JP2009047671A - Impedance measuring method of bread/baked good - Google Patents

Impedance measuring method of bread/baked good Download PDF

Info

Publication number
JP2009047671A
JP2009047671A JP2007238511A JP2007238511A JP2009047671A JP 2009047671 A JP2009047671 A JP 2009047671A JP 2007238511 A JP2007238511 A JP 2007238511A JP 2007238511 A JP2007238511 A JP 2007238511A JP 2009047671 A JP2009047671 A JP 2009047671A
Authority
JP
Japan
Prior art keywords
electrode
bread
impedance
measurement
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007238511A
Other languages
Japanese (ja)
Inventor
Noriyuki Kitaori
典之 北折
Akira Ishikawa
彰 石川
Natsumi Hotta
なつみ 堀田
Shizuka Moriya
静香 森屋
Mitsuo Takahashi
三男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2007238511A priority Critical patent/JP2009047671A/en
Publication of JP2009047671A publication Critical patent/JP2009047671A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of a conventional method of inserting an electrode into a sample such as bread/baked goods where vacancy ratio varies with time when the values of impedance, electric resistance, and electric capacitance are measured wherein the contact state with an electrode is varied by the variation of the vacancy ratio, hence irregular value variation occurs, and a reliable value cannot be measured, and the initial flowability and plastic deformability of the dough of the bread/baked goods are eliminated by burning and hence measurement after the burning cannot be measured. <P>SOLUTION: One set of facing main electrodes is embedded, and they are fixed at two or more places by paper-made electrode holding member for keeping the distance between the main electrodes. Thus, the irregular value variation of the problem of the conventional art is eliminated. The measurement can be performed by the embedded electrodes even after the burning. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パン・焼き菓子のインピーダンス測定用電極及び方法に関するものである。本発明は、電気的に性質の違う物質が集合した固形状態をした混合物のうち、パン・焼き菓子・餅・和菓子・練り製品のような流動変形、乃至は塑性変形する食品、プラスチック成型品、粘土、液晶物質等物質について、インピーダンスを測定する方法を提供する。特に、電極を装着する際においては、流動変形、乃至は、塑性変更するが、電極装着後には固化する物質に対して有効な、電極構成及び、その電極を用いてのインピーダンスを測定する方法を提供することにある。
本発明のパン・焼き菓子について、生地状態で電極を装着し、生地の焼成の間、焼きあがり後のインピーダンス、電気抵抗、電気容量の測定を行う方法を提供する。
The present invention relates to an electrode and method for impedance measurement of bread and baked confectionery. The present invention relates to a solid state mixture of substances of different electrical properties, such as bread, baked confectionery, rice cake, Japanese confectionery, kneaded products, fluid deformation or plastic deformation foods, plastic molded products, clay Provided is a method for measuring impedance of a substance such as a liquid crystal substance. In particular, when an electrode is mounted, a flow deformation or plastic change is made, but an effective electrode structure for a substance that solidifies after the electrode is mounted and a method of measuring impedance using the electrode. It is to provide.
The bread / baked confectionery of the present invention is provided with a method of measuring the impedance, electrical resistance, and capacitance after baking after the dough is baked while the electrode is mounted in the dough state.

特開平5−99869  JP 5-99869 特開平2−251740  JP-A-2-251740 特開平2−251744  JP-A-2-251744 特開昭58−47247  JP 58-47247 A 実開昭63−170748  Japanese Utility Model Sho 63-170748 M.Ito,S.Yoshikawa,K.Asami,T.Hanai,Cereal Chem.69(3)325−327(1992)  M.M. Ito, S.M. Yoshikawa, K .; Asami, T .; Hanai, Cereal Chem. 69 (3) 325-327 (1992) 花井哲也、「不均質構造と誘電率」p174−180(吉岡書店、2000)  Tetsuya Hanai, “Heterogeneous Structure and Dielectric Constant” p174-180 (Yoshioka Shoten, 2000) 花井哲也、浅見耕司、実験化学講座、第9巻、p215−243(丸善、1991)  Tetsuya Hanai, Koji Asami, Laboratory of Experimental Chemistry, Volume 9, p215-243 (Maruzen, 1991)

インピーダンス測定は、試料の状態を変えることなく、混合物系の内部構造に関する情報を得る方法として用いられる。測定方法については、実験化学講座、第9巻、215−243ページ(花井哲也・浅見耕司共著、丸善、1991年)、「不均質構造と誘電率」(花井哲也著、吉岡書店、2000年)、などに解説がある。しかし、電気的に性質の違う物質が集合した混合物、例えば、食品、生物試料、高分子からなる複合材料、無機材料、成形物に対しては、インピーダンス測定が広く行われているとは言い難い。その理由は、測定を行うことは比較的容易であるが、測定に対する十分な知識がないと信頼あるデータが得られないためである。測定値に影響を及ぼす要因としては、試料と電極との接触不良、電極の形状、浮遊容量、電極分極、リード線によるインダクタンス、ノイズ等がある。十分な知識がない測定者にとっては、これらを考慮して試料に合わせた電極構成を考えるのは面倒なため、インピーダンス測定が普及しているとは言い難いのが現状である。Impedance measurement is used as a method for obtaining information about the internal structure of the mixture system without changing the state of the sample. For the measurement method, Experimental Chemistry, Vol. 9, pp. 215-243 (Tetsuya Hanai and Koji Asami, Maruzen, 1991), “Heterogeneous Structure and Dielectric Constant” (Tetsuya Hanai, Yoshioka Shoten, 2000) There are explanations in, etc. However, it is difficult to say that impedance measurement is widely performed on mixtures of substances with different electrical properties, such as foods, biological samples, polymer composite materials, inorganic materials, and molded products. . The reason is that although it is relatively easy to perform the measurement, reliable data cannot be obtained without sufficient knowledge about the measurement. Factors affecting the measurement value include poor contact between the sample and the electrode, electrode shape, stray capacitance, electrode polarization, inductance due to lead wires, noise, and the like. For the measurer who does not have sufficient knowledge, it is difficult to consider the electrode configuration according to the sample in consideration of these, and it is difficult to say that the impedance measurement is prevalent.

本発明では、パン・焼き菓子のインピーダンス、電気抵抗、電気容量を測定するための電極構成、および測定方法を提供するものである。また、パン・焼き菓子の測定の結果得られる電気容量値、電気抵抗値から誘電率、導電率を得る方法を提供するものである。
パン・焼き菓子のインピーダンス測定の報告は少ないが、上記背景技術特許文献1の特開平5−99869ではパン生地のインピーダンス測定を行い、その測定値から配合処方の確認を行う、更にその結果を数値計算することによりパン生地の膨張倍率を得る方法が開示されている。また、Cereal Chem.69(3)325−327(1992)には、特開平5−99869と同じ発明者による同様の内容が報告されている。これらの2件の先行技術の本質的な部分はパン生地の電気抵抗値と電気容量値を用いて、数式計算処理を行い、パン生地膨張倍率を評価する点であり、本発明の対象とする試料についての測定方法について十分な情報を提供するものではない。実際に、これらの先行技術の方法でインピーダンス測定を行うと、値がばらつくことがあった。しかも、そのばらつきは試料の状態を反映するものでないことが判った。また、これらの先行技術の方法では、パン生地のインピーダンスを測定することができるが、焼いている最中、焼いた後のパンに対しては、インピーダンスを測定することはできない。本発明では、パンのインピーダンスを精度よく求める手段を提供するものである。
The present invention provides an electrode configuration and a measuring method for measuring impedance, electrical resistance, and capacitance of bread / baked confectionery. Further, the present invention provides a method for obtaining a dielectric constant and conductivity from an electric capacitance value and an electric resistance value obtained as a result of measurement of bread / baked confectionery.
There are few reports of impedance measurement of bread and baked confectionery, but in Japanese Patent Application Laid-Open No. Hei 5-99869 of the background art patent document 1, impedance measurement of bread dough is performed, and the formulation is confirmed from the measured value. A method for obtaining the expansion ratio of bread dough is disclosed. In addition, Cereal Chem. 69 (3) 325-327 (1992) reports the same content by the same inventor as Japanese Patent Laid-Open No. 5-99869. The essential part of these two prior arts is to evaluate the bread dough expansion ratio by performing mathematical calculation processing using the electrical resistance value and capacitance value of the bread dough. It does not provide sufficient information on the measurement method. In fact, when impedance measurements are made using these prior art methods, the values may vary. Moreover, it has been found that the variation does not reflect the state of the sample. Also, with these prior art methods, the impedance of the dough can be measured, but the impedance cannot be measured for the baked bread during baking. The present invention provides means for accurately obtaining the impedance of the pan.

発明が解決しようとするための手段Means for the Invention to Solve

上記の先行技術の方法によるばらつきは、試料であるパン・焼き菓子と電極の接触状態が、パン・焼き菓子の発酵による膨張により変動すること、またこの膨張の際に電極に応力が働き電極位置が相対的に変動しているのではないかと考えた。
検討の結果、生地の状態から焼き上がる状態まで、一貫して測定するために、パン・焼き菓子の中に電極を固定したままパン・焼き菓子を焼き上げるようにし、更に、電極を試料内に装着した際に、試料の中で電極が固定されるように電極の間に複数箇所の固定部材を配置したところ、先行技術のおける上記のインピーダンス値のばらつきが解消された。
また、この方法によれば、パン・焼き菓子の生地についてのみでなく、焼き上がったパン・焼き菓子のインピーダンスも測定でき、またパン・焼き菓子の膨張時(発酵時)にもインピーダンス値のばらつきが発生しないことを見いだした。
電極の固定部材については、検討の結果、紙を使用することがよいことが判った。
紙製スペーサーで電極上部を固定し、パン・焼き菓子生地との接触状態を安定させるために使用した材料は、紙である点が本発明の主要な点である。
The variation by the above prior art method is that the contact state between the sample bread and baked confectionery and the electrode fluctuates due to the expansion of the bread and baked confectionery by fermentation, and stress is applied to the electrode during this expansion, and the electrode position I thought that there was a relative fluctuation.
As a result of examination, in order to measure consistently from the state of the dough to the state of baking, the bread and baked confectionery are baked while the electrode is fixed in the bread and baked confectionery, and the electrode is mounted in the sample In this case, when a plurality of fixing members are arranged between the electrodes so that the electrodes are fixed in the sample, the above-described variation in impedance value in the prior art is eliminated.
In addition, according to this method, not only the bread and baked confectionery dough, but also the impedance of the baked bread and baked confectionery can be measured. Found that does not occur.
As a result of examination, it was found that the electrode fixing member should be paper.
The main point of the present invention is that the material used for fixing the upper part of the electrode with a paper spacer and stabilizing the contact state with the bread / baked confectionery dough is paper.

本発明の電極は、交流法に適し、測定周波数が1kHz〜10MHzで使用することが好ましい。測定周波数が1kHz未満では、電極分極のため、正確な値が得られにくくなる。10MHzを超える周波数では、測定試料のインダクタンス成分が測定値に加わってくるため、正確な測定が困難になる。そこで、1MHzを超える周波数においては、このインダクタンス成分の補正をして、電気容量、電気抵抗の値を求めることが望ましい。インダクタンスの補正に関しては、例えば、花井哲也、浅見耕司、実験化学講座、第9巻(丸善、1991)のp237−240に記載された方法がある。
測定の際の印加電圧は、0.1V〜3V程度であり0.1V〜1Vが好ましい。
The electrode of the present invention is suitable for the alternating current method and is preferably used at a measurement frequency of 1 kHz to 10 MHz. If the measurement frequency is less than 1 kHz, it is difficult to obtain an accurate value due to electrode polarization. At frequencies exceeding 10 MHz, the inductance component of the measurement sample is added to the measurement value, making accurate measurement difficult. Therefore, at frequencies exceeding 1 MHz, it is desirable to correct the inductance component to obtain values of electric capacity and electric resistance. Regarding the correction of the inductance, for example, there is a method described in p237-240 of Tetsuya Hanai, Koji Asami, Experimental Chemistry, Volume 9 (Maruzen, 1991).
The applied voltage at the time of measurement is about 0.1V to 3V, preferably 0.1V to 1V.

インピーダンスZ(Ohm単位)は、次の式で表される。
Z=Rp+1/(i・2πf・Cp) (式1)
ここで、Rpは電気抵抗(Ohm単位)、iは虚数単位、fは周波数であり、Cpは電気容量(F単位)であり、インピーダンス測定により、CpとRpの値が得られる。測定機によっては、CpとRp以外の値として、Zの実数部と虚数部、|Z|及び位相角、というように別の表現でされる1組の量が得られることもあるが、得られた1組の量から、CpとRpを得ることができる。
The impedance Z (Ohm unit) is expressed by the following equation.
Z = Rp + 1 / (i · 2πf · Cp) (Formula 1)
Here, Rp is an electric resistance (Ohm unit), i is an imaginary unit, f is a frequency, Cp is an electric capacity (F unit), and values of Cp and Rp are obtained by impedance measurement. Depending on the measuring machine, as a value other than Cp and Rp, there may be obtained a set of quantities expressed in different expressions such as a real part and an imaginary part of Z, | Z |, and a phase angle. From the set of quantities obtained, Cp and Rp can be obtained.

誘電率値、導電率値の求め方
得られたCp,Rpおよび、予め定めたC1,Csの値を用いて、次の(式2)(式3)を用いて、誘電率E,電気伝導率K(S/m単位)を求めることも出来る。
E=(Cp−Cs)/C1 (式2)
K=Ev・Gp/C1=Ev/(Rp・C1) (式3)
(式3)を変形すれば、(式4)が得られる。
C1=Ev/(K・Rp) (式4)
ここで、C1は電極定数(セル定数と呼ぶ場合もある、F単位)、Csは浮遊電気容量(F単位)、Sは電極面積(m^2単位)、dは電極間の距離(m単位)、Gpは電気伝導度(S=mho=1/Ohm単位)でGp=1/Rpである。また、Ev(F/m単位)は真空誘電率で、Ev=8.8542E−14F/cmである。C1,Csは次の式で与えられるが、
Cp=E・C1+Cs (式5)
C1=E・S/d (式6)
本発明においては、(式6)の(S/d)を直接測定して、C1,Csを定めることはせずに、次のように定める。
Using the following (Equation 2) and (Equation 3), the dielectric constant E, the electrical conductivity are obtained by using the Cp and Rp obtained and the predetermined C1 and Cs values. The rate K (S / m unit) can also be obtained.
E = (Cp−Cs) / C1 (Formula 2)
K = Ev · Gp / C1 = Ev / (Rp · C1) (Formula 3)
If (Equation 3) is modified, (Equation 4) is obtained.
C1 = Ev / (K · Rp) (Formula 4)
Here, C1 is an electrode constant (sometimes called cell constant, F unit), Cs is a floating electric capacity (F unit), S is an electrode area (m ^ 2 unit), and d is a distance between electrodes (m unit). Gp is electrical conductivity (S = mho = 1 / Ohm unit), and Gp = 1 / Rp. Moreover, Ev (F / m unit) is a vacuum dielectric constant and Ev = 8.8542E-14F / cm. C1 and Cs are given by the following equations,
Cp = E · C1 + Cs (Formula 5)
C1 = ES / d (Formula 6)
In the present invention, (S / d) in (Expression 6) is directly measured, and C1 and Cs are not determined, but are determined as follows.

誘電率Eが既知の2種類以上の標準物質についてのインピーダンス測定を行い、測定値のCpと誘電率E値とから、(式5)により、電極定数C1,浮遊電気容量Csを定める。3種類以上の標準物質を用いた場合には、最適化直線近似法により、C1,Csを定める。電極定数C1は、電気伝導率が既知の塩溶液(例えば、KCl水溶液)のRp測定値から、(式4)により定めることも可能である。塩溶液を2種類以上用いた場合には、最適化直線近似法で定める。
上記いずれの方法でC1,Csを定めた場合にも、パン生地の測定時に電極を固定するときと、電極同志が同じ位置関係になるようにして、誘電率既知の標準物質についてCp,Rpを測定する。
Impedance measurement is performed on two or more kinds of reference materials with known dielectric constants E, and the electrode constant C1 and the floating capacitance Cs are determined from the measured value Cp and the dielectric constant E value according to (Equation 5). When three or more kinds of standard substances are used, C1 and Cs are determined by an optimized linear approximation method. The electrode constant C1 can also be determined by (Equation 4) from the Rp measurement value of a salt solution (for example, KCl aqueous solution) having a known electrical conductivity. When two or more kinds of salt solutions are used, they are determined by an optimized linear approximation method.
When C1 and Cs are determined by any of the above methods, Cp and Rp are measured for a standard material with a known dielectric constant so that the electrodes are in the same positional relationship as when the electrodes are fixed during the measurement of bread dough. To do.

発明の効果The invention's effect

本発明では、パンや焼き菓子の中埋め込んだ主電極を該主電極には、該主電極間の距離を保つ紙製の電極保持部材で二カ所以上の位置で固定しているので、電極の相対的な位置の変化がなく、また生地が発酵等で膨張した際にも精度よく測定可能である。
電極保持部材は、紙製であり、プラスチック、無機材料と比べ、耐熱性、乃至は、熱膨張係数も低く、また、有害物質の溶出もないので、生地の状態のみでなく、焼いている最中、焼き上がった後にわたっても、精度よく、かつ安全に測定が可能である。
また、測定試料中に埋め込んだ際と同じ、立体的な位置構成を取らせた状態で標準物質により定めた電極定数(セル定数)を使用することに試料の測定値の電気抵抗、電気容量から、試料の電気導電率、誘電率を求める電気導電率、誘電率を求めることができる。
In the present invention, the main electrode embedded in bread or baked confectionery is fixed to the main electrode at two or more positions with a paper electrode holding member that maintains the distance between the main electrodes. There is no change in the relative position, and it can be accurately measured even when the dough is expanded by fermentation or the like.
The electrode holding member is made of paper and has a lower heat resistance or thermal expansion coefficient than plastics and inorganic materials, and has no leaching of harmful substances. It is possible to measure accurately and safely even after baking.
In addition, using the electrode constants (cell constants) determined by the standard substance in the same three-dimensional position configuration as when embedded in the measurement sample, the electrical resistance and capacitance of the measured values of the sample are used. The electrical conductivity and dielectric constant for obtaining the electrical conductivity and dielectric constant of the sample can be obtained.

電極保持部材は、熱膨張係数が低く、試料のインピーダンス値に影響を与えないような誘電率が低く、電気伝導性が低いものであり、電極を保持する剛性のあるものであり、耐熱性があるものがあればよいが、紙であることが好ましい。
ここでいう、紙とは、パルプのような植物性繊維からなり、この繊維を絡み合わせて作ったシート状、乃至は抄造体のいずれでもよい。使用する温度、等を考慮して、合成高分子繊維が混合されたものでもよい。
The electrode holding member has a low coefficient of thermal expansion, a low dielectric constant that does not affect the impedance value of the sample, a low electrical conductivity, a rigidity that holds the electrode, and a heat resistance. Some may be present, but paper is preferred.
Here, the paper is made of vegetable fibers such as pulp, and may be any of a sheet or a paper product made by intertwining these fibers. In consideration of the temperature to be used, etc., synthetic polymer fibers may be mixed.

電極は、インピーダンスを測定する電極は、少なくとも1組からなる対向する主電極からなり、この主電極が分割されていてもよく、またガード電極等を適宜備えていてもよい。対向する主電極の形状は、平行平板の対向、板と棒状、同心の円筒の対向(二重円筒)、円筒と棒状、棒状の対向のいずれでもよいが、試料との接触の点から、形状は、平行平板の対向、同心の円筒の対向(二重円筒)が好ましい。電極の材質は、腐食性がなく、試料から応力が掛かった場合の変形がないような強度が強いものがよい。例えば、白金等の貴金属、乃至は、これらの合金がよい。The electrodes for measuring impedance are composed of at least one pair of opposing main electrodes, and the main electrodes may be divided, or may be appropriately provided with a guard electrode or the like. The shape of the opposing main electrode may be any of a parallel plate, a plate and a rod, a concentric cylinder (double cylinder), a cylinder and a rod, or a rod. Are preferably opposed to parallel plates and opposed to concentric cylinders (double cylinders). The material of the electrode is preferably non-corrosive and strong enough not to be deformed when stress is applied from the sample. For example, a noble metal such as platinum or an alloy thereof is preferable.

本発明に係わる方法に基づき、パン生地についてインピーダンスを測定した例について説明する。
図1はインピーダンスを測定する装置構成であり、図2は本発明に関わるパン等の生地のインピーダンス測定用の電極の概要構成を示す。図2において、21は白金製電極、22は、紙製容器(マフィン型)、23は紙製の電極保持部材である。本実施例では、対向する主電極は、対称的な形状の平行平板であり、電極のリード線接続部21Aを有している。21Aはリード線を介して図1のインピーダンス測定機の測定端子に接続される。
The example which measured the impedance about bread dough based on the method concerning this invention is demonstrated.
FIG. 1 shows an apparatus configuration for measuring impedance, and FIG. 2 shows a schematic configuration of an electrode for measuring impedance of dough such as bread according to the present invention. In FIG. 2, 21 is a platinum electrode, 22 is a paper container (muffin type), and 23 is a paper electrode holding member. In the present embodiment, the opposing main electrode is a parallel plate having a symmetrical shape and has an electrode lead wire connecting portion 21A. 21A is connected to the measurement terminal of the impedance measuring machine of FIG. 1 through a lead wire.

つぎに実施例1を説明する。
パン用の強力小麦粉300gに対して、ドライイースト6g、砂糖40gに30℃のぬるま湯175g、卵1/2個(30g)を加え、ボウルの中で手捏ねする。生地が繋がった時点で、食塩5g、バター45gを加えて、パン生地とする。この生地を図2に示す構成でパン生地の中に電極を埋め込んだ電極装置を作り、30℃で発酵を行いつつ、経時的にインピーダンス測定を行った。図2の構成は、22が紙製のマフィン型であり、紙製マフィン型の中に、白金製電極がマフィン型の容器形状底部と23の紙製の電極保持部材とのより、マフィン型の中に電極が固定されたものになっている。実施例1の電極構成は平行板が主電極であり、主電極の上方で、紙製の電極固定部材で固定する。別途、水、エタノール、空気を標準試料として、定めた電極定数C1は、0.3pF,浮遊容量Csは、1.0pFであった。
Next, Example 1 will be described.
To 300 g of flour for bread, add 175 g of 30 ° C. lukewarm water and 1/2 egg (30 g) to 6 g of dry yeast and 40 g of sugar, and knead in a bowl. When the dough is connected, 5 g of salt and 45 g of butter are added to make bread dough. An electrode device in which electrodes were embedded in bread dough with the configuration shown in FIG. 2 was made, and impedance measurement was performed over time while performing fermentation at 30 ° C. In the configuration of FIG. 2, 22 is a paper muffin type, and the platinum electrode is a muffin type made of a muffin type container-shaped bottom portion and 23 paper electrode holding members in the paper muffin type. The electrode is fixed inside. In the electrode configuration of Example 1, the parallel plate is the main electrode, and is fixed by a paper electrode fixing member above the main electrode. Separately, using water, ethanol, and air as standard samples, the determined electrode constant C1 was 0.3 pF, and the stray capacitance Cs was 1.0 pF.

上記のように電極を埋め込んだ測定試料を作成後は、周波数範囲、1kHz〜4MHzでインピーダンス測定を行った。After creating the measurement sample with the electrode embedded as described above, impedance measurement was performed in the frequency range, 1 kHz to 4 MHz.

比較例1Comparative Example 1

上記の特許文献1(特開平5−99869)に準じた方法で作成した実施例1に示す。比較例の電極構成を図3に示すが、針状(棒状)の電極からなり、これをパン生地に挿入して測定した。図3の電極を用いたほかは、実施例1と同様にして、インピーダンス測定を行った。別途、水、エタノール、空気を標準試料として、定めた電極定数C1は、0.3pF,浮遊容量Csは、0.5pFであった。Example 1 prepared by a method according to the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 5-99869) is shown. The electrode configuration of the comparative example is shown in FIG. 3 and consists of needle-like (rod-like) electrodes, which were inserted into bread dough and measured. Impedance measurement was performed in the same manner as in Example 1 except that the electrode of FIG. 3 was used. Separately, using water, ethanol, and air as standard samples, the determined electrode constant C1 was 0.3 pF, and the stray capacitance Cs was 0.5 pF.

実施例1および比較例1のパン生地のインピーダンス測定結果のうち、発酵後50分後のインピーダンス|Z|の値を図4に示す。実施例では、|Z|は周波数が増加するに従い、徐々に増加したが、比較例1では、1MHz付近に試料の状態を反映したと思われないインピーダンス|Z|値の増加が観察された。この周波数範囲で、特異的な|Z|のピークを示すことは不合理であり、これはパン生地が発酵とともに生地中に気泡を含みながら膨張していく際に電極と生地との接触不良が発生したものと考えられる。一方、実施例1ではそのような値は観測されない。Of the impedance measurement results of the bread dough of Example 1 and Comparative Example 1, the value of impedance | Z | 50 minutes after fermentation is shown in FIG. In the example, | Z | gradually increased as the frequency increased, but in Comparative Example 1, an increase in impedance | Z | value that did not seem to reflect the state of the sample was observed in the vicinity of 1 MHz. In this frequency range, it is unreasonable to show a specific | Z | peak, which causes poor contact between the electrode and the dough when the dough expands with fermentation containing bubbles in the dough. It is thought that. On the other hand, in Example 1, such a value is not observed.

次に、実施例1および比較例1の電気抵抗Rpの値を発酵時間毎に測定した結果を図5に示す。図5では、実施例1では、発酵後、Rpは徐々に増加し、発酵時間が50分程度に最高値を示した後、減少する。一方、比較例では、Rp値が増減を繰り返して実際の値と異なるものとなった。この原因は、パン生地が膨張した場合に電極とパン生地との接触不良が発生したものと考えられる。
以上のように、比較例では試料固有の値が得られず、電極とパン生地との接触関係等の影響を受けて好ましくないことが判った。
Next, the result of having measured the value of the electrical resistance Rp of Example 1 and Comparative Example 1 for every fermentation time is shown in FIG. In FIG. 5, in Example 1, after fermentation, Rp gradually increases, and decreases after the fermentation time reaches a maximum value of about 50 minutes. On the other hand, in the comparative example, the Rp value repeatedly increased and decreased and became different from the actual value. This is considered to be caused by poor contact between the electrode and the bread dough when the bread dough expands.
As described above, in the comparative example, a value specific to the sample was not obtained, and it was found that the value was not preferable due to the influence of the contact relationship between the electrode and the bread dough.

本発明の実施形態により、パン・焼き菓子生地の状態からできあがったパンまでのインピーダンス値を同一の試料について測定できることが判った。またインピーダンス測定値から得られる電気容量Cp、電気抵抗Rpの値から、パン・焼き菓子生地の誘電率、導電率を求めることができた。改良型電極は耐熱容器である紙製のマフィン型の中に固定されているため、電極を入れたままパン・焼き菓子を焼き、焼き上がり後のインピーダンスも測定可能である。焼き上がり後も測定することにより、パン・焼き菓子の鮮度維持についても検討できる。
本発明の電極構成、および測定方法は、試料を電極装着時、または試料を測定セルに充填時には、流動性があるか、乃至は塑性変形する状態であり、装着後、または充填後には流動性を失う、乃至は固体化するような測定試料に対しても有効である。
According to the embodiment of the present invention, it was found that the impedance value from the state of bread / baked confectionery dough to the finished bread can be measured for the same sample. Moreover, the dielectric constant and electrical conductivity of bread | baked baked confectionery material | dough were able to be calculated | required from the value of the electrical capacitance Cp obtained from an impedance measured value, and the electrical resistance Rp. Since the improved electrode is fixed in a paper muffin mold, which is a heat-resistant container, it is possible to measure the impedance after baking after baking bread and baked confectionery with the electrode in place. By measuring after baking, it is possible to examine the maintenance of freshness of bread and baked goods.
The electrode configuration and the measurement method of the present invention are fluid or plastically deformed when the sample is attached to the electrode or when the sample is filled in the measurement cell. It is also effective for measurement samples that lose or become solid.

インピーダンス測定系の構成Configuration of impedance measurement system

実施例 電極構成図Example Electrode configuration diagram

比較例 電極構成図Comparative example Electrode configuration diagram

実施例1と比較例1 パン生地のインピーダンス|Z|の周波数特性Example 1 and Comparative Example 1 Frequency characteristics of impedance | Z |

実施例1と比較例1 パン生地の電気抵抗値の経時変化Example 1 and Comparative Example 1 Change in electrical resistance of bread dough over time

符号の説明Explanation of symbols

11 インピーダンス測定機
11A リード線接続端子
12 リード線
13 電極接続部(先端がクリップ形状)
14 電極
14A 電極のリード線接続部
21 板状の白金製電極
21A 電極のリード線接続部(21電極と一体となっている)
22 紙製容器(マフィン型)
22A 試料のパン生地を入れる高さ
23 紙製の電極保持部材
31 棒状の白金製電極
31A 電極のリード線接続部(31電極と一体となっている)
32A プラスチック製容器の底面電極固定部
32B プラスチック製容器の側面
11 Impedance measuring machine 11A Lead wire connection terminal 12 Lead wire 13 Electrode connection portion (tip is clip-shaped)
14 Electrode 14A Electrode lead wire connecting portion 21 Plate-like platinum electrode 21A Electrode lead wire connecting portion (integrated with 21 electrode)
22 Paper container (muffin type)
22A Height 23 for inserting the bread dough of the sample 23 Paper electrode holding member 31 Rod-shaped platinum electrode 31A Lead wire connecting portion of electrode (integrated with 31 electrode)
32A Bottom electrode fixing part 32B of plastic container Side of plastic container 32B

Claims (5)

パンや焼き菓子の中に電気を通電する対向する一組の主電極を埋め込み、該主電極には、該主電極間の距離を保つ紙製の電極保持部材で二カ所以上の位置で固定されているパンや焼き菓子のインピーダンス、電気抵抗、電気容量の測定用の電極。A pair of opposing main electrodes that energize electricity are embedded in bread or baked goods, and the main electrodes are fixed at two or more positions by paper electrode holding members that maintain the distance between the main electrodes. Electrodes for measuring impedance, electrical resistance, and capacitance of bread and baked goods. 請求項1の主電極を測定試料が塑性変形しうる間に埋め込み固定することを特徴とするインピーダンス、電気抵抗、電気容量の測定方法。A method for measuring impedance, electrical resistance, and capacitance, wherein the main electrode according to claim 1 is embedded and fixed while the measurement sample can be plastically deformed. 測定周波数が1kHz〜10MHzとする請求項2記載のインピーダンス、電気抵抗、電気容量の測定方法。The method for measuring impedance, electrical resistance, and capacitance according to claim 2, wherein the measurement frequency is 1 kHz to 10 MHz. 測定電極を埋め込んだままパンや焼き菓子を焼き、焼く前後のインピーダンス、電気抵抗、電気容量を測定する請求項2〜請求項3のインピーダンス、電気抵抗、電気容量の測定方法。4. The impedance, electrical resistance, and capacitance measuring method according to claim 2, wherein the impedance, electrical resistance, and capacitance before and after baking are baked while baking or baked goods are embedded with the measurement electrode embedded. 請求項2〜請求項3記載の測定電極を測定試料中に埋め込む前に、電極定数を定めて、測定値の電気抵抗、電気容量から、その電極定数値により、電気導電率、誘電率を求める電気導電率、誘電率の測定方法。Before embedding the measurement electrode according to any one of claims 2 to 3 in a measurement sample, an electrode constant is determined, and an electric conductivity and a dielectric constant are obtained from the measured electric resistance and capacitance based on the electrode constant value. Measuring method of electric conductivity and dielectric constant.
JP2007238511A 2007-08-17 2007-08-17 Impedance measuring method of bread/baked good Pending JP2009047671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238511A JP2009047671A (en) 2007-08-17 2007-08-17 Impedance measuring method of bread/baked good

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238511A JP2009047671A (en) 2007-08-17 2007-08-17 Impedance measuring method of bread/baked good

Publications (1)

Publication Number Publication Date
JP2009047671A true JP2009047671A (en) 2009-03-05

Family

ID=40500016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238511A Pending JP2009047671A (en) 2007-08-17 2007-08-17 Impedance measuring method of bread/baked good

Country Status (1)

Country Link
JP (1) JP2009047671A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150996A (en) * 2016-02-25 2017-08-31 一般財団法人電力中央研究所 Sensor for detecting state change of solid and method for detecting state change of solid
CN110108761A (en) * 2018-02-01 2019-08-09 黄智渊 Fishing gear enters water detection device and method
JP2020003356A (en) * 2018-06-28 2020-01-09 日本ピラー工業株式会社 Sensor device
JP2021503090A (en) * 2017-11-15 2021-02-04 フォーティートゥー・センサーズ・リミテッド4T2 Sensors Ltd Device for monitoring fluids
ES2938902A1 (en) * 2021-10-13 2023-04-17 Univ Vigo Electrical impedance method for determining the state of fermentation of bread dough (Machine-translation by Google Translate, not legally binding)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150996A (en) * 2016-02-25 2017-08-31 一般財団法人電力中央研究所 Sensor for detecting state change of solid and method for detecting state change of solid
JP2021503090A (en) * 2017-11-15 2021-02-04 フォーティートゥー・センサーズ・リミテッド4T2 Sensors Ltd Device for monitoring fluids
JP7186787B2 (en) 2017-11-15 2022-12-09 フォーティートゥー・センサーズ・リミテッド Apparatus for monitoring fluids
CN110108761A (en) * 2018-02-01 2019-08-09 黄智渊 Fishing gear enters water detection device and method
JP2020003356A (en) * 2018-06-28 2020-01-09 日本ピラー工業株式会社 Sensor device
JP7066089B2 (en) 2018-06-28 2022-05-13 日本ピラー工業株式会社 Sensor device
ES2938902A1 (en) * 2021-10-13 2023-04-17 Univ Vigo Electrical impedance method for determining the state of fermentation of bread dough (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
JP2009047671A (en) Impedance measuring method of bread/baked good
Lee et al. Effect of nutrim oat bran and flaxseed on rheological properties of cakes
Tan et al. A Box–Behnken design for determining the optimum experimental condition of cake batter mixing
Yang et al. Quality evaluation of frying oil deterioration by dielectric spectroscopy
Derde et al. Moisture distribution during conventional or electrical resistance oven baking of bread dough and subsequent storage
León et al. Interactions of different carrageenan isoforms and flour components in breadmaking
KR20200087344A (en) Material composition for food 3d printer
EP3096931B1 (en) Method and device for the process control of a plant for the continuous production of foams
Halmos et al. Liquid foodstuffs exhibiting yield stress and shear‐degradability
Singh et al. Development of dynamic modulus and cell opening of dough during baking
CN102053137A (en) Testing device for fermenting and slaking process of dough
JP2001518194A (en) Method for analyzing a sample of a starch-containing product and its analyzer
Della Valle et al. Food structure development in cereal and snack products
Chin et al. Rheology of bread and other bakery products
Voicu et al. Farinographic parameter variation of doughs from wheat flour with amount of water added
David et al. The monitoring of enzyme activity of protease on the bread dough
Oliver et al. Wafer batters: A rheological study
US2233372A (en) Method for testing dough
Stoica et al. L-cysteine influence on the physical properties of bread from high extraction flours with normal gluten
Hruškova et al. Evaluation of wheat flour characteristics by the alveo-consistograph.
RU2800725C1 (en) Method for cyclic control of structural and mechanical characteristics of the crumb of bakery products
Chakkaravarthi et al. Jilebi 2: Flowability, pourability and pH of batter as affected by fermentation
MATSUMOTO Recent progress in food texture research in Japan
Šeruga et al. Effect of temperature and composition on thermal conductivity of “Mlinci” dough
RU128719U1 (en) DEVICE FOR DETERMINING CORROSION RESISTANCE OF INTERNAL SURFACE OF METAL CONTAINERS AND TABLEWARE