電圧を周波数解析して、除去周波数を決定しているが、負荷電圧を周波数解析した解析結果が記録媒体に記録されている場合は、負荷電圧を周波数解析することに代えて、記録媒体から解析結果を読み出してもよい。記録媒体から解析結果を読み出す場合は、機械設備の異常判定装置1には、電圧検出手段4及び電圧A/D変換手段5を備える必要はない。   Further, in this embodiment, the removal frequency determination means 6 performs frequency analysis on the load voltage and determines the removal frequency, but when the analysis result obtained by frequency analysis of the load voltage is recorded on the recording medium, Instead of frequency analysis of the load voltage, the analysis result may be read from the recording medium. When reading the analysis result from the recording medium, the machine equipment abnormality determination device 1 need not include the voltage detection means 4 and the voltage A / D conversion means 5.

本実施例においては、機械設備に異常を発生させて、機械設備の異常判定装置に機械設備の異常について判定させた。図6(a)は、本実施例及び後述の実施例2における電動機、及び、該電動機に駆動される機械設備(ブロワ)の概略構成図である。図6(a)に示すように、ブロワ20は、第1回転軸部材31及び第2回転軸部材32を介して電動機40と接続されている。第1回転軸部材31は、ブロワ20が備える回転羽の回転軸であり、第2回転軸部材32は電動機40の回転軸である。第1回転軸部材31と第2回転軸部材32とは、フランジ形軸継手等のカップリング部材60によって接続されている。更に、第1回転軸部材31は、ブロワ20と電動機40との間に配置された2つのベアリング51、52によって支持されている。   In this example, an abnormality was generated in the mechanical equipment, and the abnormality determination device for the mechanical equipment was determined about the abnormality of the mechanical equipment. FIG. 6A is a schematic configuration diagram of an electric motor and mechanical equipment (blower) driven by the electric motor in the present embodiment and Example 2 described later. As shown in FIG. 6A, the blower 20 is connected to the electric motor 40 via the first rotating shaft member 31 and the second rotating shaft member 32. The first rotating shaft member 31 is a rotating shaft of a rotary blade included in the blower 20, and the second rotating shaft member 32 is a rotating shaft of the electric motor 40. The first rotating shaft member 31 and the second rotating shaft member 32 are connected by a coupling member 60 such as a flanged shaft joint. Further, the first rotating shaft member 31 is supported by two bearings 51 and 52 disposed between the blower 20 and the electric motor 40.

本実施例における機械設備の異常は、ブロワ20の回転羽が回転することで起こるブロワ20の振動である。図6(b)は、ブロワ20が備える回転羽21の正面図である。本実施例では、このような異常を発生させるために、図6(b)に示すように、ブロワ20の回転羽21の中心22から外れた1箇所に錘23を載置した。本実施例における電動機40は、出力が5.5kw、ポール数が4である。本実施例における負荷電圧の基本周波数は、60Hzである。本実施例における第1しきい値TH1は、160dB、第2しきい値TH2は、140dB、第3しきい値TH3は、110dBである。本実施例における負荷電圧の電圧スペクトル、除去周波数の電流成分が除去される前の電流スペクトル、除去後負荷電流の電流スペクトルは、図2〜4に示す通りである。   The abnormality of the mechanical equipment in the present embodiment is vibration of the blower 20 that occurs when the rotary blades of the blower 20 rotate. FIG. 6B is a front view of the rotary blade 21 provided in the blower 20. In the present embodiment, in order to generate such an abnormality, as shown in FIG. 6B, the weight 23 is placed at one place off the center 22 of the rotary blade 21 of the blower 20. The electric motor 40 in this embodiment has an output of 5.5 kw and a pole number of 4. In this embodiment, the basic frequency of the load voltage is 60 Hz. In the present embodiment, the first threshold value TH1 is 160 dB, the second threshold value TH2 is 140 dB, and the third threshold value TH3 is 110 dB. The voltage spectrum of the load voltage, the current spectrum before removal of the current component of the removal frequency, and the current spectrum of the load current after removal in this embodiment are as shown in FIGS.

実施形態において説明したように、実施例1の除去後負荷電流は、第2判断手段が同時に満足するか否かを判断する条件(1)及び(2)を同時に満たす。従って、本実施例に
おいては、電流検出手段2が正確に負荷電流を検出している。
As described in the embodiment, the post-removal load current in Example 1 satisfies the conditions (1) and (2) for determining whether or not the second determination unit satisfies simultaneously. Therefore, in this embodiment, the current detection means 2 accurately detects the load current.

また、図4に示すように、除去後負荷電流を形成する周波数30Hz、90Hz、1133Hz、1373Hzの電流成分が第2しきい値TH2以上であった。このように、除去後負荷電流に第2しきい値TH2以上の電流成分が含まれているため、ブロワ20の回転羽21が回転してブロワ20の振動が発生すると、機械設備の異常判定装置は、機械設備の異常と判定した。   Further, as shown in FIG. 4, the current components of the frequencies 30 Hz, 90 Hz, 1133 Hz, and 1373 Hz that form the post-removal load current were equal to or higher than the second threshold value TH2. As described above, since the load current after the removal includes a current component equal to or higher than the second threshold value TH2, when the rotating blade 21 of the blower 20 rotates and vibration of the blower 20 occurs, an abnormality determination device for mechanical equipment Was determined to be an abnormality in the mechanical equipment.

また、本実施例では、ブロワ20の回転羽21が回転したときのブロワ20の振動の振幅が、20μm、50μm、70μmのそれぞれの場合において、除去後負荷電流を形成する周波数1133Hz、1373Hzの電流成分の大きさを測定した。ブロワの振動の振幅の変更は、ブロワ20の回転羽21の中心22から外れた1箇所に載置した錘23の重さを変えることで行った。また、ブロワ20の振動の振幅の測定は、ブロワ20と電動機40との間に配置されたベアリング51又はベアリング52に取り付けた振動計で行った。図6(c)に示すように、周波数1133Hz、1373Hzの何れの電流成分においても、振動の振幅が大きくなればなるほど、大きくなった。よって、振動の振幅が大きくなればなるほど、電流成分の値が大きくなるため、第2しきい値TH2以上の電流成分があると、機械設備の異常と判定する本発明に係る機械設備の異常判定装置によれば、機械設備の異常判定を行うことができる。   Further, in the present embodiment, when the amplitude of vibration of the blower 20 when the rotary blade 21 of the blower 20 is rotated is 20 μm, 50 μm, and 70 μm, currents having frequencies of 1133 Hz and 1373 Hz that form a post-removal load current, respectively. The component size was measured. The amplitude of the vibration of the blower was changed by changing the weight of the weight 23 placed at one place off the center 22 of the rotary blade 21 of the blower 20. Further, the vibration amplitude of the blower 20 was measured with a vibration meter attached to the bearing 51 or the bearing 52 disposed between the blower 20 and the electric motor 40. As shown in FIG. 6 (c), in any current component at frequencies 1133 Hz and 1373 Hz, it increased as the amplitude of vibration increased. Therefore, since the value of the current component increases as the amplitude of vibration increases, the abnormality determination of the mechanical equipment according to the present invention is determined to determine that the mechanical equipment is abnormal if there is a current component equal to or greater than the second threshold value TH2. According to the apparatus, it is possible to determine abnormality of mechanical equipment.

本実施例では、ブロワ20の回転羽21の中心22から外れた1箇所に錘を載置23するのではなく、図7(a)に示すように、ブロア20と電動機40との間のカップリング部材60における、第1回転軸部材31の芯31aと、第2回転軸部材32の芯32aとをずらして(ミスアライメント)機械設備の異常を発生させた。本実施例では、除去後負荷電流を形成する周波数が30Hz、90Hzの電流成分が第2しきい値TH2以上であった。また、本実施例では、カップリング部材60における芯のずれを、0mm、0.1mm、0.2mm、0.4mmとしたとき、各芯のずれにおける除去後負荷電流を形成する周波数が30Hz、90Hzの電流成分の大きさを測定した。図7(b)に示すように、周波数が30Hz、90Hzの何れの電流成分においても、カップリング部材60におけるの芯のずれの量が大きくなればなるほど、大きくなった。よって、実施例1と同様に、振動の振幅が大きくなればなるほど、電流成分の値が大きくなるため、本発明に係る機械設備の異常判定装置によれば、機械設備の異常判定を行うことができる。   In this embodiment, the weight is not placed 23 at one place off the center 22 of the rotary blade 21 of the blower 20, but a cup between the blower 20 and the electric motor 40 as shown in FIG. In the ring member 60, the core 31a of the first rotating shaft member 31 and the core 32a of the second rotating shaft member 32 are shifted (misalignment) to cause an abnormality in the mechanical equipment. In the present embodiment, the frequency components forming the post-removal load current are 30 Hz and 90 Hz, and the current component is equal to or greater than the second threshold TH2. Further, in this embodiment, when the deviation of the core in the coupling member 60 is set to 0 mm, 0.1 mm, 0.2 mm, and 0.4 mm, the frequency for forming the load current after removal in each core deviation is 30 Hz, The magnitude of the 90 Hz current component was measured. As shown in FIG. 7B, in any current component having a frequency of 30 Hz or 90 Hz, the larger the amount of misalignment in the coupling member 60, the larger the current component. Therefore, as in the first embodiment, the larger the vibration amplitude, the larger the value of the current component. Therefore, according to the machine equipment abnormality determination device according to the present invention, the machine equipment abnormality determination can be performed. it can.

図1は、実施形態に係る機械設備の異常判定装置の機能ブロック図である。FIG. 1 is a functional block diagram of a machine facility abnormality determination device according to an embodiment. 図2は、実施例1における電圧スペクトルである。FIG. 2 is a voltage spectrum in the first embodiment. 図3は、実施例1おける、除去周波数の電流成分が除去される前の負荷電流の電流スペクトルである。FIG. 3 is a current spectrum of the load current before the current component of the removal frequency is removed in the first embodiment. 図4は、実施例1における、除去後負荷電流の電流スペクトルである。FIG. 4 is a current spectrum of the post-removal load current in Example 1. 図5は、機械設備の異常判定装置が行う、機械設備が異常か否かを判定する手順を示すフロー図である。FIG. 5 is a flowchart showing a procedure for determining whether or not the mechanical equipment is abnormal, which is performed by the mechanical equipment abnormality determining device. 図6(a)は、実施例1及び2における電動機及び該電動機に駆動されるブロワの概略構成図である。図6(b)は、図6(a)に示すブロワが備える回転羽の正面図である。図6(c)は、除去後負荷電流に含まれる各周波数の電流成分の大きさを示す試験結果である。FIG. 6A is a schematic configuration diagram of the electric motor and the blower driven by the electric motor in the first and second embodiments. FIG.6 (b) is a front view of the rotary blade with which the blower shown to Fig.6 (a) is provided. FIG. 6C is a test result showing the magnitude of the current component of each frequency included in the post-removal load current. 図7(a)は、図6(a)のカップリング部材、電動機、及び、ブロワ近傍を拡大した図である。図7(b)は、除去後負荷電流に含まれる各周波数の電流成分の大きさを示す試験結果である。Fig.7 (a) is the figure which expanded the coupling member, the electric motor, and the blower vicinity of Fig.6 (a). FIG. 7B is a test result showing the magnitude of the current component of each frequency included in the post-removal load current.

符号の説明Explanation of symbols

1…機械設備の異常判定装置、2…電流検出手段、6…除去周波数決定手段、7…除去手段、9…第1判断手段、10…異常判定手段 DESCRIPTION OF SYMBOLS 1 ... Mechanical equipment abnormality determination apparatus, 2 ... Current detection means, 6 ... Removal frequency determination means, 7 ... Removal means, 9 ... First judgment means, 10 ... Abnormality judgment means

Claims (3)

機械設備を駆動する電動機に供給される負荷電流を検出する電流検出手段と、
前記電動機に前記負荷電流を供給するために前記電動機に印加される負荷電圧を形成する各周波数の電圧成分のうち、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値以上の周波数の少なくとも一方を除去周波数と決定する除去周波数決定手段と、
前記電流検出手段によって検出された前記負荷電流を形成する各周波数の電流成分から、前記除去周波数の電流成分を除去する除去手段と、
前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流に第2しきい値以上の大きさの電流成分が含まれるか否かを判断する第1判断手段と、
前記第1判断手段によって第2しきい値以上の大きさの電流成分が含まれると判断されると、前記機械設備の異常と判定する異常判定手段とを備えることを特徴とする機械設備の異常判定装置。
Current detection means for detecting a load current supplied to an electric motor that drives the mechanical equipment;
Of the voltage components of each frequency forming the load voltage applied to the motor to supply the load current to the motor, the frequency having the largest voltage component and the magnitude of the voltage component are first. A removal frequency determining means for determining at least one of the frequencies equal to or higher than the threshold as a removal frequency;
Removing means for removing the current component of the removal frequency from the current component of each frequency forming the load current detected by the current detection means;
First determination means for determining whether or not the load current from which the current component of the removal frequency has been removed by the removal means includes a current component having a magnitude greater than or equal to a second threshold value;
An abnormality of the mechanical equipment, comprising: an abnormality determining means for determining that an abnormality of the mechanical equipment is detected when the first judging means determines that a current component having a magnitude equal to or greater than a second threshold value is included. Judgment device.
前記負荷電圧の基本周波数をf、正の整数をα(f>α)とすると、前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流が下記条件(1)及び(2)を同時に満足するか否かを判断する第2判断手段を備え、
前記第2判断手段によって満足しないと判断された場合、
前記電流検出手段は、前記負荷電流を検出し直し、前記除去手段は、検出し直された前記負荷電流から、前記除去周波数の電流成分を除去し、
前記第2判断手段によって満足すると判断された場合、
前記第1判断手段は、前記第2判断手段によって満足すると判断された前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流に第2しきい値以上の電流成分が含まれるか否かの判断を行うことを特徴とする請求項1に記載の機械設備の異常判定装置。
(1)…前記除去手段によって前記除去周波数の電流成分が除去された前記負荷電流を形成し、且つ、大きさが第3しきい値以上の電流成分を有する診断用周波数に、f±αが共に含まれていること。
(2)…前記診断用周波数のうち3f以上の診断用周波数が、fの整数倍の間隔をおいて存在していること。
When the basic frequency of the load voltage is f and the positive integer is α (f> α), the load current from which the current component of the removal frequency has been removed by the removal means satisfies the following conditions (1) and (2). A second judging means for judging whether or not the user is satisfied at the same time;
If it is determined that the second determination means is not satisfied,
The current detection means re-detects the load current, and the removal means removes a current component of the removal frequency from the re-detected load current,
If it is determined that the second determination means is satisfied,
The first determination means determines whether the load current from which the current component of the removal frequency has been removed by the removal means determined to be satisfied by the second determination means includes a current component equal to or higher than a second threshold value. The machine equipment abnormality determination device according to claim 1, wherein the determination is performed.
(1) ... f ± α is a diagnostic frequency that forms the load current from which the current component of the removal frequency has been removed by the removal means and has a current component whose magnitude is not less than a third threshold value. It must be included together.
(2) The diagnostic frequency of 3f or more among the diagnostic frequencies exists at an interval that is an integral multiple of f.
機械設備を駆動する電動機に供給される負荷電流を検出する電流検出工程と、
前記電動機に前記負荷電流を供給するために前記電動機に印加される負荷電圧を形成する各周波数の電圧成分のうち、電圧成分の大きさが最も大きい周波数、及び、電圧成分の大きさが第1しきい値以上の周波数の少なくとも一方を除去周波数と決定する除去周波数決定工程と、
前記電流検出工程によって検出された前記負荷電流を形成する各周波数の電流成分から、前記除去周波数の電流成分を除去する除去工程と、
前記除去工程によって前記除去周波数の電流成分が除去された前記負荷電流に第2しきい値以上の大きさの電流成分が含まれるか否かを判断する第1判断工程と、
前記第1判断工程によって第2しきい値以上の大きさの電流成分が含まれると判断されると、前記機械設備の異常と判定する異常判定工程とを含むことを特徴とする機械設備の異常判定方法。
A current detection step for detecting a load current supplied to an electric motor that drives the mechanical equipment;
Of the voltage components of each frequency forming the load voltage applied to the motor to supply the load current to the motor, the frequency having the largest voltage component and the magnitude of the voltage component are first. A removal frequency determination step of determining at least one of the frequencies equal to or higher than the threshold as a removal frequency;
A removal step of removing a current component of the removal frequency from a current component of each frequency forming the load current detected by the current detection step;
A first determination step of determining whether or not the load current from which the current component of the removal frequency has been removed by the removal step includes a current component having a magnitude greater than or equal to a second threshold;
An abnormality of the mechanical equipment, including an abnormality determination step of determining that the abnormality of the mechanical equipment is detected when the first judgment step determines that a current component having a magnitude greater than or equal to a second threshold value is included. Judgment method.
JP2007213297A 2007-08-20 2007-08-20 Machine equipment abnormality judgment device and machine equipment abnormality judgment method Expired - Fee Related JP5051528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213297A JP5051528B2 (en) 2007-08-20 2007-08-20 Machine equipment abnormality judgment device and machine equipment abnormality judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213297A JP5051528B2 (en) 2007-08-20 2007-08-20 Machine equipment abnormality judgment device and machine equipment abnormality judgment method

Publications (2)

Publication Number Publication Date
JP2009050078A true JP2009050078A (en) 2009-03-05
JP5051528B2 JP5051528B2 (en) 2012-10-17

Family

ID=40501768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213297A Expired - Fee Related JP5051528B2 (en) 2007-08-20 2007-08-20 Machine equipment abnormality judgment device and machine equipment abnormality judgment method

Country Status (1)

Country Link
JP (1) JP5051528B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508359A (en) * 2017-02-24 2018-09-07 通用电器技术有限公司 Machine self monitor and diagnostic program based on electric characteristic analysis
JP2019122065A (en) * 2017-12-28 2019-07-22 株式会社荏原製作所 Motor assembly and pump apparatus
US11209008B2 (en) 2017-12-28 2021-12-28 Ebara Corporation Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly
WO2023095247A1 (en) * 2021-11-25 2023-06-01 三菱電機株式会社 Diagnosis device and diagnosis method for electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214532A (en) * 1985-07-11 1987-01-23 Nishimu Denshi Kogyo Kk Transmission system for distribution line information
JPH0783972A (en) * 1993-09-17 1995-03-31 Nippon Seiko Kk Frequency spectrum analyzer
JP2000184658A (en) * 1998-12-11 2000-06-30 Osaka Gas Co Ltd Diagnostic device for induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214532A (en) * 1985-07-11 1987-01-23 Nishimu Denshi Kogyo Kk Transmission system for distribution line information
JPH0783972A (en) * 1993-09-17 1995-03-31 Nippon Seiko Kk Frequency spectrum analyzer
JP2000184658A (en) * 1998-12-11 2000-06-30 Osaka Gas Co Ltd Diagnostic device for induction motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508359A (en) * 2017-02-24 2018-09-07 通用电器技术有限公司 Machine self monitor and diagnostic program based on electric characteristic analysis
JP2018153081A (en) * 2017-02-24 2018-09-27 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Autonomous procedure for monitoring and diagnosis of machine based on electrical signature analysis
CN108508359B (en) * 2017-02-24 2022-07-05 通用电器技术有限公司 Machine autonomous monitoring and diagnostic program based on electrical characteristic analysis
JP7139122B2 (en) 2017-02-24 2022-09-20 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Autonomous procedures for machine monitoring and diagnostics based on electrical signature analysis
JP2019122065A (en) * 2017-12-28 2019-07-22 株式会社荏原製作所 Motor assembly and pump apparatus
US11209008B2 (en) 2017-12-28 2021-12-28 Ebara Corporation Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly
WO2023095247A1 (en) * 2021-11-25 2023-06-01 三菱電機株式会社 Diagnosis device and diagnosis method for electric motor

Also Published As

Publication number Publication date
JP5051528B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
US8536839B2 (en) Device and method for monitoring and/or analyzing rotors of electric machines in operation
KR101474187B1 (en) Method for monitoring demagnetization
Negrea Electromagnetic flux monitoring for detecting faults in electrical machines
JP4381612B2 (en) Axis voltage and current monitoring system
US8405339B2 (en) System and method for detecting fault in an AC machine
JP6353694B2 (en) Deterioration diagnosis system
EP3480610B1 (en) Diagnosing a winding set of a stator
US10473708B2 (en) Methods and systems for real-time monitoring of the insulation state of wind-powered generator windings
EP2623998A2 (en) System and method for health monitoring of power cables
CN110998343A (en) Technique for detecting leakage flux abnormality of motor
JP5051528B2 (en) Machine equipment abnormality judgment device and machine equipment abnormality judgment method
JPWO2020208743A1 (en) Motor equipment abnormality diagnosis device, motor equipment abnormality diagnosis method, and motor equipment abnormality diagnosis system
Iorgulescu et al. Vibration monitoring for diagnosis of electrical equipment's faults
WO2020189014A1 (en) Abnormality diagnosis device and abnormality diagnosis method
Frosini et al. A new diagnostic instrument to detect generalized roughness in rolling bearings for induction motors
Goktas et al. Separation of induction motor rotor faults and low frequency load oscillations through the radial leakage flux
JP2020153965A (en) Abnormality diagnosis device and abnormality diagnosis method
US11959978B2 (en) Method of detecting a rotor bar fault and a method of estimating an additional operating expenditure due to one or more mechanical anomalies in an electrical machine
KR102212084B1 (en) Fault diagnosis method of synchronous motor
KR101720569B1 (en) System and method for diagnosing journal bearings of induction motor, and a recording medium having computer readable program for executing the method
Bellini et al. Diagnosis of mechanical faults by spectral kurtosis energy
Joshi et al. Condition monitoring of induction motor with a case study
JP2000092792A (en) Diagnostic apparatus for motor
US11901853B1 (en) Technology for sensorless detection of reverse rotation and speed estimation for electric machines
Habetler Current-based motor condition monitoring: Complete protection of induction and PM machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5051528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees