JP2009046648A - Reinforced cured article and manufacturing method thereof - Google Patents

Reinforced cured article and manufacturing method thereof Download PDF

Info

Publication number
JP2009046648A
JP2009046648A JP2007255943A JP2007255943A JP2009046648A JP 2009046648 A JP2009046648 A JP 2009046648A JP 2007255943 A JP2007255943 A JP 2007255943A JP 2007255943 A JP2007255943 A JP 2007255943A JP 2009046648 A JP2009046648 A JP 2009046648A
Authority
JP
Japan
Prior art keywords
twisted yarn
fiber
test
yarn
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007255943A
Other languages
Japanese (ja)
Inventor
Shinsuke Tsubakihara
晋介 椿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007255943A priority Critical patent/JP2009046648A/en
Publication of JP2009046648A publication Critical patent/JP2009046648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cured article which can highly suppress the widening of cracks, exfoliation of broken pieces or excessive deformation in the cured article, by shaping such an organic fiber like a melt-spun organic fiber having a circular cross section as could be easily drawn out even if blended with a hydraulic cured article such as cement concrete, mortar, slate or the like or with a high-polymeric cured article such as plastics and rubbers, to a form which is excellent in the physical adhesion to the cured body, by means of an easy and low cost processing method of a thermal or dynamical method, and then by blending them, and to provide a manufacturing method thereof. <P>SOLUTION: The method comprises mixing and formulating in a curing article a specific twisted yarn obtained by fixing thermally under tension a specific twisted yarn composed of an organic fiber of polyamide, polyester, polyvinyl alcohol, etc. having a glass transition temperature of 313 K or higher, or a coil formed-twisted yarn of a low order or single fiber obtained by disintegrating the specific twisted yarn after the thermal fixation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、補強硬化体、およびその製造方法に関し、詳しくは、セメントコンクリート、モルタル、スレート等の水硬性硬化体、及びプラスチック、ゴム等の高分子硬化体において、それぞれ有機繊維で補強した補強硬化体、およびその製造方法に関し、さらに詳しくは、硬化体からの引抜けに対する物理的な抵抗性(物理的接着性)に優れた形状を有機繊維に賦形して硬化体に配合した補強硬化体、およびその製造方法に関する。   The present invention relates to a reinforced cured body and a method for producing the same, and more particularly, a reinforced cured body such as cement concrete, mortar, and slate, and a cured polymer body such as plastic and rubber, each reinforced with organic fibers. More specifically, a reinforced cured body in which a shape excellent in physical resistance (physical adhesiveness) against pulling out from a cured body is formed into an organic fiber and blended with the cured body And a manufacturing method thereof.

セメントコンクリート、モルタル、スレートなど水和反応により硬化する水硬性硬化体で造られた構造物は、優れた圧縮強度をもつものの、引張り強度、曲げ強度、及び衝撃強度に劣り、スレート補強用のアスベスト配合は深刻な健康被害を引き起こしている。   Structures made of hydraulic hardened materials such as cement concrete, mortar, and slate, which are cured by a hydration reaction, have excellent compressive strength, but are inferior in tensile strength, bending strength, and impact strength, and asbestos for slate reinforcement Formulation causes serious health damage.

また、かかる硬化体の補強として、鋼繊維、炭素繊維、耐アルカリ性ガラス繊維の配合も行われるが、鋼繊維は重量と発錆の問題、炭素繊維は価格の問題、耐アルカリ性ガラス繊維は長期安定性と折損の問題を有しており、軽量で低廉、柔軟性にも富む有機繊維の配合が望まれている。   In addition, steel fibers, carbon fibers, and alkali-resistant glass fibers are blended to reinforce such hardened bodies, but steel fibers are weight and rust problems, carbon fibers are price problems, and alkali-resistant glass fibers are long-term stable. Therefore, there is a demand for blending organic fibers that are lightweight, inexpensive, and flexible.

他方、高分子硬化体と呼称するプラスチック、ゴム等では、特にタイヤ、ベルト、ホース等のゴム製品を中心に、有機繊維の配合が行われており、一部のプラスチック製品も有機繊維配合による補強が実施されている。   On the other hand, in plastics and rubbers called polymer cured bodies, organic fibers are blended mainly in rubber products such as tires, belts and hoses, and some plastic products are also reinforced by blending organic fibers. Has been implemented.

有機繊維の硬化体への配合では、セメントとの接着性の良いポリビニルアルコール繊維のセメント系硬化体への配合等の例外を除いて、断面形状や太さが長さ方向に沿って変化しない通常繊維は硬化体から容易に引抜けるため、潜在的補強効果を発揮できない問題点を有している。   In the blending of organic fibers into the cured body, the cross-sectional shape and thickness do not change along the length direction, except for exceptions such as blending of polyvinyl alcohol fibers with good adhesion to cement into the cemented cured body. Since the fiber is easily pulled out from the cured body, there is a problem that the potential reinforcing effect cannot be exhibited.

この引抜け問題に対処するため、表面にエンボス加工したセメント補強用ポリオレフィン延伸テープ(特許文献1を参照)、溶融紡糸の引き取り速度を変化させて凹凸を付与し延伸したセメント補強用繊維(特許文献2を参照)、長さ方向に沿って不規則に断面積が変化するコンクリート補強用ポリオレフィン繊維(特許文献3を参照)、間隔を開け幅もしくは径の太くなった部分を持つ無機硬化体補強用ポリビニルアルコール繊維(特許文献4を参照)、軽量コンクリート補強用波形ポリプロピレン短繊維(特許文献5を参照)、扁平な断面を持つポリアセタール短繊維を捩じり形状に形成したセメント補強用繊維(特許文献6を参照)、モノフィラメントの表面を樹脂で被覆し少なくとも1個の突起部を有する硬化体補強用材料(特許文献7を参照)、繊維表面に不連続な突起を形成した水硬性硬化体補強用短繊維(特許文献8を参照)、繊維直径が繊維方向に沿って変化する高分子硬化体補強用繊維(特許文献9を参照)、正弦曲線状の改良された形状をもつコンクリート補強用繊維(特許文献10を参照)、並列フィラメント糸相互が糸長方向に適宜間隔で連結され一体化したセメントモルタル補強用異形繊維(特許文献11を参照)など、繊維に特殊な形状を賦形し、配合繊維の硬化体に対する物理的接着性を向上させる方法が提案、実施されている。
特公昭58−18343号公報 特公昭61−301号公報 特公昭62−4346号公報 特公平1−38065号公報 特開2001−192279号公報 特開2001−261403号公報 特開2004−149991号公報 米国特許第4297414号明細書 米国特許第4574108号明細書 米国特許第5981630号明細書 米国特許第6177195号明細書
In order to cope with this pull-out problem, a polyolefin reinforcing tape for cement reinforcement embossed on the surface (see Patent Document 1), and a fiber for cement reinforcement that has been stretched by applying unevenness by changing the take-up speed of melt spinning (Patent Document) 2), a polyolefin fiber for concrete reinforcement whose cross-sectional area varies irregularly along the length direction (see Patent Document 3), and for reinforcing an inorganic hardened body having a portion having a wide width or a large diameter. Polyvinyl alcohol fiber (refer to Patent Document 4), corrugated polypropylene short fiber for lightweight concrete reinforcement (refer to Patent Document 5), and fiber for cement reinforcement formed by twisting a polyacetal short fiber having a flat cross section (Patent Document) 6), a material for reinforcing a cured body having a monofilament surface coated with a resin and having at least one protrusion (patent text) 7), short fibers for reinforcing a hydraulic cured body in which discontinuous protrusions are formed on the fiber surface (see Patent Document 8), and fibers for reinforcing a polymer cured body in which the fiber diameter changes along the fiber direction (patent Cement mortar reinforcing variant in which a concrete reinforcing fiber having an improved sinusoidal shape (refer to Patent Document 10) and parallel filament yarns are connected together at appropriate intervals in the yarn length direction. A method has been proposed and implemented in which a special shape is formed on a fiber such as a fiber (see Patent Document 11) to improve the physical adhesion of a compounded fiber to a cured body.
Japanese Patent Publication No.58-18343 Japanese Patent Publication No.61-301 Japanese Examined Patent Publication No. 62-4346 Japanese Patent Publication No. 1-338065 JP 2001-192279 A JP 2001-261403 A JP 2004-149991 A U.S. Pat. No. 4,297,414 U.S. Pat. No. 4,574,108 US Pat. No. 5,981,630 US Pat. No. 6,177,195

しかしながら、配合繊維の硬化体に対する物理的接着性を向上させるために、上述した各特許文献に開示された技術は、特殊な紡糸や加工法を要するため生産コストや生産効率に劣るものが多く、硬化体に対して接着力の弱い太い繊維であっても物理的接着性に優れた形状を高効率で賦形できる、簡易で低コストの加工法が求められている。   However, in order to improve the physical adhesiveness of the blended fiber to the cured body, the techniques disclosed in each of the above-mentioned patent documents often require a special spinning and processing method, and therefore are inferior in production cost and production efficiency. There is a need for a simple and low-cost processing method that can form a shape excellent in physical adhesiveness with high efficiency even if it is a thick fiber having weak adhesive strength to a cured body.

硬化体に配合した有機繊維の引抜けに関して鋭意行った研究の結果、引抜けには硬化体を破壊して進行する引抜け(破壊引抜け)、硬化体を破壊せずに進行する滑らかな引抜け(滑り引抜け)、あるいは両過程が同時進行する引抜けが起きることが明らかとなった。   As a result of diligent research on pulling out of organic fibers blended in the cured body, the pulling out of the cured body proceeds by breaking the cured body (destructive pulling), and the smooth pulling proceeds without destroying the cured body. It became clear that pulling out (sliding pulling out) or pulling out in which both processes proceed simultaneously occurred.

本発明の目的は、例えば安価な円形断面の有機繊維であっても、熱的または力学的な方法による簡易で低コストの加工法により、水硬性硬化体や高分子硬化体からの破壊および滑り両引抜けに対する抵抗性に優れた形状を賦形し、当該硬化体へ賦形形状を保持して配合することによって、硬化体のひび割れ拡幅、破片剥落、あるいは過度な変形を高度に抑制することのできる補強硬化体、およびその簡易な製造方法を提供することである。   The object of the present invention is to break and slip from a hydraulic cured body or a polymer cured body by an easy and low-cost processing method using a thermal or mechanical method even for an inexpensive organic fiber having a circular cross section. By shaping the shape with excellent resistance to both pull-outs and holding the shaped shape in the cured body, the cracked width of the cured body, debris peeling, or excessive deformation is highly suppressed. It is to provide a reinforced hardened body that can be manufactured and a simple manufacturing method thereof.

上記課題を解決するために、本発明では以下の構成とした。   In order to solve the above problems, the present invention has the following configuration.

(1)ガラス転移温度が313K以上の有機繊維から成る特定撚糸を緊張下で熱固定した後に裁断し、裁断された前記特定撚糸を硬化体の未硬化材に混入配合して、前記未硬化材を硬化する補強硬化体の製造方法とした。   (1) A specific twisted yarn composed of an organic fiber having a glass transition temperature of 313 K or higher is heat-set under tension and then cut, and the cut specific twisted yarn is mixed and blended with an uncured material of a cured body, and the uncured material It was set as the manufacturing method of the reinforcement hardening body which hardens | cures.

(2)上記(1)の補強硬化体の製造方法において、前記特定撚糸を熱固定した後から前記未硬化材に混入配合する迄の間に、前記特定撚糸を解繊することを特徴とする。   (2) In the method for producing a reinforced cured body according to (1), the specific twisted yarn is defibrated after the specific twisted yarn is heat-fixed and mixed with the uncured material. .

(3)上記(1)の補強硬化体の製造方法において、混入配合と同時に、前記特定撚糸を解繊することを特徴とする。   (3) In the method for producing a reinforced hardened body according to (1), the specific twisted yarn is defibrated simultaneously with mixing and mixing.

(4)上記(1)〜(3)の補強硬化体の製造方法において、前記特定撚糸が円形断面の有機繊維の1次撚糸であって、前記特定撚糸を構成する有機繊維の断面積比が1から4までの範囲にあり、前記特定撚糸を構成する有機繊維の本数が2から10までのいずれかの本数であることを特徴とする。 (4) In the method for producing a reinforced cured body according to the above (1) to (3), the specific twisted yarn is a primary twisted yarn of an organic fiber having a circular cross section, and the cross-sectional area ratio of the organic fiber constituting the specific twisted yarn is It is in the range of 1 to 4, and the number of organic fibers constituting the specific twisted yarn is any number from 2 to 10.

(5)上記(4)の補強硬化体の製造方法において、前記特定撚糸を構成する有機繊維の本数が2から4までのいずれかの本数であることを特徴とする。 (5) In the method for producing a reinforced cured body according to (4) above, the number of organic fibers constituting the specific twisted yarn is any number from 2 to 4.

(6)上記(1)〜(5)のいずれかの補強硬化体の製造方法により製造した補強硬化体とした。 (6) It was set as the reinforcement hardening body manufactured by the manufacturing method of the reinforcement hardening body in any one of said (1)-(5).

なお、本発明における撚糸の解繊とは、熱固定した特定撚糸を本発明の工程で、あるいは新たに解繊工程を附加して、コイル形状の低次撚糸や単繊維に分離することを意味する。 In addition, the defibration of the twisted yarn in the present invention means that the heat-fixed specific twisted yarn is separated into a coil-shaped low-order twisted yarn or a single fiber by the process of the present invention or by newly adding a defibrating process. To do.

さらに、本発明における熱固定とは、ガラス転移温度が常温より高い313K以上の有機繊維から成る特定撚糸を緊張下でガラス転移温度以上に加熱して当該繊維を撚糸内の形状に塑性変形し、ガラス転移温度以下に冷却硬化して当該形状を固定することを意味し、張力により撚糸が弛まない緊張下で行わなければならない。   Furthermore, the heat fixation in the present invention is to heat a specific twisted yarn composed of organic fibers having a glass transition temperature higher than room temperature of 313K or higher to a temperature higher than the glass transition temperature under tension to plastically deform the fibers into a shape in the twisted yarn, It means to cool and harden below the glass transition temperature and fix the shape, and must be performed under tension where the twisted yarn does not loosen by tension.

なお、本発明では、連続した長さを持つフィラメント糸から短繊維まで繊維と呼称し、273K(約0℃)〜313K(約40℃)の温度範囲を常温と設定する。   In addition, in this invention, it calls a fiber from the filament yarn with a continuous length to a short fiber, and sets the temperature range of 273K (about 0 degreeC) -313K (about 40 degreeC) to normal temperature.

また、本発明における混入配合とは、攪拌などの手法により補強繊維を未硬化材内部での移動を伴って分散する工程を意味する。   Moreover, the mixing | blending mixing | blending in this invention means the process of disperse | distributing a reinforcing fiber with the movement in an unhardened material by methods, such as stirring.

本発明によれば、硬化体のひび割れ拡幅、破片剥落、あるいは過度な変形を高度に抑制することのできる補強硬化体、およびその簡易な製造方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the reinforcement hardening body which can suppress highly the crack widening of a hardening body, debris peeling, or excessive deformation | transformation, and its simple manufacturing method.

以下、本発明の実施形態について説明するが、先ず、本発明に想到するに至った参考例から説明する。図1、図2は本参考例に係る補強硬化体の製造方法の一例を示す工程図である。 Hereinafter, embodiments of the present invention will be described . First, reference examples that have led to the present invention will be described. 1 and 2 are process diagrams showing an example of a method for producing a reinforced cured body according to this reference example .

参考例に係る補強硬化体の製造方法は、有機繊維を用いて補強硬化体を製造する方法に関し、図1に示すように、有機繊維から成る撚糸を圧潰して圧潰撚糸を得る圧潰工程と、前記圧潰撚糸を未硬化材に混入あるいは埋設配合する配合工程と、前記圧潰撚糸が配合された未硬化材を硬化させる硬化工程とを有する。 The method for producing a reinforced cured body according to this reference example relates to a method for producing a reinforced cured body using organic fibers, as shown in FIG. 1, a crushing step of crushing a twisted yarn made of organic fibers to obtain a crushed twisted yarn, and And a blending step of mixing or embedding the crushing twisted yarn in an uncured material, and a curing step of curing the uncured material blended with the crushing twisted yarn.

すなわち、有機繊維の撚糸構造を利用し、撚糸を加圧して圧潰して撚糸を塑性変形する圧潰工程(力学的)により、硬化体に対する物理的接着性に優れた形状を有機繊維に賦形し、これを未硬化体に配合して硬化させることにより、補強硬化体を製造するようにしている。   In other words, using a twisted structure of organic fibers, a shape excellent in physical adhesion to the cured body is shaped into the organic fibers by a crushing process (mechanical) in which the twisted yarn is pressed and crushed to plastically deform the twisted yarn. This is blended into an uncured body and cured to produce a reinforced cured body.

前記圧潰工程では、作業の効率化を図る上で、前記撚糸をその長さ方向に沿って均一に圧潰することが好ましい。   In the crushing step, it is preferable to uniformly crush the twisted yarn along its length direction in order to improve work efficiency.

また、圧潰撚糸を直接未硬化材に配合してもよいが、圧潰工程と配合工程との間で、圧潰撚糸を予め解繊しておくこともできる。あるいは、混入配合工程では、圧潰撚糸を未硬化材へ混入すると同時に当該圧潰撚糸を解繊してもよい。ここで、圧潰撚糸の解繊とは、低次の変形撚糸や変形単繊維に分離することを意味している。   Moreover, although the crushing twisted yarn may be blended directly into the uncured material, the crushing twisted yarn can be defibrated in advance between the crushing step and the blending step. Alternatively, in the mixing and blending step, the crushing twisted yarn may be mixed into the uncured material and simultaneously the crushing twisted yarn may be defibrated. Here, the disentanglement of the crushing twisted yarn means separation into a low-order deformed twisted yarn or a deformed single fiber.

また、ガラス転移温度が313K以上の有機繊維から成る特定撚糸の場合、例えば図2に示すように、前記配合工程の前工程として、前記特定撚糸を緊張状態とする緊張工程と、緊張下にある前記特定撚糸を熱固定する熱固定工程とをさらに有し、前記圧潰工程を、前記緊張工程から前記配合工程までの間に行うことができる。   Further, in the case of a specific twisted yarn composed of an organic fiber having a glass transition temperature of 313 K or more, for example, as shown in FIG. A heat setting step of heat setting the specific twisted yarn, and the crushing step can be performed between the tension step and the blending step.

すなわち、当該特定撚糸を緊張下で熱固定した後に裁断し、裁断された撚糸を未硬化材に配合する過程において、例えば図2に示すような手順で特定撚糸の圧潰工程を行うのである。   That is, in the process of heat-fixing the specific twisted yarn under tension and then cutting and blending the cut twisted yarn into the uncured material, the specific twisted yarn is crushed by the procedure shown in FIG. 2, for example.

図2(a)では、緊張工程と熱固定工程との間に圧潰工程があり、図2(b)では、熱固定工程と裁断工程との間に圧潰工程があり、図2(c)では、裁断工程の後に圧潰工程を行うようにしている。さらに、図2(b)では、圧潰工程と裁断工程の間に、熱固定の工程を再度行うこともある。   In FIG. 2A, there is a crushing process between the tensioning process and the heat setting process. In FIG. 2B, there is a crushing process between the heat setting process and the cutting process. In FIG. The crushing process is performed after the cutting process. Furthermore, in FIG.2 (b), the process of heat setting may be performed again between a crushing process and a cutting process.

また、この例においても、特定撚糸を圧潰する工程は、特定撚糸をその長さ方向に沿って均一に圧潰する工程となるようにすることが好ましい。また、熱固定工程および圧潰工程の両工程の後から未硬化材に配合する迄に特定撚糸を解繊してもよいし、混入配合と同時に特定撚糸を解繊してもよい。   Also in this example, it is preferable that the step of crushing the specific twisted yarn is a step of uniformly crushing the specific twisted yarn along its length direction. Further, the specific twisted yarn may be defibrated from after both the heat setting step and the crushing step until blended into the uncured material, or the specific twisted yarn may be defibrated simultaneously with the blending blending.

図3に、上述してきた方法によって得られる圧潰撚糸あるいはこの圧潰撚糸を解繊した変形単繊維の具体的な形状の一例を示す。図3(a)は、2本の有機繊維から成る撚糸をその長さ方向に沿って均一に圧潰して得た圧潰撚糸1を示しており、図3(b)は、この圧潰撚糸1を解繊して得た変形単繊維2を、圧潰時における加圧方向から見た一部側面図である。   FIG. 3 shows an example of a specific shape of a crushed twisted yarn obtained by the above-described method or a deformed single fiber obtained by opening the crushed twisted yarn. FIG. 3A shows a crushed twisted yarn 1 obtained by uniformly crushing a twisted yarn composed of two organic fibers along its length direction, and FIG. 3B shows this crushed twisted yarn 1. It is the partial side view which looked at the deformation | transformation single fiber 2 obtained by defibration from the pressurization direction at the time of crushing.

このような圧潰撚糸や変形単繊維を、セメントコンクリート、モルタル、スレート等の水硬性硬化体、あるいはプラスチック、ゴム等の高分子硬化体における硬化前の状態である未硬化材に配合し、その後硬化させることによって、硬化体のひび割れ拡幅、破片剥落、あるいは過度な変形を高度に抑制することのできる補強硬化体を製造することができる。   Such a crushed twisted yarn or deformed single fiber is blended into an uncured material in a state before being cured in a hydraulic cured body such as cement concrete, mortar, or slate, or in a polymer cured body such as plastic or rubber, and then cured. By doing so, it is possible to produce a reinforced hardened body capable of highly suppressing crack widening, debris peeling, or excessive deformation of the hardened body.

図4に他の参考例における工程図を示す。 FIG. 4 shows a process diagram in another reference example .

上述してきた補強硬化体の製造方法における他の参考例として、図4に示すように、前記配合工程の前工程として、前記圧潰撚糸、または前記圧潰撚糸を解繊して得られた変形撚糸や変形単繊維で補強体を作製する補強体作製工程をさらに有し、前記配合工程では、前記補強体作製工程で作製した前記補強体を、前記未硬化材に埋設配合することもできる。 As another reference example in the manufacturing method of the reinforced cured body described above, as shown in FIG. 4, as the pre-process of the blending step, the crushed twisted yarn, or a deformed twisted yarn obtained by defibrating the crushed twisted yarn, It further includes a reinforcing body manufacturing step of manufacturing a reinforcing body with deformed single fibers, and in the blending step, the reinforcing body manufactured in the reinforcing body manufacturing step can be embedded and blended in the uncured material.

また、上記他の参考例の変形例として、前記圧潰工程では、前記撚糸で作製した補強体を加圧して前記撚糸を圧潰し、前記配合工程では、前記圧潰工程で圧潰された前記撚糸を含む前記補強体を前記未硬化材に埋設配合することができる。ここで、補強体とは、補強繊維から構成される補強用コード、メッシュシート、ウェブ、不織布、編物、織物等である。 Moreover, as a modification of the other reference example, in the crushing step, the reinforcing body produced with the twisted yarn is pressurized to crush the twisted yarn, and in the blending step, the twisted yarn crushed in the crushing step is included. The reinforcing body can be embedded in the uncured material. Here, the reinforcing body is a reinforcing cord composed of reinforcing fibers, a mesh sheet, a web, a nonwoven fabric, a knitted fabric, a woven fabric, and the like.

なお、本参考例では、補強繊維や補強体を未硬化材に配合する長さや大きさにするために、繊維を切断する工程を適宜附加するものとする。 In addition, in this reference example , in order to make the length and magnitude | size which mix | blend a reinforcement fiber and a reinforcement with an uncured material, the process of cut | disconnecting a fiber shall be added suitably.

上述してきた各製造方法により得られた補強硬化体は、水硬性硬化体であれ高分子硬化体であれ、引張り強度、曲げ強度、及び衝撃強度が高い、優れた硬化体となる。   The reinforced cured body obtained by each of the above-described production methods is an excellent cured body having high tensile strength, bending strength, and impact strength, whether it is a hydraulic cured body or a polymer cured body.

以上説明してきたように、本参考例では、有機繊維の撚糸構造を利用し、撚糸を長さ方向に沿って加圧して撚糸を塑性変形する圧潰工程(力学的)、または熱固定の工程と圧潰工程を組み合わせた複合工程(熱的および力学的)により硬化体に対する物理的接着性に優れた形状を有機繊維に賦形し、必要に応じ圧潰撚糸を解繊する工程を附加して、圧潰変形した撚糸構造や当該撚糸を解繊して得られる低次の変形撚糸や変形単繊維の構造をとる補強繊維を作製し、当該補強繊維または補強繊維から構成される補強体を未硬化材に配合し、未硬化材を硬化することを特徴としている。 As described above, in this reference example , using a twisted structure of organic fibers, a crushing process (mechanical) in which the twisted thread is pressed along the length direction to plastically deform the twisted thread, or a heat fixing process By combining the crushing process (thermal and mechanical), a shape with excellent physical adhesion to the cured body is formed on the organic fiber, and a crushing twisted yarn is defibrated as necessary. A deformed twisted yarn structure or a low-order deformed twisted yarn obtained by defibrating the twisted yarn or a reinforcing fiber having a deformed single fiber structure is produced, and the reinforcing body composed of the reinforcing fiber or the reinforcing fiber is used as an uncured material. It is characterized by blending and curing the uncured material.

したがって、本参考例によれば、撚糸構造を利用した簡易な加工法により、水硬性硬化体や高分子硬化体との物理的接着性に優れる圧潰変形した形状を有機繊維に賦形でき、水硬性硬化体または高分子硬化体への配合により硬化体のひび割れ拡幅、破片剥落、あるいは過度な変形を高度に抑制することが可能となる。 Therefore, according to this reference example , by a simple processing method using a twisted yarn structure, a crush-deformed shape excellent in physical adhesiveness with a hydraulic cured body or a polymer cured body can be formed into an organic fiber. By blending with a hardened or polymer hardened body, it is possible to highly suppress crack spreading, fragment peeling, or excessive deformation of the hardened body.

以下、本参考例に係る補強硬化体の製造方法について、さらに詳述する。 Hereinafter, the manufacturing method of the reinforcement hardening body which concerns on this reference example is further explained in full detail.

先ず、撚糸を構成する有機繊維について説明する。   First, the organic fiber constituting the twisted yarn will be described.

加撚により繊維に賦形した螺旋形状は、繊維の弾性力による解撚や未硬化材への混入工程における外力の作用等で変形若しくは消失することもあるが、本参考例における圧潰工程で繊維に賦形した、断面形状が長さ方向に沿って変化する形状は、未硬化材が硬化するまで保持され、硬化体に対する優れた物理的接着性を繊維に賦与する。したがって、圧潰撚糸を得るために圧潰工程で用いる有機繊維の素材として、特に制限するものではない。 The spiral shape formed on the fiber by twisting may be deformed or disappear due to the action of external force in the untwisting process due to the elastic force of the fiber or mixing into the uncured material, but the fiber in the crushing process in this reference example The shape in which the cross-sectional shape changes along the length direction is retained until the uncured material is cured, and imparts excellent physical adhesion to the cured body to the fiber. Accordingly, the organic fiber material used in the crushing process for obtaining a crushing twisted yarn is not particularly limited.

一方、熱固定を行う工程には、313K以上のガラス転移温度を有する有機繊維を用いる。これは、ポリアミド系(313Kがガラス転移温度とされるナイロン6を含む)、ポリエステル系の低廉な繊維、セメント系硬化体補強に実績のあるポリビニルアルコール繊維をはじめ幅広い素材の有機繊維が該当する。   On the other hand, an organic fiber having a glass transition temperature of 313 K or higher is used in the heat setting step. This applies to organic fibers of a wide range of materials, including polyamide-based (including nylon 6 where 313K has a glass transition temperature), polyester-based inexpensive fibers, and polyvinyl alcohol fibers that have a proven record in reinforcing cement-based cured bodies.

参考例において、上述の有機繊維からなる特定の撚糸の熱固定の工程では、撚糸をガラス転移温度以上に加熱することにより、構成繊維が非晶分子鎖の配向緩和や微細結晶の部分融解により柔らかくなり、緊張下の撚糸内の形状に塑性変形し、ガラス転移温度以下に冷却硬化することにより、繊維の当該形状が固定される。また、313K以上のガラス転移温度を有する繊維は、当該温度以下の常温で硬質であるため、常温で無機成分と水を攪拌配合して硬化する水硬性硬化体や、常温で硬化させる熱硬化性あるいは水溶性樹脂等の高分子硬化体を当該繊維の混入配合で補強する場合に、熱固定と圧潰工程で賦形した潰れた螺旋形状が保持され易い特性を有し、長さ方向に沿って変化する断面形状と併せて、硬化体に対する優れた物理的接着性を繊維に賦与する。 In this reference example , in the heat setting process of the specific twisted yarn composed of the organic fibers described above, the twisted yarn is heated to the glass transition temperature or higher, so that the constituent fibers are relaxed by the orientation of the amorphous molecular chains and the partial melting of the fine crystals. It becomes soft and plastically deforms into a shape in a twisted yarn under tension, and is cooled and cured below the glass transition temperature, thereby fixing the shape of the fiber. Moreover, since the fiber which has a glass transition temperature of 313K or more is hard at normal temperature below the said temperature, the hydraulic hardening body hardened by stirring and mix | blending an inorganic component and water at normal temperature, and the thermosetting cured at normal temperature Alternatively, when a polymer cured body such as a water-soluble resin is reinforced by mixing and mixing the fibers, the crushed spiral shape formed by the heat setting and crushing process is easily retained, and along the length direction. Combined with the changing cross-sectional shape, it imparts excellent physical adhesion to the cured body to the fiber.

緊張下における熱固定の工程は、これを圧潰前に行う場合、熱固定された特定撚糸の解撚や構成繊維の分離を抑え圧潰工程を実施し易くする効果を奏し、また、緊張下における熱固定の工程を圧潰後に行う場合は、圧潰撚糸を直線状に整形するなどの効果がある。   When the heat setting process under tension is performed before crushing, the effect of facilitating the crushing process is achieved by suppressing the untwisting of the heat-set specific twisted yarn and separation of the constituent fibers, and the heat under tension. When the fixing step is performed after crushing, there is an effect such as shaping the crushing twisted yarn into a straight line.

また、有機繊維の形状は、円形断面でもよく、楕円、三角、四角、星形、Y型断面などの異形断面でもよい。さらに、有機繊維は、長さ方向に沿って断面形状、断面積変化、折れ曲がり、表面凹凸などがあってもよい。本参考例に係る方法では、生産効率の高い溶融紡糸により生産され断面積変化、折れ曲がり、及び表面凹凸のない円形断面の有機繊維であっても容易に硬化体に対する物理的接着性に優れた形状を賦形することができる。 The shape of the organic fiber may be a circular cross section, or may be an odd cross section such as an ellipse, a triangle, a square, a star, or a Y-shaped cross section. Furthermore, the organic fiber may have a cross-sectional shape, a cross-sectional area change, a bend, a surface unevenness, and the like along the length direction. In the method according to this reference example , even if it is an organic fiber having a circular cross section without cross-sectional area change, bending, and surface unevenness produced by melt spinning with high production efficiency, it has a shape excellent in physical adhesion to a cured body easily. Can be shaped.

また、有機繊維の太さも制限するものではないが、過度に細い繊維では、混入配合において特に繊維が長い場合にファイバーボールの形成問題が発生し、過度に太い繊維であれば硬化体内で力学特性の異なる素材が局所的に凝集することになり、引張り強度や曲げ強度以外の硬化体強度が低下する問題が発生するので、当該問題点を考慮して適宜選択するとよい。   Also, the thickness of the organic fiber is not limited, but if the fiber is excessively thin, there is a problem of forming a fiber ball especially when the fiber is long, and if the fiber is excessively thick, the mechanical properties in the cured body Since different materials of these materials locally agglomerate and a problem arises in that the strength of the cured product other than the tensile strength and bending strength is reduced, the material may be appropriately selected in consideration of the problem.

たとえば、円形断面の有機繊維を加工して配合する場合、一般的な直径0.01〜3mmの繊維が価格や性能面から好適に使用される。なお、細い補強繊維を未硬化材に混入配合する場合、圧潰変形繊維の中心軸を直線状に保持するために長さを短くするなどの調整を要する。   For example, when processing and blending organic fibers having a circular cross section, a general fiber having a diameter of 0.01 to 3 mm is preferably used from the viewpoint of price and performance. When a thin reinforcing fiber is mixed and blended with an uncured material, adjustment such as shortening the length is required to keep the central axis of the crushing deformed fiber linear.

次に撚糸について説明する。   Next, the twisted yarn will be described.

撚糸は、同種素材の有機繊維のみから構成してもよく、異種素材(例えばポリアミドとポリエステル)の有機繊維を組み合わせて構成してもよい。   The twisted yarn may be composed only of organic fibers of the same kind of material, or may be composed of organic fibers of different materials (for example, polyamide and polyester).

参考例では、複数本の繊維が右または左に撚られた撚糸を1次撚糸、構成糸がそれぞれ1次撚糸または単繊維であり、複数の当該構成糸が右または左に撚られた撚糸で少なくとも1本の1次撚糸を含む撚糸を2次撚糸とする。また、より高次の撚糸も同様に定義する。なお、2次以上の撚糸において当該撚糸を構成する撚糸を低次撚糸と呼称し、2次撚糸においては当該2次撚糸を構成する1次撚糸が該当する。図5に、2次撚糸3、当該2次撚糸を構成する低次の1次撚糸4、さらに当該1次撚糸を構成する単繊維5を、本参考例における撚糸次数の定義の具体的な一例として示す。 In this reference example , a twisted yarn in which a plurality of fibers are twisted right or left is a primary twisted yarn, each constituent yarn is a primary twisted yarn or a single fiber, and a plurality of the constituent yarns are twisted right or left. The twisted yarn including at least one primary twisted yarn is defined as a secondary twisted yarn. Further, higher-order twisted yarns are defined similarly. In addition, the twisted yarn which comprises the said twisted yarn in a secondary or more twisted yarn is called a low-order twisted yarn, and the primary twisted yarn which comprises the said secondary twisted yarn corresponds in a secondary twisted yarn. FIG. 5 shows a specific example of the definition of the twist order in the present reference example with the secondary twisted yarn 3, the lower-order primary twisted yarn 4 constituting the secondary twisted yarn, and the single fiber 5 constituting the primary twisted yarn. As shown.

撚数の上限は、加撚時に繊維が切断することなく、さらに本参考例の工程を安定して稼動できる最大数となるが、同径の円形断面の有機繊維の束を加撚して1次撚糸する場合、次式で求まる撚数以下であれば、撚糸の折れが発生し難い。 The upper limit of the number of twists is the maximum number at which the process of this reference example can be stably operated without the fibers being cut at the time of twisting. When the next twisted yarn is used, if the number of twists is equal to or less than that obtained by the following formula, the twisted yarn is hardly broken.

ナイロン66を素材とする繊維
0.37d-1-1 (t/m)
ポリエチレンテレフタレート(PET)を素材とする繊維
0.25d-1-1 (t/m)
ここでdは繊維の直径(m)、nは加撚する繊維の本数で、上式は繊維の螺旋変形しない若しくは変形の小さい部位の分率が低く抑えられるnが2〜10の範囲で折れの発生し難い撚数上限を与える。但し、撚数を以上の式で計算される数値以下に制限するものではない。撚数は繊維の素材、断面形状、太さ、及び撚糸の構成、補強繊維の長さ、配合法等によって適宜選択する。
Fiber made from nylon 66
0.37d -1 n -1 (t / m)
Fiber made from polyethylene terephthalate (PET)
0.25d -1 n -1 (t / m)
Where d is the diameter of the fiber (m), n is the number of fibers to be twisted, and the above equation is broken when n is in the range of 2 to 10 so that the portion of the fiber that is not helically deformed or small in deformation is kept low. The upper limit of the number of twists is provided. However, the number of twists is not limited to the value calculated by the above formula. The number of twists is appropriately selected according to the material of the fiber, the cross-sectional shape, the thickness, the configuration of the twisted yarn, the length of the reinforcing fiber, the blending method, and the like.

加圧体の撚糸接触面の形状には、平面や湾曲面などがある。また、撚糸の圧潰工程は複数回に分けて行ってもよい。さらに、撚糸の圧潰は、撚糸の長さ方向に沿って連続して行ってもよく、間隔を開けて不連続に行ってもよい。   The shape of the twisted yarn contact surface of the pressure member includes a flat surface and a curved surface. Moreover, the crushing process of the twisted yarn may be performed in a plurality of times. Furthermore, the crushing of the twisted yarn may be performed continuously along the length direction of the twisted yarn, or may be performed discontinuously at intervals.

しかし、製造効率を考慮すると、高効率で実施できることから、撚糸を長さ方向に沿って均一に圧潰する工程が好適である。   However, considering the production efficiency, it is possible to carry out with high efficiency, and therefore, a process of uniformly crushing the twisted yarn along the length direction is preferable.

撚糸を長さ方向に沿って均一に圧潰するとは、加圧方向の撚糸厚を連続して均一に薄くするように圧潰することである。但し、正確に均一であることを要さず、平均厚のまわりに変動してもよい。撚糸の長さ方向に沿った各位置の撚糸厚とは、当該位置近傍の撚糸の最高次の少なくとも1撚り分を含む小区間を加圧方向に垂直な2つの平面で挟んだ場合の平面間の距離を意味する。従って、撚糸を圧潰して均一に薄くするとは、撚糸厚が撚糸の長さ方向に沿った位置に依らず均一となるようにすることであるが、当該小区間内の加圧面に凹凸構造が残存しなければならない。また、撚糸の連続した圧潰工程において撚糸の軸周りの回転が起きる場合などは、圧潰する方向が撚糸の長さ方向に沿って変化してもよい。圧潰により撚糸厚を薄くしていく場合、まず加圧方向にある繊維や低次撚糸の交差部位が部分的に押し潰された形状に塑性変形する。また、この段階では加圧方向に垂直に撚糸が広がり、撚糸の加圧面には凹凸構造が残存する。このような圧潰変形によって、繊維は断面形状が長さ方向に沿って変化する形状を賦形され、繊維と硬化体の物理的接着性が著しく向上する。さらに撚糸構造を保持して配合する場合であっても、加圧面の凹凸構造によって圧潰撚糸は硬化体に対する優れた物理的接着性を有する(図3(a)参照)。   To uniformly crush the twisted yarn along the length direction means to crush the twisted yarn thickness in the pressurizing direction so as to be continuously thinned uniformly. However, it does not need to be exactly uniform and may vary around the average thickness. The twisted thickness at each position along the length direction of the twisted yarn is the distance between planes when a small section including at least one twist of the highest order twisted yarn in the vicinity of the position is sandwiched between two planes perpendicular to the pressing direction. Means distance. Therefore, crushing the twisted yarn to make it uniformly thin is to make the twisted thickness uniform regardless of the position along the length direction of the twisted yarn, but the pressing surface in the small section has an uneven structure. Must remain. Further, when rotation around the axis of the twisted yarn occurs in the continuous crushing process of the twisted yarn, the crushing direction may change along the length direction of the twisted yarn. When the thickness of the twisted yarn is reduced by crushing, first, the crossing part of the fibers in the pressing direction and the low-order twisted yarn is plastically deformed into a partially crushed shape. At this stage, the twisted yarn spreads perpendicularly to the pressing direction, and the concavo-convex structure remains on the pressing surface of the twisted yarn. By such crushing deformation, the fiber is shaped so that the cross-sectional shape changes along the length direction, and the physical adhesion between the fiber and the cured body is significantly improved. Furthermore, even if it is a case where it mix | blends holding a twisted-yarn structure, a crushing twisted yarn has the outstanding physical adhesiveness with respect to a hardening body by the uneven structure of a pressurization surface (refer Fig.3 (a)).

また、当該程度の圧潰変形であれば、圧潰された撚糸を解繊することもできる(図3(b)参照)。本参考例において撚糸を長さ方向に沿って均一に圧潰する工程とは、撚糸や構成繊維を当該程度に圧潰変形する工程を意味する。なお、加圧面が平らで滑らかな表面となるような高圧プレス処理は、撚糸が硬化体に対する物理的接着性に劣る形状となり、解繊も難しく、本参考例の圧潰に該当しない。 Moreover, if it is a crushing deformation | transformation of the said level, the crushed twisted yarn can also be defibrated (refer FIG.3 (b)). In the present reference example , the step of uniformly crushing the twisted yarn along the length direction means a step of crushing and deforming the twisted yarn and the constituent fibers. In addition, the high-pressure press process in which the pressing surface is a flat and smooth surface has a shape in which the twisted yarn is inferior in physical adhesion to the cured body, is difficult to be defibrated, and does not correspond to the crushing of this reference example .

撚糸を長さ方向に沿って均一に圧潰する工程は、例えば、2つの平板の間に挟んだ撚糸を平板間の間隔を目的の撚糸厚まで狭めて圧縮する、または間隔を目的の撚糸厚に設定した2つのローラー間に撚糸を通す方法等により実施する。   The step of uniformly crushing the twisted yarn along the length direction is, for example, compressing the twisted yarn sandwiched between two flat plates by narrowing the interval between the flat plates to the desired twisted yarn thickness, or reducing the interval to the desired twisted yarn thickness. It is carried out by a method of passing twisted yarn between two set rollers.

熱固定する際の特定撚糸の緊張とは撚糸の長さを固定するものではなく、撚糸が弛まず切れない程度であればよい。特定撚糸の熱固定は、2次以上の撚糸では当該撚糸および低次撚糸の熱固定を同時に行ってもよく、低次撚糸の熱固定を先行して行ってもよい。熱固定において特定撚糸を加熱する高温体は、気体(気体恒温槽、熱風など)、液体(液体恒温槽など)、固体(平板、湾曲体など)の如何なる状態や形状のものでもよい。加熱温度は、有機繊維のガラス転移温度から結晶部分の融解温度までの任意の温度で、さらに熱によって緊張下の繊維に切断や傷の発生が起きない温度でなければならない。一般にガラス転移温度から融解までの温度域は幅広く、例えばポリアミド系合成繊維のナイロン66で約200K、ポリステル系合成繊維のPETで約190Kとなる。加熱時間は、有機繊維の素材、撚糸の構成、加熱法、高温体温度などにより異なるが、熱が撚糸全体に伝わり、繊維の切断や傷の発生が起きない時間であればよい。一般に高温であるほど熱の繊維への伝達が早く、高速加工には好適である。特定撚糸を冷却する低温体(撚糸から熱を奪う媒体)は、気体(気体恒温槽、冷風、空気など)、液体(液体恒温槽など)、固体(平板、湾曲体など)の如何なる状態や形状のものでもよい。また、冷却温度はガラス転移温度以下であればよい。冷却時間は、有機繊維の素材や撚糸の構成、冷却法、低温体温度、撚糸温度などにより異なるが、有機繊維の温度がガラス転移温度以下に下がり撚糸内の形状が固定される時間であればよい。一般に、空気に晒しても瞬時に冷却硬化する。なお、緊張下の特定撚糸の熱固定の工程は複数回に分けて行ってもよい。   The tension of the specific twisted yarn at the time of heat fixing does not fix the length of the twisted yarn, but may be a level that does not cause the twisted yarn to loosen. The heat fixing of the specific twisted yarn may be performed by simultaneously fixing the twisted yarn and the low-order twisted yarn in the second or higher-order twisted yarn, or may be performed prior to the heat setting of the low-order twisted yarn. The high temperature body that heats the specific twisted yarn in the heat setting may be in any state or shape such as gas (gas thermostat, hot air, etc.), liquid (liquid thermostat, etc.), and solid (flat plate, curved body, etc.). The heating temperature should be an arbitrary temperature from the glass transition temperature of the organic fiber to the melting temperature of the crystal part, and a temperature at which the fiber under tension is not cut or damaged by heat. In general, the temperature range from the glass transition temperature to melting is wide, for example, about 200K for polyamide synthetic fiber nylon 66 and about 190K for PET of synthetic synthetic fiber. The heating time varies depending on the material of the organic fiber, the configuration of the twisted yarn, the heating method, the high temperature body temperature, and the like, but may be a time during which heat is transmitted to the entire twisted yarn and the fiber is not cut or damaged. Generally, the higher the temperature, the faster the heat is transferred to the fiber, which is suitable for high-speed processing. The low-temperature body that cools the specific twisted yarn (medium that takes heat away from the twisted yarn) can be any state or shape such as gas (gas thermostat, cold air, air, etc.), liquid (liquid thermostat, etc.), solid (flat plate, curved body, etc.) It may be. Moreover, the cooling temperature should just be below a glass transition temperature. The cooling time varies depending on the material of the organic fiber and the composition of the twisted yarn, the cooling method, the low temperature body temperature, the twisted yarn temperature, etc., but if the temperature of the organic fiber falls below the glass transition temperature and the shape in the twisted yarn is fixed Good. Generally, even if exposed to air, it cools and hardens instantly. In addition, you may perform the process of heat-setting the specific twisted yarn under tension in multiple times.

ところで、撚糸の加工は、圧潰工程のみを行なってもよく、特定撚糸においては、緊張下の熱固定の工程と圧潰工程を組み合わせて行ってもよい。さらに、撚糸の圧潰工程は、緊張下または非緊張下いずれの条件下で行ってもよい。但し、圧潰工程において、繊維の解撚や構成繊維の分離を抑える必要がある場合には、緊張下で圧潰する。氷点下のガラス転移温度を有し、常温でも柔らかいポリエチレン、ポリプロピレン等のポリオレフィン系繊維では、撚糸の構成が適切であれば、常温で加撚した撚糸を常温および非緊張下で圧潰することもできる。   By the way, the twisted yarn may be processed only in the crushing step, and in the specific twisted yarn, the heat fixing step under tension and the crushing step may be combined. Furthermore, the crushing process of the twisted yarn may be performed under any condition under tension or non-tension. However, in the crushing step, when it is necessary to suppress fiber untwisting or separation of constituent fibers, crushing is performed under tension. For polyolefin fibers such as polyethylene and polypropylene that have a glass transition temperature below freezing point and are soft even at room temperature, the twisted yarn twisted at room temperature can be crushed at room temperature and under no tension if the structure of the twisted yarn is appropriate.

また、特定撚糸における、圧潰工程と緊張下の熱固定の工程とを組み合わせる加工法では、圧潰工程は緊張下にあって熱固定する前から未硬化材に混入配合する迄に行う。熱固定した撚糸であれば、裁断後も撚糸の解撚や構成繊維の分離が起き難く、非緊張下であっても圧潰工程を実施し易い。特定撚糸の圧潰工程を複数回に分割し熱固定の工程と組み合わせる場合、分割された各圧潰工程は、それぞれ緊張下にあって最初に熱固定する前から未硬化材へ混入配合する迄の如何なる段階に分割して行ってもよい。さらに、加熱した加圧体から熱固定に要する熱を撚糸に伝えるなど、熱固定における加熱と圧潰を同時に行うこともできる。特定撚糸の圧潰時の温度は、撚糸を構成する繊維の融点以下であればよく、繊維のガラス転移温度より高くても低くてもよい。ガラス転移温度以上であれば容易に圧潰でき好適であるが、繊維の素材や撚糸の構成が適切であれば、ガラス転移温度以下であっても低加重で圧潰することができる。なお、2次以上の撚糸を圧潰する場合、当該撚糸および低次撚糸の圧潰を同時に行ってもよく、低次撚糸の圧潰を先行して行ってもよい。   Moreover, in the processing method which combines the crushing step and the heat setting step under tension in the specific twisted yarn, the crushing step is performed before being mixed under heat and before being mixed with the uncured material. If it is a heat-set twisted yarn, it is difficult for the twisted yarn to be untwisted and the constituent fibers to be separated even after cutting, and the crushing process is easy to carry out even under non-tension. When the crushing process of specific twisted yarn is divided into multiple times and combined with the heat setting process, each divided crushing process is under tension, before the first heat setting, until mixing and blending into the uncured material You may divide into steps. Furthermore, heating and crushing in heat setting can be performed at the same time, such as transferring heat required for heat setting from a heated pressure body to the twisted yarn. The temperature at the time of crushing a specific twisted yarn should just be below the melting point of the fiber which comprises a twisted yarn, and may be higher or lower than the glass transition temperature of a fiber. If it is above the glass transition temperature, it can be easily crushed and is suitable, but if the fiber material and twisted yarn structure are appropriate, it can be crushed with a low load even if it is below the glass transition temperature. In addition, when crushing a secondary or higher twisted yarn, the twisted yarn and the low-order twisted yarn may be crushed simultaneously, or the low-order twisted yarn may be crushed in advance.

圧潰撚糸は、撚糸構造を保持したまま配合してもよく、撚糸を圧潰後から未硬化材に配合する迄に低次の変形撚糸または変形単繊維に解繊して配合してもよい。圧潰変形および裁断された撚糸は、常温で、ゴムなどの弾性変形し易い素材で擦過することにより解繊することもできる。さらに、混入配合により硬化体を補強する場合、圧潰撚糸を混入配合時に解繊してもよい。セメント系硬化体の未硬化材への混入時に解繊させる方法として、細骨材または細骨材と粗骨材の混合材に予め混入配合し、解繊を高度に進めることもできる。また、混入前に一部の圧潰撚糸を解繊、あるいは圧潰撚糸を部分的に解繊し、混入時にさらに解繊を進行させるように混入配合してもよい。解繊して混入配合することにより、補強繊維がより均質に硬化体に分散される。なお、圧潰撚糸の解繊は、一部の撚糸が解繊する、あるいは末端から撚糸が部分的に解繊し、残存部が撚糸構造を保持する解繊でもよい。   The crushed twisted yarn may be blended while maintaining the twisted yarn structure, or may be blended by defibrating into a low-order deformed twisted yarn or a deformed single fiber after the twisted yarn is blended into the uncured material. The crushed and cut twisted yarn can be defibrated by rubbing with a material that easily undergoes elastic deformation such as rubber at room temperature. Furthermore, when reinforcing a hardening body by mixing mixing | blending, you may disentangle a crushing twist yarn at the time of mixing mixing | blending. As a method of defibrating when the cement-based hardened body is mixed into the uncured material, it is possible to advance the defibration by mixing and blending in advance into a fine aggregate or a mixture of fine aggregate and coarse aggregate. Further, a part of the crushed twisted yarn may be defibrated before mixing, or the crushed twisted yarn may be partially defibrated, and mixed and mixed so that the defibrating further proceeds at the time of mixing. By defibration and mixing, the reinforcing fibers are more uniformly dispersed in the cured body. Note that the crushed twisted yarn may be defibrated in which part of the twisted yarn is defibrated, or the twisted yarn is partially defibrated from the end, and the remaining portion maintains the twisted yarn structure.

ところで、本参考例における混入配合とは、攪拌などの手法により補強繊維を未硬化材内部での移動を伴って配合することを意味し、具体的には、セメントコンクリート、モルタル、スレート等の未硬化材と補強繊維をミキサーや手練りなどで攪拌や混練りして補強繊維を未硬化材に分散する工程や、高分子の未硬化材に攪拌して分散する工程などが該当する。セメントコンクリート、モルタル、スレートなど、複数の成分を混合して未硬化材とする場合、成分混合工程のあらゆる段階において補強繊維を混入配合してもよい。また、スプレーにより未硬化材と補強繊維を合わせて吹きつける工程も混入配合に該当する。 By the way, the mixing and mixing in this reference example means that the reinforcing fiber is mixed with the movement inside the uncured material by a technique such as stirring, and specifically, cement concrete, mortar, slate, etc. A step of stirring and kneading the cured material and the reinforcing fiber with a mixer or hand kneading to disperse the reinforcing fiber in the uncured material, a step of stirring and dispersing in the polymer uncured material, and the like are applicable. When a plurality of components such as cement concrete, mortar, and slate are mixed to obtain an uncured material, reinforcing fibers may be mixed and mixed at any stage of the component mixing process. In addition, the process of spraying the uncured material and the reinforcing fiber together by spraying also corresponds to the mixing blending.

他方、埋設配合とは、補強繊維や補強体を攪拌せずに未硬化材内に設置する工程や、当該補強繊維や補強体に補強対象となる高分子硬化体の未硬化材を付着または含浸させる工程などを意味する。圧潰撚糸や当該撚糸を解繊して得られた低次の変形撚糸や変形単繊維、あるいは当該撚糸、変形撚糸、または変形単繊維から作製した補強用コード、メッシュシート、ウェブ、不織布、編物、織物等の補強体を未硬化材に埋設配合してもよい。さらに、撚糸で作製した線または面状の補強体を加圧し、補強体を構成する撚糸を圧潰変形して、当該補強体を未硬化材に埋設配合する方法もある。未硬化材への埋設配合は、特に繊維が熱収縮する高温域で行う場合、熱収縮による変形を抑制するため、補強繊維や補強体に張力を作用させ、緊張下で埋設配合することが望ましい。   On the other hand, the embedded composition is a step of installing the reinforcing fiber or the reinforcing body in the uncured material without stirring, or adhering or impregnating the uncured material of the polymer cured body to be reinforced to the reinforcing fiber or the reinforcing body. It means the process to make. Crushing twisted yarn or low-order deformed twisted yarn or deformed single fiber obtained by defibrating the twisted yarn, or reinforcing cord made from the twisted yarn, deformed twisted yarn, or deformed single fiber, mesh sheet, web, nonwoven fabric, knitted fabric, A reinforcing body such as a woven fabric may be embedded in the uncured material. Furthermore, there is a method in which a wire or planar reinforcing body made of twisted yarn is pressurized, the twisted yarn constituting the reinforcing body is crushed and deformed, and the reinforcing body is embedded in an uncured material. In order to suppress the deformation due to heat shrinkage, it is desirable that the embedding compound in the uncured material is embedded in the tension, in order to suppress deformation due to the heat shrinkage, particularly when the fiber is heat-shrinked. .

参考例によって作製し、硬化体に配合する補強繊維の長さや補強体の大きさは、当該補強繊維や当該補強体が硬化体に適切に配合され、硬化体に対して優れた物理的接着性を有する長さや大きさを適宜選択する。 Produced by the present reference example, the length and size of the reinforcement of the reinforcing fibers to be blended in the cured product, the reinforcing fiber and the reinforcing member is suitably formulated to cure body, excellent physical adhesion to the cured body The length and size having the property are appropriately selected.

参考例における硬化体とは、水和反応により硬化したセメント、石膏等の水硬性無機物質、及び架橋反応、温度変化、乾燥等により硬化した熱硬化性樹脂、熱可塑性樹脂、水溶性樹脂、ゴム等の有機あるいは無機高分子物質である。また、未硬化材とは、水硬性硬化体では水と無機成分の混合流動体、高分子硬化体では架橋や加硫硬化(熱硬化性樹脂、ゴム)、冷却硬化(熱可塑性樹脂)、乾燥硬化(水溶性樹脂)前の液体、粉体、可塑性体等の流動体を意味し、型枠により賦形でき、補強繊維を配合できる特性を有する。 The cured body in this reference example is a cement, gypsum or other hydraulic inorganic substance cured by a hydration reaction, and a thermosetting resin, a thermoplastic resin, a water-soluble resin cured by a crosslinking reaction, temperature change, drying, etc. Organic or inorganic polymer substances such as rubber. In addition, uncured materials are mixed fluids of water and inorganic components for hydraulic cured bodies, and crosslinking and vulcanization curing (thermosetting resins and rubbers), cooling and curing (thermoplastic resins), drying for polymer cured bodies. It means a fluid such as liquid, powder, plastic body, etc. before curing (water-soluble resin), and can be shaped by a mold and has a characteristic of being able to incorporate reinforcing fibers.

さらに詳しくは、水硬性のセメントには、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、白色ポルトランドセメントなどのポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメントなどの混合セメント、アルミナセメントや超速硬セメントなどの特殊セメントなどがある。また、石膏には、II型無水石膏、α型半水石膏、β型半水石膏などがある。さらに、セメントコンクリートやモルタルのように、川砂利、砕石などの粗骨材、川砂、砕砂、珪砂などの細骨材、人工軽量骨材等を配合する水硬性硬化体や、他補強繊維(金属繊維、炭素繊維、ガラス繊維、有機繊維等)を配合する水硬性硬化体、AE剤、減水剤、促進剤、遅延剤、急結剤、増粘剤、発泡剤、起泡剤、微粉、防錆剤などの他添加剤を配合する水硬性硬化体も本参考例の補強の対象となる。 In more detail, hydraulic cements include ordinary Portland cement, early strength Portland cement, super early strength Portland cement, moderately hot Portland cement, white Portland cement and other Portland cement, blast furnace cement, silica cement, fly ash cement, etc. There are special cements such as mixed cement, alumina cement and super fast cement. Examples of gypsum include type II anhydrous gypsum, α-type hemihydrate gypsum, and β-type hemihydrate gypsum. Furthermore, hydraulic hardened bodies containing coarse aggregates such as river gravel and crushed stone, fine aggregates such as river sand, crushed sand and quartz sand, artificial lightweight aggregates, and other reinforcing fibers (metal, such as cement concrete and mortar) Fiber, carbon fiber, glass fiber, organic fiber, etc.), hardened cured body, AE agent, water reducing agent, accelerator, retarder, quick setting agent, thickener, foaming agent, foaming agent, fine powder, prevention The hydraulic hardening body which mix | blends other additives, such as a rust agent, also becomes the object of reinforcement of this reference example .

熱硬化性樹脂は、架橋反応前の(他官能性低分子化合物ないし初期縮合反応中間体と触媒の混合物からなる)液体または粉体を加熱または触媒の作用により分子間架橋を起こし硬化するもので、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ポリウレタン樹脂などがある。熱可塑性樹脂は、流動性もしくは可塑性を呈する加熱物を冷却により硬化するもので、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル、ポリスチレン、EVA樹脂、ABS樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアセタールなどがある。水溶性樹脂は、樹脂が溶解した水溶液の乾燥により硬化するもので、メチルセルロースなどのセルロース誘導体、ポリビニルアルコール、ポリアクリルアミド、ポリエチレンイミン、ポリアクリル酸ソーダ、ポリエチレンオキシド、ポリビニルピロリドンなどがある。ゴムは加硫や架橋により硬化するもので、天然ゴムと合成ゴムがあり、さらに合成ゴムにはスチレン‐ブタジエンゴム、ブタジエンゴム、イソプレンゴム、ブチルゴム、エチレン‐プロピレンゴムなどがある。粗骨材、細骨材、人工軽量骨材等を配合する高分子硬化体(ポリマーコンクリート、モルタル)、他補強繊維(金属繊維、炭素繊維、ガラス繊維、有機繊維等)を配合する高分子硬化体(繊維強化プラスチック;FRP)、可塑剤、安定剤、帯電防止剤、難燃剤、充てん剤、着色剤、発泡剤、滑剤、造核剤、カップリング剤、加水分解防止剤、蛍光増白剤、電圧破壊防止剤、赤外線吸収剤などの他添加剤を配合する高分子硬化体なども本参考例の補強の対象となる。また、本参考例の補強繊維または補強繊維から構成される補強用コード、メッシュシート、ウェブ、不織布、編物、織物等の補強体を既存のコンクリート、またはタイヤやベルトなどのゴム部材等に接着して補強する場合、接着剤として補強繊維または補強体に付着または含浸して硬化する高分子(熱硬化性樹脂接着剤、ゴムラテックス等)も、本参考例の補強繊維の優れた物理的接着性を活用し、埋設配合により補強した高分子硬化体とする。なお、当然ながら、水硬性硬化体と高分子硬化体を混合したポリマーセメントコンクリート、モルタルなどの硬化体も本参考例の補強対象である。 The thermosetting resin cures the liquid or powder before the crosslinking reaction (consisting of other functional low molecular weight compound or initial condensation reaction intermediate and catalyst) by causing intermolecular crosslinking by heating or the action of the catalyst. , Phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, silicone resin, polyurethane resin and the like. Thermoplastic resins cure fluids or plastics heated products by cooling, such as polyolefin (polyethylene, polypropylene, etc.), polyvinyl chloride, polystyrene, EVA resin, ABS resin, polyester resin, polyamide resin, polyacetal, etc. is there. The water-soluble resin is cured by drying an aqueous solution in which the resin is dissolved, and examples thereof include cellulose derivatives such as methyl cellulose, polyvinyl alcohol, polyacrylamide, polyethyleneimine, polyacrylic acid soda, polyethylene oxide, and polyvinylpyrrolidone. Rubber is cured by vulcanization or crosslinking, and includes natural rubber and synthetic rubber. Synthetic rubber includes styrene-butadiene rubber, butadiene rubber, isoprene rubber, butyl rubber, and ethylene-propylene rubber. Cured polymer blended with coarse aggregates, fine aggregates, artificial lightweight aggregates, etc. (polymer concrete, mortar) and other reinforcing fibers (metal fibers, carbon fibers, glass fibers, organic fibers, etc.) Body (fiber reinforced plastic; FRP), plasticizer, stabilizer, antistatic agent, flame retardant, filler, colorant, foaming agent, lubricant, nucleating agent, coupling agent, hydrolysis inhibitor, fluorescent whitening agent Further, a polymer cured product containing other additives such as a voltage breakdown preventing agent and an infrared absorber is also an object of reinforcement in this reference example . In addition, the reinforcing fiber such as the reinforcing fiber or the reinforcing fiber of this reference example , a mesh sheet, a web, a nonwoven fabric, a knitted fabric, a woven fabric or the like is bonded to existing concrete or a rubber member such as a tire or a belt. When the material is reinforced, the polymer (thermosetting resin adhesive, rubber latex, etc.) that is cured by adhering to or impregnating the reinforcing fiber or reinforcing body as an adhesive is also excellent in the physical adhesion of the reinforcing fiber of this reference example . To make a cured polymer reinforced by embedding compounding. Incidentally, it is of course, the hydraulic cured body and the polymer cement concrete mixed with polymeric cured product, the reinforcement subject of the cured product is also present embodiment, such as mortar.

硬化体の効果前の状態である未硬化材への補強繊維の配合率は硬化体の種類、配合法、目的等によって異なり、適宜選択する。また、例えば少数本の有機繊維から成る1次の熱固定撚糸を圧潰して各構成繊維に目的に適合する形状を賦形した後に複数の圧潰撚糸を撚り合わせて再熱固定するなど、本参考例の方法によって加工した繊維を再加撚してもよく、必要に応じ熱固定や圧潰変形を繰り返してもよい。さらに、圧潰変形した補強繊維や当該補強繊維から構成される補強体の作製工程において、補強繊維や補強体を未硬化材に配合する長さや大きさとするために繊維を適宜切断する、あるいは埋設配合用の撚糸構造の補強繊維において繊維束を樹脂付着や部分融着により結束するなど、本参考例を構成する基本工程に、他の加工工程を附加してもよい。なお、有機フィラメント糸を加撚した撚糸に対し、コスト低減にも繋がる圧潰、裁断、そして必要に応じて附加される熱固定、解繊等の工程を最適な順序で連続しで行なう設備も、繊維加工の既存の設備の改良により構築可能である。 The blending ratio of the reinforcing fibers to the uncured material in the state before the effect of the cured body varies depending on the type of the cured body, the blending method, the purpose, etc., and is appropriately selected. Further, for example, a primary heat twine made from a small number present organic fibers crushed to each component fiber shape adapted to the purpose, such as to re-heat by twisting a plurality of crushing twisting after shaping, the reference The fiber processed by the method of the example may be retwisted, and heat setting and crushing deformation may be repeated as necessary. Further, in the production process of the crushed reinforcing fiber and the reinforcing body composed of the reinforcing fiber, the fiber is appropriately cut or embedded in order to make the reinforcing fiber and the reinforcing body have a length and size to be blended with the uncured material. Other processing steps may be added to the basic steps constituting this reference example , such as bundling fiber bundles by resin adhesion or partial fusion in reinforcing fibers having a twisted yarn structure. In addition, for twisted yarns twisted with organic filament yarn, equipment that continuously performs processes such as crushing, cutting, and heat fixing, defibration, etc., which are also added as necessary, in an optimal order, It can be constructed by improving existing equipment for textile processing.

ところで、上述してきた参考例に係る補強硬化体の製造方法において、ガラス転移温度が313K以上の有機繊維から成る特定撚糸を用いる場合、必ずしも圧潰工程を含まなくともよい場合があり、このことから本発明がなされたIncidentally, in the manufacturing method of reinforcing a cured product according to the reference example has been described above, when using a specific twisted yarn having a glass transition temperature consists of more organic fibers 313 K, or if there Ri not necessarily include the crushing step, from this that The present invention has been made .

すなわち、ガラス転移温度が313K以上の有機繊維から成る特定撚糸を緊張下で熱固定した後に裁断し、裁断された前記特定撚糸を硬化体の未硬化材に混入配合して、前記未硬化材を硬化する補強硬化体の製造方法である。That is, a specific twisted yarn composed of an organic fiber having a glass transition temperature of 313 K or more is heat-set under tension, and then cut, and the cut specific twisted yarn is mixed and mixed in an uncured material of a cured body, It is a manufacturing method of the hardening hardening body which hardens | cures.

これは、ガラス転移温度が常温より高い313K以上の有機繊維から成る特定撚糸を緊張下でガラス転移温度以上に加熱して当該繊維を螺旋形状に塑性変形した後に、ガラス転移温度以下に冷却硬化して当該形状を固定する熱固定の工程(熱的および力学的)により、硬化体に対する物理的接着性に優れた螺旋形状を繊維に賦形して裁断し、必要に応じ熱固定した特定撚糸を解繊する工程を裁断前若しくは裁断後に附加して、熱固定した撚糸構造や当該特定撚糸を解繊して得られるコイル形状の低次撚糸や単繊維の構造をとる補強繊維を作製し、当該補強繊維を未硬化材に混入配合して、未硬化材を硬化することにより、硬化体のひび割れ拡幅、破片剥落、あるいは過度な変形を高度に抑制することのできる補強硬化体を製造する方法である。 This is because a specific twisted yarn composed of an organic fiber having a glass transition temperature higher than room temperature of 313K or higher is heated to a temperature higher than the glass transition temperature under tension to plastically deform the fiber into a helical shape, and then cooled and cured to a temperature lower than the glass transition temperature. A specific twisted yarn that has been heat-fixed as necessary by shaping the fiber into a spiral shape with excellent physical adhesiveness to the cured body by a heat-setting process (thermal and mechanical) that fixes the shape. A step of defibrating is added before or after cutting, and a heat-fixed twisted yarn structure or a coil-shaped low-order twisted yarn obtained by defibrating the specific twisted yarn or a reinforcing fiber having a single fiber structure is produced, By mixing and blending reinforcing fibers into the uncured material and curing the uncured material, a method of manufacturing a reinforced cured body that can highly suppress crack spreading, debris peeling, or excessive deformation of the cured body. is there

以下、本発明に係る補強硬化体の製造方法の実施形態について、詳述する。 Hereinafter, an embodiment of a method for producing a reinforced cured body according to the present invention will be described in detail.

なお、緊張下及び撚糸次数の意味は、先に説明した参考例と同じで、解繊は、熱固定した特定撚糸をコイル形状の低次撚糸や単繊維に分離することを意味する。 In addition, the meaning of tension and the order of the twisted yarn are the same as in the reference example described above , and defibration means that the heat-set specific twisted yarn is separated into coil-shaped low-order twisted yarn or single fiber.

また、有機繊維の形状、太さ、撚糸の撚数、撚糸の熱固定における、要件や好適な条件、及び混入配合による補強対象となる硬化体の種類は、先に説明した参考例と同じである。 In addition, the shape and thickness of the organic fiber, the number of twisted yarns, the heat setting of the twisted yarns, the requirements and suitable conditions, and the type of the cured object to be reinforced by the blending are the same as in the reference example described above. is there.

さらに、撚糸は、ガラス転移温度が313K以上の有機繊維であれば、同種素材の有機繊維のみから構成してもよく、異種素材(例えばポリアミドとポリエステル)の有機繊維を組み合わせて構成してもよい。   Furthermore, the twisted yarn may be composed of only organic fibers of the same material as long as the glass transition temperature is 313 K or higher, or may be composed of organic fibers of different materials (for example, polyamide and polyester). .

本実施形態では、常温で無機成分と水を攪拌配合して硬化する水硬性硬化体や、常温で硬化させる熱硬化性あるいは水溶性樹脂等の高分子硬化体を当該繊維の混入配合で補強する場合に、熱固定で賦形した繊維の螺旋形状が保持され易い特性を有する。本発明者は、特定撚糸の熱固定の方法により螺旋形状を賦形後に解繊して得られた直径0.235mm、長さ30mmのナイロン66およびPETのコイル形状単繊維を粗骨材(大きさ20〜40mmの砕石)と細骨材(大きさ0.1〜0.5mmの乾燥砂)の等積混合体に投入し、当該混合体をミキサーで1時間に渡り高速撹拌(22回/分)して繊維の形状変化を調査した結果、繊維に賦形した螺旋形状(コイル形状)と直線状の繊維軸(螺旋中心軸)が保持されることを確認している。なお、繊維が細くなると、繊維軸を直線状に保持するために長さを短くするなどの調整を要する。 In this embodiment , a hydraulic cured body that stirs and mixes an inorganic component and water at room temperature and a polymer cured body such as a thermosetting or water-soluble resin that cures at room temperature are reinforced by mixing the fibers. In some cases, the fiber has a characteristic that the helical shape of the fiber formed by heat fixation is easily maintained. The present inventor made a coarse aggregate (large size) of nylon 66 and PET coil-shaped single fibers having a diameter of 0.235 mm and a length of 30 mm obtained by defibration after shaping a helical shape by a method of heat fixing specific twisted yarn. 20-20 mm crushed stone) and fine aggregate (0.1-0.5 mm dry sand) in an equal volume mixture, and the mixture is stirred at high speed (22 times / As a result of investigating the change in the shape of the fiber, it was confirmed that the spiral shape (coil shape) and the linear fiber axis (spiral center axis) formed on the fiber are retained. In addition, when a fiber becomes thin, in order to hold | maintain a fiber axis | shaft linearly, adjustment, such as shortening length, is required.

また、2次以上の特定撚糸において複数の低次撚糸を加撚して高次撚糸とする場合、低次の各撚糸の構成、撚り方向(右撚り、左撚り)、撚数が互いに異なってもよいが、同じ撚り方向の低次撚糸を共通の撚り方向とは逆方向に加撚して高次撚糸とすることが好ましい。低次撚糸の撚り方向が互いに異なると、高次撚糸に加撚する工程で、高次撚糸と撚り方向が同じ低次撚糸の撚数は増え、逆方向の低次撚糸の撚数は減る。また、同じ撚り方向の低次撚糸を共通の撚り方向と同方向に加撚すると、低次撚糸に過度の撚りが新たに加わることがある。   In addition, when a plurality of low-order twisted yarns are twisted into a high-order twisted yarn in a secondary or higher specific twisted yarn, the configuration of each low-order twisted yarn, the twist direction (right twist, left twist), and the number of twists are different from each other. However, it is preferable to twist a low-order twisted yarn in the same twist direction in a direction opposite to the common twist direction to obtain a high-order twisted yarn. When the twisting directions of the low-order twisted yarns are different from each other, the number of twists of the low-order twisted yarn having the same twisting direction as that of the high-order twisted yarn is increased and the number of twists of the low-order twisted yarn in the reverse direction is decreased. Moreover, when the low-order twisted yarn of the same twist direction is twisted in the same direction as the common twist direction, an excessive twist may be newly added to the low-order twisted yarn.

特定撚糸が1次撚糸の場合、構成繊維の断面積比(繊維の最大断面積/最小断面積)と本数を制限するものではないが、円形断面の有機繊維の束であれば断面積比は1から4の範囲が好ましく、当該断面積比の束において好ましい本数は2から10のいずれかの本数、より好ましくは2から4のいずれかの本数である。断面積比がこの範囲より大きいと2本の円形断面の有機繊維を加撚する場合であっても、変形しない太い繊維が芯となり周りに細い繊維が巻付く撚りとなる。また、当該断面積比の束であっても本数が多い場合、他の繊維に囲まれて撚糸中心部に位置するため、撚られても螺旋変形しない若しくは変形の小さい繊維の部位が存在する。当該部位は特定の繊維に限定される場合もあり、撚糸の場所によって異なる繊維に転移する場合もある。繊維の当該部位は撚糸の熱固定による螺旋形状の賦形に適さないため、当該部位の分率を低く抑えることが技術的に要求される。断面積比が1から4の範囲にある円形断面の有機繊維の束を加撚する場合、本数が2〜4本の束では繊維が均一に螺旋変形するものの、本数が5〜10本の束では当該部位の分率が10%台に増え、さらに本数が増すと当該部位の分率が30%に急速に近づく。   When the specific twisted yarn is a primary twisted yarn, the cross-sectional area ratio (maximum cross-sectional area / minimum cross-sectional area of the fiber) and the number of the constituent fibers are not limited. A range of 1 to 4 is preferable, and a preferable number in the bundle of the cross-sectional area ratios is any number from 2 to 10, more preferably any number from 2 to 4. When the cross-sectional area ratio is larger than this range, even when two organic fibers having a circular cross section are twisted, a thick fiber that does not deform becomes a core, and a thin fiber is wound around. Further, when the number of cross-sectional area ratio bundles is large, the number of fibers is surrounded by other fibers and is located at the center of the twisted yarn, and therefore there is a portion of a fiber that is not helically deformed or deformed little even when twisted. The said part may be limited to a specific fiber, and may transfer to a different fiber according to the place of twisted yarn. Since the part of the fiber is not suitable for forming the spiral shape by heat fixing of the twisted yarn, it is technically required to keep the fraction of the part low. When twisting a bundle of organic fibers having a cross-sectional area ratio in the range of 1 to 4 and having a circular cross section, the fibers are uniformly helically deformed in a bundle of 2 to 4 fibers, but a bundle of 5 to 10 fibers. Then, the fraction of the part increases to the 10% range, and when the number of the parts further increases, the fraction of the part approaches rapidly to 30%.

本実施形態では、補強繊維が撚糸構造を保持する必要がなく、低次、より望ましくは単繊維に解繊して硬化体に分散した方が均質配合の観点から好ましい。また、当該低次撚糸または単繊維はコイル形状となり、中心軸方向に作用する破壊応力に対して抗する硬化体部位の繊維1本当たりの量が、解繊前の撚糸構造において繊維間の表面の溝にのみ硬化体部位が存在する場合と比較して顕著に増え、破壊引抜けに対する抵抗性が増す。さらに、特定撚糸が同径の円形断面の有機繊維の1次撚糸の場合には、構成繊維の共同した滑り引抜けが低張力で起き、撚糸と硬化体の物理的接着性を低下させる要因となることもある。 In the present embodiment , it is not necessary for the reinforcing fibers to maintain a twisted yarn structure, and it is preferable from the viewpoint of homogeneous blending that the lower order, more desirably, the fibers are fibrillated and dispersed in a cured body. Further, the low-order twisted yarn or single fiber has a coil shape, and the amount per one fiber of the cured body that resists the breaking stress acting in the central axis direction is the surface between the fibers in the twisted yarn structure before defibration. As compared with the case where the hardened body part exists only in the groove, the resistance against breakage pull-out is increased. Furthermore, in the case where the specific twisted yarn is a primary twisted yarn of an organic fiber having the same diameter and circular cross section, joint pull-out of the constituent fibers occurs at a low tension, and the physical adhesion between the twisted yarn and the cured body is reduced. Sometimes.

このように、補強繊維の撚糸構造は、均質配合、引抜け防止等の補強効果の観点から必ずしも最適な構造ではなく、混入配合迄あるいは混入配合時に熱固定した特定撚糸を解繊して、コイル形状の低次撚糸や単繊維として硬化体に分散することが望ましい。当該撚糸の解繊は、全撚糸が解繊することが好ましいが、一部の撚糸が解繊する、あるいは末端から撚糸が部分的に解繊し、残存部が撚糸構造を保持する解繊でもよい。熱固定した特定撚糸の解繊は、繊維束の結束が弱いほど起き易く、繊維束の結束は、撚糸の構成繊維の本数が多いほど繊維の螺旋変形しない若しくは変形の小さい部位の体積分率が高くなるため弱く、また撚糸の撚数が少ないほど弱くなる。   As described above, the twisted yarn structure of the reinforcing fiber is not necessarily an optimal structure from the viewpoint of the reinforcing effect such as homogeneous blending and pull-out prevention. It is desirable to disperse the cured body in the form of a low-order twisted yarn or single fiber. It is preferable that all twisted yarns are defibrated for defibration of the twisted yarns. However, some twisted yarns are defibrated, or the twisted yarns are partially defibrated from the ends, and the remaining part maintains the twisted yarn structure. Good. Debonding of heat-fixed specific twisted yarn is more likely to occur as the bundle of fiber bundles is weaker, and as the number of constituent fibers of the twisted yarn increases, the volume fraction of the part where the fibers are not helically deformed or deformed is small. It becomes weaker because it becomes higher, and it becomes weaker as the number of twists of the twisted yarn is smaller.

熱固定した特定撚糸の解繊工程は、熱固定後から未硬化材へ混入配合する迄のあらゆる段階で実施してもよい。解繊する温度は、素材の融点以下であればよいが、解繊前の螺旋形状を保持するために解繊工程は素材のガラス転移温度以下で行うことが好適である。裁断後の撚糸は、常温で、ゴムなどの弾性変形し易い素材で擦過することにより、単繊維の螺旋形状を塑性変形せずに解繊することもできる。すなわち、特定撚糸を熱固定した後から未硬化材に混入配合する迄の間に、前記特定撚糸を解繊するのである。 The defibration process of the heat-set specific twisted yarn may be performed at any stage from heat setting to mixing and blending into the uncured material. The temperature for defibration may be equal to or lower than the melting point of the material, but the defibrating process is preferably performed at a temperature equal to or lower than the glass transition temperature of the material in order to maintain the spiral shape before defibration. The twisted yarn after cutting can be defibrated without plastic deformation of the spiral shape of the single fiber by rubbing with a material that is easily elastically deformed such as rubber at room temperature. That is, the specific twisted yarn is defibrated between the time when the specific twisted yarn is heat-fixed and the time when the specific twisted yarn is mixed and mixed in the uncured material.

さらに、熱固定した特定撚糸を混入配合時に解繊してもよい。すなわち、混入配合と同時に、前記特定撚糸を解繊するのである。 Furthermore, the heat-fixed specific twisted yarn may be defibrated during mixing. That is, the specific twisted yarn is defibrated simultaneously with the mixing and blending.

セメント系硬化体の未硬化材への混入時に撚糸を解繊する方法として、細骨材または細骨材と粗骨材の混合材に予め混入し、解繊を高度に進めることもできる。また、混入前に一部の撚糸を解繊、あるいは撚糸を部分的に解繊し、混入時にさらに解繊を進行させるように混入配合してもよい。なお、構成繊維の本数が少なく、撚数が多いため構成繊維間の結束が強い撚糸構造の補強繊維を混入配合する場合は、元の撚糸構造が保持される混入配合であってもよい。   As a method of defibrating the twisted yarn when the cement-based hardened body is mixed into the uncured material, it can be mixed in advance in a fine aggregate or a mixture of fine aggregate and coarse aggregate to further advance the defibration. Alternatively, some twisted yarns may be defibrated before mixing, or the twisted yarn may be partially defibrated and mixed and mixed so that defibration further proceeds at the time of mixing. In addition, in the case of mixing and blending a reinforcing fiber having a twisted yarn structure in which the number of constituent fibers is small and the number of twists is large and the binding between the constituent fibers is strong, the blending and blending in which the original twisted yarn structure is maintained may be used.

ところで、混入前または混入時の解繊により螺旋ピッチが増加する程度の変形が起きてもよいが、硬化体に対する優れた物理的接着性を維持するために、特定撚糸の熱固定より各単繊維に賦形した周期的螺旋形状が解繊工程を通して保持されることが好ましい。   By the way, deformation may occur to the extent that the helical pitch increases due to defibration before or at the time of mixing. However, in order to maintain excellent physical adhesion to the cured body, each single fiber is fixed by heat fixing of a specific twisted yarn. It is preferable that the periodic spiral shape shaped to be maintained during the defibrating process.

本実施形態の方法で作製し、硬化体に混入配合する補強繊維の長さは、当該補強繊維が硬化体に適切に混入配合され、硬化体に対して優れた物理的接着性を有する長さを適宜選択する。 The length of the reinforcing fiber produced by the method of the present embodiment and mixed and blended with the cured body is a length having the physical fiber that is appropriately mixed and blended with the cured body and has excellent physical adhesion to the cured body. Is appropriately selected.

未硬化材への補強繊維の配合率は硬化体の種類、目的等によって異なり、適宜選択する。また、本実施形態の方法によって加工した繊維を再加撚してもよく、必要に応じ熱固定を繰り返してもよい。なお、有機フィラメント糸を加撚した特定撚糸に対し、コスト低減にも繋がる、熱固定、裁断そして必要に応じて附加される解繊等の工程を連続して行なう設備も、繊維加工の既存の設備の改良により構築可能である。 The mixing ratio of the reinforcing fibers to the uncured material varies depending on the type and purpose of the cured body and is appropriately selected. Moreover, the fiber processed by the method of this embodiment may be retwisted, and heat setting may be repeated as necessary. In addition, for the specific twisted yarn twisted with the organic filament yarn, the equipment that continuously performs the steps such as heat fixing, cutting and defibration added as necessary, which also leads to cost reduction, is the existing fiber processing It can be constructed by improving the equipment.

以下、本実施形態について、実施例および比較例を挙げて説明する。   Hereinafter, the present embodiment will be described with reference to examples and comparative examples.

本実施例では、以下の2種類の円形断面有機繊維を試験糸の素線として用いた。
繊維A:素材;ナイロン66 平均直径;0.235mm 平均強度;954MPa
繊維B:素材;PET 平均直径;0.235mm 平均強度;926MPa
In this example, the following two types of circular cross-sectional organic fibers were used as the strands of the test yarn.
Fiber A: Material; nylon 66, average diameter; 0.235 mm, average strength; 954 MPa
Fiber B: Material; PET average diameter; 0.235 mm Average strength; 926 MPa

実施例1、比較例1、実施例2、及び比較例2の各データを示す。 Embodiment Table 1 Example 1 shows each data of Comparative Example 1, Example 2, and Comparative Example 2.

(表の補足説明)
1)1本の繊維からなる試験糸の次数は単繊維と表記。
2)最大張力は、物理的接着度試験時に試験糸の単繊維に作用した最大張力。(試験糸の引抜けまたは切断時に、単繊維当たりに作用した張力)
3)最大応力は、最大張力を単繊維断面積で除した数値。
4)*は、試験中に試験糸が硬化体外で切断したことを示し、引抜けに要する数値は表記載の数値(切断時の張力および応力)以上となるため、*数値間の比較により物理的接着度の違いは評価できない。
(Supplementary explanation of Table 1 )
1) The order of a test yarn composed of one fiber is expressed as a single fiber.
2) The maximum tension is the maximum tension acting on the single fiber of the test yarn during the physical adhesion test. (Tension applied per single fiber when the test yarn is pulled out or cut)
3) The maximum stress is a value obtained by dividing the maximum tension by the single fiber cross-sectional area.
4) * indicates that the test yarn was cut outside the cured body during the test, and the numerical values required for pulling out are equal to or greater than those shown in the table (tension and stress at the time of cutting). The difference in mechanical adhesion cannot be evaluated.

[実施例1]
にデータを示す。
[Example 1]
Table 1 shows the data.

(試験糸作製)
試験糸1〜5は、特定撚糸を緊張下で温度473Kのセラミック平板に平行接触させて5秒間加熱し、緊張を維持したまま空冷する方法で熱固定して作製した。また、試験糸6〜8は、解繊履歴に記載の試験糸を解繊して作製した。なお、右撚りに加撚して1次撚糸を、左撚りに加撚して2次撚糸を作製し、2次撚糸の試験糸は熱固定した1次撚糸を複数本揃えて加撚し、再熱固定して作製した。また、撚糸の熱固定時の緊張は、撚糸が弛まず一定長を保つ条件とし、解繊は天然ゴムシート間で擦過する方法で約293Kの常温で行った。
(Test yarn production)
Test yarns 1 to 5 were prepared by heat-fixing the specific twisted yarn in parallel with a ceramic flat plate having a temperature of 473 K under tension, heating for 5 seconds, and air-cooling while maintaining the tension. Moreover, the test yarns 6-8 were produced by defibrating the test yarns described in the defibration history. The primary twisted yarn is twisted to the right twist, the secondary twisted yarn is twisted to the left twist, and the test yarn of the secondary twist is twisted by arranging a plurality of heat-set primary twisted yarns, It was prepared by reheat fixing. Further, the tension at the time of heat fixing of the twisted yarn was set so that the twisted yarn did not loosen and kept at a certain length, and defibration was performed at a room temperature of about 293 K by rubbing between natural rubber sheets.

(水硬性硬化体の作製)
普通ポルトランド
セメントと水(重量比3:1)を手練したセメントペースト(容器内にあり上面は水平面)に、試験糸1〜8を上面から垂直に15mm挿入し、湿度100%の雰囲気中で24時間硬化後に水槽内に静置し、さらに6日間水中養生して作製した。
(Preparation of hydraulic cured body)
Test yarns 1 to 8 were inserted 15 mm vertically from the top surface into a cement paste (within the container and the top surface was a horizontal surface) prepared by hand kneading ordinary Portland cement and water (weight ratio 3: 1), and in an atmosphere of 100% humidity. After time-hardening, it was allowed to stand in a water tank and further cured under water for 6 days.

(試験糸と水硬性硬化体の物理的接着度試験)
水中養生後に水中から取り出した硬化体を秤量器の上皿に固定し、試験糸露出部を鉛直上方向に引張りながら秤量器荷重表示値の変化を記録し、引抜けまたは切断時の張力(最大張力)を特定する方法で試験した。試験は、硬化体を水中から取り出した後に速やかに行った。
(Physical adhesion test between test yarn and hydraulic cured body)
Fix the cured body taken out of the water after underwater curing to the upper plate of the weigher, record the change of the weigher load display value while pulling the exposed part of the test thread vertically upward, and pull the tension (max. (Tension) was determined by a specified method. The test was conducted immediately after the cured product was taken out of the water.

[比較例1]
にデータを示す。
[Comparative Example 1]
Table 1 shows the data.

試験糸9(無撚単繊維)と水硬性硬化体の接着度試験を行った。水硬性硬化体作製および接着度試験は実施例1の方法と条件で行った。 An adhesion test between the test yarn 9 (untwisted single fiber) and the hydraulic cured body was performed. The production of the hydraulic cured body and the adhesion test were performed according to the method and conditions of Example 1.

[実施例2]
にデータを示す。
[Example 2]
Table 1 shows the data.

(試験糸作製)
試験糸10〜14は特定撚糸を熱固定して作製し、試験糸15〜17は解繊履歴に記載の試験糸を解繊して作製した。撚糸の加撚、熱固定および解繊は、実施例1の方法と条件で行った。なお、試験糸18、19は、それぞれ試験糸1、6と同じである。
(Test yarn production)
Test yarns 10-14 were prepared by heat-fixing specific twisted yarns, and test yarns 15-17 were prepared by defibrating the test yarns described in the defibration history. Twisting the twisting, heat-setting and defibration was carried out in the procedure and conditions in Example 1. The test yarns 18 and 19 are the same as the test yarns 1 and 6, respectively.

(高分子硬化体の作製)
主剤と硬化剤(重量比4:1)を混合したエポキシ樹脂(アオイ化学工業株式会社製エポボンドEB−42)の未硬化液(ガラス製容器内にあり上面は水平面)に、試験糸10〜19を上面から垂直に15mm挿入し、硬化して作製した。
(Production of polymer cured body)
Test yarns 10 to 19 in an uncured liquid of epoxy resin (Epobond EB-42 manufactured by Aoi Chemical Industry Co., Ltd.) mixed with a base agent and a curing agent (weight ratio 4: 1) (in a glass container and the upper surface is a horizontal plane). Was inserted 15 mm vertically from the upper surface and cured.

(試験糸と高分子硬化体の物理的接着度試験)
硬化した高分子硬化体を内含するガラス容器を秤量器の上皿に固定し、試験糸露出部を鉛直上方向に引張りながら秤量器荷重表示値の変化を記録し、引抜けまたは切断時の張力(最大張力)を特定する方法で試験した。
(Physical adhesion test between test yarn and polymer cured product)
A glass container containing a cured polymer cured body is fixed to the upper plate of the weighing instrument, and the change in the weighing instrument load value is recorded while pulling the test yarn exposed part vertically upward. The test was performed in a manner that specified the tension (maximum tension).

[比較例2]
にデータを示す。
[Comparative Example 2]
Table 1 shows the data.

試験糸20、21(無撚単繊維)と高分子硬化体の接着度試験を行った。高分子硬化体作製および接着度試験は実施例2の方法と条件で行った。なお、試験糸21は、試験糸9と同じである。 The adhesion test between the test yarns 20 and 21 (untwisted single fibers) and the polymer cured body was performed. The polymer cured product was prepared and the adhesion test was performed according to the method and conditions of Example 2. The test yarn 21 is the same as the test yarn 9.

以上のように、無撚の繊維と比較して、実施例の方法で螺旋形状を賦形した繊維の水硬性硬化体および高分子硬化体からの引抜き試験時の最大応力(繊維と硬化体の物理的接着度の指標)は増加し、一部の繊維の最大応力は繊維の平均強度に迫る、あるいは平均強度を越えている。 As described above, the untwisted fibers as compared to, for maximum stress (fibers and hardened body during withdrawal tests from the hydraulic cured product and polymeric cured product of the fibers shaping a helical shape by the method of Example The index of physical adhesion) increases, and the maximum stress of some fibers approaches or exceeds the average strength of the fibers.

に、実施例3、比較例3、実施例4、及び比較例4の各データを示す。 Table 2, Example 3, showing data of the comparative example 3, Example 4, and Comparative Example 4.

(表の補足説明)
1)試験体の形状は、1辺100mmの正方形の上下面と5mmの厚みをもつ板状。
2)試験糸22は、6本の繊維Aを右撚りに165t/mの撚数で加撚し、実施例1の方法と条件で熱固定、解繊して作製したコイル形状単繊維。
3)試験糸23は、6本の繊維Bを右撚りに200t/mの撚数で加撚し、実施例1の方法と条件で熱固定、解繊して作製したコイル形状単繊維。
(Supplementary explanation of Table 2 )
1) The shape of the test body is a plate shape having a square with a side of 100 mm and a thickness of 5 mm.
2) Test yarn 22, to twisting in twist number of 165t / m in S twist six fibers A, heat, coil-shaped filaments were produced by defibrating by the procedure and conditions in Example 1.
3) Test yarn 23, to twisting in twist number of 200t / m in S twist the six fibers B, heat, coil-shaped filaments were produced by defibrating by the procedure and conditions in Example 1.

[実施例3]
にデータを示す。
[Example 3]
Table 2 shows the data.

(試験体作製)
試験体1〜3は、普通ポルトランドセメントと水(重量比3:1)を手練したセメントペーストに表記載の各試験糸を手練で均質に分散し、また試験体4は、普通ポルトランドセメントと大きさ0.1〜0.5mmにふるい分けした乾燥川砂、及び水(重量比2:4:1)を手練したセメントモルタル未硬化材に試験糸1を手練で均質に分散し、当該セメントペーストおよびモルタル未硬化材を型枠に詰め、上面を平滑にして不透水性のフィルムを置き、湿度100%の雰囲気中で24時間硬化した後に型枠を外して水槽内に静置し、さらに6日間水中養生して作製した。試験体の形状は、1辺100mmの正方形の上下面と5mmの厚みをもつ板状であった。
(Test specimen production)
In the test bodies 1 to 3, each test yarn described in the table was uniformly dispersed by hand in a cement paste prepared by hand kneading ordinary Portland cement and water (weight ratio 3: 1), and the test body 4 was larger than ordinary Portland cement. The test paste 1 is uniformly dispersed by hand kneading into an uncured cement mortar material obtained by hand-kneading dry river sand and water (weight ratio 2: 4: 1) that have been screened to a thickness of 0.1 to 0.5 mm. The cement paste and mortar Fill the mold with uncured material, place an impervious film with a smooth upper surface, cure for 24 hours in an atmosphere of 100% humidity, remove the mold and leave it in the aquarium for another 6 days. Cured and made. The shape of the test body was a plate shape having a square with a side of 100 mm and a thickness of 5 mm.

(衝撃試験)
ボード類の衝撃試験方法(JIS A 1408)に準じ、水中養生後に水中から取り出した試験体を大きさ0.5〜2.0mmにふるい分けした乾燥川砂上に水平に置き、鋼球(高炭素クロム鋼 直径63.5mm 重量1.042kg)を高さ1mから試験体中央に落とし、試験体の分離、貫通、へこみ、ひび割れの様子を観察した。試験は、硬化体を水中から取り出した後に速やかに行った。
(Impact test)
In accordance with the board impact test method (JIS A 1408), the test specimen taken out from the water after curing under water is placed horizontally on dry river sand screened to a size of 0.5 to 2.0 mm, and steel balls (high carbon chrome Steel (diameter 63.5 mm, weight 1.042 kg) was dropped from a height of 1 m to the center of the specimen, and the specimen was observed for separation, penetration, dents and cracks. The test was conducted immediately after the cured product was taken out of the water.

[比較例3]
にデータを示す。
[Comparative Example 3]
Table 2 shows the data.

試験体5は試験糸9(無撚単繊維)を手練で均質に分散したセメントペーストを、試験体6は補強繊維を配合しないセメントペーストを、また試験体7は試験糸9(無撚単繊維)を手練で均質に分散したセメントモルタル未硬化材を、試験体8は補強繊維を配合しないセメントモルタル未硬化材を、型枠に詰め、硬化して作製した。セメントペーストおよびモルタル未硬化材の試験糸以外の成分配合比と型枠形状(試験体形状)は実施例3と同じで、試験体作製および衝撃試験も実施例3の方法と条件で行った。 The test body 5 is a cement paste in which the test yarn 9 (untwisted single fiber) is uniformly dispersed by hand kneading, the test body 6 is a cement paste not containing reinforcing fibers, and the test body 7 is the test thread 9 (untwisted single fiber). ) Was uniformly dispersed by hand kneading, and the specimen 8 was prepared by filling a mold frame with an uncured cement mortar material containing no reinforcing fiber and curing it. Cement paste and component mixing ratio other than the test yarn Mortar uncured material and mold geometry (specimen shape) the same as in Example 3, also specimens prepared and impact tests were carried out by the method and conditions of Example 3.

[実施例4]
にデータを示す。
[Example 4]
Table 2 shows the data.

(試験体作製)
試験体9、10は、実施例2のエポキシ樹脂の未硬化液に、それぞれ試験糸14、23を攪拌して均質に分散し、当該未硬化液を型枠に注入し、硬化して作製した。試験体の形状は1辺100mmの正方形の上下面と5mmの厚みをもつ板状であった。
(Test specimen production)
Specimens 9 and 10, the uncured liquid epoxy resin of Example 2, was homogeneously dispersed by stirring each test yarns 14, 23, injecting the uncured liquid into a mold was prepared by curing . The shape of the test body was a plate shape having a top and bottom surface of a square with a side of 100 mm and a thickness of 5 mm.

(衝撃試験)
実施例3の試験法で、型枠を外した試験体の衝撃試験を行った。
(Impact test)
With the test method of Example 3, the impact test of the test body from which the mold was removed was performed.

[比較例4]
にデータを示す。
[Comparative Example 4]
Table 2 shows the data.

試験体11は試験糸20(無撚単繊維)を攪拌して均質に分散した実施例2のエポキシ樹脂の未硬化液を、試験体12は補強繊維を配合しない未硬化液を、実施例4と同形状の型枠に注入し、硬化して作製した。衝撃試験は実施例4の方法と条件で行った。 The test body 11 is uncured liquid test yarn 20 (untwisted filaments) dispersed homogeneously by stirring the Example 2 epoxy resin, the test body 12 is an uncured liquid without compounding reinforcing fibers, Example 4 It was poured into a mold having the same shape as that of the mold and cured. The impact test was performed according to the method and conditions of Example 4.

非補強または無撚の繊維を混入配合したセメント板と比較して、本実施形態の方法で加工した繊維を混入配合して補強したセメント板は、衝突部にへこみができるものの、鋼球衝突部の貫通や細片飛散、周辺部の分離を起こさず、衝突面のひび割れの拡幅も抑制され、優れた衝撃強度を示す。セメントモルタル板についても同様である。さらに、本実施形態の方法で加工した繊維を混入配合して補強したプラスチック板も、衝突部にへこみができるものの、試験体の分離および衝突面のひび割れ拡幅が完全に抑制され、優れた衝撃強度を示した。なお、セメントモルタル板を例に、試験体の衝撃破壊の様子を、図6(試験体4)および図7(試験体7)に示す。 Compared with a cement board mixed and blended with unreinforced or untwisted fibers, the cement board reinforced by mixing and blending fibers processed by the method of this embodiment can dent in the collision part, but the steel ball collision part , Penetration of fine pieces, and separation of the peripheral part are not caused, and the widening of cracks on the collision surface is also suppressed, and excellent impact strength is exhibited. The same applies to cement mortar boards. Furthermore, although the plastic plate reinforced by mixing and blending the fibers processed by the method of the present embodiment can also dent in the collision part, separation of the test specimen and crack widening of the collision surface are completely suppressed, and excellent impact strength showed that. In addition, taking a cement mortar board as an example, the state of impact fracture of the test specimen is shown in FIG. 6 (test specimen 4) and FIG. 7 (test specimen 7).

ここで、参考例の具体例を以下に示す。参考例では以下の2種類の円形断面有機繊維を試験糸の素線として用いた。
繊維A:素材;ナイロン66 平均直径;0.235mm 平均強度;954MPa
繊維B:素材;PET 平均直径;0.235mm 平均強度;926MPa
Here, a specific example of the reference example is shown below. In this reference example, the following two types of circular cross-sectional organic fibers were used as the strands of the test yarn.
Fiber A: Material; nylon 66, average diameter; 0.235 mm, average strength; 954 MPa
Fiber B: Material; PET average diameter; 0.235 mm Average strength; 926 MPa

参考例1、参考比較例1、参考例2、及び参考比較例2の各データを示す。 Table 3 shows data of Reference Example 1, Reference Comparative Example 1, Reference Example 2, and Reference Comparative Example 2.

(表の補足説明)
1)1本の繊維からなる試験糸の次数は単繊維と表記。
2)1次撚糸は繊維束を右撚りに加撚して作製。
3)最大張力は、物理的接着度試験時に試験糸の単繊維に作用した最大張力。(試験糸の引抜けまたは切断時に、単繊維当たりに作用した張力)
4)最大応力は、最大張力を単繊維断面積で除した数値。
5)*は、試験中に試験糸が硬化体外で切断したことを示し、引抜けに要する数値は表記載の数値(切断時の張力および応力)以上となるため、*数値間の比較により物理的接着度の違いは評価できない。
(Supplementary explanation of Table 3 )
1) The order of a test yarn composed of one fiber is expressed as a single fiber.
2) A primary twisted yarn is produced by twisting a fiber bundle into a right twist.
3) The maximum tension is the maximum tension acting on the single fiber of the test yarn during the physical adhesion test. (Tension applied per single fiber when the test yarn is pulled out or cut)
4) The maximum stress is a value obtained by dividing the maximum tension by the single fiber cross-sectional area.
5) * indicates that the test yarn was cut outside the cured body during the test, and the numerical values required for pulling out are equal to or greater than the values shown in the table (tension and stress at the time of cutting). The difference in mechanical adhesion cannot be evaluated.

[参考例1]
にデータを示す。
[ Reference Example 1]
Table 3 shows the data.

(試験糸作製)
試験糸1は、撚糸を緊張下で温度473Kのセラミック平板に平行接触させて5秒間加熱し、緊張を維持したまま空冷する方法で熱固定した撚糸を、水平静置した鋼板上に置き、当該撚糸を鉛直上方からステンレス鋼ロッドで均一に加圧しながら圧潰し、前熱固定と同じ方法と条件で再熱固定して作製した。圧潰は約293K(繊維Aのガラス転移温度323Kより低温)の常温で行い、撚糸厚は0.42mmから0.37mmに薄化したが、主に加圧方向にある繊維の交差部位が押し潰されて、撚糸の加圧面には凹凸構造が残存していた。また、試験糸2は、試験糸1を天然ゴムシート間で擦過する方法で、約293Kの常温で解繊して作製した。
(Test yarn production)
The test yarn 1 was placed on a steel plate that had been left in a horizontal position by placing the twisted yarn in parallel contact with a ceramic flat plate having a temperature of 473 K under tension, heating for 5 seconds, and air-cooling while maintaining the tension. The twisted yarn was crushed while being uniformly pressed from above with a stainless steel rod, and reheat-fixed under the same method and conditions as the pre-heat fix. The crushing was performed at room temperature of about 293K (lower than the glass transition temperature of fiber A 323K), and the twisted yarn thickness was reduced from 0.42mm to 0.37mm, but the crossing part of the fibers mainly in the pressing direction was crushed. As a result, the uneven structure remained on the pressure surface of the twisted yarn. Further, the test yarn 2 was produced by defibrating the test yarn 1 at a room temperature of about 293K by a method of rubbing the test yarn 1 between natural rubber sheets.

(水硬性硬化体の作製)
普通ポルトランドセメントと水(重量比3:1)を手練したセメントペースト(容器内にあり上面は水平面)に、試験糸1、2を上面から垂直に15mm挿入し、湿度100%の雰囲気中で24時間硬化後に水槽内に静置し、さらに6日間水中養生して作製した。
(Preparation of hydraulic cured body)
Test yarns 1 and 2 are inserted 15 mm vertically from the top surface into a cement paste (inside the container and the top surface is a horizontal surface) in which ordinary Portland cement and water (weight ratio 3: 1) are hand-kneaded. After time-hardening, it was allowed to stand in a water tank and further cured under water for 6 days.

(試験糸と水硬性硬化体の物理的接着度試験)
水中養生後に水中から取り出した硬化体を秤量器の上皿に固定し、試験糸露出部を鉛直上方向に引張りながら秤量器荷重表示値の変化を記録し、引抜けまたは切断時の張力(最大張力)を特定する方法で試験した。試験は、硬化体を水中から取り出した後に速やかに行った。
(Physical adhesion test between test yarn and hydraulic cured body)
Fix the cured body taken out of the water after underwater curing to the upper plate of the weigher, record the change of the weigher load display value while pulling the exposed part of the test thread vertically upward, and pull the tension (max. (Tension) was determined by a specified method. The test was conducted immediately after the cured product was taken out of the water.

[参考比較例1]
にデータを示す。
[ Reference Comparative Example 1]
Table 3 shows the data.

試験糸3(圧潰変形しない1次撚糸)、試験糸4(無撚単繊維)と水硬性硬化体の接着度試験を行った。試験糸3の熱固定、水硬性硬化体作製および接着度試験は参考例1の方法と条件で行った。 The adhesion test of test yarn 3 (primary twisted yarn that does not undergo crush deformation), test yarn 4 (untwisted single fiber), and a hydraulic cured body was performed. The heat setting of the test yarn 3, the production of the hydraulic cured body, and the adhesion test were performed by the method and conditions of Reference Example 1.

[参考例2]
にデータを示す。
[ Reference Example 2]
Table 3 shows the data.

(試験糸作製)
試験糸5は、熱固定した撚糸を温度363K(繊維Bのガラス転移温度342Kより高温)の水平静置したセラミック平板上に置き、当該撚糸を鉛直上方からステンレス鋼ロッドで加圧しながら均一に圧潰し、緊張を維持したまま空冷する方法で再熱固定して作製した。また、試験糸6は、試験糸5を解繊して作製した。圧潰により撚糸厚は0.44mmから0.33mmに薄化したが、主に加圧方向にある繊維の交差部位が押し潰され、撚糸の加圧面には凹凸構造が残存し、繊維間には僅かな間隙があった。撚糸の圧潰前の熱固定、及び解繊は、参考例1の方法と条件で行った。なお、試験糸7、8は、それぞれ試験糸1、2と同じである。
(Test yarn production)
The test yarn 5 is placed on a horizontally flat ceramic plate at a temperature of 363 K (higher than the glass transition temperature 342 K of the fiber B), and the twisted yarn is uniformly crushed while pressing the twisted yarn from above with a stainless steel rod. Then, it was prepared by reheating and fixing by air cooling while maintaining the tension. Further, the test yarn 6 was produced by defibrating the test yarn 5. The thickness of the twisted yarn was reduced from 0.44 mm to 0.33 mm by the crushing, but the crossing part of the fibers mainly in the pressing direction was crushed, and the concavo-convex structure remained on the pressing surface of the twisted yarn. There was a slight gap. The heat setting and defibration of the twisted yarn before crushing were performed by the method and conditions of Reference Example 1. The test yarns 7 and 8 are the same as the test yarns 1 and 2, respectively.

(高分子硬化体の作製)
主剤と硬化剤(重量比4:1)を混合したエポキシ樹脂(アオイ化学工業株式会社製エポボンドEB−42)の未硬化液(ガラス製容器内にあり上面は水平面)に、試験糸5〜8を上面から垂直に15mm挿入し、硬化して作製した。
(Production of polymer cured body)
Test yarns 5 to 8 in an uncured liquid (epoxy bond EB-42 made by Aoi Chemical Industry Co., Ltd.) mixed with the main agent and a curing agent (weight ratio 4: 1) (in a glass container and the upper surface is a horizontal surface). Was inserted 15 mm vertically from the upper surface and cured.

(試験糸と高分子硬化体の物理的接着度試験)
硬化した高分子硬化体を内含するガラス容器を秤量器の上皿に固定し、試験糸露出部を鉛直上方向に引張りながら秤量器荷重表示値の変化を記録し、引抜けまたは切断時の張力(最大張力)を特定する方法で試験した。
(Physical adhesion test between test yarn and polymer cured product)
A glass container containing a cured polymer cured body is fixed to the upper plate of the weighing instrument, and the change in the weighing instrument load value is recorded while pulling the test yarn exposed part vertically upward. The test was performed in a manner that specified the tension (maximum tension).

[参考比較例2]
にデータを示す。
[ Reference Comparative Example 2]
Table 3 shows the data.

試験糸9(圧潰変形しない1次撚糸)、10(無撚単繊維)、11(圧潰変形しない1次撚糸)、及び12(無撚単繊維)と高分子硬化体の接着度試験を行った。試験糸9の熱固定は参考例1の、高分子硬化体作製および接着度試験は参考例2の方法と条件で行った。なお、試験糸11、12は、それぞれ試験糸3、4と同じである。 The adhesion test of the polymer cured body was performed with test yarns 9 (primary twisted yarn not crushing deformed), 10 (untwisted single fiber), 11 (primary twisted yarn not crushing deformed), and 12 (untwisted single fiber). . The heat fixing of the test yarn 9 was carried out by the method and conditions of Reference Example 1, and the polymer cured body preparation and the adhesion test were carried out by the method and conditions of Reference Example 2. The test yarns 11 and 12 are the same as the test yarns 3 and 4, respectively.

このように、無撚の繊維や圧潰変形しない1次撚糸と比較して、本参考例の方法で圧潰変形した繊維の水硬性および高分子硬化体からの引抜き試験時の最大応力(繊維と硬化体の物理的接着度の指標)は大きく増加し、一部の圧潰変形した繊維の最大応力は繊維の平均強度に迫る、あるいは平均強度を越えている。また、1次の撚糸構造の試験糸であっても、圧潰変形によって極めて優れた硬化体に対する接着性を示す。 Thus, compared to untwisted fiber and primary twisted yarn that does not undergo crushing deformation, the maximum stress (fiber and hardening) during the pull-out test from the hydraulic and polymer cured body of the fiber crushed and deformed by the method of this reference example. The body's physical adhesion index) is greatly increased, and the maximum stress of some crushed fibers approaches or exceeds the average strength of the fibers. Moreover, even if it is a test thread | yarn of the primary twisted-yarn structure, the adhesiveness with respect to the hardened | cured material which was extremely excellent by crushing deformation is shown.

参考例3、参考比較例3、参考例4、及び参考比較例4の各データを示す。 Table 4 shows data of Reference Example 3, Reference Comparative Example 3, Reference Example 4, and Reference Comparative Example 4.

(表の補足説明)
1)試験体の形状は、1辺100mmの正方形の上下面と5mmの厚みをもつ板状。
(Supplementary explanation of Table 4 )
1) The shape of the test body is a plate shape having a square with a side of 100 mm and a thickness of 5 mm.

[参考例3]
にデータを示す。
[ Reference Example 3]
Table 4 shows the data.

(試験体作製)
試験体1は、普通ポルトランドセメントと水(重量比3:1)を手練したセメントペーストに試験糸1を手練で均質に分散して型枠に詰め、上面を平滑にして不透水性のフィルムを置き、湿度100%の雰囲気中で24時間硬化した後に型枠を外して水槽内に静置し、さらに6日間水中養生して作製した。試験体の形状は、1辺100mmの正方形の上下面と5mmの厚みをもつ板状であった。
(Test specimen production)
Specimen 1 is a paste made of ordinary Portland cement and water (weight ratio 3: 1) by hand, and test yarn 1 is uniformly dispersed by hand and packed in a mold, and the upper surface is smoothed to form an impermeable film. Then, after curing for 24 hours in an atmosphere of 100% humidity, the mold was removed and allowed to stand in a water tank, and further cured for 6 days in water. The shape of the test body was a plate shape having a square with a side of 100 mm and a thickness of 5 mm.

(衝撃試験)
ボード類の衝撃試験方法(JIS A 1408)に準じ、水中養生後に水中から取り出した試験体を大きさ0.5〜2.0mmにふるい分けした乾燥川砂上に水平に置き、鋼球(高炭素クロム鋼 直径63.5mm 重量1.042kg)を高さ1mから試験体中央に落とし、試験体の分離、貫通、へこみ、ひび割れの様子を観察した。試験は、硬化体を水中から取り出した後に速やかに行った。
(Impact test)
In accordance with the board impact test method (JIS A 1408), the test specimen taken out from the water after curing under water is placed horizontally on dry river sand screened to a size of 0.5 to 2.0 mm, and steel balls (high carbon chrome Steel (diameter 63.5 mm, weight 1.042 kg) was dropped from a height of 1 m to the center of the specimen, and the specimen was observed for separation, penetration, dents and cracks. The test was conducted immediately after the cured product was taken out of the water.

[参考比較例3]
にデータを示す。
[ Reference Comparative Example 3]
Table 4 shows the data.

試験体2は試験糸4(無撚単繊維)を手練で均質に分散したセメントペーストを、試験体3は補強繊維を配合しないセメントペーストを型枠に詰め、硬化して作製した。セメントペーストの試験糸以外の成分配合比と型枠形状(試験体形状)は参考例3と同じで、試験体作製および衝撃試験も参考例3の方法と条件で行った。 The test body 2 was prepared by packing a cement paste in which the test yarn 4 (untwisted single fiber) was uniformly dispersed by hand kneading, and the test body 3 was filled with a cement paste containing no reinforcing fiber and cured. The composition ratio of the cement paste other than the test yarn and the formwork shape (test body shape) were the same as in Reference Example 3, and the test body preparation and impact test were also performed according to the method and conditions of Reference Example 3.

[参考例4]
にデータを示す。
[ Reference Example 4]
Table 4 shows the data.

(試験体作製)
試験体4は、参考例2のエポキシ樹脂の未硬化液を型枠に注入し、試験糸1を5mm間隔で縦横に格子状に並べて作製した型枠底面と同形の正方形メッシュシートを、型枠内未硬化液に底面から2.5mmの位置に底面に平行に埋設配合し、硬化して作製した。試験体の形状は1辺100mmの正方形の上下面と5mmの厚みをもつ板状であった。
(Test specimen production)
The test body 4 was prepared by injecting an uncured liquid of the epoxy resin of Reference Example 2 into a mold, and forming a square mesh sheet having the same shape as the bottom of the mold formed by arranging the test yarns 1 in a grid shape at intervals of 5 mm. The inner uncured liquid was embedded and blended at a position 2.5 mm from the bottom surface in parallel with the bottom surface and cured. The shape of the test body was a plate shape having a top and bottom surface of a square with a side of 100 mm and a thickness of 5 mm.

(衝撃試験)
参考例3の方法と条件で、型枠を外した試験体の衝撃試験を行った。
(Impact test)
With the method and conditions of Reference Example 3, an impact test was performed on the test specimen from which the mold was removed.

[参考比較例4]
にデータを示す。
[ Reference Comparative Example 4]
Table 4 shows the data.

試験体5は補強繊維を配合しない参考例2のエポキシ樹脂の未硬化液を、参考例4と同形状の型枠に注入し、硬化して作製した。衝撃試験は参考例4の方法と条件で行った。 The test body 5 was prepared by injecting an epoxy resin uncured liquid of Reference Example 2 containing no reinforcing fiber into a mold having the same shape as that of Reference Example 4 and curing it. The impact test was performed by the method and conditions of Reference Example 4.

このように、非補強または無撚の繊維を混入配合したセメント板と比較して、本参考例の方法で加工した繊維を混入配合して補強したセメント板は、衝突部にへこみができるものの、鋼球衝突部の貫通や細片飛散、周辺部の分離を起こさず、衝突面のひび割れの拡幅も抑制され、優れた衝撃強度を示す。また、本参考例の方法で作製したメッシュシートを埋設配合して補強したプラスチック板も、衝突部にへこみができるものの、試験体の分離と衝突面のひび割れ拡幅が完全に抑制され、優れた衝撃強度を示す。 In this way, compared to a cement board mixed and blended with unreinforced or untwisted fibers, the cement board reinforced by mixing and blending the fiber processed by the method of this reference example can be dented in the collision part, It does not penetrate the steel ball collision part, scatters small pieces, or separates the peripheral part, and also suppresses the widening of cracks on the collision surface, and exhibits excellent impact strength. In addition, a plastic plate reinforced by embedding and meshing a mesh sheet prepared by the method of this reference example can also dent in the collision part, but the separation of the test specimen and the crack widening of the collision surface are completely suppressed, resulting in excellent impact. Indicates strength.

参考例に係る補強硬化体の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the reinforcement hardening body which concerns on a reference example . 参考例に係る補強硬化体の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the reinforcement hardening body which concerns on a reference example . 長さ方向に沿って均一に圧潰した圧潰撚糸、及び当該圧潰撚糸を解繊した変形単繊維を加圧方向から見た一部側面図である。It is the partial side view which looked at the crushing twisted yarn uniformly crushed along the length direction, and the deformation | transformation single fiber which fibrillated the said crushing twisted yarn from the pressurization direction. 他の参考例に係る補強硬化体の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the reinforcement hardening body which concerns on another reference example . 撚糸次数の定義を例示する撚糸の一部側面図である。It is a partial side view of the twisted yarn which illustrates the definition of the twisted yarn order. 実施例(試験体4)における試験体の衝撃破壊の様子を示す説明図である。Is an explanatory view showing the state of impact fracture of the test specimen of Example (specimen 4). 比較例(試験体7)における試験体の衝撃破壊の様子を示す説明図である。It is explanatory drawing which shows the mode of the impact fracture of the test body in a comparative example (test body 7).

符号の説明Explanation of symbols

1 圧潰撚糸
2 変形単繊維
3 2次撚糸
4 1次撚糸
5 単繊維
DESCRIPTION OF SYMBOLS 1 Crush twisted yarn 2 Deformed single fiber 3 Secondary twisted yarn 4 Primary twisted yarn 5 Single fiber

Claims (6)

ガラス転移温度が313K以上の有機繊維から成る特定撚糸を緊張下で熱固定した後に裁断し、裁断された前記特定撚糸を硬化体の未硬化材に混入配合して、前記未硬化材を硬化することを特徴とする補強硬化体の製造方法。   A specific twisted yarn made of an organic fiber having a glass transition temperature of 313 K or higher is heat-set under tension and then cut, and the cut specific twisted yarn is mixed and mixed in an uncured material of a cured body to cure the uncured material. A method for producing a reinforced hardened body. 前記特定撚糸を熱固定した後から前記未硬化材に混入配合する迄の間に、前記特定撚糸を解繊することを特徴とする請求項1記載の補強硬化体の製造方法。   2. The method for producing a reinforced cured body according to claim 1, wherein the specific twisted yarn is defibrated between the time when the specific twisted yarn is heat-fixed and before mixing with the uncured material. 混入配合と同時に、前記特定撚糸を解繊することを特徴とする請求項1記載の補強硬化体の製造方法。   The method for producing a reinforced hardened body according to claim 1, wherein the specific twisted yarn is defibrated simultaneously with the mixing and blending. 前記特定撚糸が円形断面の有機繊維の1次撚糸であって、
前記特定撚糸を構成する有機繊維の断面積比が1から4までの範囲にあり、
前記特定撚糸を構成する有機繊維の本数が2から10までのいずれかの本数、
であることを特徴とする請求項1〜3のいずれかに記載の補強硬化体の製造方法。
The specific twisted yarn is a primary twisted yarn of an organic fiber having a circular cross section,
The cross-sectional area ratio of the organic fibers constituting the specific twisted yarn is in the range of 1 to 4,
The number of organic fibers constituting the specific twisted yarn is any number from 2 to 10,
The method for producing a reinforced hardened body according to any one of claims 1 to 3.
前記特定撚糸を構成する有機繊維の本数が2から4までのいずれかの本数であることを特徴とする請求項4に記載の補強硬化体の製造方法。 The method for producing a reinforced hardened body according to claim 4, wherein the number of organic fibers constituting the specific twisted yarn is any number from 2 to 4. 請求項1〜5のいずれかに記載の補強硬化体の製造方法により製造した補強硬化体。   A reinforced cured body produced by the method for producing a reinforced cured body according to claim 1.
JP2007255943A 2007-09-28 2007-09-28 Reinforced cured article and manufacturing method thereof Pending JP2009046648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255943A JP2009046648A (en) 2007-09-28 2007-09-28 Reinforced cured article and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255943A JP2009046648A (en) 2007-09-28 2007-09-28 Reinforced cured article and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007211678A Division JP4105754B1 (en) 2007-08-15 2007-08-15 Reinforced cured body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009046648A true JP2009046648A (en) 2009-03-05

Family

ID=40499161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255943A Pending JP2009046648A (en) 2007-09-28 2007-09-28 Reinforced cured article and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009046648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569273B1 (en) * 2014-03-13 2015-11-16 동의대학교 산학협력단 Reinforcing concrete composition comprising fiber using by waste fish net for and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569273B1 (en) * 2014-03-13 2015-11-16 동의대학교 산학협력단 Reinforcing concrete composition comprising fiber using by waste fish net for and method for producing the same

Similar Documents

Publication Publication Date Title
JP4105754B1 (en) Reinforced cured body and method for producing the same
KR100854894B1 (en) Highly dispersible reinforcing polymeric fibers
Lin et al. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites
JP4368796B2 (en) Inorganic matrix fabric apparatus and method
de Luna et al. Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement
Jamshaid et al. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics
KR101253249B1 (en) Manufacturing methods of ultra-high performance fiber reinforecd concrete mixing the steel fiber of wave and straight type
EP0599340A1 (en) Carbon fibers for reinforcement of cement and cement composite material
US6863969B2 (en) Fiber-reinforced matrix compositions
Zhao et al. Experimental study on effect of resin matrix in basalt fiber reinforced polymer composites under static and fatigue loading
JP2014108898A (en) Composite frp-made short linear material for cement reinforcement and method for manufacturing the same
Zhu et al. Banana fibre strands reinforced polyester composites
JP4980392B2 (en) Fiber reinforced cement mortar
Park et al. Cementless ultra-ductile composites reinforced by polyethylene-based short selvedge fibers for sustainable and resilient infrastructure
Martínez‐Barrera et al. Effects of γ radiation on fiber‐reinforced polymer concrete
JP2009046648A (en) Reinforced cured article and manufacturing method thereof
KR100820914B1 (en) Method for preparing shotcrete composite mixed with pet fiber
Zhang et al. Pull-out behaviour of steel fibres embedded in ultra-high-performance concrete after exposure to high temperatures
JP5758597B2 (en) Reinforcing material and molded article containing the reinforcing material
Slavcheva et al. Pull-out behaviour of steel and carbon fibers in 3D-printable cement matrices of various compositions
Pakravan et al. Cementitious Composites Reinforced With Polypropylene, Nylon and Polyacrylonitile Fibres
KR102589493B1 (en) Composition of reinforcement mortar for concrete structure
KR101887815B1 (en) bundle-type short fibers for fiber reinforced concrete using conjugate fiber and fiber Reinforced concrete using thereof
JP5823698B2 (en) Polymer cement composition
JP2022126885A (en) Fiber-reinforced composite material for reinforcing concrete and concrete structure