JP2009047327A - Corrosion preventing method of magnetic working substance, and magnetic working substance - Google Patents

Corrosion preventing method of magnetic working substance, and magnetic working substance Download PDF

Info

Publication number
JP2009047327A
JP2009047327A JP2007212411A JP2007212411A JP2009047327A JP 2009047327 A JP2009047327 A JP 2009047327A JP 2007212411 A JP2007212411 A JP 2007212411A JP 2007212411 A JP2007212411 A JP 2007212411A JP 2009047327 A JP2009047327 A JP 2009047327A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic working
working substance
magnetic sheet
working material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007212411A
Other languages
Japanese (ja)
Inventor
Naoki Hirano
直樹 平野
Shigeo Nagaya
重夫 長屋
Yoshimi Ezaki
義美 江崎
Hitoshi Ogawa
仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2007212411A priority Critical patent/JP2009047327A/en
Publication of JP2009047327A publication Critical patent/JP2009047327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively prevent corrosion of a magnetic working substance with a simple constitution regardless of configuration of the magnetic working substance without degrading heat exchanging performance. <P>SOLUTION: A weight of a non-magnetic sheet is measured in S1, a frame-shaped paper pattern covering an outer peripheral part of the non-magnetic sheet is applied to the magnetic sheet and starched to a central portion in S2, and the weight of the non-magnetic sheet is measured in S3. Then a prescribed amount of granulated or powder magnetic working substance is set to the starched part and attached to the non-magnetic sheet in S4, the weight of the non-magnetic sheet after attaching the magnetic working substance is measured in S5, and lamination is performed by a commercially available laminator and the like in S6 to seal the magnetic working substance with the non-magnetic sheet. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁気冷凍装置に用いられる磁気作業物質に有効な防食対策を施す方法と、当該方法を施してなる磁気作業物質とに関する。   The present invention relates to a method for applying an effective anticorrosion measure to a magnetic working material used in a magnetic refrigeration apparatus, and a magnetic working material obtained by applying the method.

近年、フロン等の気体を圧縮、膨張を繰り返して気体の膨張時に生じる冷熱を利用する気体冷凍装置に代えて、磁気冷凍装置が注目されている。この磁気冷凍装置は、磁気作業物質を磁化させたり消磁させたりする際に大きな温度変化を示す磁気熱量効果を利用する冷凍装置で、この現象を利用して磁化と消磁とを繰り返すことで、消磁時に生じる冷熱を水や空気等の冷却流体で取出して活用する方式である。この磁気冷凍方式によれば、気体冷凍方式に比べて熱密度が高いので効率が高く、コンパクト化が図れることや、フロンを使わないので地球温暖化防止に寄与できる等の利点が得られる。
この磁気冷凍方式は、従来4K以下の極低温を得る領域に用いられていたが、近年室温領域においても大きな磁気熱量効果の得られる磁気作業物質が発見され、室温磁気冷凍装置の実現が可能となっている(特許文献1参照)。
この室温磁気冷凍装置に使用する磁気作業物質としては、Gd系やLa系の希土類元素をベースとして第2元素や第3元素などを含んだ材料が用いられるが、これらの磁気作業物質は、熱交換を効率的に行うために、粉末や粒状、塊状、繊維状、網目状、棒状などの所望の形状に成形されて容器に充填され、水等の冷却流体と直接接触するようになっている。
In recent years, a magnetic refrigeration apparatus has attracted attention in place of a gas refrigeration apparatus that uses cold heat generated when a gas such as Freon is repeatedly compressed and expanded to expand the gas. This magnetic refrigeration apparatus is a refrigeration apparatus that uses the magnetocaloric effect that exhibits a large temperature change when magnetizing or demagnetizing a magnetic working substance. By using this phenomenon, magnetization and demagnetization are repeated to demagnetize the magnetic working substance. This is a method of taking out and utilizing the cold heat generated at times with a cooling fluid such as water or air. According to this magnetic refrigeration method, the heat density is higher than that of the gas refrigeration method, so that the efficiency is high, the size can be reduced, and the use of CFCs can contribute to the prevention of global warming.
This magnetic refrigeration method has been conventionally used in the region where cryogenic temperatures of 4K or less are obtained. However, in recent years, a magnetic working substance capable of obtaining a large magnetocaloric effect has been discovered even in the room temperature region, and a room temperature magnetic refrigeration apparatus can be realized. (See Patent Document 1).
As the magnetic working substance used in the room temperature magnetic refrigeration apparatus, a material containing a second element or a third element based on a rare earth element such as Gd or La is used. In order to perform the exchange efficiently, it is molded into a desired shape such as powder, granule, lump, fiber, mesh, rod, etc., filled into a container, and comes into direct contact with a cooling fluid such as water. .

特開2002−106999号公報JP 2002-106999 A

このように、磁気作業物質が水等の冷却流体と直接接触するため、長時間継続すると磁気作業物質が腐食して減量したり、組成変形を起こしたりして冷凍能力が低下する問題がある。特に、磁気作業物質材料のうち室温付近に大きな磁気熱量効果を示すLa−Fe−Si系合金は、Feを含んでいるため水に接すると腐食してFe成分が溶出し、Gd−Dy系合金についても水に溶出して冷却流体を汚染させてしまう。
この対策としては、磁気作業物質の表面をメッキしたり、塗料で塗装して防食被膜を形成したり、磁気作業物質をマイクロカプセルに封じ込めて冷却流体が直接接触しないようにしたりする方法などが考えられる。
As described above, since the magnetic working material is in direct contact with a cooling fluid such as water, there is a problem that if the magnetic working material is continued for a long time, the magnetic working material is corroded and reduced in weight, or the composition is deformed to lower the refrigeration capacity. In particular, among magnetic working material materials, La—Fe—Si alloys showing a large magnetocaloric effect near room temperature contain Fe, and thus corrode when in contact with water and the Fe component is eluted, resulting in Gd—Dy alloys. Will also elute into water and contaminate the cooling fluid.
Possible countermeasures include plating the surface of the magnetic working material, coating it with paint to form an anti-corrosion coating, or enclosing the magnetic working material in microcapsules to prevent direct contact with the cooling fluid. It is done.

しかし、磁気作業物質の表面にメッキを施す方法は、La−Fe−Si系合金は容易に無電解メッキを施すことができるが、Gd−Dy系は無電解メッキが容易でないため、薬品で表面処理を行った後に無電解メッキを施すことが必要となり、工程が増えてコストアップに繋がる。また、磁気作業物質の表面に防食塗膜を形成する方法は、磁気作業物質の表面をコーティングすることによって磁気作業物質をガードするものであるので、磁気作業物質が多孔体であると気孔の内部まで塗膜を形成することが難しく、防食効果が小さくなる。さらに、微粉末等の磁気作業物質には対応できない。
そして、マイクロカプセルを用いる方法は、磁気作業物質が微粉末の場合にも有効な手段となるが、磁気作業物質と冷却流体との接触表面積が小さくなるため熱交換性能の低下に繋がる。
However, the method of plating the surface of the magnetic working material is that the La-Fe-Si alloy can be easily electrolessly plated, but the Gd-Dy system is not easily electrolessly plated. It is necessary to perform electroless plating after the treatment, which increases the number of processes and leads to an increase in cost. In addition, the method of forming the anticorrosive coating on the surface of the magnetic working material is to guard the magnetic working material by coating the surface of the magnetic working material. It is difficult to form a coating film until the anticorrosion effect is reduced. Furthermore, it cannot cope with magnetic working substances such as fine powder.
The method using the microcapsules is an effective means even when the magnetic working material is a fine powder, but the contact surface area between the magnetic working material and the cooling fluid is reduced, leading to a decrease in heat exchange performance.

そこで、本発明は、簡単な構成で、磁気作業物質の形態にかかわりなく、且つ熱交換性能を低下させることなく、磁気作業物質の腐食を効果的に防止できる磁気作業物質の防食方法と磁気作業物質とを提供することを目的としたものである。   Therefore, the present invention provides a magnetic working material corrosion prevention method and magnetic work that can effectively prevent corrosion of the magnetic working material with a simple configuration, irrespective of the form of the magnetic working material, and without reducing the heat exchange performance. The purpose is to provide substances.

上記目的を達成するために、請求項1に記載の発明は、磁気作業物質の防食方法であって、磁気作業物質を、ラミネート加工によって所定形状の非磁性シートで封止することを特徴とするものである。
請求項2に記載の発明は、請求項1の目的に加えて、磁気作業物質が用いられる磁気冷凍装置に合わせた適切な封止態様とするために、磁気作業物質を非磁性シート内で所定量ずつ分離した状態で封止した後、当該分離部分ごとに切り離すことを特徴とするものである。
上記目的を達成するために、請求項3に記載の発明は、ラミネート加工によって所定形状の非磁性シートで封止されてなる磁気作業物質としたものである。
In order to achieve the above object, the invention according to claim 1 is a method for preventing corrosion of a magnetic working material, wherein the magnetic working material is sealed with a non-magnetic sheet having a predetermined shape by laminating. Is.
In addition to the object of claim 1, the invention described in claim 2 provides the magnetic working material in a non-magnetic sheet in order to provide an appropriate sealing mode suitable for the magnetic refrigeration apparatus in which the magnetic working material is used. It seals in the state isolate | separated for every fixed quantity, Then, it isolate | separates for every the said isolation | separation part.
In order to achieve the above object, the invention described in claim 3 is a magnetic working substance which is sealed with a non-magnetic sheet having a predetermined shape by laminating.

請求項1及び3に記載の発明によれば、ラミネート加工を行う簡単な構成で、多孔体や微粉末等の磁気作業物質の形態にかかわりなく、而も熱交換性能を低下させることなく磁気作業物質の腐食を効果的に防止可能となる。また、磁気作業物質が冷却流体と直接接触しないので、冷却流体への有害物質の溶出も生じない。
請求項2に記載の発明によれば、請求項1の効果に加えて、シート体以外に小片状等の所望の形態が選択でき、磁気作業物質が用いられる磁気冷凍装置に合わせた適切な封止態様が得られる。
According to the first and third aspects of the present invention, the magnetic work can be performed with a simple structure for performing the laminating process, regardless of the form of the magnetic working material such as the porous body and the fine powder, and without reducing the heat exchange performance. It becomes possible to effectively prevent the corrosion of the substance. Further, since the magnetic working substance does not come into direct contact with the cooling fluid, no harmful substances are eluted into the cooling fluid.
According to the second aspect of the present invention, in addition to the effect of the first aspect, a desired form such as a small piece can be selected in addition to the sheet body, and an appropriate suitable for the magnetic refrigeration apparatus in which the magnetic working substance is used. A sealing aspect is obtained.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の防食方法の一例を示すフローチャートで、まず、S1で、ラミネート加工に用いる所定形状の非磁性シートの重量を測定し、S2で、非磁性シートにその外周部分を覆う枠状の型紙をあてがい、型紙に覆われない中央部に糊付けし、S3で非磁性シートの重量を測定する。次に、S4で糊付け部分に粒状や粉末状の磁気作業物質を所定量セットする。このとき余分な磁気作業物質は払い落として均等に付着させるようにする。そして、S5で、磁気作業物質の付着後の非磁性シートの重量を測定し、S6で市販のラミネータ等によってラミネート加工を行う。すると、図2に示すように、磁気作業物質2,2・・を非磁性シート3で板状に封止したシート体1が得られる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing an example of the anticorrosion method of the present invention. First, in S1, a weight of a non-magnetic sheet having a predetermined shape used for laminating is measured, and in S2, a frame that covers the outer peripheral portion of the non-magnetic sheet. Is attached to the central part not covered with the pattern, and the weight of the nonmagnetic sheet is measured in S3. Next, in S4, a predetermined amount of granular or powdery magnetic working substance is set in the glued portion. At this time, the excess magnetic working substance is removed and adhered evenly. In S5, the weight of the non-magnetic sheet after the magnetic working substance is adhered is measured, and in S6, lamination is performed using a commercially available laminator or the like. Then, as shown in FIG. 2, a sheet body 1 in which the magnetic working substances 2, 2... Are sealed in a plate shape with the nonmagnetic sheet 3 is obtained.

このラミネート加工の態様は、シート体の場合、非磁性シートのサイズの選択により、90mm×125mmから260mm×370mm、或いはロール状の長い物としてもよい。非磁性シートの厚さも、例えば30μm〜250μmの範囲で選択できる。
また、封止の態様は板状に限らず、型紙の形状等によって適宜変更できる。例えば図3に示すように、非磁性シート2上で所定量ずつ分離した状態で付着させて封止した後、当該分離部分で切り離すことで、短冊状の小片4,4として使用することも可能である。このように小片とすれば、ラミネート加工を行っても冷却流体の流路内の圧力損失が低減される。勿論短冊状に限らず、円形状や四角形状、粒状等も適宜選択できるし、ロール状の非磁性シートに断続的に磁気作業物質を載せてラミネート加工した後、夫々切り離してシート体を形成することもできる。
In the case of a sheet body, this laminating mode may be 90 mm × 125 mm to 260 mm × 370 mm or a long roll-like material depending on the size of the nonmagnetic sheet. The thickness of the nonmagnetic sheet can also be selected within a range of 30 μm to 250 μm, for example.
Further, the sealing mode is not limited to the plate shape, and can be changed as appropriate depending on the shape of the pattern. For example, as shown in FIG. 3, it is possible to use the strips 4 and 4 as strips 4 and 4 by attaching them in a separated state on the non-magnetic sheet 2 and sealing them, and then separating them at the separated parts. It is. By using small pieces in this way, the pressure loss in the flow path of the cooling fluid is reduced even when laminating is performed. Of course, the shape is not limited to a strip shape, and a circular shape, a quadrangular shape, a granular shape, or the like can be selected as appropriate. You can also.

一方、ここでは一方の非磁性シートに磁気作業物質を付着させ、磁気作業物質を付着させない他方の非磁性シートで挟んでラミネート加工を行っているが、両方ともに磁気作業物質を付着させてラミネート加工してもよい。さらに、二枚の非磁性シートで挟む態様に限らず、一枚の非磁性シートを二つ折りしてラミネート加工するようにしてもよい。   On the other hand, the magnetic working material is attached to one non-magnetic sheet and laminated with the other non-magnetic sheet to which the magnetic working material is not attached, but both are laminated with the magnetic working material attached. May be. Furthermore, the present invention is not limited to the mode of sandwiching between two nonmagnetic sheets, and one nonmagnetic sheet may be folded in two and laminated.

腐食が早い磁気作業物質であるLa(Fe0.88Si0.12)13H1.0の粒径300μm以下の試料を使用し、図1のフローチャートに従ってラミネート加工を行った。ラミネータは、アイリスオーヤマ(株)のLTA421Dを使用し、非磁性シートは、95mm×135mmのポリエステル製フィルムで、厚さが100μmのものを使用した。また、ラミネート加工後の形状は、シート体及び短冊状の小片2種類の3パターンとした。短冊状のものは、試料部サイズの穴が複数配列された型紙を使用して磁気作業物質を糊付けし、ラミネート加工後にフィルムを切断して切り取ったものである。夫々の重量測定結果を表1に示す。 A sample of La (Fe 0.88 Si 0.12 ) 13 H 1.0 having a particle size of 300 μm or less, which is a magnetic working material that is rapidly corroded, was laminated according to the flowchart of FIG. The laminator was LTA421D manufactured by Iris Ohyama Co., Ltd., and the nonmagnetic sheet was a 95 mm × 135 mm polyester film having a thickness of 100 μm. Moreover, the shape after lamination was made into three patterns of two types of sheet and strip-shaped pieces. The strip-shaped one is obtained by gluing a magnetic working substance using a pattern in which a plurality of sample-sized holes are arranged, and cutting and cutting the film after laminating. Each weight measurement result is shown in Table 1.

Figure 2009047327
Figure 2009047327

[腐食試験]
日本工業規格の工業用水腐食性試験方法(JIS K 0100)の質量減法に準じて腐食試験を行った。質量減法は、腐食減量から試験期間中の平均的な腐食度(腐食速度)を求めるもので、腐食度は、試験片の表面積1dmに対する1日当たりの腐食減量のmg数、すなわちmddで表す。計算式は以下の通りである。
[Corrosion test]
Corrosion tests were conducted according to the mass reduction method of the industrial water corrosion test method for industrial use (JIS K 0100). In the mass reduction method, the average corrosion degree (corrosion rate) during the test period is obtained from the corrosion weight loss, and the corrosion degree is expressed in mg of corrosion weight loss per day with respect to 1 dm 2 of the surface area of the test piece, that is, mdd. The calculation formula is as follows.

W=(M1−M2)/(S×T)
W:腐食度(mdd)
M1:試験片の試験前の質量(mg)
M2:試験片の試験後の質量(mg)
S:試験片の表面積(dm
T:試験日数
W = (M1-M2) / (S × T)
W: Corrosion degree (mdd)
M1: Mass of test specimen before test (mg)
M2: Mass after test of test piece (mg)
S: surface area of the test piece (dm 2 )
T: Test days

腐食試験器10は、図4に示すように、恒温槽11からポンプ12によって圧送された循環水を、循環用配管13を通して再び恒温槽11に戻す循環ループ式で、ここでは循環用配管13が3本に分岐して、夫々の分岐管13a〜13cに、試験片保持器15を夫々内設した反応管14a〜14cが設けられている。16は各分岐管13a〜13cごとに設けられた流量計である。反応管14a〜14cは、外径38mm、内径30mmのアクリルパイプ、各試験片保持器15は、直径29.5mm、ポアサイズ0.10〜0.16mmの一対のガラスフィルタ17,17を有し、両ガラスフィルタ17,17間に試験片18を挟み、外径30mm、内径26mmの図示しないアクリルパイプ片を上下に配置することで、各反応管14a〜14c内で試験片18を保持可能としている。なお、循環用配管13は、塩化ビニールパイプとシリコンチューブとを組み合わせて形成されている。   As shown in FIG. 4, the corrosion tester 10 is a circulation loop type in which the circulating water pumped from the thermostat 11 by the pump 12 is returned to the thermostat 11 again through the circulation pipe 13. The branch tubes 13a to 13c are branched into three, and reaction tubes 14a to 14c each having a test piece holder 15 provided therein are provided. Reference numeral 16 denotes a flow meter provided for each of the branch pipes 13a to 13c. The reaction tubes 14a to 14c are acrylic pipes having an outer diameter of 38 mm and an inner diameter of 30 mm, and each specimen holder 15 has a pair of glass filters 17 and 17 having a diameter of 29.5 mm and a pore size of 0.10 to 0.16 mm. The test piece 18 is sandwiched between the glass filters 17 and 17 and an acrylic pipe piece (not shown) having an outer diameter of 30 mm and an inner diameter of 26 mm is arranged vertically so that the test piece 18 can be held in each reaction tube 14a to 14c. . The circulation pipe 13 is formed by combining a vinyl chloride pipe and a silicon tube.

ここで用いる試験片は、先の実施例と同じ材料、同じ手順で、試料部サイズが5mm×20mm、外形サイズ10mm×30mmとなる短冊状の小片に作製されたもので、3セット作製した後に各セットから任意の試験片を夫々1枚ずつ選択している。夫々の重量測定結果を表2に示す。   The test pieces used here were made in the same material and the same procedure as in the previous examples, and were made into strip-shaped pieces having a sample portion size of 5 mm × 20 mm and an outer size of 10 mm × 30 mm. One arbitrary test piece is selected from each set. Each weight measurement result is shown in Table 2.

Figure 2009047327
Figure 2009047327

こうして得た3枚の試験片を、腐食試験器10の反応管14bの試験片保持器15にセットし、表3の条件で30日間の腐食試験を行った。なお、反応管14aはバイパスラインとして使用し、反応管14cは未使用としている。また、腐食試験器は構造上循環水が徐々に減少していくため、適宜補充を行っている。   The three test pieces thus obtained were set in the test piece holder 15 of the reaction tube 14b of the corrosion tester 10, and a 30 day corrosion test was performed under the conditions shown in Table 3. The reaction tube 14a is used as a bypass line, and the reaction tube 14c is unused. In addition, the corrosion tester is appropriately replenished because the circulating water gradually decreases due to its structure.

Figure 2009047327
Figure 2009047327

試験期間中は、循環水を定期的に採取して、循環水中のLaとFeとの濃度をICP分析により求めている。ここでは試験開始前、7日目、10日目、15日目、20日目、24日目、30日目に夫々0.3Lずつ採取して7試料を分析したが、La及びFe共に検出しなかった。
また、試験終了後、試験片を取り出して表面を純水で洗浄し、55℃で30分間乾燥後、重量測定を行った。結果は9.6936gで、試験前の9.6506gから減量していなかった。
この重量測定結果及びICP分析結果より、ラミネート加工された試料に腐食は発生しておらず、且つ試料が循環水中に溶出していないことが確認でき、ラミネート加工による防食は有効であると判断できる。なお、試験片を観察したところ、一部に変色(赤錆)が見られる箇所があったが、原因としてはラミネート加工の実施時に空気中の水蒸気が入り込み、その水分と反応したと考えられる。
During the test period, circulating water is periodically collected, and the concentrations of La and Fe in the circulating water are obtained by ICP analysis. Here, before starting the test, 7 samples were collected on the 7th day, the 10th day, the 15th day, the 20th day, the 24th day, and the 30th day, and 7 samples were analyzed. Both La and Fe were detected. I did not.
Moreover, after completion | finish of a test, the test piece was taken out, the surface was wash | cleaned with the pure water, the weight measurement was performed after drying for 30 minutes at 55 degreeC. The result was 9.6936 g, which was not reduced from 9.6506 g before the test.
From this weight measurement result and ICP analysis result, it can be confirmed that corrosion has not occurred in the laminated sample and the sample is not eluted in the circulating water, and it can be judged that the anticorrosion by laminating is effective. . In addition, when the test piece was observed, there was a part where discoloration (red rust) was observed in part, but it is considered that water vapor entered the air during the lamination process and reacted with the moisture.

[磁気特性測定]
磁気作業物質におけるラミネート加工による封止の影響を見るために、磁化温度依存性測定と磁気ヒステリシス測定とを実施した。測定装置は、カンタムデザイン社の磁気特性測定システム(MPMS−7)を使用した。試料は、La(Fe0.88Si0.12)13H1.0をラミネート加工したものを、3mm角に加工して用いた。
まず磁化温度依存性測定を実施した。外部磁場は、0.1T、0.5T、1T、2Tを夫々印加した。測定結果を図5に示す。比較のため、同じLa(Fe0.88Si0.12)13H1.0でラミネート加工していない試料の測定結果を図6に示している。ここで、通常縦軸はMagnetization(emu/g)であるが、ラミネート加工した試料重量を計測することが困難であったため、縦軸はLong Moment(emu)となっている。試料量が異なるため、Long Moment(emu)の最大値は異なるものの、ラミネート加工の有無双方で磁化温度依存性曲線は略同等の挙動を示していることから、磁化温度依存性に関してはラミネート加工による影響はないと考えられる。
[Magnetic property measurement]
In order to see the effect of sealing by laminating on magnetic working materials, we measured magnetization temperature dependence and magnetic hysteresis. As a measuring device, a magnetic property measuring system (MPMS-7) manufactured by Quantum Design was used. The sample used was a laminate of La (Fe 0.88 Si 0.12 ) 13 H 1.0 processed to 3 mm square.
First, the magnetization temperature dependence measurement was performed. External magnetic fields of 0.1T, 0.5T, 1T, and 2T were applied, respectively. The measurement results are shown in FIG. For comparison, FIG. 6 shows the measurement results of a sample not laminated with the same La (Fe 0.88 Si 0.12 ) 13 H 1.0 . Here, the vertical axis is usually Magnetization (emu / g), but since it was difficult to measure the weight of the laminated sample, the vertical axis is Long Moment (emu). Although the maximum value of Long Moment (emu) is different because the sample amount is different, the magnetization temperature dependence curve shows almost the same behavior both with and without laminating. There is no impact.

次に、磁気ヒステリシス測定を実施した。測定温度はキュリー温度Tcを基準に、−20K、0K、+20Kの3回測定した。一旦仮測定を実施し、飽和磁化より測定範囲を決定した。測定範囲は、−20000〜20000Oeで、−10000〜10000Oeは500Oe間隔で、−20000〜−10000Oe及び10000〜20000Oeは2000Oe間隔で夫々測定した。測定結果を図7に示す。比較のため、同じ試料でラミネート加工していないものの測定結果を図8に示している。なお、ここでも磁化温度依存性測定の場合と同じ理由で縦軸はLong Moment(emu)となっている。
この磁気ヒステリシス測定においても、ラミネート加工の有無双方で磁気ヒステリシス曲線は略同等の挙動を示していることから、磁気ヒステリシス曲線に関してもラミネート加工による影響はないと考えられる。
Next, magnetic hysteresis measurement was performed. The measurement temperature was measured three times at −20K, 0K, and + 20K based on the Curie temperature Tc. Temporary measurement was performed once and the measurement range was determined from the saturation magnetization. The measurement range was −20000 to 20000 Oe, −1000 to 10,000 Oe was measured at 500 Oe intervals, and −20000 to −10000 Oe and 10000 to 20000 Oe were measured at 2000 Oe intervals. The measurement results are shown in FIG. For comparison, FIG. 8 shows the measurement results of the same sample that was not laminated. Here, the vertical axis is Long Moment (emu) for the same reason as in the measurement of the magnetization temperature dependence.
Also in this magnetic hysteresis measurement, the magnetic hysteresis curve shows substantially the same behavior both with and without laminating, so it is considered that there is no influence on the magnetic hysteresis curve due to laminating.

このように、本発明の磁気作業物質の防食方法及び磁気作業物質によれば、ラミネート加工を行う簡単な構成で、多孔体や微粉末等の磁気作業物質の形態にかかわりなく、而も熱交換性能を低下させることなく磁気作業物質の腐食を効果的に防止可能となる。また、磁気作業物質が冷却流体と直接接触しないので、冷却流体への有害物質の溶出も生じない。
特に、磁気作業物質を非磁性シート内で所定量ずつ分離した状態で封止した後、当該分離部分ごとに切り離すようにしたことで、シート体以外に小片状等の所望の形態が選択でき、磁気作業物質が用いられる磁気冷凍装置に合わせた適切な封止態様が得られる。
As described above, according to the magnetic working material anticorrosion method and the magnetic working material of the present invention, the laminating process is simple, regardless of the form of the magnetic working material such as the porous body and the fine powder, and the heat exchange. It becomes possible to effectively prevent the corrosion of the magnetic working substance without degrading the performance. Further, since the magnetic working substance does not come into direct contact with the cooling fluid, no harmful substances are eluted into the cooling fluid.
In particular, after sealing the magnetic working substance in a state separated by a predetermined amount in the non-magnetic sheet, it is possible to select a desired form such as a small piece in addition to the sheet body by separating each separated portion. Thus, an appropriate sealing mode suitable for a magnetic refrigeration apparatus in which a magnetic working substance is used can be obtained.

なお、磁気作業物質は、粒状の場合、上述した300μm以下のものは勿論、これより大きな粒径であっても差し支えないが、粒径が大きくなるほどラミネート加工後に剥がれが起きやすい。ちなみに本発明では1680μmの粒径まではラミネート加工可能であることが確認できている。勿論粒状や粉末状以外にも、繊維状や網目状、薄板状、棒状等、ラミネート加工が可能であれば磁気作業物質の形態には制限を受けない。
また、磁気作業物質の種類も、上記形態のようなLa−Fe−Si系に限らず、Gd系やMnAs系等の他の種類も使用可能である。なお、MnAs系の磁気作業物質を100μmのポリエステル系フィルムでラミネート加工したものについて水への溶出試験を行った結果、有害物質であるAsが検出されないことを確認した。
In the case of a granular material, the magnetic working material may have a particle size larger than 300 μm as described above, but it may be larger than this. However, the larger the particle size, the easier it is to peel off after lamination. Incidentally, it has been confirmed that the present invention can be laminated up to a particle size of 1680 μm. Of course, there are no restrictions on the form of the magnetic working material other than the granular and powder forms, as long as they can be laminated such as fibers, meshes, thin plates, and rods.
Further, the type of the magnetic working material is not limited to the La—Fe—Si type as in the above embodiment, and other types such as Gd type and MnAs type can be used. As a result of conducting an elution test in water on a MnAs-based magnetic working material laminated with a 100 μm polyester film, it was confirmed that As, which is a harmful substance, was not detected.

その他、ラミネート加工に用いる非磁性シートは、プラスチックフィルムを用いた場合には熱伝導特性が劣るので、熱伝導特性の良い非磁性体で透磁率が高い金属、例えばアルミニウムやステンレス、金、銀等の箔を用いることもできる。この場合、熱交換特性が向上する利点がある。
また、磁気作業物質の粉末にアルコール系の液体またはパラフィンなどのゲル状のもので練り固めたものをラミネート加工することによって熱交換特性を改善させることも考えられる。
In addition, since non-magnetic sheets used for laminating have poor thermal conductivity when plastic films are used, non-magnetic materials with good thermal conductivity and high magnetic permeability, such as aluminum, stainless steel, gold, silver, etc. The foil can also be used. In this case, there is an advantage that heat exchange characteristics are improved.
It is also conceivable to improve the heat exchange characteristics by laminating a magnetic working substance powder that has been kneaded with an alcoholic liquid or a gel-like material such as paraffin.

そして、磁気作業物質が所定の粒径を有する場合は、表面に無電解ニッケルメッキを施したり、冷却流体にトリチオシアヌール誘導体等の腐食抑制剤を添加したり等、他の防食方法を併せて実施してもよい。このようにラミネート加工に他の防食方法を併用すれば防食効果の増大が期待できる。
When the magnetic working substance has a predetermined particle size, other anticorrosion methods such as electroless nickel plating on the surface or addition of a corrosion inhibitor such as a trithiocyanur derivative to the cooling fluid are combined. You may implement. Thus, if other anticorrosion methods are used in combination with lamination, an increase in anticorrosive effect can be expected.

防食方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the anticorrosion method. シート体の説明図である。It is explanatory drawing of a sheet | seat body. ラミネート加工の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of a lamination process. 腐食試験器の説明図である。It is explanatory drawing of a corrosion tester. 磁化温度依存性曲線のグラフである(ラミネート加工有り)。It is a graph of a magnetization temperature dependence curve (with lamination). 磁化温度依存性曲線のグラフである(ラミネート加工無し)。It is a graph of a magnetization temperature dependence curve (no lamination process). 磁気ヒステリシス曲線のグラフである(ラミネート加工有り)。It is a graph of a magnetic hysteresis curve (with lamination). 磁気ヒステリシス曲線のグラフである(ラミネート加工無し)。It is a graph of a magnetic hysteresis curve (no lamination process).

符号の説明Explanation of symbols

1・・シート体、2・・磁気作業物質、3・・非磁性シート、4・・小片、10・・腐食試験器、11・・恒温槽、12・・ポンプ、13・・循環用配管、13a〜13c・・分岐管、14a〜14c・・反応管、15・・試験片保持器、17・・ガラスフィルタ、18・・試験片。   1 .... sheet body 2 .... magnetic work material 3 .... non-magnetic sheet 4 .... small piece 10 .... corrosion tester 11 .... constant temperature bath 12 ...... pump 13 ... 13a to 13c ··· branch tube, 14a to 14c · · reaction tube, 15 · · test piece holder, 17 · · glass filter, 18 · · · test piece.

Claims (3)

磁気作業物質を、ラミネート加工によって所定形状の非磁性シートで封止することを特徴とする磁気作業物質の防食方法。   An anticorrosion method for a magnetic working material, wherein the magnetic working material is sealed with a non-magnetic sheet having a predetermined shape by laminating. 磁気作業物質を非磁性シート内で所定量ずつ分離した状態で封止した後、当該分離部分ごとに切り離すことを特徴とする請求項1に記載の磁気作業物質の防食方法。   2. The method for preventing corrosion of a magnetic working material according to claim 1, wherein the magnetic working material is sealed in a state where the magnetic working material is separated by a predetermined amount in a non-magnetic sheet, and then separated for each separated portion. ラミネート加工によって所定形状の非磁性シートで封止されてなる磁気作業物質。   A magnetic working material that is sealed with a non-magnetic sheet of a predetermined shape by laminating.
JP2007212411A 2007-08-16 2007-08-16 Corrosion preventing method of magnetic working substance, and magnetic working substance Pending JP2009047327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212411A JP2009047327A (en) 2007-08-16 2007-08-16 Corrosion preventing method of magnetic working substance, and magnetic working substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212411A JP2009047327A (en) 2007-08-16 2007-08-16 Corrosion preventing method of magnetic working substance, and magnetic working substance

Publications (1)

Publication Number Publication Date
JP2009047327A true JP2009047327A (en) 2009-03-05

Family

ID=40499711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212411A Pending JP2009047327A (en) 2007-08-16 2007-08-16 Corrosion preventing method of magnetic working substance, and magnetic working substance

Country Status (1)

Country Link
JP (1) JP2009047327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075261A (en) * 2013-10-07 2015-04-20 中部電力株式会社 Heat exchanger using magnetic working substance
JP2020204443A (en) * 2019-06-19 2020-12-24 信越化学工業株式会社 Sheath integrated magnetic refrigeration member, manufacturing method of the same, and magnetic refrigeration system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185339A (en) * 1996-10-30 1998-07-14 Toshiba Corp Cryogenic cold storage material, refrigerating machine employing the same and heat shielding material
JP2000288008A (en) * 1999-04-07 2000-10-17 Nitto Denko Corp Disposable body warmer
JP2003065620A (en) * 2001-08-22 2003-03-05 Sharp Corp Regenerator for stirling machine, and stirling refrigerator and flow gas heat regenerating system using the regenerator
JP2007031831A (en) * 2005-06-23 2007-02-08 Sumitomo Metal Mining Co Ltd Rare earth-iron-hydrogen alloy powder for magnetic refrigeration, method for producing the same, obtained extruded structure, method for producing the same, and magnetic refrigeration system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185339A (en) * 1996-10-30 1998-07-14 Toshiba Corp Cryogenic cold storage material, refrigerating machine employing the same and heat shielding material
JP2000288008A (en) * 1999-04-07 2000-10-17 Nitto Denko Corp Disposable body warmer
JP2003065620A (en) * 2001-08-22 2003-03-05 Sharp Corp Regenerator for stirling machine, and stirling refrigerator and flow gas heat regenerating system using the regenerator
JP2007031831A (en) * 2005-06-23 2007-02-08 Sumitomo Metal Mining Co Ltd Rare earth-iron-hydrogen alloy powder for magnetic refrigeration, method for producing the same, obtained extruded structure, method for producing the same, and magnetic refrigeration system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075261A (en) * 2013-10-07 2015-04-20 中部電力株式会社 Heat exchanger using magnetic working substance
JP2020204443A (en) * 2019-06-19 2020-12-24 信越化学工業株式会社 Sheath integrated magnetic refrigeration member, manufacturing method of the same, and magnetic refrigeration system

Similar Documents

Publication Publication Date Title
Grinham et al. A review of outgassing and methods for its reduction
Szakalos et al. Corrosion of copper by water
Schnabel et al. Adsorption kinetics of zeolite coatings directly crystallized on metal supports for heat pump applications (adsorption kinetics of zeolite coatings)
JP4950918B2 (en) Magnetic material for magnetic refrigeration equipment, heat exchange container and magnetic refrigeration equipment
JP2003096547A (en) Magnetic refrigeration material and producing method thereof
KR101605594B1 (en) Solar energy absorber unit and solar energy device containing same
Kim et al. Effect of pH and temperature on corrosion of nickel-base alloys in high temperature and pressure aqueous solutions
JP2020204443A (en) Sheath integrated magnetic refrigeration member, manufacturing method of the same, and magnetic refrigeration system
Luo et al. Dissolution, diffusion and permeation behavior of hydrogen in vanadium: a first-principles investigation
He et al. Influence of microstructure on the hydrogen permeation of alumina coatings
Yao et al. Preparation and corrosion resistance property of Molybdate conversion coatings containing SiO2 nanoparticles
JP2009047327A (en) Corrosion preventing method of magnetic working substance, and magnetic working substance
JP2017535669A (en) Multi calorie MnNiSi alloy
Gebert et al. Exploring corrosion protection of La-Fe-Si magnetocaloric alloys by passivation
Cheng et al. Giant magnetocaloric effect in nanostructured Fe-Co-P amorphous alloys enabled through pulse electrodeposition
KR102111810B1 (en) Additives for heat exchanger deposit removal in a wet layup condition
Saitoh et al. Hydrogen diffusivity in aluminium measured by a glow discharge permeation method
Zhu et al. Performance investigation of nanostructured composite surfaces for use in adsorption cooling systems with a mass recovery cycle
Takamatsu et al. Kinetics of solid-state reactive diffusion between Co and Sn
ZHANG et al. Effect of chromium on magnetic properties and corrosion resistance of LaFe11. 5Si1. 5 compound
Harding et al. Free molecule thermal conduction in concentric tubular solar collectors
CN110504076A (en) A kind of highly anticorrosive rare earth magnetic refrigerating material and the application method in refrigeration machine
CN104975294A (en) Metallographic phase corrosive agent suitable for silver-palladium copper alloy, and preparation method and use method thereof
Sim et al. Pool boiling performance of notched tubes in lithium bromide solution
Kiełbus et al. The influence of heat treatment parameters on the thermal diffusivity of WE54 and Elektron 21 magnesium alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605