JP2009046360A - Manufacturing method of glass plate, manufacturing method of glass for press molding material, and manufacturing method of optical part - Google Patents

Manufacturing method of glass plate, manufacturing method of glass for press molding material, and manufacturing method of optical part Download PDF

Info

Publication number
JP2009046360A
JP2009046360A JP2007215285A JP2007215285A JP2009046360A JP 2009046360 A JP2009046360 A JP 2009046360A JP 2007215285 A JP2007215285 A JP 2007215285A JP 2007215285 A JP2007215285 A JP 2007215285A JP 2009046360 A JP2009046360 A JP 2009046360A
Authority
JP
Japan
Prior art keywords
glass
plate
manufacturing
cooling
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007215285A
Other languages
Japanese (ja)
Other versions
JP4856027B2 (en
Inventor
Nobuhiro Maeda
伸広 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2007215285A priority Critical patent/JP4856027B2/en
Publication of JP2009046360A publication Critical patent/JP2009046360A/en
Application granted granted Critical
Publication of JP4856027B2 publication Critical patent/JP4856027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously manufacturing a glass plate with a small thickness deviation in the width direction of the plate, from molten glass. <P>SOLUTION: The manufacturing method of a glass plate comprises continuously casting molten glass into a casting mold having a pair of the sidewalls facing with each other, a bottom and an open top and moving the cast glass in one direction along to mold it in the form of a plate. A member having projections is brought in contact with the upper surface of the glass moving in the mold. This promotes the cooling of the upper surface and forms projections and depressions on the upper surface in a way that the projections extend from one side of the sidewalls to the other side of the sidewalls. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熔融ガラス流を連続して均一な肉厚の板形状に成形することによって、ガラス板を製造する方法に関する。更に、上記方法によって得られたガラス板を切断し、プレス成形用素材を製造する方法およびこのプレス成形用素材をプレス成形し、得られた成形品からレンズなどの光学部品を製造する方法に関する。   The present invention relates to a method of manufacturing a glass plate by continuously forming a molten glass flow into a plate shape having a uniform thickness. Further, the present invention relates to a method for producing a press-molding material by cutting the glass plate obtained by the above method and a method for producing an optical component such as a lens from the obtained molded product by press-molding the press-molding material.

光学ガラスのように高度の均質性が要求され、かつ建材用板ガラス等に比べ、はるかに引き上げ量の少ないガラスを板状に成形する技術としては、以下の技術が知られている。
(1)熔融ガラスを円管のオリフィスより流出させ、オリフィスの下方に水平に配置された上部開放の溝型の固定鋳型の一端部に鋳込み、該鋳型の他端から成形されたガラスを水平方向に連続的に引き出すガラスの連続成形において、該流下ガラスの自由表面(上面)を未だ軟化状態にある間に、進行方向の一定位置で、一定の表面形状を有する金属板で連打することを特徴とするガラス板の連続成形法(特許文献1参照)。
(2)熔融ガラスを円管のオリフィスより流出させ、オリフィスの下方に水平に配置された上部開放の溝型の固定鋳型の一端部に鋳込み、該鋳型の他端から成形されたガラスを水平方向に連続的に引き出すガラスの連続成形において、該流下ガラスの自由表面(上面)を未だ軟化状態にある間に、冷却体により前記ガラスの上面を押圧しては前記冷却体をガラスの上面から離間する操作を反復することによって前記上面を冷却し、前記ガラスの移動方向に平板状のガラス板を連続して成形していくガラス板の製造方法において、軟化状態にある前記ガラスの上面の鋳型の側壁に近い部位ほど、より上流側から前記冷却を開始することを特徴とするガラス板の製造方法(特許文献2参照)。
特公昭54−13246号公報 特開2002−265229号公報
The following techniques are known as techniques for forming glass with a high degree of homogeneity, such as optical glass, and a glass with a much lower amount of pulling up than a plate glass for building materials.
(1) The molten glass is allowed to flow out of the orifice of the circular tube, cast into one end of a grooved fixed mold with an upper opening horizontally disposed below the orifice, and the glass formed from the other end of the mold is horizontally oriented. In continuous molding of glass drawn continuously, the free surface (upper surface) of the flowing glass is still softened, and is repeatedly hit with a metal plate having a constant surface shape at a fixed position in the traveling direction. A continuous forming method of a glass plate (see Patent Document 1).
(2) The molten glass is allowed to flow out of the orifice of the circular tube, cast into one end of a grooved fixed mold with an open top disposed horizontally below the orifice, and the glass formed from the other end of the mold is horizontally oriented In the continuous molding of the glass drawn continuously, the cooling body is pressed away from the upper surface of the glass by pressing the upper surface of the glass with the cooling body while the free surface (upper surface) of the falling glass is still in the softened state. In the method for manufacturing a glass plate, the upper surface of the glass in a softened state is molded in a method of cooling the upper surface by repeating the operation to form a flat glass plate continuously in the moving direction of the glass. The glass plate manufacturing method characterized in that the cooling is started from the upstream side as the portion is closer to the side wall (see Patent Document 2).
Japanese Patent Publication No.54-13246 JP 2002-265229 A

上記(1)、(2)のいずれの技術を用いても、成形された平板状のガラス板は、その後常温に至るまでの冷却によって板幅方向(ガラス成形時の移動方向に対し直角方向)中央部近辺の肉厚が両端近辺に比べ、局部的に薄くなる傾向が生じる。詳細には、鋳型に接した下面はほぼ平坦だが、上面が板幅方向中央を中心にくぼみ、両端に向かってくぼみの深さが浅くなる。これは、円管のオリフィスから流出した高温の熔融ガラスが、低温の固定鋳型に鋳込まれた後に所定の板幅に広がりながら冷却される当該成形法では、冷却体接触時のガラスの幅方向の温度分布は、板幅方向中央部で最も高く、両外側に向かって下がり勾配になっていることに起因するものである。冷却体接触直後には接触面であるガラス板上表面全体は一旦ほぼ平坦に成形され固化するが、その後の冷却過程で板幅方向両端部に比べ相対的に温度が高い中央部内部の熱収縮量が大きく、かつ中央部上表面はそのガラス内部の熱量で他の場所よりもより高温に再加熱され、冷却体接触直後より粘度が下がる(すなわち剛性が下がる)ため、ガラス板内部の熱収縮の影響が、幅方向中央上表面に集中しやすくなる。   Even if any of the techniques (1) and (2) is used, the formed flat glass plate is cooled in the plate width direction (perpendicular to the moving direction at the time of glass forming) after cooling to room temperature. There is a tendency that the thickness in the vicinity of the central portion is locally smaller than that in the vicinity of both ends. Specifically, the lower surface in contact with the mold is almost flat, but the upper surface is recessed centering in the center of the plate width direction, and the depth of the recess is reduced toward both ends. This is because the high temperature molten glass flowing out from the orifice of the circular tube is cooled while spreading to a predetermined plate width after being cast into a low temperature fixed mold, and in the width direction of the glass when the cooling body contacts This temperature distribution is the highest in the central portion in the plate width direction, and is caused by the downward slope toward both outer sides. Immediately after contact with the cooling body, the entire upper surface of the glass plate, which is the contact surface, is once formed almost flat and solidified. The amount of heat inside the glass plate is large and the upper surface of the glass is reheated to a higher temperature than other places due to the amount of heat inside the glass, and the viscosity decreases (ie, the rigidity decreases) immediately after contact with the cooling body. Is more likely to concentrate on the upper surface in the center in the width direction.

熔融ガラス流から板形状に成形されたガラス板は、通常、光学ガラスからなるガラス片を成形する場合、例えばプレス成形用のガラス素材を量産する際、中間体として使用される。成形されたガラス板は、主にダイヤモンドホイールの切断機で縦横に切断され、サイコロ状の小片にされた後、角落としと重量調整のためのバレル研磨工程を経てプレス成形用素材となる。そして、加熱・軟化された状態で成形型によりプレス成形され、所定形状を有するガラス成形品となる。その後は必要に応じて成形品に研削、研磨加工が施され、レンズなどの光学素子に仕上げられる。この際、ガラス板材料の肉厚の均一性が悪ければ悪いほど、均等幅で切断されたサイコロ状小片の重量偏差は大きくなるので、プレス材料としての小片の重量偏差を小さくするために、バレル加工の時間を小片の重量により変更する手間が増えたり、重量が大きいものは加工時間を長く取る必要が出てくるので、材料ロス量が増えるだけでなく、生産効率を悪化させる原因となる。   A glass plate formed into a plate shape from a molten glass flow is usually used as an intermediate when a glass piece made of optical glass is formed, for example, when a glass material for press molding is mass-produced. The formed glass plate is cut into a dice-like piece mainly by a diamond wheel cutting machine, and is then turned into a dice-shaped piece, and then subjected to a barrel polishing process for corner cutting and weight adjustment to become a material for press forming. And it press-molds with a shaping | molding die in the state heated and softened, and becomes a glass molded product which has a predetermined shape. Thereafter, the molded product is ground and polished as necessary, and finished into an optical element such as a lens. At this time, the worse the thickness uniformity of the glass plate material, the larger the weight deviation of the dice-shaped pieces cut with a uniform width, so in order to reduce the weight deviation of the small pieces as a press material, Since it takes time to change the processing time depending on the weight of the small piece, and a heavy one needs to take a long processing time, not only the amount of material loss increases but also the production efficiency deteriorates.

そこで本発明は、熔融ガラスから、板幅方向の厚み偏差の少ないガラス板を連続して製造するための手段を提供することを目的としてなされたものである。   Then, this invention is made | formed for the purpose of providing the means for manufacturing continuously the glass plate with few thickness deviations in a plate width direction from molten glass.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、冷却板等の冷却部材のガラス上面との接触面に突起を設け、鋳型の一方の側壁側から他方の側壁側へ向かって凸部が連続するようにガラス上面に凹凸を形成することにより、ガラス中央部が局部的にくぼむことにより板幅方向の厚み偏差が増大することを抑制できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has provided a protrusion on the contact surface of the cooling member such as a cooling plate with the upper surface of the glass so as to go from one side of the mold to the other side. By forming irregularities on the upper surface of the glass so that the convex portions are continuous, it is found that the thickness deviation in the plate width direction can be suppressed by locally denting the central portion of the glass, and the present invention is completed. It came to do.

即ち、上記目的は、下記手段によって達成された。
[1]一対の対向する側壁と底面とを有し、かつ上部が開放された鋳型内へ、熔融ガラス流を連続して鋳込み、鋳込まれたガラスを両側壁に沿って一方向に移動させながら板状に成形するガラス板の製造方法において、
鋳型内を移動するガラスの上面に突起を有する部材を接触させることにより、該上面の冷却を促進するとともに、該上面に、一方の側壁側から他方の側壁側へ向かって凸部が連続するように凹凸を形成することを特徴とするガラス板の製造方法。
[2]前記凹凸は、前記一方の側壁側から他方の側壁側へ向かって連続する線状の凹みを含む[1]に記載のガラス板の製造方法。
[3]前記凹凸は、前記一方の側壁側から他方の側壁側へ向かって複数の不連続な凹みを含む[1]に記載のガラス板の製造方法。
[4][1]〜[3]のいずれかに記載の方法により作製されたガラス板からガラス片を分割し、該ガラス片に研磨加工を施しプレス成形用ガラス素材を得るプレス成形用ガラス素材の製造方法。
[5][4]に記載の方法により作製されたプレス成形用ガラス素材を加熱し、プレス成形することにより光学部品を得る光学部品の製造方法。
[6][4]に記載の方法により作製されたプレス成形用ガラス素材を加熱し、プレス成形してガラス成形品を作製し、該ガラス成形品に研削および/または研磨工程を施すことにより光学部品を得る光学部品の製造方法。
That is, the above object has been achieved by the following means.
[1] A molten glass stream is continuously cast into a mold having a pair of opposing side walls and a bottom surface and the upper part being opened, and the cast glass is moved in one direction along both side walls. In the method of manufacturing a glass plate that is molded into a plate shape while
By bringing a member having a protrusion into contact with the upper surface of the glass that moves in the mold, cooling of the upper surface is promoted, and a convex portion is continuous with the upper surface from one side wall side to the other side wall side. A method for producing a glass plate, comprising forming irregularities on the substrate.
[2] The method for producing a glass plate according to [1], wherein the unevenness includes a linear recess continuous from the one side wall side toward the other side wall side.
[3] The method for manufacturing a glass plate according to [1], wherein the unevenness includes a plurality of discontinuous recesses from the one side wall side toward the other side wall side.
[4] A glass material for press molding that divides a glass piece from the glass plate produced by the method according to any one of [1] to [3], and polishes the glass piece to obtain a glass material for press molding. Manufacturing method.
[5] A method for manufacturing an optical component, in which an optical component is obtained by heating and press-molding a glass material for press molding produced by the method according to [4].
[6] A glass material for press molding produced by the method described in [4] is heated, press-molded to produce a glass molded product, and the glass molded product is subjected to grinding and / or polishing steps to obtain an optical material. A method of manufacturing an optical component to obtain a component.

本発明のガラス板の製造方法によれば、連続して板幅方向の肉厚偏差の小さなガラス板を製造することができる。そして、熔解能力が小さく、単位時間当たりの流量が比較的少ない炉で溶解されたガラスでも、また、それが失透しやすい光学ガラスでも、広範囲の引き出し速度変更に対応して上記均一な肉厚のガラス板を成形することができる。
また、本発明のプレス成形用素材の製造方法によれば、このようなガラス板を用いることにより、体積偏差の小さな複数個のガラス片を容易に作製することができ、一定体積、一定重量のプレス成形用素材を得るために研磨加工によって除去しなければならないガラスの量を削減することができる。
さらに本発明によれば、上記プレス成形用素材の製造方法により体積偏差の小さなプレス成形用素材を容易に得ることができるので、安定した精度でプレス成形品を作製することができるとともに、熔融ガラスから光学部品を得る過程で使用されずに、バレル研磨加工などで破棄されるガラスの量の削減を容易に行うことができる。
According to the manufacturing method of the glass plate of this invention, the glass plate with a small thickness deviation of a plate width direction can be manufactured continuously. Even with glass melted in a furnace with a low melting capacity and a relatively low flow rate per unit time, or optical glass that is easily devitrified, the above uniform wall thickness can be accommodated in response to a wide range of drawing speed changes. The glass plate can be formed.
In addition, according to the method for producing a press-molding material of the present invention, by using such a glass plate, a plurality of glass pieces having a small volume deviation can be easily produced. It is possible to reduce the amount of glass that must be removed by polishing to obtain a press-molding material.
Furthermore, according to the present invention, a press-molding material having a small volume deviation can be easily obtained by the above-described method for producing a press-molding material. Therefore, it is possible to easily reduce the amount of glass discarded without being used in the process of obtaining optical components from the barrel polishing process or the like.

[ガラス板の製造方法]
本発明は、一対の対向する側壁と底面とを有し、かつ上部が開放された鋳型内へ、熔融ガラス流を連続して鋳込み、鋳込まれたガラスを両側壁に沿って一方向に移動させながら板状に成形するガラス板の製造方法に関する。本発明のガラス板の製造方法では、鋳型内を移動するガラスの上面に突起を有する部材を接触させることにより、該上面の冷却を促進するとともに、該上面に、一方の側壁側から他方の側壁側へ向かって凸部が連続するように凹凸を形成する。
[Glass plate manufacturing method]
The present invention continuously casts a molten glass flow into a mold having a pair of opposing side walls and a bottom surface and having an open top, and moves the cast glass in one direction along both side walls. It is related with the manufacturing method of the glass plate shape | molded in plate shape. In the method for producing a glass plate of the present invention, a member having a protrusion is brought into contact with the upper surface of the glass moving in the mold, thereby promoting cooling of the upper surface, and from the one side wall side to the other side wall. Concavities and convexities are formed so that the convex portions are continuous toward the side.

前述の特許文献1および2に記載の成形法では、連打用金属板または冷却体の接触によりガラス上表面は、凹凸のないほぼ平滑な表面を持つことになる。これに対し、本発明者は、驚くべきことに、突起を有する冷却部材と鋳型に鋳込まれたガラス上面とを接触させることにより、ガラス板が常温に至るまでの冷却において板幅方向中央部近辺の肉厚が両端近辺に比べて局部的に薄くなることを防ぎ、均一な肉厚を有するガラス板が得られることを新たに見出した。これは、(1)ガラス板上表面に水平方向でほぼ均一な厚みの平滑な冷却固化層が形成される従来成形方法に比べ、表面の冷却固化層が凹凸に沿って深さ方向に広がり、表面の変形に対する断面二次モーメントの値を上げることができ、これにより、ガラス上表面に熱収縮による変形に耐え得る強度を付与できること、(2)突起の存在により冷却部材とガラス上面との接触面積が増加することにより、同一接触時間におけるガラスとの熱交換効率を上昇させることができ、接触面のガラス粘度をより増大させ、かつ冷却板が離れた後も、大きな表面積で外気との熱交換が促進されるため、ガラス板幅方向中央部と両端部の温度差による冷却過程での中央部の大きな熱収縮を、上表面中央部に局部集中させず、ガラス板幅方向表面全体でなだらかに吸収することができること、によるものと考えられる。
以下に、本発明のガラス板の製造方法について、更に詳細に説明する。
In the forming methods described in Patent Documents 1 and 2 described above, the surface of the glass has a substantially smooth surface with no irregularities due to contact with the metal plate for continuous hitting or the cooling body. On the other hand, the present inventor surprisingly brought the cooling member having a protrusion and the upper surface of the glass cast into the mold into contact with each other, thereby cooling the glass plate at room temperature in the central portion in the plate width direction. It has been newly found that a glass plate having a uniform thickness can be obtained by preventing the thickness in the vicinity from being locally reduced compared to the vicinity in both ends. Compared with the conventional molding method in which a smooth cooling and solidification layer having a substantially uniform thickness in the horizontal direction is formed on the upper surface of the glass plate (1), the surface cooling and solidification layer spreads in the depth direction along the unevenness, The value of the moment of inertia of the cross section with respect to the deformation of the surface can be increased, and thereby, the strength capable of withstanding the deformation due to thermal shrinkage can be imparted to the upper surface of the glass. By increasing the area, the efficiency of heat exchange with the glass during the same contact time can be increased, the glass viscosity of the contact surface is further increased, and the heat from the outside air can be increased with a large surface area even after the cooling plate is separated. Since the exchange is promoted, the large heat shrinkage of the central part in the cooling process due to the temperature difference between the central part of the glass plate width direction and both ends is not concentrated on the central part of the upper surface, and it is not concentrated on the entire glass plate width direction surface. Is To be able to crab absorption, it is believed to be due.
Below, the manufacturing method of the glass plate of this invention is demonstrated in detail.

本発明のガラス板の製造方法では、一対の対向する側壁と底面とを有し、かつ上部が開放された鋳型内へ、熔融ガラス流を連続して鋳型に鋳込み、鋳型内で板状に成形する。熔融ガラス流の連続した鋳型への鋳込みは、例えば、流出管の流出口(オリフィス)から連続して流下する熔融ガラスを鋳型に流し込むことにより行われる。使用される鋳型は、例えば、ガラス板の幅を所要の幅に規制する一対の対向する「側壁」と、2つの側壁の間にガラスの引き出し方向の反対側へのガラスの流れを堰き止めるように設置された「堰板」と、前記ガラス板の対向する2つの主表面の一方を成形する「底面」とで構成された溝型の固定鋳型であることができる。   In the method for producing a glass plate of the present invention, a molten glass stream is continuously cast into a mold having a pair of opposed side walls and a bottom surface and the upper part being opened, and is formed into a plate shape within the mold. To do. The molten glass flow is cast into a continuous mold by, for example, pouring molten glass that continuously flows down from the outlet (orifice) of the outflow pipe into the mold. The mold used is, for example, a pair of opposing “side walls” that regulate the width of the glass plate to the required width, and damming the glass flow to the opposite side of the glass drawing direction between the two side walls. And a “bottom plate” formed of a “bottom plate” that molds one of two opposing main surfaces of the glass plate.

鋳型に鋳込まれた溶融ガラスは鋳型内で板状に成形される。成形された板状ガラスは、鋳型外へ連続的に引き出される。具体的には、鋳型の「堰板」の反対側から、鋳型とともに水平に配置されたベルトコンベアー等の搬送手段を用いて水平方向に板状ガラスを引き出しながら冷却、成形することにより所定の板厚のガラス板を連続して成形することができる。   The molten glass cast into the mold is formed into a plate shape within the mold. The formed sheet glass is continuously drawn out of the mold. Specifically, from a side opposite to the “dam plate” of the mold, a predetermined plate is obtained by cooling and forming the glass sheet while pulling out the glass sheet in the horizontal direction using a conveying means such as a belt conveyor arranged horizontally with the mold. A thick glass plate can be continuously formed.

本発明のガラス板の製造方法では、鋳型内に鋳込まれ両側壁に沿って一方向に移動するガラスの上面を、突起を有する部材(以下、「冷却部材」ともいう)を接触させる。これにより、ガラス上面の冷却を促進するとともに、該上面に、一方の側壁側から他方の側壁側へ向かって凸部が連続するように凹凸を形成する。   In the method for producing a glass plate of the present invention, a member having protrusions (hereinafter also referred to as a “cooling member”) is brought into contact with the upper surface of glass that is cast into a mold and moves in one direction along both side walls. Thereby, the cooling of the glass upper surface is promoted, and irregularities are formed on the upper surface so that the convex portions are continuous from one side wall side to the other side wall side.

前記冷却部材としては、ガラス上面と間欠的に接触させることによりガラス上面を冷却する場合は板状部材を用いることが好ましく、ガラス上面と連続的に接触させる場合はローラー状部材を用いることが好ましい。間欠的な接触に適する態様としては、ガラス原料を補充、熔解しながら熔融ガラス流の鋳込みを行う態様を挙げることができる。ガラス原料を補充、熔解しながら熔融ガラス流の鋳込みを行う、所謂、連続熔解方式では、成形での形状品質を優先して流量を十分に大きくすることは、限られた規模の溶解炉で(特に内部)品質を維持するために難しいので、通常、その鋳込み速度に合わせるためにガラスの引き出し速度も遅くなる。ガラスの引き出し速度が遅いとローラーと連続的に接触させることによりガラス上面を冷却させようとすると、ガラス上面と、ガラス上面と熱融着しないようガラス転移点以下の温度に保たれた冷却部材とを、比較的長時間接触させ続けざるを得ない為、ガラス上面が冷えすぎて熱衝撃でクラックが発生したり、割れやすくなったりする。そのため、熔融ガラス流の鋳込み速度が比較的遅い上記態様では、ガラス上面を冷却部材と間欠的に接触させることにより冷却することが好ましい。一方、ガラス原料を1バッチ毎に熔解する、所謂、間欠熔解方式では、ガラスを流出する際には1バッチ全体の内部の均質化は既に終了しているので、鋳型に鋳込む熔融ガラスの流速をほぼ任意に選択することができるため、鋳込み速度を速くすることができる。鋳込み速度が速ければ、それに応じてガラスの引き出し速度を早くすることができるため、ガラス上面をローラー状の冷却部材と連続的に接触させても、接触時間が短いため過剰冷却の問題を起こすことは少ない。ガラス上面と冷却部材とを連続的に接触させることは、冷却促進効果の点では有利である。よって、熔融ガラス流の鋳込み量が比較的早い上記態様では、ガラス上面を冷却部材と連続的に接触させることが好ましい。   As the cooling member, a plate-like member is preferably used when the glass upper surface is cooled by intermittently contacting the glass upper surface, and a roller-like member is preferably used when continuously contacting the glass upper surface. . As a mode suitable for intermittent contact, a mode in which a molten glass flow is cast while replenishing and melting a glass raw material can be mentioned. In the so-called continuous melting method, in which molten glass flow is cast while replenishing and melting glass raw materials, it is possible to give a sufficiently large flow rate in preference to shape quality in molding in a melting furnace of a limited scale ( In particular, it is difficult to maintain the quality, so the glass drawing speed is usually slowed down to match the casting speed. When trying to cool the upper surface of the glass by continuously contacting with the roller when the glass drawing speed is slow, the glass upper surface, and a cooling member maintained at a temperature below the glass transition point so as not to be thermally fused with the glass upper surface, Since the glass must be kept in contact for a relatively long period of time, the upper surface of the glass is too cold and cracks occur due to thermal shock, or the glass tends to break. Therefore, in the above aspect in which the casting speed of the molten glass flow is relatively slow, it is preferable to cool the glass upper surface by intermittently contacting the cooling member. On the other hand, in the so-called intermittent melting method in which the glass raw material is melted for each batch, when the glass flows out, the homogenization inside the entire batch has already been completed, so the flow rate of the molten glass cast into the mold Can be selected almost arbitrarily, so that the casting speed can be increased. If the casting speed is high, the glass drawing speed can be increased accordingly. Even if the upper surface of the glass is continuously brought into contact with the roller-like cooling member, the contact time is short, which causes the problem of overcooling. There are few. It is advantageous in terms of the cooling promotion effect that the glass upper surface and the cooling member are continuously brought into contact with each other. Therefore, in the above aspect in which the casting amount of the molten glass flow is relatively fast, it is preferable that the upper surface of the glass is continuously brought into contact with the cooling member.

次に、前記間欠的接触による冷却を例にとり、以下に、上記冷却部材およびガラス上面に形成する凹凸の詳細を、図面を参照しながら説明する。ただし、本発明は下記態様に限定されるものではない。   Next, taking the cooling by the intermittent contact as an example, the details of the unevenness formed on the cooling member and the glass upper surface will be described below with reference to the drawings. However, the present invention is not limited to the following embodiments.

図1〜3に、間欠的接触による冷却に使用可能な冷却部材の例(例1〜3)および各冷却部材との接触によりガラス上面に形成される凹凸パターンを示す。   1 to 3 show examples of cooling members that can be used for cooling by intermittent contact (Examples 1 to 3) and uneven patterns formed on the upper surface of the glass by contact with each cooling member.

図1〜3中、図(1)は冷却部材(以下、「冷却板」ともいう)の断面図であり、図(2−1)は、冷却部材のガラス上面との接触面の平面図であり、図(2−2)は、図(2−1)に示す断面における断面図を示し、図(3)は、各冷却部材との接触によりガラス上面に形成される凹凸パターンを示す。   1-3, FIG. (1) is sectional drawing of a cooling member (henceforth "cooling plate"), FIG. (2-1) is a top view of a contact surface with the glass upper surface of a cooling member. Yes, FIG. (2-2) shows a cross-sectional view in the cross section shown in FIG. (2-1), and FIG. (3) shows a concavo-convex pattern formed on the upper surface of the glass by contact with each cooling member.

本発明では、冷却部材との接触により、ガラス上面に、鋳型の一方の側壁側から他方の側壁側へ向かって凸部が連続するように凹凸を形成する。ここで「連続する」とは、ガラス上面に形成された凹凸の凸部上で、鋳型の一方の側壁側の凸部端部を出発点として他方の側壁側へ辿っていく際、凸部が凹部によって分断されることなく、他方の側面側の凸部端部に辿り着けることをいうものとする。
前述のように、ガラス板内部の熱収縮の影響は幅方向中央上表面に集中しやすいが、このような凹凸を形成することにより、ガラス上面の変形に対する断面二次モーメントを大きくして強度を高めることができるため、ガラス板の幅方向中央部の厚みが両端に比べて極度に薄くなり、肉厚が不均一になることを防ぐことができる。これに対し、例えば島状の凸部のように、一方の側壁側から他方の側壁側に向かって凸部が連続しない凹凸では、ガラス上面の変形に対する断面二次モーメントが凸部不連続部で小さくなってしまうため、凹凸を形成しても変形に耐え得る強度を付与することはできない。
In this invention, an unevenness | corrugation is formed in a glass upper surface by contact with a cooling member so that a convex part may continue toward the other side wall side from the one side wall side of a casting_mold | template. Here, “continuous” means that when the convex portion formed on the upper surface of the glass is traced to the other side wall from the convex portion end on the one side of the mold, the convex portion It shall be able to reach the end of the convex portion on the other side without being divided by the concave portion.
As described above, the effect of thermal shrinkage inside the glass plate tends to concentrate on the upper surface in the center in the width direction, but by forming such irregularities, the cross-sectional second moment with respect to the deformation of the glass upper surface is increased and the strength is increased. Since it can raise, the thickness of the width direction center part of a glass plate becomes extremely thin compared with both ends, and it can prevent that thickness becomes non-uniform | heterogenous. On the other hand, for example, in the case of irregularities in which the convex part does not continue from one side wall side to the other side wall side like the island-shaped convex part, the cross-sectional second moment with respect to the deformation of the glass upper surface is a convex part discontinuous part. Since it becomes small, the intensity | strength which can endure a deformation | transformation cannot be provided even if unevenness is formed.

前記凹凸は、例えば例1および例2のように、ガラスとの接触面に線状突起を有する冷却板をガラス上面と接触させることにより、ガラス上面の一方の側壁側から他方の側壁側へ向かって連続する線状の凹みと、一方の側壁側から他方の側壁側へ向かって連続する線状の凸部からなるものでもよく、例3のように、ガラスとの接触面に島状の不連続な突起を有する冷却板をガラス上面と接触させることにより、ガラス上面の一方の側壁側から他方の側壁側へ向かって複数の不連続な凹みと、それら凹みを取り囲む、一方の側壁側から他方の側壁側へ向かって連続する線状の凸部と、ガラス移動方向において連続する線状の凸部とからなるものでもよい。例3のように格子状の凹凸を形成すると、ガラス表面のいずれの方向の変形に対しても強度を上げることができる。また、ガラス板の成形工程において、板幅方向の温度分布(粘度分布)は、ほぼ円弧に近い形状となるため、例2のように冷却板接触前のガラス表面の等温線に近似した円弧状に凹凸を形成すれば、ほぼ均一な粘度の位置で凹凸パターンを形成することができる。また、例1に示すようにガラス移動方向に直交する方向に連続するように凸部を形成することは、厚み方向への収縮に対する強度増大の点では最も好ましい。また、凹凸パターンとしては、図4に示すように凸部が交差する格子形状とすることもできる。なお、凹凸は、冷却工程において最も変形しやすいガラス板幅方向中央部を含むように形成すればよく、成形の早期段階で固化が進んでいる両端から内側数ミリの位置までは、必ずしも凹凸を形成する必要はない。つまり凸部両端とガラス板両端は一致させなくてもよい(例1〜3参照)。   For example, as in Example 1 and Example 2, the irregularities are formed by bringing a cooling plate having linear protrusions on the contact surface with the glass into contact with the upper surface of the glass, thereby moving from one side of the glass upper surface to the other side of the glass. A linear dent that is continuous from one side wall side to the other side wall side, and an island-like irregularity is formed on the contact surface with the glass as in Example 3. By bringing a cooling plate having continuous protrusions into contact with the upper surface of the glass, a plurality of discontinuous dents from one side of the glass upper surface toward the other side of the glass, and surrounding the dents, from one side to the other It may consist of a linear convex part that continues toward the side wall side of the glass and a linear convex part that continues in the glass movement direction. When grid-like irregularities are formed as in Example 3, the strength can be increased against deformation in any direction on the glass surface. Further, in the glass plate forming step, the temperature distribution (viscosity distribution) in the plate width direction has a shape almost similar to a circular arc, and thus an arc shape that approximates the isothermal line of the glass surface before contacting the cooling plate as in Example 2. If unevenness is formed on the surface, the unevenness pattern can be formed at a substantially uniform viscosity position. In addition, as shown in Example 1, it is most preferable to form the convex portion so as to be continuous in a direction orthogonal to the glass moving direction in terms of an increase in strength against shrinkage in the thickness direction. Further, as the concavo-convex pattern, as shown in FIG. In addition, the unevenness may be formed so as to include the glass plate width direction central portion that is most easily deformed in the cooling process, and the unevenness is not necessarily provided from the both ends where solidification has progressed in the early stage of molding to the position of several millimeters inside. There is no need to form. That is, the both ends of the convex portion and the both ends of the glass plate do not have to be matched (see Examples 1 to 3).

例えば例3に示すように島状の凹みを形成する場合、隣接する凹み同士の間隔が狭いほど、またガラス上面の凹みの数が多いほど、概ね変形に対する強度を高めることができる。ただし、凹み密度によっては、作製したガラス板から複数個のガラス片を分割切断する際、切断位置によって体積差が大きくなることがある。このような場合は、例えば1つのガラス片に同数の凹みが含まれるようにガラス板からガラス片を分割切断できる切断位置を選定することが好ましい。   For example, as shown in Example 3, when an island-shaped dent is formed, the strength against deformation can be generally increased as the distance between adjacent dents is narrower and the number of dents on the upper surface of the glass is larger. However, depending on the dent density, when a plurality of glass pieces are divided and cut from the produced glass plate, the volume difference may increase depending on the cutting position. In such a case, for example, it is preferable to select a cutting position at which the glass piece can be divided and cut from the glass plate so that the same number of dents are included in one glass piece.

凹凸の高低差(凹み深さ)は、大きいほど強度向上効果は高い。ただし、作製されたガラス板から分断したガラス片は、通常、重量公差内に入るように研磨等により凹凸を除去して使用される。そのため、凹み深さが大きく個々の重量偏差が大きいと除去しなければならないガラス量が増える。よって、本発明では強度向上効果と後工程の作業性を考慮して凹み深さを決定することが好ましい。以上の点を考慮すると、例えば、厚みに対して概ね1〜5%程度の凹み深さとなるように凹凸を形成することができる。   The greater the unevenness difference (dent depth), the higher the strength improvement effect. However, the glass piece cut from the produced glass plate is usually used by removing irregularities by polishing or the like so as to fall within the weight tolerance. Therefore, if the dent depth is large and the individual weight deviation is large, the amount of glass that must be removed increases. Therefore, in the present invention, it is preferable to determine the dent depth in consideration of the strength improvement effect and the workability of the post-process. Taking the above points into consideration, for example, the unevenness can be formed so as to have a dent depth of about 1 to 5% with respect to the thickness.

凹凸の断面形状は、断面二次モーメントを効果的に増大し得る四角形のような形状が好ましいが、実用上、三角、半円等でも差し支えない。但し、鋭角部分があるとその部分を起点として熱衝撃、機械的衝撃で微細なクラック発生の原因となりやすいので、鋭角部分を含む形状は避け、エッジ部分に多少の丸みを持たせることが望ましい。   The cross-sectional shape of the projections and depressions is preferably a quadrilateral shape that can effectively increase the cross-sectional secondary moment, but in practice, it may be a triangle, a semicircle, or the like. However, if there is an acute angle portion, it is likely to cause fine cracks due to thermal shock and mechanical impact starting from that portion. Therefore, it is desirable to avoid the shape including the acute angle portion and to give the edge portion some roundness.

冷却板は、ガラス上面との接触面が長方形や正方形のものでもよいが、鋳型内に鋳込まれ上流側から下流側へ移動するガラスの温度分布を考慮すると、ガラス上面の鋳型側壁に近い部位ほど、より上流側から冷却を開始することが好ましいため、そのような冷却が可能な形状であることが好ましい。そのような冷却板としては、図1〜3の図(2−1)に示す平面形状のものを挙げることができる。冷却板に設ける突起は、所望の凹凸をガラス上面に形成できる形状とすればよい。図1〜3の図(2−1)、(2−2)には、ガラス上面との接触面に2列並べて突起を設けた冷却板を示したが、突起は1列のみ設けてもよく、また3列以上設けてもよい。ただし、ガラス上面において、冷却板との接触により凹凸が形成された部位が冷却板の突起と再度接触すると、凹凸形状が損なわれるおそれがある。そのため、2列以上突起を設ける場合は、列同士の間隔は、ガラスの移動速度を考慮して決定することが好ましい。   The cooling plate may have a rectangular or square contact surface with the upper surface of the glass, but considering the temperature distribution of the glass that is cast into the mold and moves from the upstream side to the downstream side, the portion near the mold side wall on the upper surface of the glass Since it is preferable to start cooling from the upstream side, it is preferable that the cooling is possible. As such a cooling plate, the planar shape shown to the figure (2-1) of FIGS. 1-3 can be mentioned. The protrusion provided on the cooling plate may have a shape capable of forming desired irregularities on the upper surface of the glass. 1 to 3 in FIGS. 1 to 3 show the cooling plate in which two rows are arranged on the contact surface with the glass upper surface, but the projections may be provided in only one row. Three or more rows may be provided. However, if the portion of the upper surface of the glass where the irregularities are formed by contact with the cooling plate comes into contact with the protrusions of the cooling plate again, the irregular shape may be impaired. Therefore, when providing two or more rows of protrusions, it is preferable to determine the distance between the rows in consideration of the moving speed of the glass.

次に、本発明のガラス板の製造方法の具体的態様を、図面を参照しつつ説明する。ただし、本発明は、下記態様に限定されるものではない。   Next, a specific aspect of the method for producing a glass plate of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.

図5は、本発明において使用可能なガラス板製造装置の平面図であり、図6は、その側面図である。
図5および図6に示すガラス板の製造装置は、熔融ガラスを鋳込む溝形の鋳型部1と、ガラスを連打および冷却するための冷却板2と、溝形の鋳型部1内に熔融した光学ガラス3を供給する円管状のオリフィス4とを有する。なお、図示しないが、連打用の冷却板2は、連打動作を行う連打動作装置に固定されて連打動作ができるようになっており、また、オリフィス4は、図示しない熔融炉等に接続されている。
FIG. 5 is a plan view of a glass plate manufacturing apparatus that can be used in the present invention, and FIG. 6 is a side view thereof.
The glass plate manufacturing apparatus shown in FIGS. 5 and 6 is melted in a groove-shaped mold part 1 for casting molten glass, a cooling plate 2 for continuously striking and cooling the glass, and the groove-shaped mold part 1. And a circular orifice 4 for supplying the optical glass 3. Although not shown in the drawing, the cooling plate 2 for continuous striking is fixed to a continuous striking operation device that performs the repetitive striking operation so that the continuous striking operation can be performed, and the orifice 4 is connected to a not-shown melting furnace or the like. Yes.

鋳型部1は、略長方形をなした平板状の底板11と、この底板の両側部にこの底板11に対して略直角になるように、かつ、互いに対向して略平行になるように固定された2枚の側板12,13と、前記底板11および側板12、13に対して略直交するように、これらの長手方向の一方の端部に取り付けられたストッパ板(堰板)14とを有する。鋳型部1は、前記底板11の表面である底面11aや側板12,13の表面である側壁12a、13a、およびストッパ板14の表面であるストッパ面14a等によって囲まれて形成される溝状部分を鋳型とするものである。   The mold portion 1 is fixed to a substantially rectangular flat plate 11 and to both sides of the bottom plate so as to be substantially perpendicular to the bottom plate 11 so as to face each other and be substantially parallel to each other. Two side plates 12, 13 and a stopper plate (weir plate) 14 attached to one end portion in the longitudinal direction so as to be substantially orthogonal to the bottom plate 11 and the side plates 12, 13. . The mold portion 1 is a groove-like portion formed by being surrounded by the bottom surface 11a which is the surface of the bottom plate 11, the side walls 12a and 13a which are the surfaces of the side plates 12 and 13, the stopper surface 14a which is the surface of the stopper plate 14, and the like. Is a mold.

オリフィス4の熔融ガラスの流出口は、溝形の鋳型部1内のストッパ板14の近傍に熔融ガラス3を流出させるように配置されている。すなわち、上述の構成のガラス板の製造装置は、熔融ガラス3を、円管状のオリフィス4より流出させ、オリフィス4の下部に水平に配置された上部開放の溝型の固定鋳型である鋳型部1の一端部(上流側)に鋳込み、この鋳型部1の他端部(下流側)から成形されたガラスを水平方向に連続的に引き出してガラスを連続成形するものである。なお、鋳型に対して静止したある位置において、ガラスが移動してくる方向を上流側、ガラスが移動していく方向を下流側と呼ぶ。   The molten glass outlet of the orifice 4 is arranged so that the molten glass 3 flows out in the vicinity of the stopper plate 14 in the groove-shaped mold part 1. That is, the glass plate manufacturing apparatus having the above-described configuration causes the molten glass 3 to flow out of the circular orifice 4 and is a mold part 1 which is a groove-type fixed mold with an open top disposed horizontally below the orifice 4. The glass is cast into one end portion (upstream side) of the glass, and the glass formed from the other end portion (downstream side) of the mold portion 1 is continuously drawn in the horizontal direction to continuously form the glass. The direction in which the glass moves at a certain position stationary with respect to the mold is called the upstream side, and the direction in which the glass moves is called the downstream side.

この場合、鋳型に鋳込まれたガラスの上面、すなわち自由表面が未だ軟化状態にある間に、定められた位置で、所定の表面形状を有する冷却板2を所定の高さ位置まで下降させガラスを押圧し、所定の時間の後に上方に逃がす操作を間欠的に繰り返して行い、その操作頻度と押圧時間(接触時間)を調整することで、接触したガラス表面の冷却程度を調整するとともに、ガラス上面の形状を整える。更に、冷却板のガラスとの接触面(押圧面)には、前述のように突起が設けられているため、冷却板との接触によりガラス上面には所望の凹凸が形成される。   In this case, while the upper surface of the glass cast into the mold, that is, the free surface is still in the softened state, the cooling plate 2 having a predetermined surface shape is lowered to a predetermined height position at a predetermined position. Is performed by intermittently repeating the operation of releasing upward after a predetermined time and adjusting the operation frequency and the pressing time (contact time) to adjust the degree of cooling of the glass surface in contact with the glass. Adjust the shape of the top surface. Furthermore, since the protrusions are provided on the contact surface (pressing surface) of the cooling plate with the glass as described above, desired irregularities are formed on the upper surface of the glass by the contact with the cooling plate.

図7は、冷却板2の説明図である。図6に示されるように、冷却板2は、押圧面2aの平面視形状(すなわち、冷却板2がガラス3の上面を押圧する際の状態で、押圧面2aを鉛直下方から見たと仮定したときの形状で、図6においては、斜線で示してある)を、水平方向に進行するガラス板3に対して冷却板2の接触を開始する位置が、両サイド部でのそれに対して中央部のそれが後方になるように滑らかな曲線を描くように構成されている。また、冷却板2の押圧面2aの平面視形状がガラス板3の幅方向の中央でガラスの移動方向に一番長く、両サイドに向かうにつれ徐々に短くなるように形成されている。   FIG. 7 is an explanatory diagram of the cooling plate 2. As shown in FIG. 6, it is assumed that the cooling plate 2 is a plan view shape of the pressing surface 2 a (that is, when the cooling plate 2 presses the upper surface of the glass 3, the pressing surface 2 a is viewed from vertically below. The position at which the cooling plate 2 starts to contact the glass plate 3 proceeding in the horizontal direction is the center portion relative to that at both side portions). It is configured to draw a smooth curve so that it is backward. Moreover, the planar view shape of the pressing surface 2a of the cooling plate 2 is the longest in the glass moving direction at the center in the width direction of the glass plate 3, and is formed so as to gradually become shorter toward both sides.

また、冷却板2の押圧面2aの上流側の縁部20aは、適度な曲率rを有する曲面形状に形成されている。これは、接触する冷却板2は、所定の位置で固定されているのに対しガラスは動いているので、冷却板接触時にはガラスの動きは止められるため、冷却板の接触開始点である縁部20aが鋭利な角を持っていると、初回の接触時にそこでガラスがめくれ上がる。次の接触時には平面で押圧されるため平らに成形されるが、場合によっては局部的に折れ込むことになる。そのため接触開始点である縁部20aは滑らかな曲率を持つことが望ましい。   Further, the upstream edge 20a of the pressing surface 2a of the cooling plate 2 is formed in a curved shape having an appropriate curvature r. This is because the cooling plate 2 that is in contact is fixed at a predetermined position while the glass is moving, so that the movement of the glass is stopped when the cooling plate is in contact, so that the edge that is the contact start point of the cooling plate If 20a has a sharp corner, the glass will turn up at the first contact. At the time of the next contact, since it is pressed by a flat surface, it is formed flat, but in some cases, it is folded locally. Therefore, it is desirable that the edge 20a, which is the contact start point, has a smooth curvature.

また、冷却板2の温度を一定に保つように冷却板に冷却機構が設けられている。すなわち、冷却板2には、2本の冷却通路21、22が設けられている。これら冷却通路21、22は、冷却板2の中央部下流側に冷却用空気の導入口21a、22aを有し、冷却板2の両サイド部に冷却用空気の排出口21b、22bを有し、ガラス板3の幅方向の中心に対して半分ずつ独立して冷却量の調整ができるようになっている。   The cooling plate is provided with a cooling mechanism so as to keep the temperature of the cooling plate 2 constant. That is, the cooling plate 2 is provided with two cooling passages 21 and 22. These cooling passages 21, 22 have cooling air inlets 21 a, 22 a on the downstream side of the central portion of the cooling plate 2, and cooling air discharge ports 21 b, 22 b on both sides of the cooling plate 2. The cooling amount can be adjusted independently by half with respect to the center of the glass plate 3 in the width direction.

ストッパ板14は、鋳型の一端部(上流側端部)を閉じて熔融ガラス3が鋳型から流出しないようにし、熔融ガラス3が円滑に下流側に移動するようにするために、そのストッパ面14aは、平面視形状がアーチ形に形成されている。   The stopper plate 14 closes one end (upstream end) of the mold so that the molten glass 3 does not flow out of the mold and the molten glass 3 moves smoothly to the downstream side. Is formed in an arch shape in plan view.

底板11は、その底面11aが水平になるように設置され、ガラスの移動方向が水平方向になるように構成されている。もし、底面11aがガラスの移動方向に下がっていると、低粘度の熔融ガラスを鋳込んだ場合、オリフィスから流出した熔融ガラスが側壁とストッパ板によって囲まれた鋳型内に充分広がる前に、移動方向に流動するため、良好な成形が困難になることがあるからである。なお、オリフィス4から熔融ガラス3が鋳込まれるオリフィス直下の部分周辺の底面は温度が上がり過ぎるおそれがあるので、温度が上がり過ぎないように、この部分の底板は冷却するようにしている。また、それ以外の底板部分は、ガラスが過度に冷却されないようヒーターによって加熱できるようになっている。   The bottom plate 11 is installed so that the bottom surface 11a thereof is horizontal, and is configured such that the moving direction of the glass is horizontal. If the bottom surface 11a is lowered in the moving direction of the glass, when a low-viscosity molten glass is cast, the molten glass that has flowed out of the orifice moves before it spreads sufficiently in the mold surrounded by the side wall and the stopper plate. This is because good molding may be difficult due to flow in the direction. Note that the bottom surface around the portion directly under the orifice where the molten glass 3 is cast from the orifice 4 may be too hot, so that the bottom plate of this portion is cooled so that the temperature does not rise too much. Further, the other bottom plate portion can be heated by a heater so that the glass is not excessively cooled.

また、鋳込まれた熔融ガラス3が側板21、22に触れて必要以上に冷却されないように、また過剰に温度が上がらないように、図示しないが、側板21、22はヒーターによって加熱・温度制御できるようになっている。なお、鋳型部1の材料としては、熱伝導の良さやガラスとの濡れにくさの点から、金属または黒鉛を用いることが好ましい。   Further, although not shown, the side plates 21 and 22 are heated and controlled by a heater so that the cast glass 3 is not cooled more than necessary by touching the side plates 21 and 22 and the temperature does not rise excessively. It can be done. In addition, as a material of the casting_mold | template part 1, it is preferable to use a metal or graphite from the point of the good heat conductivity and the difficulty of getting wet with glass.

また、冷却板にとって望ましい特性は、以下の通りである。
a.熱伝導率の高いこと。
b.耐熱性、耐酸化性に優れていること。
c.ガラスに濡れにくいこと。
d.複雑な形状に加工しやすいこと。
e.溶融ガラスをプレス成形するのに十分な機械的強度を持つこと。
以上の点を考慮すると、冷却板2の材料としては、鉄(鋳鉄)、ニッケル、ニッケル系耐熱合金等の金属材料を用いることが好ましい。
Further, desirable characteristics for the cooling plate are as follows.
a. High thermal conductivity.
b. Excellent heat resistance and oxidation resistance.
c. It is difficult to get wet with glass.
d. Easy to process into complex shapes.
e. Has sufficient mechanical strength to press mold molten glass.
Considering the above points, it is preferable to use a metal material such as iron (cast iron), nickel, nickel-based heat-resistant alloy as the material of the cooling plate 2.

また、ガラス上面を冷却板と接触させることよりどの程度冷却するかは「時間当たりの冷却板の接触頻度」、「接触の時間」、「冷却板に流す冷却空気の温度」、「冷却板に流す冷却空気の流量」で調整することができる。但し、「接触の時間」中はガラスの動きを冷却板で停止させることになり、長時間の停止は「折れ込み」等の品質欠陥を発生させる原因にもなるので、あまり長くすることは好ましくない。具体的には、時間当たりの冷却板の接触頻度は、1回/数秒〜十数秒、接触時間は 十分の数秒、冷却板に流す冷却空気の温度やその流量は、冷却構造にも依存するので一概に決められないが、冷却板の接触面温度がガラス転移点を超えず、かつ必要以上に低くなり過ぎない温度を保つ量 とすることが適当である。但し、上記範囲に限定されるものではなく、ガラスの移動速度や粘度特性等も考慮し適切な範囲に設定すべきである。   In addition, the amount of cooling by contacting the upper surface of the glass with the cooling plate depends on the “frequency of contact of the cooling plate per hour”, “time of contact”, “temperature of cooling air flowing through the cooling plate”, “ It can be adjusted by “flowing cooling air flow”. However, during the “contact time”, the movement of the glass will be stopped by the cooling plate, and a long stop will cause quality defects such as “folding”, so it is preferable to make it too long. Absent. Specifically, the contact frequency of the cooling plate per hour is one time / several seconds to several tens of seconds, the contact time is several seconds, and the temperature and flow rate of the cooling air flowing through the cooling plate also depend on the cooling structure. Although not generally determined, it is appropriate to keep the temperature at which the contact surface temperature of the cooling plate does not exceed the glass transition point and does not become excessively low. However, it is not limited to the above range, and should be set to an appropriate range in consideration of the moving speed and viscosity characteristics of the glass.

上述のガラス板製造装置によって成形されたガラス板は鋳型から移動方向に沿って引き出され、アニール炉の中へとコンベアによって移送される。アニール炉中を通過する過程でガラス板は徐冷され、アニール炉外へと移動していく。鋳型内でのガラスの移動は、成形後のガラス板を上記のようにコンベアで移動方向に移送することによってなされる。ガラス板は鋳型内からアニール炉内を通り、アニール炉から出るまで連続した1枚の板である。そしてアニール炉から出た所で適当な長さに切断される。このようにして1枚のガラス板から、板状ガラスを次々に得ることができる。こうして得られたガラス板は、ガラス片に分割してプレス成形用ガラス素材として用いることができる。その詳細は後述する。   The glass plate formed by the above-described glass plate manufacturing apparatus is pulled out from the mold along the moving direction, and transferred to the annealing furnace by a conveyor. In the process of passing through the annealing furnace, the glass plate is gradually cooled and moved out of the annealing furnace. The glass is moved in the mold by transferring the formed glass plate in the moving direction on the conveyor as described above. The glass plate is a continuous plate from the mold through the annealing furnace until it exits the annealing furnace. And it cut | disconnects in suitable length in the place which came out of the annealing furnace. In this way, plate-like glass can be obtained one after another from one glass plate. The glass plate thus obtained can be divided into glass pieces and used as a glass material for press molding. Details thereof will be described later.

前述のように、本発明のガラス板の製造方法によれば、熔融された光学ガラスを溶融し、円管状のオリフィスより流出し、連続して均一な肉厚の板形状に成形することが可能である。また、低粘度(高温)で流出した熔融ガラスを平坦な底面と前記底面を挟んで互いに平行な側壁を備えた鋳型に鋳込み、急冷成形する方法なので、失透しやすい光学ガラスにも適用できる。この成形方法は、引き上げ量(オリフィスから流出する単位時間あたりの熔融ガラスの体積)が30cc/min〜400cc/min程度の場合に好適である。また、板厚6mm以上(好ましくは8〜20mm)のガラス板の成形に好適である。さらに、厚み1に対して幅が20以内(好ましくは5〜15)の比較的厚みのあるガラス板の製造に適している。   As described above, according to the method for producing a glass plate of the present invention, it is possible to melt the melted optical glass, flow out of a circular orifice, and continuously form the plate with a uniform wall thickness. It is. In addition, since the molten glass that has flowed out at a low viscosity (high temperature) is cast into a mold having a flat bottom surface and a side wall parallel to each other across the bottom surface, and is rapidly quenched, it can be applied to optical glass that is easily devitrified. This forming method is suitable when the pulling amount (volume of molten glass per unit time flowing out from the orifice) is about 30 cc / min to 400 cc / min. Moreover, it is suitable for shaping | molding of the glass plate of plate thickness 6mm or more (preferably 8-20mm). Furthermore, it is suitable for manufacturing a relatively thick glass plate having a width within 20 (preferably 5 to 15) with respect to thickness 1.

本発明のガラス板の製造方法によって製造されるガラス板の主要な用途は、プレス成形用ガラス素材を得るための中間体である。即ち、製造されたガラス板は、後述するように縦横に切断しサイコロ状の小片にした後、角落としと重量調整のためのバレル研磨工程を経てプレス成形用素材とすることができる。得られたプレス成形用素材は、加熱・軟化してプレス成形することにより、またはプレス成形された物品に研削、研磨加工を施すことによって、レンズなどの光学部品等とすることができる。   The main use of the glass plate produced by the method for producing a glass plate of the present invention is an intermediate for obtaining a glass material for press molding. That is, the manufactured glass plate can be cut into a dice-like piece by cutting vertically and horizontally as described later, and then subjected to a barrel polishing step for corner dropping and weight adjustment to be a press-molding material. The obtained material for press molding can be used as an optical component such as a lens by heating and softening and press molding, or by subjecting the press-molded article to grinding and polishing.

このような用途では、ガラス板材料の肉厚が不均一であると、プレス成形用素材としての小片の重量偏差を小さくするために切断幅をその箇所の肉厚に合わせて変更しなければならず、極めて煩雑なホイール間隔調整操作が求められるのみでなく、切断幅の調整でうまく修正しきれない場合は材料ロスとなったり、バレル研磨加工の時間を長く取ることで更に重量調整する必要が出てくるので、生産効率が非常に悪くコストアップの原因となるが、本発明によれば、ガラス板の肉厚を均一にできるので、ガラス板を一定の切断幅で分割切断しても、切断されたガラス片の重量偏差が増大することを抑えることができる。   In such applications, if the thickness of the glass plate material is not uniform, the cutting width must be changed in accordance with the thickness of the part in order to reduce the weight deviation of the small piece as the material for press molding. In addition, not only is it necessary to adjust the wheel interval extremely complicated, but if the cutting width cannot be corrected well, it will result in material loss and further weight adjustment by taking longer barrel polishing time. Because it comes out, the production efficiency is very bad and causes a cost increase, but according to the present invention, since the thickness of the glass plate can be made uniform, even if the glass plate is divided and cut with a constant cutting width, It is possible to suppress an increase in the weight deviation of the cut glass piece.

[プレス成形用ガラス素材の製造方法]
本発明は、本発明のガラス板の製造方法により作製されたガラス板からガラス片を分割し、該ガラス片に研磨加工を施しプレス成形用ガラス素材を得るプレス成形用ガラス素材の製造方法に関する。
以下に、本発明のプレス成形用ガラス素材の製造方法の具体的態様を説明する。
[Method of manufacturing glass material for press molding]
The present invention relates to a method for producing a glass material for press molding, in which a glass piece is divided from a glass plate produced by the method for producing a glass plate of the present invention, and the glass piece is subjected to polishing to obtain a glass material for press molding.
Below, the specific aspect of the manufacturing method of the glass raw material for press molding of this invention is demonstrated.

先に説明したように供給されるガラス板の端部を切断して得られたガラス板からガラス片(カットピースと呼ばれる)を分割する方法としては、ダイヤモンドホイール、ワイヤーソー、砥石などを用いた切断法、分割したい部位にスクライブ加工を施してケガキ線を形成し、ケガキ線から破断が拡張してガラスが割断するようにガラス板に圧力を加える方法などを用いることができる。こうして分割されたガラス片に、バレル研磨等の研磨加工を施すことにより、プレス成形用ガラス素材を得ることができる。
本発明のガラス板の製造方法によれば、両端と中心部との厚みの差が少なく均一な肉厚のガラス板を得ることができるので、縦横に切断する間隔を等しくしておけば、カットピースの体積をある程度揃えることができ、切断箇所毎に切断幅を調整しなくてもカットピースの重量偏差を抑えることができる。したがって、各カットピースの重量、体積を揃えるためにバレル研磨によって除去しなければならないガラスの量を低減できるとともに、バレル研磨の加工時間を短縮化し、省資源化、省エネルギー化が可能になる。カットピースは、通常、角落としと、より重量偏差を小さくするためのバレル研磨とが施されてプレス成形用素材に仕上げられる。上記研磨加工によってガラス板上面に形成した凹凸を軽く除去することにより、表面がほぼ平滑なプレス成形用ガラス素材を得ることができるが、多少凹凸が残っても、レンズに研削・研磨加工する段階で除去される深さであれば、カットピースとしては問題ない。
As described above, a diamond wheel, a wire saw, a grindstone, or the like was used as a method of dividing a glass piece (called a cut piece) from a glass plate obtained by cutting an end portion of a glass plate to be supplied. A cutting method, a method of applying a pressure to a glass plate so that a scribing process is performed on a part to be divided to form a marking line, and fracture is extended from the marking line to break the glass can be used. A glass material for press molding can be obtained by subjecting the glass pieces thus divided to polishing such as barrel polishing.
According to the method for producing a glass plate of the present invention, a glass plate having a uniform thickness can be obtained with little difference in thickness between both ends and the center portion. The volume of the piece can be made to some extent, and the weight deviation of the cut piece can be suppressed without adjusting the cutting width for each cutting location. Therefore, it is possible to reduce the amount of glass that must be removed by barrel polishing in order to equalize the weight and volume of each cut piece, shorten the barrel polishing processing time, and save resources and energy. The cut piece is usually finished into a press-molding material by performing corner cutting and barrel polishing for further reducing the weight deviation. By gently removing the irregularities formed on the upper surface of the glass plate by the above polishing process, it is possible to obtain a glass material for press molding with a substantially smooth surface, but even if some irregularities remain, the stage of grinding and polishing the lens If it is the depth removed by this, there is no problem as a cut piece.

[光学部品の製造方法]
本発明の光学部品の製造方法の第一の態様は、本発明のプレス成形用ガラス素材の製造方法により作製されたプレス成形用ガラス素材を加熱し、プレス成形することにより光学部品を得る光学部品の製造方法である。本態様は、いわゆる精密プレス成形により光学部品を得る態様である。精密プレス成形では、通常、105〜108ポアズの粘度になる温度までプレス成形用素材を非酸化性雰囲気中で加熱、成形型によってプレス成形し、成形型の成形面の形状を精密にガラスに転写成形する。こうして得られるプレス成形品は高い形状精度を有しており、そのまま、レンズなどの光学部品として使用することができる。
[Optical component manufacturing method]
The first aspect of the method for producing an optical component of the present invention is an optical component for obtaining an optical component by heating and press-molding the glass material for press molding produced by the method for producing a glass material for press molding of the present invention. It is a manufacturing method. In this embodiment, an optical component is obtained by so-called precision press molding. In precision press molding, the material for press molding is usually heated in a non-oxidizing atmosphere to a temperature at which a viscosity of 10 5 to 10 8 poise is reached, press-molded with a molding die, and the shape of the molding surface of the molding die is precisely glass. Transfer molding to. The press-molded product thus obtained has high shape accuracy and can be used as it is as an optical component such as a lens.

本発明の光学部品の製造方法の第二の態様は、本発明のプレス成形用ガラス素材の製造方法により作製されたプレス成形用ガラス素材を加熱し、プレス成形してガラス成形品を作製し、該ガラス成形品に研削および/または研磨工程を施すことにより光学部品を得る光学部品の製造方法である。本態様では、プレス成形後に研削、研磨を経て光学部品を得る。このような製造方法では、一般に、プレス成形用ガラス素材を大気中において、104〜106ポアズ程度の粘度になる温度まで加熱し、成形型によってプレス成形する。上記温度範囲におけるプレス成形において、目的とするガラス物品の形状に近似するガラス成形品を得た後、研削、研磨加工を施して、例えばレンズなどのように高い形状精度が要求される光学部品に仕上げることができる。 The second aspect of the method for producing an optical component of the present invention is to heat a glass material for press molding produced by the method for producing a glass material for press molding of the present invention, to produce a glass molded product by press molding, An optical component manufacturing method for obtaining an optical component by subjecting the glass molded product to grinding and / or polishing steps. In this aspect, an optical component is obtained through grinding and polishing after press molding. In such a manufacturing method, generally, a glass material for press molding is heated to a temperature at which a viscosity of about 10 4 to 10 6 poise is obtained in the atmosphere, and press-molded with a molding die. In press molding in the above temperature range, after obtaining a glass molded product that approximates the shape of the target glass article, grinding and polishing are performed, for example, for optical parts such as lenses that require high shape accuracy Can be finished.

このような方法により、非球面レンズ、球面レンズ、レンズアレイ、マイクロレンズ、回折格子、プリズムなどの光学部品を高い生産性のもと製造することができる。光学部品の表面には必要に応じて反射防止膜などの光学多層膜を形成してもよい。   By such a method, optical components such as an aspherical lens, a spherical lens, a lens array, a microlens, a diffraction grating, and a prism can be manufactured with high productivity. If necessary, an optical multilayer film such as an antireflection film may be formed on the surface of the optical component.

以下に、実施例により本発明をより詳細に説明する。但し、本発明は実施例に示す態様に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, this invention is not limited to the aspect shown in the Example.

[実施例1]
図5および6に示すガラス板製造装置を使用し、下記方法によりガラス板を製造した。
円管のオリフィスから流量100cc/minで流出する1050℃の光学ガラスを、550℃に保持された幅150mmの溝型状の鋳型に鋳込み速度60mm/minで水平方向に連続的に引き出す成形において、オリフィスの後方約80mmの位置に厚み30mmで図1に示す接触面形状(サイド部前縁に対する中央部前縁の後退量:25mm、サイド部接触幅15mmに対し板中心接触幅55mm、接触面は中央部前縁から10mmと12mm後退した位置にそれぞれ幅1mm高さ0.5mmの、ガラス板幅方向に貫通した突起が2本ある)を持つ鋳鉄製の冷却板を設置し、4秒に1回の頻度で接触時間0.1秒ずつ荷重20kgwで押圧したところ、ガラス板上表面には2mmピッチで溝幅1ミリ、深さ約0.4ミリの横縞模様のパターンが形成された。
こうして得られたガラス板は、成形肉厚15mmにおいて幅130mm内の肉厚偏差は、板幅方向において、凹凸を形成しない場合と比べて、平均で0.3mm程度小さくすることができた。このとき冷却板に流した冷却空気の温度は20℃、流量は左右それぞれ45L/min、50L/minずつとした。
[Example 1]
The glass plate was manufactured by the following method using the glass plate manufacturing apparatus shown in FIGS.
In the molding that continuously draws the optical glass at 1050 ° C flowing out from the orifice of the circular tube at a flow rate of 100cc / min into a 150mm wide grooved mold held at 550 ° C in the horizontal direction at a casting speed of 60mm / min. The contact surface shape shown in Fig. 1 with a thickness of 30mm at the position about 80mm behind the orifice (retraction amount of the central front edge with respect to the front edge of the side portion: 25mm, the contact width of the plate center is 55mm against the side contact width of 15mm Installed a cast iron cooling plate with two projections penetrating in the width direction of the glass plate, each with a width of 1 mm and a height of 0.5 mm at positions 10 mm and 12 mm away from the front edge of the center, once every 4 seconds When pressing with a load of 20 kgw at a contact time of 0.1 seconds at a frequency of 1 mm, a horizontal stripe pattern with a groove width of 1 mm and a depth of about 0.4 mm was formed on the surface of the glass plate at a pitch of 2 mm.
In the glass plate thus obtained, the thickness deviation within a width of 130 mm at a molding thickness of 15 mm could be reduced by an average of about 0.3 mm in the plate width direction as compared with the case where no irregularities were formed. At this time, the temperature of the cooling air flowing through the cooling plate was 20 ° C., and the flow rates were 45 L / min and 50 L / min respectively on the left and right.

[実施例2]
実施例1で得られた光学ガラスからなるガラス板を徐冷した後、適当な長さに切断し、さらにダイヤモンドホイールの切断機で縦横に分割切断して、重量、体積が一定の複数個のカットピースを作製した。この際、切断幅は切断箇所によらず一定とした。
さらにこれらのカットピースにバレル研磨を施して、プレス成形用素材を得た。
従来法ではバレル研磨による除去量は平均すると8〜9%程度は必要であったが、本実施例では平均約2%除去量を低減することができた。
[Example 2]
After slowly cooling the glass plate made of the optical glass obtained in Example 1, it is cut into an appropriate length, and further divided and cut vertically and horizontally with a diamond wheel cutting machine, so that a plurality of weights and volumes are constant. Cut pieces were prepared. At this time, the cutting width was fixed regardless of the cutting location.
Furthermore, these cut pieces were subjected to barrel polishing to obtain press forming materials.
In the conventional method, the average removal amount by barrel polishing required about 8 to 9%, but in this example, the average removal amount of about 2% could be reduced.

[実施例3]
実施例2で得られたプレス成形用素材を大気中でガラスの粘度が105ポアズになるまで加熱し、成形型を用いてレンズ形状に近似した成形品をプレス成形した。このプレス成形品を徐冷した後、研削、研磨加工を施してレンズを得た。同様な方法により、レンズ以外の光学部品も作製することができる。
[Example 3]
The press-molding material obtained in Example 2 was heated in air until the viscosity of the glass reached 10 5 poise, and a molded product approximated to the lens shape was press-molded using a mold. The press-molded product was slowly cooled and then subjected to grinding and polishing to obtain a lens. An optical component other than a lens can be produced by a similar method.

本発明によれば、レンズ等の光学部品を高い生産性をもって提供することができる。   According to the present invention, an optical component such as a lens can be provided with high productivity.

間欠的接触による冷却に使用可能な冷却部材の例(例1)および該冷却部材との接触によりガラス上面に形成される凹凸パターンを示す。The example (Example 1) of the cooling member which can be used for the cooling by intermittent contact, and the uneven | corrugated pattern formed in the glass upper surface by contact with this cooling member are shown. 間欠的接触による冷却に使用可能な冷却部材の例(例2)および該冷却部材との接触によりガラス上面に形成される凹凸パターンを示す。The example (example 2) of the cooling member which can be used for the cooling by intermittent contact, and the uneven | corrugated pattern formed in the glass upper surface by contact with this cooling member are shown. 間欠的接触による冷却に使用可能な冷却部材の例(例3)および該冷却部材との接触によりガラス上面に形成される凹凸パターンを示す。The example (example 3) of the cooling member which can be used for cooling by intermittent contact, and the uneven | corrugated pattern formed in the glass upper surface by contact with this cooling member are shown. ガラス上面に形成する凹凸パターンの一例を示す。An example of the uneven | corrugated pattern formed in the glass upper surface is shown. 本発明において使用可能なガラス板製造装置の平面図である。It is a top view of the glass plate manufacturing apparatus which can be used in this invention. 図5に示すガラス板製造装置の側面図である。It is a side view of the glass plate manufacturing apparatus shown in FIG. 図5および6に示す冷却板の説明図である。It is explanatory drawing of the cooling plate shown to FIG.

Claims (6)

一対の対向する側壁と底面とを有し、かつ上部が開放された鋳型内へ、熔融ガラス流を連続して鋳込み、鋳込まれたガラスを両側壁に沿って一方向に移動させながら板状に成形するガラス板の製造方法において、
鋳型内を移動するガラスの上面に突起を有する部材を接触させることにより、該上面の冷却を促進するとともに、該上面に、一方の側壁側から他方の側壁側へ向かって凸部が連続するように凹凸を形成することを特徴とするガラス板の製造方法。
A molten glass stream is continuously cast into a mold having a pair of opposed side walls and a bottom surface and the upper part being open, and the cast glass is moved in one direction along both side walls while being plate-shaped. In the manufacturing method of the glass plate molded into
By bringing a member having a protrusion into contact with the upper surface of the glass that moves in the mold, cooling of the upper surface is promoted, and a convex portion is continuous with the upper surface from one side wall side to the other side wall side. A method for producing a glass plate, comprising forming irregularities on the substrate.
前記凹凸は、前記一方の側壁側から他方の側壁側へ向かって連続する線状の凹みを含む請求項1に記載のガラス板の製造方法。 The said unevenness | corrugation is a manufacturing method of the glass plate of Claim 1 containing the linear dent which continues toward the other side wall side from said one side wall side. 前記凹凸は、前記一方の側壁側から他方の側壁側へ向かって複数の不連続な凹みを含む請求項1に記載のガラス板の製造方法。 The said unevenness | corrugation is a manufacturing method of the glass plate of Claim 1 containing several discontinuous dent toward the other side wall side from said one side wall side. 請求項1〜3のいずれか1項に記載の方法により作製されたガラス板からガラス片を分割し、該ガラス片に研磨加工を施しプレス成形用ガラス素材を得るプレス成形用ガラス素材の製造方法。 The manufacturing method of the glass material for press molding which divides | segments a glass piece from the glass plate produced by the method of any one of Claims 1-3, and gives a grinding process to this glass piece, and obtains the glass raw material for press molding . 請求項4に記載の方法により作製されたプレス成形用ガラス素材を加熱し、プレス成形することにより光学部品を得る光学部品の製造方法。 The manufacturing method of the optical component which obtains an optical component by heating the press-molding glass raw material produced by the method of Claim 4, and press-molding. 請求項4に記載の方法により作製されたプレス成形用ガラス素材を加熱し、プレス成形してガラス成形品を作製し、該ガラス成形品に研削および/または研磨工程を施すことにより光学部品を得る光学部品の製造方法。 A glass material for press molding produced by the method according to claim 4 is heated, press-molded to produce a glass molded article, and an optical component is obtained by subjecting the glass molded article to grinding and / or polishing steps. Manufacturing method of optical components.
JP2007215285A 2007-08-21 2007-08-21 Manufacturing method of glass plate, manufacturing method of glass material for press molding, and manufacturing method of optical component Expired - Fee Related JP4856027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215285A JP4856027B2 (en) 2007-08-21 2007-08-21 Manufacturing method of glass plate, manufacturing method of glass material for press molding, and manufacturing method of optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215285A JP4856027B2 (en) 2007-08-21 2007-08-21 Manufacturing method of glass plate, manufacturing method of glass material for press molding, and manufacturing method of optical component

Publications (2)

Publication Number Publication Date
JP2009046360A true JP2009046360A (en) 2009-03-05
JP4856027B2 JP4856027B2 (en) 2012-01-18

Family

ID=40498950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215285A Expired - Fee Related JP4856027B2 (en) 2007-08-21 2007-08-21 Manufacturing method of glass plate, manufacturing method of glass material for press molding, and manufacturing method of optical component

Country Status (1)

Country Link
JP (1) JP4856027B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001390A (en) * 2010-06-16 2012-01-05 Hoya Corp Method for manufacturing each of glass plate, material for press molding, optical element and thin sheet glass
WO2013111838A1 (en) * 2012-01-24 2013-08-01 Hoya株式会社 Glass gob manufacturing method, glass gob molding device, material for press molding, glass molded article, spherical preform, and optical element manufacturing method
WO2015064684A1 (en) * 2013-10-30 2015-05-07 Hoya株式会社 Optical glass material for press molding, glass optical element blank for polishing, glass optical element, and production method for optical glass material for press molding
JPWO2015063888A1 (en) * 2013-10-30 2017-03-09 Hoya株式会社 Optical glass material, polishing glass lens blank and optical lens, and polishing glass lens blank and optical lens manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130828A (en) * 1979-03-29 1980-10-11 Ohara Inc Formation of rod type or plate type optical glass
JP2002265229A (en) * 2001-03-09 2002-09-18 Hoya Corp Manufacturing method for glass sheet, manufacturing method for blank for press forming, and manufacturing method for optical component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130828A (en) * 1979-03-29 1980-10-11 Ohara Inc Formation of rod type or plate type optical glass
JP2002265229A (en) * 2001-03-09 2002-09-18 Hoya Corp Manufacturing method for glass sheet, manufacturing method for blank for press forming, and manufacturing method for optical component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001390A (en) * 2010-06-16 2012-01-05 Hoya Corp Method for manufacturing each of glass plate, material for press molding, optical element and thin sheet glass
WO2013111838A1 (en) * 2012-01-24 2013-08-01 Hoya株式会社 Glass gob manufacturing method, glass gob molding device, material for press molding, glass molded article, spherical preform, and optical element manufacturing method
WO2015064684A1 (en) * 2013-10-30 2015-05-07 Hoya株式会社 Optical glass material for press molding, glass optical element blank for polishing, glass optical element, and production method for optical glass material for press molding
JP2015086099A (en) * 2013-10-30 2015-05-07 Hoya株式会社 Optical glass material for press molding, glass optical element blank for polishing and glass optical element, and manufacturing method of optical glass material for press molding
JPWO2015063888A1 (en) * 2013-10-30 2017-03-09 Hoya株式会社 Optical glass material, polishing glass lens blank and optical lens, and polishing glass lens blank and optical lens manufacturing method

Also Published As

Publication number Publication date
JP4856027B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
TWI534108B (en) Method for the production of glass components
WO2014097830A1 (en) Molded glass article production method, and mold
TWI400201B (en) Manufacture of glass plates
JP4856027B2 (en) Manufacturing method of glass plate, manufacturing method of glass material for press molding, and manufacturing method of optical component
WO2014050376A1 (en) Glass component fabrication method
KR20000052435A (en) Method and apparatus for press molding a glass product
CN102329070B (en) The manufacture method of the manufacturing installation of sheet glass, sheet glass, impact briquetting glass material, optical element and sheet glass
KR20170066564A (en) Thermal Barriers to Guide Glass Cutting and Prevent Crackout
JP4467201B2 (en) Manufacturing method of glass plate, manufacturing method of press molding material, and manufacturing method of optical component
JP5075228B2 (en) Manufacturing methods for glass plates, press molding materials, optical elements, and thin glass
JP5618645B2 (en) Glass plate manufacturing apparatus, glass plate, glass material for press molding, optical element, thin glass manufacturing method
CN107500514B (en) Forming device for small optical glass strip
JP4368368B2 (en) Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element
JP5537278B2 (en) Manufacturing methods for glass plates, press molding materials, optical elements, and thin glass
JP5654383B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP5345228B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP2005281106A (en) Mold press forming apparatus and method for manufacturing optical element
JP2000233934A (en) Method for press-forming glass product and device therefor
JP2004292274A (en) Manufacturing method of glass plate, manufacturing method of base material for press molding, and manufacturing method of optical part
JP3243219B2 (en) Method for manufacturing glass optical element
WO2015064684A1 (en) Optical glass material for press molding, glass optical element blank for polishing, glass optical element, and production method for optical glass material for press molding
JP2011037671A (en) Mold for use in manufacturing glass block and manufacturing method for glass block
JP2005213109A (en) Method for manufacturing glass raw material for press forming, and method for manufacturing optics
JP2015093802A (en) Manufacturing method and manufacturing apparatus for glass molding article
JPS62128935A (en) Method and apparatus for continuous molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees