JP2009044804A - Electric motor controller - Google Patents

Electric motor controller Download PDF

Info

Publication number
JP2009044804A
JP2009044804A JP2007204589A JP2007204589A JP2009044804A JP 2009044804 A JP2009044804 A JP 2009044804A JP 2007204589 A JP2007204589 A JP 2007204589A JP 2007204589 A JP2007204589 A JP 2007204589A JP 2009044804 A JP2009044804 A JP 2009044804A
Authority
JP
Japan
Prior art keywords
working fluid
working
electric motor
working chamber
discharge mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007204589A
Other languages
Japanese (ja)
Other versions
JP5124203B2 (en
Inventor
Naoki Fujishiro
直樹 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007204589A priority Critical patent/JP5124203B2/en
Publication of JP2009044804A publication Critical patent/JP2009044804A/en
Application granted granted Critical
Publication of JP5124203B2 publication Critical patent/JP5124203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric motor controller having characteristic in which a phase is stable at a weak phase position and capable of immediately changing the phase even at the time of low-temperature start-up. <P>SOLUTION: The controller is provided with a hydraulic mechanism for supplying or discharging a working oil to or from a delay angle side working chamber for relatively rotating a rotor to hold it at a strong phase position strengthening a composite magnetic flux by a magnetic piece and an advance angle side working chamber for holding the rotor at a weak phase position for weakening the composite magnetic flux. If it is judged that an electric motor, more specifically, a combustion engine is stopped (S10), the hydraulic mechanism is operated so that the working oil is supplied and discharged to and from the delay angle side and advance angle side working chambers to reciprocate the rotor between the strong phase position and the weak phase position and the working oil in the advance angle side working position can be discharged (S18 to S38). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は電動機の制御装置に関し、より具体的には着磁された2個の回転子を相対回転させて両者の相対回転角あるいは変位角を示す位相を変更する位相変更機構を備えた電動機の制御装置に関する。   The present invention relates to an electric motor control device, and more specifically, an electric motor equipped with a phase change mechanism for changing the phase indicating the relative rotation angle or displacement angle of two magnetized rotors by relative rotation. The present invention relates to a control device.

着磁された2個の回転子を相対回転させて両者の相対変位角あるいは変位角を示す位相を変更するようにした電動機の制御装置の例としては、下記の特許文献1記載の技術を挙げることができる。特許文献1記載の技術にあっては、電動機の回転速度に応じて2個の回転子の位相を変更する場合、遠心力の作用により径方向に沿って変位する部材を介して2個の回転子のいずれかを周方向に相対回転させるように構成している。   As an example of a motor control device in which two magnetized rotors are rotated relative to each other to change the relative displacement angle or the phase indicating the displacement angle, a technique described in Patent Document 1 below is given. be able to. In the technique described in Patent Document 1, when the phase of the two rotors is changed according to the rotational speed of the electric motor, the two rotations are performed via a member that is displaced along the radial direction by the action of centrifugal force. One of the children is configured to relatively rotate in the circumferential direction.

また、固定子に発生する回転磁界の速度に応じて位相を変更する場合、2個の回転子が慣性により回転速度を維持する状態で固定子巻線に制御電流を通電して回転磁界速度を変更することにより、周方向の相対位置を変化させている。
特開2002−204541号公報
Also, when the phase is changed according to the speed of the rotating magnetic field generated in the stator, the control current is supplied to the stator winding while the two rotors maintain the rotating speed due to inertia, and the rotating magnetic field speed is increased. By changing, the relative position in the circumferential direction is changed.
JP 2002-204541 A

ところで、この種の電動機をハイブリッド車両に搭載するとき、弱め位相位置(あるいは強め位相位置と弱め位相位置の中間付近の位置)で安定する特性を備える場合、内燃機関の始動時には位相が弱め側にあることから、強め側に変更しないと、所望の発進駆動力が得られない事態も生じ得る。その場合、低温であると、強め位相保持側の作動室に作動流体を供給して位相を変更しようとしても、弱め位相保持側の作動室に残留する作動流体の排出抵抗が高いため、位相の変更に時間を要し、運転フィーリングが低下する恐れがある。   By the way, when this type of electric motor is mounted on a hybrid vehicle, if it has a characteristic that stabilizes at a weak phase position (or a position near the middle of the strong phase position and the weak phase position), the phase is on the weak side when starting the internal combustion engine. For this reason, there is a possibility that a desired start driving force cannot be obtained unless it is changed to the stronger side. In that case, if the temperature is low, even if the working fluid is supplied to the working chamber on the stronger phase holding side and the phase is changed, the discharge resistance of the working fluid remaining in the working chamber on the weaker phase holding side is high. It takes time to make changes, which may reduce driving feeling.

従って、この発明の目的は上記した課題を解消することにあり、位相が弱め位相位置あるいは強め位相位置と弱め位相位置の中間付近の位置で安定する特性を備える電動機において、低温始動時にあっても速やかに位相を変更できるようにした電動機の制御装置を提供することにある。   Accordingly, an object of the present invention is to eliminate the above-described problems, and in an electric motor having a characteristic in which the phase is weak and stabilized at a position near the middle of the weak phase position and the weak phase position, even when the motor is started at a low temperature. An object of the present invention is to provide an electric motor control device capable of quickly changing the phase.

上記の目的を達成するために、請求項1にあっては、磁石片をその長手方向が径方向を向くように配置される第1の回転子と、磁石片をその長手方向が周方向を向くように配置される第2の回転子と、作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が強められる強め位相位置に保持する第1の作動室と、前記作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が弱められる弱め位相位置に保持する第2の作動室と、前記作動流体の貯留源と前記第1、第2の作動室を流路で接続し、前記貯留源の作動流体を圧送して前記流路を介して前記第1、第2の作動室に供給あるいは前記第1、第2の作動室から排出させて前記貯留源に復帰させる作動流体給排機構とを少なくとも備えた電動機の前記作動流体給排機構の動作を制御する制御装置において、前記電動機が停止されているとき、前記第2の作動室の作動流体が排出されるように前記作動流体給排機構を動作させる作動流体給排機構動作制御手段を備える如く構成した。   In order to achieve the above object, according to the first aspect, the first rotor is arranged such that the longitudinal direction of the magnet piece is directed in the radial direction, and the longitudinal direction of the magnet piece is the circumferential direction. When the working fluid is supplied to the second rotor arranged so as to face, the first and second rotors are rotated relative to each other and held at a strong phase position where the combined magnetic flux by the magnet pieces is strengthened. When the working fluid is supplied to the first working chamber, the second working chamber holds the first and second rotors in a weak phase position where the combined magnetic flux generated by the magnet pieces is weakened by relative rotation of the first and second rotors. The working fluid storage source and the first and second working chambers are connected by a flow path, and the working fluid of the storage source is pumped to the first and second working chambers through the flow path. Supply flow or discharge from the first and second working chambers to return to the storage source In a control device for controlling the operation of the working fluid supply / discharge mechanism of an electric motor having at least a supply / discharge mechanism, the working fluid in the second working chamber is discharged when the electric motor is stopped. A working fluid supply / discharge mechanism operation control means for operating the working fluid supply / discharge mechanism is provided.

請求項2に係る電動機の制御装置にあっては、前記作動流体給排機構動作制御手段は、前記電動機が停止されているとき、前記作動流体を前記第1、第2の作動室に給排して前記強め位相位置と前記弱め位相位置の間を往復させ、よって前記第2の作動室の作動流体が排出されるように前記作動流体給排機構を動作させる如く構成した。   In the electric motor control device according to claim 2, the working fluid supply / discharge mechanism operation control means supplies and discharges the working fluid to the first and second working chambers when the electric motor is stopped. Thus, the working fluid supply / discharge mechanism is operated such that the working fluid in the second working chamber is discharged by reciprocating between the strong phase position and the weak phase position.

請求項3にあっては、磁石片をその長手方向が径方向を向くように配置される第1の回転子と、磁石片をその長手方向が周方向を向くように配置される第2の回転子と、作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が強められる強め位相位置に保持する第1の作動室と、前記作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が弱められる弱め位相位置に保持する第2の作動室と、前記作動流体の貯留源と前記第1、第2の作動室を流路で接続し、前記貯留源の作動流体を圧送して前記流路を介して前記第1、第2の作動室に供給あるいは前記第1、第2の作動室から排出させて前記貯留源に復帰させる作動流体給排機構とを少なくとも備えた電動機の前記作動流体給排機構の動作を制御する制御装置において、前記電動機が停止されていると共に、前記作動流体の温度に相当する温度が所定値未満であるとき、前記作動流体を前記第1の作動室に供給した後、前記流路を閉鎖するように前記作動流体給排機構を動作させる作動流体給排機構動作制御手段を備える如く構成した。   In claim 3, the first rotor is arranged such that the longitudinal direction of the magnet piece is directed in the radial direction, and the second rotor is arranged such that the longitudinal direction thereof is directed in the circumferential direction. A rotor, a first working chamber that holds the first and second rotors in a relatively phase position where the combined magnetic flux generated by the magnet pieces is strengthened by relatively rotating the first and second rotors when the working fluid is supplied; A second working chamber for holding the fluid in a weak phase position where the first and second rotors are rotated relative to each other to weaken the resultant magnetic flux by the magnet pieces, and a working fluid storage source; The first and second working chambers are connected by a flow path, and the working fluid of the storage source is pumped and supplied to the first and second working chambers via the flow path or the first and second working chambers. At least a working fluid supply / discharge mechanism that discharges from the working chamber and returns to the storage source. In the control device for controlling the operation of the working fluid supply / discharge mechanism of the electric motor, when the electric motor is stopped and the temperature corresponding to the temperature of the working fluid is less than a predetermined value, the working fluid is supplied to the first fluid. The hydraulic fluid supply / discharge mechanism operation control means for operating the hydraulic fluid supply / discharge mechanism to close the flow path after being supplied to the hydraulic chamber is provided.

請求項4に係る電動機の制御装置にあっては、前記作動流体給排機構は、前記流路に配置され、その弁体が前記作動流体を前記第2の作動室に供給する第1位置と、前記作動流体を前記第1の作動室に供給する第2位置と、前記第1位置と第2位置の間の中間位置に移動自在な切換弁を備えると共に、前記作動流体給排機構動作制御手段は、前記切換弁の弁体を前記第2位置に駆動した後、前記中間位置に駆動し、よって前記作動流体を前記第1の作動室に供給した後に前記流路を閉鎖するように前記作動流体給排機構を動作させる如く構成した。   In the motor control device according to claim 4, the working fluid supply / discharge mechanism is disposed in the flow path, and a valve body of the first position supplies the working fluid to the second working chamber; And a second position for supplying the working fluid to the first working chamber, and a switching valve movable to an intermediate position between the first position and the second position, and the working fluid supply / discharge mechanism operation control. The means drives the valve body of the switching valve to the second position and then drives to the intermediate position, and thus closes the flow path after supplying the working fluid to the first working chamber. The working fluid supply / discharge mechanism is configured to operate.

請求項5に係る電動機の制御装置にあっては、前記作動流体を昇温するヒータを備え、前記作動流体給排機構動作制御手段は、前記作動流体の温度に相当する温度が前記所定値未満であるとき、前記ヒータを作動させて前記作動流体を昇温させる如く構成した。   The electric motor control device according to claim 5, further comprising a heater for raising the temperature of the working fluid, wherein the working fluid supply / discharge mechanism operation control means has a temperature corresponding to the temperature of the working fluid less than the predetermined value. The heater is operated to raise the temperature of the working fluid.

尚、上記で、「前記作動流体の温度に相当する温度」とは、作動流体の温度それ自体、内燃機関の温度、および外気温の内のいずれであっても良いことを意味する。   In the above, “the temperature corresponding to the temperature of the working fluid” means that the temperature of the working fluid itself, the temperature of the internal combustion engine, or the outside air temperature may be used.

請求項1にあっては、作動流体を供給されるとき、第1、第2の回転子を相対回転させて磁石片による合成磁束が強められる強め位相位置に保持する第1の作動室と、逆に合成磁束が弱められる弱め位相位置に保持する第2の作動室と、作動流体を第1、第2の作動室に供給あるいは第1、第2の作動室から排出させて貯留源に復帰させる作動流体給排機構とを少なくとも備える電動機の作動流体給排機構の動作を制御する制御装置において、電動機が停止されているとき、第2の作動室の作動流体が排出されるように作動流体給排機構を動作させる作動流体給排機構動作制御手段を備える如く構成したので、電動機が弱め位相位置あるいは強め位相位置と弱め位相位置の中間付近の位置で安定する特性を備えると共に、低温始動時であっても、強め側に位相を速やかに変更することができる。よって、ハイブリッド車両に駆動源として搭載されるときも所望の発進駆動力を速やかに得ることができ、運転フィーリングの低下を招くこともない。   In claim 1, when the working fluid is supplied, the first working chamber is held in a strong phase position where the first and second rotors are relatively rotated to increase the combined magnetic flux by the magnet pieces, Conversely, the second working chamber is held in a weakening phase position where the combined magnetic flux is weakened, and the working fluid is supplied to the first and second working chambers or discharged from the first and second working chambers to return to the storage source. In the control device for controlling the operation of the working fluid supply / discharge mechanism of the electric motor including at least the working fluid supply / discharge mechanism, the working fluid is discharged so that the working fluid in the second working chamber is discharged when the electric motor is stopped. Since it is configured to include operation fluid supply / discharge mechanism operation control means for operating the supply / discharge mechanism, the electric motor has a characteristic that is stable at a weak phase position or a position near the middle of the weak phase position and the weak phase position, and at low temperature start Because , It is possible to quickly change the phase to strengthen the side. Therefore, a desired start driving force can be quickly obtained even when the hybrid vehicle is mounted as a drive source, and the driving feeling is not reduced.

即ち、第1、第2の回転子を相対回転させて位相を変更する場合、第1、第2の作動室は、その一方に作動流体を供給するには他方から排出させる構造とならざるを得ないが、その場合、電動機が停止されているときに第2の作動室の作動流体が排出されるように作動流体給排機構を動作させることで、電動機が弱め位相位置あるいは強め位相位置と弱め位相位置の中間付近の位置で安定する特性を備えると共に、低温始動時であっても、強め側に位相を速やかに変更することができる。   That is, when the phase is changed by relatively rotating the first and second rotors, the first and second working chambers must be structured to be discharged from the other in order to supply the working fluid to one of them. However, in that case, by operating the working fluid supply / discharge mechanism so that the working fluid in the second working chamber is discharged when the electric motor is stopped, the electric motor has a weak phase position or a strong phase position. In addition to being stable at a position near the middle of the weaker phase position, it is possible to quickly change the phase to the stronger side even during cold start.

請求項2に係る電動機の制御装置にあっては、電動機が停止されているとき、作動流体を第1、第2の作動室に給排して強め位相位置と弱め位相位置の間を往復させ、よって第2の作動室の作動流体が排出されるように作動流体給排機構を動作させる如く構成したので、請求項1で述べた効果に加え、電動機が停止されているときに第2の作動室の作動流体が確実に排出されることとなり、始動時に強め側に位相を一層速やかに変更することができる。   In the motor control device according to claim 2, when the motor is stopped, the working fluid is supplied to and discharged from the first and second working chambers to reciprocate between the strong phase position and the weak phase position. Therefore, since the working fluid supply / discharge mechanism is operated so that the working fluid in the second working chamber is discharged, in addition to the effect described in claim 1, the second fluid can be output when the motor is stopped. The working fluid in the working chamber is surely discharged, and the phase can be changed to the stronger side more quickly at the start.

請求項3にあっては、作動流体を供給されるとき、第1、第2の回転子を相対回転させて磁石片による合成磁束が強められる強め位相位置に保持する第1の作動室と、逆に合成磁束が弱められる弱め位相位置に保持する第2の作動室と、作動流体の貯留源と第1、第2の作動室を流路で接続し、貯留源の作動流体を圧送して流路を介して第1、第2の作動室に供給あるいは第1、第2の作動室から排出させて貯留源に復帰させる作動流体給排機構とを少なくとも備えた電動機の作動流体給排機構の動作を制御する制御装置において、電動機が停止されていると共に、作動流体の温度に相当する温度が所定値未満であるとき、作動流体を第1の作動室に供給した後、流路を閉鎖するように作動流体給排機構を動作させる作動流体給排機構動作制御手段を備える如く構成したので、停止から時間が経過して作動流体の温度が低下して高粘性となったときの状態をむしろ利用して位相を強め側あるいはその近傍に保持しておくことができ、電動機が弱め位相位置あるいは強め位相位置と弱め位相位置の中間付近の位置で安定する特性を備えると共に、低温始動時であっても、強め側に位相を速やかに変更することができる。よって、ハイブリッド車両に駆動源として搭載されるときも所望の発進駆動力を速やかに得ることができ、運転フィーリングの低下を招くこともない。   In claim 3, when the working fluid is supplied, the first working chamber is held in a strong phase position where the first and second rotors are relatively rotated and the resultant magnetic flux by the magnet pieces is strengthened; Conversely, the second working chamber that holds the weakening phase position where the combined magnetic flux is weakened, the working fluid storage source and the first and second working chambers are connected by a flow path, and the working fluid of the storage source is pumped. A working fluid supply / discharge mechanism for an electric motor including at least a working fluid supply / discharge mechanism that supplies the first and second working chambers through the flow path or discharges them from the first and second working chambers to return them to the storage source. In the control device for controlling the operation of the above, when the electric motor is stopped and the temperature corresponding to the temperature of the working fluid is less than a predetermined value, the working fluid is supplied to the first working chamber and then the flow path is closed. Working fluid supply / discharge mechanism operation control Since it is configured to include the means, it is possible to hold the phase on the stronger side or in the vicinity thereof by using the state when the temperature of the working fluid decreases and becomes highly viscous over time after stopping. In addition, the electric motor has a characteristic that is stable at a weak phase position or a position near the middle between the strong phase position and the weak phase position, and the phase can be quickly changed to the strong side even at the time of low temperature start. Therefore, a desired start driving force can be quickly obtained even when the hybrid vehicle is mounted as a drive source, and the driving feeling is not reduced.

請求項4に係る電動機の制御装置にあっては、流路に配置され、その弁体が作動流体を第2の作動室に供給する第1位置と、第1の作動室に供給する第2位置と、それらの中間位置に移動自在な切換弁を備えると共に、作動流体給排機構動作制御手段は、切換弁の弁体を第1位置に駆動した後、中間位置に駆動し、よって作動流体を第1の作動室に供給した後に流路を閉鎖するように作動流体給排機構を動作させる如く構成したので、請求項3で述べた効果に加え、停止時の位相を強め側あるいはその近傍に確実に保持しておくことができ、始動時に強め側に位相を一層速やかに変更することができる。   In the control device for the electric motor according to claim 4, the valve body is disposed in the flow path, and the valve body has a first position for supplying the working fluid to the second working chamber, and a second position for supplying the first working chamber to the second working chamber. The working fluid supply / discharge mechanism operation control means drives the valve body of the switching valve to the first position and then drives to the intermediate position, and thus the working fluid. Since the working fluid supply / discharge mechanism is operated so as to close the flow path after supplying the first working chamber to the first working chamber, in addition to the effect described in claim 3, the phase at the time of stopping is increased or in the vicinity thereof. Therefore, the phase can be changed to the stronger side at the time of starting more quickly.

請求項5に係る電動機の制御装置にあっては、作動流体を昇温するヒータを備え、作動流体の温度に相当する温度が所定値未満であるとき、ヒータを作動させて作動流体を昇温させる如く構成したので、請求項1から4で述べた効果に加え、作動流体の排出抵抗を低下させることができ、位相を一層速やかに変更することができる。   The electric motor control device according to claim 5 includes a heater that raises the temperature of the working fluid, and when the temperature corresponding to the temperature of the working fluid is less than a predetermined value, the heater is activated to raise the temperature of the working fluid. In addition to the effects described in claims 1 to 4, the discharge resistance of the working fluid can be reduced and the phase can be changed more quickly.

以下、添付図面に即してこの発明に係る電動機の制御装置を実施するための最良の形態について説明する。   The best mode for carrying out the motor control device according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の第1実施例に係る電動機の制御装置の全体構成を示す概略図である。尚、図示の簡略化のため、図1ではセンサおよびアクチュエータの図示は省略した。   FIG. 1 is a schematic diagram showing the overall configuration of an electric motor control apparatus according to a first embodiment of the present invention. For simplification of illustration, the illustration of the sensor and the actuator is omitted in FIG.

図1で符号10は電動機を示す。電動機10は、より具体的にはブラシレスモータあるいは交流同期電動機からなる。符号12はガソリン噴射式火花点火式4気筒のエンジン(内燃機関)を示し、その出力は駆動軸14を介して変速機16に入力される。変速機16は自動変速機からなり、電動機10とエンジン12が搭載されるハイブリッド車両(図示せず)の駆動輪20に接続されてエンジン出力を変速し、駆動輪20に伝達してハイブリッド車両を走行させる。   In FIG. 1, reference numeral 10 denotes an electric motor. More specifically, the electric motor 10 includes a brushless motor or an AC synchronous motor. Reference numeral 12 denotes a gasoline injection spark ignition type 4-cylinder engine (internal combustion engine), and its output is input to the transmission 16 via the drive shaft 14. The transmission 16 is composed of an automatic transmission, and is connected to drive wheels 20 of a hybrid vehicle (not shown) on which the electric motor 10 and the engine 12 are mounted, shifts engine output, and transmits it to the drive wheels 20 to transmit the hybrid vehicle. Let it run.

電動機10とエンジン12は、クラッチ(図示せず)を介して変速機16に接続される。電動機10はエンジン12が回転するとき常に回転し、始動時には通電されてエンジン12をクランキングして始動させると共に、加速時などにも通電されてエンジン12の回転をアシスト(増速)する。電動機10は通電されないときはエンジン12の回転に伴って空転すると共に、エンジン12への燃料供給が停止される減速時には駆動軸14の回転によって生じた運動エネルギを電気エネルギに変換して出力する回生機能を有する発電機(ジェネレータ)として機能する。このように、この実施例において電動機10は、エンジン12と共に駆動源として車両(パラレルハイブリッド車両)に搭載される。   The electric motor 10 and the engine 12 are connected to the transmission 16 via a clutch (not shown). The electric motor 10 always rotates when the engine 12 rotates, and is energized at the time of starting to crank and start the engine 12, and is also energized at the time of acceleration or the like to assist the rotation of the engine 12 (acceleration). When the electric motor 10 is not energized, the motor 10 idles as the engine 12 rotates, and at the time of deceleration when the fuel supply to the engine 12 is stopped, the kinetic energy generated by the rotation of the drive shaft 14 is converted into electric energy and output. It functions as a generator having a function. Thus, in this embodiment, the electric motor 10 is mounted on a vehicle (parallel hybrid vehicle) as a drive source together with the engine 12.

電動機10は、パワードライブユニット(「PDU」という)22を介してバッテリ24に接続される。PDU22はインバータを備え、バッテリ24から供給(放電)される直流(電力)を交流に変換して電動機10に供給すると共に、電動機10の回生動作によって発電された交流を直流に変換してバッテリ24に供給する。このように、PDU22を介して電動機10の駆動・回生が制御される。   The electric motor 10 is connected to a battery 24 via a power drive unit (referred to as “PDU”) 22. The PDU 22 includes an inverter, converts direct current (electric power) supplied (discharged) from the battery 24 to alternating current and supplies the alternating current to the electric motor 10, and converts alternating current generated by the regenerative operation of the electric motor 10 into direct current and converts the direct current (electric power) into direct current. To supply. In this way, driving / regeneration of the electric motor 10 is controlled via the PDU 22.

さらに、エンジン12の動作を制御するエンジン制御ユニット(「ENGECU」という)26、電動機10の動作を制御するモータ制御ユニット(「MOTECU」という)30、およびバッテリ24の充電状態SOC(State Of Charge)を算出して充放電の管理などを行うバッテリ制御ユニット(「BATECU」という)32、ならびに変速機16の動作を制御する変速制御ユニット(「T/MECU」という)34が設けられる。   Further, an engine control unit (referred to as “ENGECU”) 26 that controls the operation of the engine 12, a motor control unit (referred to as “MOTECU”) 30 that controls the operation of the electric motor 10, and a state of charge (SOC) of the battery 24. A battery control unit (referred to as “BATECU”) 32 that calculates charge and discharge and the like, and a shift control unit (referred to as “T / MECU”) that controls the operation of the transmission 16 are provided.

上記したENGECU26などのECU(電子制御ユニット)は全てマイクロコンピュータからなり、通信バス36を介して相互に通信自在に接続される。またENGECU26などのECUは全てエンジン12が停止された後も、バッテリ24から通電されて動作自在に構成される。   All the ECUs (electronic control units) such as the above-described ENGECU 26 are composed of a microcomputer, and are connected to each other via a communication bus 36 so as to be able to communicate with each other. Further, all ECUs such as the ENGECU 26 are configured to be operated by being energized from the battery 24 even after the engine 12 is stopped.

図2は図1に示す電動機10の要部断面図、図3は図2に示す電動機の位相変更機構を示す分解斜視図、図4は図2に示す回転子の磁石の磁極の向きを示す模式図、および図5は、図2に示す電動機10の回転子の側面図である。   2 is a cross-sectional view of the main part of the electric motor 10 shown in FIG. 1, FIG. 3 is an exploded perspective view showing the phase changing mechanism of the electric motor shown in FIG. 2, and FIG. 4 shows the orientation of the magnetic poles of the rotor magnet shown in FIG. FIG. 5 and FIG. 5 are side views of the rotor of the electric motor 10 shown in FIG.

図示の如く、電動機10は、円環状の固定子(ステータ)40と、その内側に収容される、同様に円環状の回転子42と、回転軸(回転軸線)44を備える。固定子40は鉄系材料から製作される薄板が積層(あるいは鉄系材料を鋳造)されてなると共に、3相(U,V,W相)の固定子巻線40aが配置されてなる。   As shown in the figure, the electric motor 10 includes an annular stator (stator) 40, a similarly annular rotor 42 housed therein, and a rotation shaft (rotation axis) 44. The stator 40 is formed by laminating thin plates manufactured from iron-based materials (or casting iron-based materials), and is arranged with three-phase (U, V, W-phase) stator windings 40a.

回転子42は、外周側(第1)の回転子42aと、回転軸(回転軸線)44を中心として相対変位自在な内周側(第2)の回転子42bからなる。回転子42a,42bは例えば焼結金属から製作される鉄心からなると共に、円周側にはそれぞれ複数組、正確には16組の細長い形状の磁石片(永久磁石)46a,46bが相互に僅かな間隔をおいて配置される。   The rotor 42 includes an outer peripheral side (first) rotor 42 a and an inner peripheral side (second) rotor 42 b that is relatively displaceable about a rotating shaft (rotating axis) 44. The rotors 42a and 42b are made of, for example, an iron core made of sintered metal, and a plurality of, more specifically 16 sets of elongated magnet pieces (permanent magnets) 46a and 46b are slightly connected to each other on the circumferential side. Are arranged at a certain interval.

より具体的には、図5に示す如く、外周側の回転子42aには16組の磁石片46aが、磁石片46aの長手方向が回転子42aの径方向を向くように配置される一方、内周側の回転子42bには16組の磁石片46bが、磁石片46bの長手方向が回転子42aの円周方向を向き、よって磁石片46aと平面視においてコ字あるいはC字状を呈するように配置される。   More specifically, as shown in FIG. 5, 16 sets of magnet pieces 46a are arranged on the rotor 42a on the outer peripheral side so that the longitudinal direction of the magnet pieces 46a faces the radial direction of the rotor 42a, The inner peripheral rotor 42b has 16 sets of magnet pieces 46b, and the longitudinal direction of the magnet pieces 46b faces the circumferential direction of the rotor 42a, and thus has a U-shape or C-shape in plan view with the magnet pieces 46a. Are arranged as follows.

図3に示す如く、回転子42には位相変更機構50が設けられる。位相変更機構50は、回転軸44にスプライン(図示せず)を介して固定されるベーンロータ52と、内周側の回転子42bの内周面に嵌合されて固定される環状ハウジング54と、ベーンロータ52を外周側の回転子42aにピン56aで固定する、一対のドライブプレート56と、それらに作動油(作動流体、より具体的には油圧)を供給する油圧機構(作動流体給排機構。後述)からなる。   As shown in FIG. 3, the rotor 42 is provided with a phase changing mechanism 50. The phase changing mechanism 50 includes a vane rotor 52 that is fixed to the rotating shaft 44 via a spline (not shown), an annular housing 54 that is fitted and fixed to the inner peripheral surface of the rotor 42b on the inner peripheral side, A pair of drive plates 56 that fix the vane rotor 52 to the rotor 42a on the outer peripheral side with pins 56a, and a hydraulic mechanism (working fluid supply / discharge mechanism that supplies working oil (working fluid, more specifically, hydraulic pressure) to them. (Described later).

ベーンロータ52は中央のボス部から径方向に等間隔をおいて突出する複数個(6個)のベーン52aが形成されると共に、環状ハウジング54の内部には中心側に等間隔をおいて突出する複数個(6個)の仕切壁54aが形成される。ベーン52aと仕切壁54aの先端にはそれぞれシール部材52b、54bが配置され、ベーン52aと環状ハウジング54の内壁面および仕切壁54aとベーンロータ52のボス部の外周面の間を液密にシールする。   The vane rotor 52 is formed with a plurality of (six) vanes 52a protruding from the central boss portion at equal intervals in the radial direction, and protrudes at equal intervals to the center side inside the annular housing 54. A plurality (six) of partition walls 54a are formed. Seal members 52b and 54b are disposed at the tips of the vane 52a and the partition wall 54a, respectively, and provide a fluid-tight seal between the vane 52a and the inner wall surface of the annular housing 54 and between the partition wall 54a and the outer peripheral surface of the boss portion of the vane rotor 52. .

環状ハウジング54は、図2に示す如く、軸方向長さ(幅)が内周側の回転子42bよりも大きく形成され、2枚のドライブプレート56に穿設された環状の溝56b(図3で図示省略)に移動自在に収容され、よって環状ハウジング54と内周側の回転子42bは、外周側の回転子42aと回転軸44に回転自在に支持される。   As shown in FIG. 2, the annular housing 54 has an axial length (width) larger than that of the rotor 42b on the inner peripheral side, and an annular groove 56b (FIG. 3) formed in the two drive plates 56. The annular housing 54 and the inner peripheral rotor 42b are rotatably supported by the outer peripheral rotor 42a and the rotating shaft 44.

2枚のドライブプレート56は環状ハウジング54の両側面に摺動自在に密接させられ、環状ハウジング54の仕切壁54aとベーンロータ52のボス部の外周面との間に密閉空間を複数個(6個)形成する。この密閉空間はベーンロータ52のベーン52aによって二分され、進角側作動室(第2の作動室)54cと遅角側作動室(第1の作動室)54dを形成する。ここで、「進角」(ADV)とは内周側の回転子42bを外周側の回転子42aに対して矢印ADV(図5)で示す電動機10の回転方向と同一の方向に、「遅角」(RTD)とはその逆方向に回転させることを意味する。   The two drive plates 56 are slidably brought into close contact with both side surfaces of the annular housing 54, and a plurality of (6) sealed spaces are formed between the partition wall 54 a of the annular housing 54 and the outer peripheral surface of the boss portion of the vane rotor 52. )Form. This sealed space is divided into two by the vane 52a of the vane rotor 52 to form an advance side working chamber (second working chamber) 54c and a retard side working chamber (first working chamber) 54d. Here, the “advance angle” (ADV) means that the inner rotor 42b is moved in the same direction as the rotation direction of the electric motor 10 indicated by the arrow ADV (FIG. 5) with respect to the outer rotor 42a. “Angle” (RTD) means rotating in the opposite direction.

進角側作動室54c、遅角側作動室54dには作動流体、具体的には非圧縮性の流体、より具体的には変速機16のATF(Automatic Transmission Fluid)あるいはエンジン12の潤滑油などの作動油が供給される。作動油は、回転軸44からベーンロータ52に形成される2本の油路62,64を介して進角側作動室54c、遅角側作動室54dに供給される。   The advance side working chamber 54c and the retard side working chamber 54d have a working fluid, specifically an incompressible fluid, more specifically an ATF (Automatic Transmission Fluid) of the transmission 16 or a lubricating oil of the engine 12. Of hydraulic oil is supplied. The hydraulic oil is supplied from the rotating shaft 44 to the advance side working chamber 54c and the retard side working chamber 54d through two oil passages 62 and 64 formed in the vane rotor 52.

油路62,64はほぼ平行しており、図2と図5に示す如く、回転軸44の軸方向に穿設された油路62a,64aと、それに連続して回転軸44の外周面に穿設された油路62b,64bと、それに連続してベーンロータ52のボス部に放射状に穿設された62c,64cからなる。油路62は進角側作動室54cに、油路64は遅角側作動室54dに接続され、後述するリザーバとの間で作動油を給排される。   The oil passages 62 and 64 are substantially parallel to each other, and as shown in FIGS. 2 and 5, the oil passages 62 a and 64 a drilled in the axial direction of the rotation shaft 44 and the outer peripheral surface of the rotation shaft 44 continuously therewith. The oil passages 62b and 64b are formed, and 62c and 64c are formed radially in the boss portion of the vane rotor 52 continuously. The oil passage 62 is connected to the advance side working chamber 54c, and the oil passage 64 is connected to the retard side working chamber 54d, and hydraulic oil is supplied to and discharged from a reservoir described later.

進角側作動室54cと遅角側作動室54dは作動油を給排されて伸縮し、よって外周側の回転子42aに固定されたベーン52aに対して仕切壁54aと一体にされた内周側の回転子42bが回転軸(回転軸線)44を中心として相対回転させられることで、外周側の回転子42aと内周側の回転子42bの間の相対変位角を示す位相が0度から180度の間で変更され、それに応じて電動機10の誘起電圧が変更される。   The advance-side working chamber 54c and the retard-side working chamber 54d expand and contract by being supplied and discharged with hydraulic oil, so that the inner periphery integrated with the partition wall 54a with respect to the vane 52a fixed to the outer rotor 42a. The phase of the relative displacement angle between the outer peripheral rotor 42a and the inner peripheral rotor 42b is reduced from 0 degrees by the relative rotation of the side rotor 42b about the rotation axis (rotation axis) 44. It is changed between 180 degrees, and the induced voltage of the electric motor 10 is changed accordingly.

このように、外周側の回転子42aと内周側の回転子42bを相対回転させて位相を変更する場合、進角側作動室54cと遅角側作動室54dは、その一方に作動油を供給するには他方から排出させる構造とならざるを得ない。   Thus, when the phase is changed by relatively rotating the outer rotor 42a and the inner rotor 42b, the advance side working chamber 54c and the retard side working chamber 54d are supplied with hydraulic oil in one of them. In order to supply, the structure must be discharged from the other side.

図5に最進角位置にあるときの進角側作動室54cと遅角側作動室54dを示す。進角位置にあるとき、進角側作動室54cは作動油が供給される一方、遅角側作動室54dからは作動油が排出されるが、最進角位置では進角側作動室54cは最大限度まで膨張する一方、遅角側作動室54dは最大限度まで収縮する。詳細な図示は省略するが、最遅角位置にあるときは、遅角側作動室54dが最大限度まで膨張する一方、進角側作動室54cは最大限度まで収縮する。   FIG. 5 shows the advance side working chamber 54c and the retard side working chamber 54d at the most advanced position. When in the advanced position, hydraulic fluid is supplied to the advanced working chamber 54c, while hydraulic fluid is discharged from the retarded working chamber 54d, but in the most advanced position, the advanced working chamber 54c is While expanding to the maximum limit, the retard side working chamber 54d contracts to the maximum limit. Although detailed illustration is omitted, when in the most retarded position, the retard side working chamber 54d expands to the maximum extent, while the advance side working chamber 54c contracts to the maximum extent.

この実施例に係る電動機10にあっては、図4(a)に示すように、外周側の回転子42aの磁石片46aと内周側の回転子42bの磁石片46bは同極同士が対向する同極配置となる位相にあるとき、両者の合成磁束が強められる強め界磁(界磁が増加)となる(換言すれば、強め位相位置にある)。他方、図4(b)に示すように、外周側の回転子42aの磁石片46aと内周側の回転子42bの磁石片46bは異極同士が対向する対極配置となる位相にあるとき、両者の合成磁束が弱められる弱め界磁(界磁が減少)となる(換言すれば、弱め位相位置にある)。   In the electric motor 10 according to this embodiment, as shown in FIG. 4A, the magnet pieces 46a of the outer rotor 42a and the magnet pieces 46b of the inner rotor 42b have the same polarity. When the phase is in the same polarity arrangement, the combined magnetic flux of both is strengthened field (field increases) (in other words, in the strengthened phase position). On the other hand, as shown in FIG. 4B, when the magnet piece 46a of the rotor 42a on the outer peripheral side and the magnet piece 46b of the rotor 42b on the inner peripheral side are in a phase where the different poles are opposed to each other, The resulting magnetic field is weakened (the field is reduced) (in other words, at the weakening phase position).

外周側の回転子42aと内周側の回転子42bの位相は、所望の合成磁束が得られるように電気角において0度から180度の間において変更可能であり、そのうち0度側を遅角側、180度側を進角側とする。図4(a)は0度のとき(最遅角位置)の磁石片46aと46bの同極配置を示し、このとき界磁が最も強められる。他方、図4(b)は180度のとき(最進角位置)の磁石片46aと46bの対極配置を示し、このとき界磁が最も弱められる。   The phase of the outer rotor 42a and the inner rotor 42b can be changed between 0 degrees and 180 degrees in electrical angle so that a desired combined magnetic flux can be obtained. The 180 degree side is the advance side. FIG. 4A shows the same-pole arrangement of the magnet pieces 46a and 46b at 0 degree (most retarded angle position). At this time, the field is strengthened most. On the other hand, FIG. 4B shows the counter electrode arrangement of the magnet pieces 46a and 46b at 180 degrees (most advanced angle position), and at this time, the field is weakened most.

それにより電動機10の誘起電圧定数Keが変更され、電動機10の特性が変更される。即ち、強め界磁によって誘起電圧定数Keが増加すると、電動機10の運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に弱め界磁によって誘起電圧定数Keが減少すると、出力可能な最大トルクは減少し、許容回転速度は上昇する。   Thereby, the induced voltage constant Ke of the electric motor 10 is changed, and the characteristics of the electric motor 10 are changed. That is, when the induced voltage constant Ke increases due to the strong field, the allowable rotational speed at which the motor 10 can operate decreases, but the maximum torque that can be output increases, and conversely, when the induced voltage constant Ke decreases due to the weak field. The maximum torque that can be output decreases, and the allowable rotational speed increases.

尚、この実施例に係る電動機10は、内周側の回転子42bが外周側の回転子42aに対して最進角位置(位相180度)にあるとき、換言すれば弱め位相にあるときに安定する。即ち、油圧を供給されないとき、回転子42は最進角位置に向けて自ら相対変位し、その位置で停止する。   In the electric motor 10 according to this embodiment, when the inner circumferential side rotor 42b is at the most advanced angle position (phase 180 degrees) with respect to the outer circumferential side rotor 42a, in other words, when it is in a weaker phase. Stabilize. That is, when hydraulic pressure is not supplied, the rotor 42 is relatively displaced by itself toward the most advanced position, and stops at that position.

図6は、油路62,64を介して進角側作動室54c、遅角側作動室54dに作動油を供給する、前記した油圧機構(符号70で示す)の油圧回路図である。   FIG. 6 is a hydraulic circuit diagram of the above-described hydraulic mechanism (indicated by reference numeral 70) that supplies hydraulic oil to the advance side working chamber 54c and the retard side working chamber 54d via the oil passages 62 and 64.

図示の如く、油圧機構70は、リザーバ(タンク。作動油の貯留源)70aからフィルタ70bを介して作動油を汲み上げて高圧化して油路70cに出力する油圧ポンプ70dと、油路70cを前記した油路62,64を介して進角側作動室54cと遅角側作動室54dのいずれかに切り換え自在に接続する切換弁70eと、油路70cに介挿され、切換弁70eを介して進角側作動室54cと遅角側作動室54dに供給される作動油の流量を調整する流量調整弁70fと、それらの動作を制御する前記したMOTECU(モータ制御ユニット)30とを備える。   As shown in the figure, the hydraulic mechanism 70 includes a hydraulic pump 70d that pumps hydraulic oil from a reservoir (tank; hydraulic oil storage source) 70a through a filter 70b, increases the pressure, and outputs the hydraulic pressure to an oil passage 70c. A switching valve 70e that is switchably connected to either the advance side working chamber 54c or the retard side working chamber 54d through the oil passages 62, 64, and the oil passage 70c, and is inserted through the switching valve 70e. It includes a flow rate adjusting valve 70f that adjusts the flow rate of hydraulic oil supplied to the advance side working chamber 54c and the retard side working chamber 54d, and the above-described MOTECU (motor control unit) 30 that controls the operation thereof.

切換弁70eは4ポート弁(方向切換弁)からなる。切換弁70eには、そのポートを切り換えるリニアソレノイド弁70gが接続される。リニアソレノイド弁70gは油路70cにおいて油圧ポンプ70dと切換弁70eの間に介挿され、電磁ソレノイド70g1を備え、電磁ソレノイド70g1を励磁・消磁されることで、そのスプール(弁体)は、作動油、より具体的には油圧を切換弁70eのスプール(図示せず)に作用させる第1位置と、その作動油をドレンする第2位置の間で切り換え自在である。尚、破線はレリーフバルブ系を示す。   The switching valve 70e is a 4-port valve (direction switching valve). A linear solenoid valve 70g for switching the port is connected to the switching valve 70e. The linear solenoid valve 70g is interposed between the hydraulic pump 70d and the switching valve 70e in the oil passage 70c, and includes an electromagnetic solenoid 70g1. By exciting and demagnetizing the electromagnetic solenoid 70g1, the spool (valve element) operates. It is possible to switch between a first position where oil, more specifically oil pressure, acts on the spool (not shown) of the switching valve 70e and a second position where the hydraulic oil is drained. A broken line indicates a relief valve system.

切換弁70eは、そのスプール(弁体)が、油路70cを油路62を介して進角側作動室54cに接続して作動油を供給する一方、遅角側作動室54dをドレン側に接続して作動油を排出させる第1位置と、油路70cを油路64を介して遅角側作動室54dに接続して作動油を供給する一方、進角側作動室54cをドレン側に接続して作動油をドレン(排出)させる第2位置と、その間にあって4つのポートを閉鎖して作動油を保持する中間(中立)位置からなる3つの位置の間で切り替え自在に構成される。スプールは、スプリング70e1で第2位置に付勢される。   In the switching valve 70e, the spool (valve element) connects the oil passage 70c to the advance side working chamber 54c via the oil passage 62 to supply hydraulic oil, while the retard side working chamber 54d is set to the drain side. The first position where the hydraulic oil is connected and discharged, and the oil passage 70c is connected to the retard side working chamber 54d via the oil passage 64 to supply the hydraulic oil, while the advance side working chamber 54c is set to the drain side. It is configured to be switchable between a second position for connecting and draining (draining) hydraulic oil and an intermediate (neutral) position for closing the four ports and holding the hydraulic oil between them. . The spool is biased to the second position by the spring 70e1.

具体的には、切換弁70eのスプールは、リニアソレノイド弁70gから油圧が作用されないとき、第2位置が選択されると共に、リニアソレノイド弁70gから比較的小さな油圧が作用されるとき中間位置が選択され、リニアソレノイド弁70gから大きな油圧が作用すると、第1位置が選択されるように構成される。   Specifically, when the hydraulic pressure is not applied from the linear solenoid valve 70g, the second position is selected for the spool of the switching valve 70e, and the intermediate position is selected when a relatively small hydraulic pressure is applied from the linear solenoid valve 70g. When the large hydraulic pressure is applied from the linear solenoid valve 70g, the first position is selected.

流量調整弁70fもリニアソレノイド弁からなり、電磁ソレノイド70f1を備えると共に、電磁ソレノイド70f1をPWM制御されることで、そのスプールは作動油が切換弁70eを介して進角側作動室54cなどに供給される第1位置と、作動油がドレンされる第2位置の間の任意な位置の間を切り換え自在に構成され、切り換えられた位置に応じた流量の作動油を油路70cに出力することで、作動油の流量を調整する。破線はレリーフバルブ系を示す。   The flow rate adjusting valve 70f is also a linear solenoid valve, and includes an electromagnetic solenoid 70f1 and PWM control of the electromagnetic solenoid 70f1 allows hydraulic oil to be supplied to the advance side working chamber 54c and the like via the switching valve 70e. Between the first position where the hydraulic oil is drained and the second position where the hydraulic oil is drained is configured to be switchable, and the hydraulic oil having a flow rate corresponding to the switched position is output to the oil passage 70c. Adjust the flow rate of hydraulic oil. A broken line shows a relief valve system.

流量調整弁70fで流量が調整された油路70cの作動油は、切換弁70eを介して進角側作動室54cあるいは遅角側作動室54dに供給される。前記した如く、進角側作動室54cは、作動油を供給されるとき、その流量に応じて膨張し、位相を最進角位置(180度)と中間位置(90度)の間の任意の位置に変更すると共に、遅角側作動室54dも、作動油を供給されるとき、その流量に応じて膨張し、位相を中間位置(90度)と最遅角位置(0度)の間の任意の位置に変更する。   The hydraulic oil in the oil passage 70c whose flow rate is adjusted by the flow rate adjusting valve 70f is supplied to the advance side working chamber 54c or the retard side working chamber 54d via the switching valve 70e. As described above, when the hydraulic fluid is supplied, the advance side working chamber 54c expands according to the flow rate thereof, and the phase is set to an arbitrary position between the most advanced position (180 degrees) and the intermediate position (90 degrees). When the hydraulic oil is supplied, the retard side working chamber 54d also expands according to the flow rate, and the phase is between the intermediate position (90 degrees) and the most retarded position (0 degrees). Change to any position.

図6の末尾に示す如く、油圧ポンプ70dは第2の電動機70jに接続され、第2の電動機70jによって駆動される。第2の電動機70jはインバータ回路(INV)70kに接続される。   As shown at the end of FIG. 6, the hydraulic pump 70d is connected to the second electric motor 70j and is driven by the second electric motor 70j. The second electric motor 70j is connected to an inverter circuit (INV) 70k.

リザーバ70aとフィルタ70bの間には温度センサ70mが配置され、作動油の温度に相当する温度、具体的には作動油の温度それ自体、即ち、油温を示す出力を生じる。温度センサ70mの出力はMOTECU30に送られる。   A temperature sensor 70m is disposed between the reservoir 70a and the filter 70b, and generates a temperature corresponding to the temperature of the hydraulic oil, specifically, the hydraulic oil temperature itself, that is, an output indicating the oil temperature. The output of the temperature sensor 70m is sent to the MOTECU 30.

また電動機10の進角側あるいは遅角側作動室54c,54dの付近の適宜位置には位相センサ70nが配置され、実位相値θに応じた出力を生じる。位相センサ70nの出力もMOTECU30に送られる。   A phase sensor 70n is disposed at an appropriate position in the vicinity of the advance side or retard side working chambers 54c, 54d of the electric motor 10, and generates an output corresponding to the actual phase value θ. The output of the phase sensor 70n is also sent to the MOTECU 30.

また油路70cの適宜位置とリザーバ70aの内部にはヒータ72が配置される。ヒータ72はバッテリ24に接続され、バッテリ24から通電されるとき、作動油を昇温する。   A heater 72 is disposed at an appropriate position in the oil passage 70c and inside the reservoir 70a. The heater 72 is connected to the battery 24 and raises the temperature of the hydraulic oil when energized from the battery 24.

MOTECU30はPDU22のインバータを介して電動機10の動作を制御すると共に、電動機10の回転数などから前記した位相変更機構50を介して位相を変更(制御)する。より具体的には、MOTECU(制御手段)30は、位相センサ70nなどの出力に基づき、リニアソレノイド70gと流量調整弁70fの電磁ソレノイド70g1,70f1を励磁・消磁する。   The MOTECU 30 controls the operation of the electric motor 10 via the inverter of the PDU 22 and changes (controls) the phase via the phase changing mechanism 50 based on the rotational speed of the electric motor 10 and the like. More specifically, the MOTECU (control means) 30 excites and demagnetizes the linear solenoid 70g and the electromagnetic solenoids 70g1 and 70f1 of the flow rate adjusting valve 70f based on the output of the phase sensor 70n and the like.

またMOTECU30は、インバータ回路70kの動作を制御すると共に、温度センサ70mで検出された油温に応じ、バス36を介して通信自在に接続されるBATECU32にアクセスにし、バッテリ24からヒータ72に通電させて作動(ON)させ、あるいはその作動を停止(OFF)させる。   Further, the MOTECU 30 controls the operation of the inverter circuit 70k, and accesses the BAT ECU 32 that is communicably connected via the bus 36 in accordance with the oil temperature detected by the temperature sensor 70m, and causes the heater 24 to energize from the battery 24. Is operated (ON), or the operation is stopped (OFF).

ここで、この発明の課題を再説すると、電動機10をハイブリッド車両に搭載するとき、弱め位相位置で安定する特性を備える場合、エンジン12の始動時には位相が弱め側にあることから、強め側に変更しないと、所望の発進駆動力が得られない事態も生じ得る。その場合、低温であると、強め位相保持側の遅角側作動室54dに作動油を供給して位相を変更しようとしても、弱め位相保持側の進角側作動室54cに残留する作動油の排出抵抗が高いため、位相の変更に時間を要し、運転フィーリングが低下する恐れがある。   Here, to reiterate the problem of the present invention, when the motor 10 is mounted on a hybrid vehicle, when the engine 10 has a characteristic that stabilizes at a weak phase position, the phase is on the weak side when the engine 12 is started. Otherwise, a situation in which a desired start driving force cannot be obtained may occur. In this case, if the temperature is low, the hydraulic oil remaining in the advance side working chamber 54c on the weak phase holding side may be changed even if the phase is changed by supplying the hydraulic oil to the retard side working chamber 54d on the strong phase holding side. Since the discharge resistance is high, it takes time to change the phase and the driving feeling may be reduced.

従って、この発明の目的は上記した課題を解消することにあり、ハイブリッド車両に搭載されると共に、位相変更機構50を備え、位相が弱め位相位置で安定する特性を備える電動機10において、低温始動時にあっても速やかに位相を変更できるようにした電動機10の制御装置を提供することにある。   Accordingly, an object of the present invention is to eliminate the above-described problems. In the electric motor 10 that is mounted on a hybrid vehicle and includes a phase changing mechanism 50 and has a characteristic that the phase is weakened and stabilized at the phase position, at the time of cold start An object of the present invention is to provide a control device for the electric motor 10 that can change the phase promptly even if it exists.

図7は、その制御装置の動作、より具体的にはMOTECU30の動作を示すフロー・チャートである。   FIG. 7 is a flowchart showing the operation of the control device, more specifically, the operation of the MOTECU 30.

以下説明すると、S10においてエンジン12のイグニション・スイッチが運転者によってオフ(IGOFF)されているか否か、換言すればエンジン12(および車両)が停止されているか否か判断する。これはバス36を介して通信自在に接続されるENGECU26にアクセスして判断する。   In the following description, it is determined in S10 whether or not the ignition switch of the engine 12 is turned off (IGOFF) by the driver, in other words, whether or not the engine 12 (and the vehicle) is stopped. This is determined by accessing the ENGECU 26 communicatively connected via the bus 36.

前記したように電動機10とエンジン12は直結されていることから、エンジン12が停止されているか否か判断することは、電動機10が停止されているか否か判断することと等価である。尚、図7に示す処理は、エンジン12のイグニション・スイッチがオフされて停止されているとき、周期的、例えば1.0minごとにMOTECU30によって実行される。   As described above, since the electric motor 10 and the engine 12 are directly connected, determining whether the engine 12 is stopped is equivalent to determining whether the electric motor 10 is stopped. 7 is executed by the MOTECU 30 periodically, for example, every 1.0 min when the ignition switch of the engine 12 is turned off and stopped.

S10で肯定されるときはS12に進み、排出終了フラグのビットが1か否か判断する。このフラグのビットの初期値は0であることからS12の判断は通例否定されてS14に進み、チェックタイマ(ダウンカウンタ)に3secに相当する値をセットし、ダウンカウント(時間計測)を開始する。   When the result in S10 is affirmative, the program proceeds to S12, and it is determined whether or not the bit of the discharge end flag is 1. Since the initial value of this flag bit is 0, the determination in S12 is generally denied and the process proceeds to S14, where a value corresponding to 3 sec is set in the check timer (down counter), and the down count (time measurement) is started. .

次いでS16に進み、フルRTDを指令する。即ち、第2の電動機70jに通電して油圧ポンプ70dの駆動を開始し、リニアソレノイド弁70gの電磁ソレノイド70g1を消磁して切換弁70eのスプールを第2位置に切り換え、油路70cを遅角側作動室54dに接続すると共に、進角側作動室54cをドレン側に接続し、よって作動油を遅角側作動室54dに供給して回転子42を最遅角位置(位相0度。強め位相位置)に駆動する。   Next, in S16, a full RTD is commanded. That is, the second electric motor 70j is energized to start driving the hydraulic pump 70d, the electromagnetic solenoid 70g1 of the linear solenoid valve 70g is demagnetized, the spool of the switching valve 70e is switched to the second position, and the oil passage 70c is retarded. In addition to being connected to the side working chamber 54d, the advance side working chamber 54c is connected to the drain side, so that hydraulic oil is supplied to the retarding side working chamber 54d and the rotor 42 is moved to the most retarded position (phase 0 degree, stronger). (Phase position).

次いでS18に進み、チェックタイマの値が0に達したか、具体的には回転子42を最遅角位置に駆動してから3秒経過したか否か判断し、否定されるときはS16に戻ると共に、肯定されるときはS20に進み、チェックタイマに3sec相当の値を再びセットし、S22に進み、フルADVを指令する。   Next, the process proceeds to S18, in which it is determined whether the value of the check timer has reached 0, specifically, whether 3 seconds have elapsed since the rotor 42 has been driven to the most retarded position. At the same time, if the result is affirmative, the process proceeds to S20, the value corresponding to 3 sec is set again in the check timer, the process proceeds to S22, and full ADV is commanded.

即ち、リニアソレノイド弁70gの電磁ソレノイド70g1を励磁して切換弁70eのスプールを第1位置に切り換え、油路70cを進角側作動室54cに接続すると共に、遅角側作動室54dをドレン側に接続し、よって作動油を進角側作動室54cに供給して回転子42を最進角位置(位相180度。弱め位相位置)に駆動する。   That is, the solenoid solenoid 70g1 of the linear solenoid valve 70g is excited to switch the spool of the switching valve 70e to the first position, the oil passage 70c is connected to the advance side working chamber 54c, and the retard side working chamber 54d is connected to the drain side. Therefore, hydraulic oil is supplied to the advance side working chamber 54c to drive the rotor 42 to the most advanced position (phase 180 degrees, weak phase position).

次いでS24に進み、チェックタイマの値が0に達したか、具体的には回転子42を最進角位置に駆動してから3秒経過したか否か判断し、否定されるときはS22に戻ると共に、肯定されるときはS26に進み、チェックタイマに3sec相当の値を再びセットし、S28に進み、フルRTDを再び指令して回転子42を最遅角位置(位相0度)に駆動する。   Next, the process proceeds to S24, in which it is determined whether or not the value of the check timer has reached 0, specifically, whether or not 3 seconds have elapsed since the rotor 42 was driven to the most advanced angle position. At the same time, if the result is affirmative, the process proceeds to S26, the value corresponding to 3 seconds is again set in the check timer, the process proceeds to S28, and full RTD is commanded again to drive the rotor 42 to the most retarded position (phase 0 degree). To do.

次いでS30に進み、チェックタイマの値が0に達したか否か判断し、否定されるときはS28に戻ると共に、肯定されるときはS32に進み、排出終了フラグのビットを1にセットする。このように、このフラグのビットを1にセットすることは、上記した如く、作動油を進角側作動室54cと遅角側作動室54dに給排して回転子42を最遅角位置、最進角位置、最遅角位置と駆動、換言すれば強め位相位置と弱め位相位置の間を往復させる処理が終了したことを意味する。図示は省略するが、この後、第2の電動機70jと油圧ポンプ70dの動作が停止される。   Next, the process proceeds to S30, where it is determined whether or not the value of the check timer has reached 0. When the result is negative, the process returns to S28, and when the result is positive, the process proceeds to S32, and the bit of the discharge end flag is set to 1. Thus, setting the bit of this flag to 1 means that the hydraulic oil is supplied to and discharged from the advance side working chamber 54c and the retard side working chamber 54d as described above, and the rotor 42 is moved to the most retarded position, It means that the process of reciprocating between the most advanced position and the most retarded position and driving, in other words, between the strong phase position and the weak phase position is completed. Although illustration is omitted, thereafter, the operations of the second electric motor 70j and the hydraulic pump 70d are stopped.

尚、S10で否定されるときはS34に進み、前記したフラグのビットを0にリセットし、S36に進み、油温(温度センサ70mで検出された作動油の温度に相当する温度)が所定値β℃(例えば−10℃)以上か否か判断する。S12で肯定されるときも同様である。   When the result in S10 is negative, the program proceeds to S34, the flag bit is reset to 0, and the program proceeds to S36, where the oil temperature (temperature corresponding to the temperature of the hydraulic oil detected by the temperature sensor 70m) is a predetermined value. It is determined whether or not β ° C. (for example, −10 ° C.) or higher. The same applies when affirmative in S12.

S36で否定されるとき、換言すれば油温が所定値未満のときはS38に進み、ヒータ72を作動(オン)させる一方、S36で肯定されるときはS40に進み、ヒータ72への通電を停止させてその作動を停止(OFF)させる。   When the result in S36 is negative, in other words, when the oil temperature is lower than the predetermined value, the process proceeds to S38, and the heater 72 is activated (turned on). When the result in S36 is affirmative, the process proceeds to S40, and the heater 72 is energized. Stop the operation (OFF).

この実施例にあっては上記の如く、作動油(作動流体)を供給されるとき、外周側(第1)の回転子42aと内周側(第2)の回転子42bを相対回転させて磁石片46a,46bによる合成磁束が強められる強め位相位置に保持する遅角側(第1の)作動室54dと、逆に合成磁束が弱められる弱め位相位置に保持する進角側(第2の)作動室54cと、作動油を遅角側作動室54dと進角側作動室54cに供給あるいは遅角側作動室54dと進角側作動室54cから排出させてリザーバ(貯留源)70aに復帰させる油圧機構(作動流体給排機構)70とを少なくとも備え、エンジン(内燃機関)12と共に駆動源として車両に搭載される電動機10の油圧機構70の動作を制御するMOTEC(制御装置)30において、電動機10(より具体的にはエンジン12)が停止されているとき、進角側作動室54cの作動油が排出されるように油圧機構70を動作させる(S10からS32)、即ち、作動流体給排機構動作制御手段を備える如く構成したので、電動機10が弱め位相位置で安定する特性を備えると共に、低温始動時であっても、弱め側の進角作動室54cの残存油がないことから、その後にエンジン12が始動されるとき、強め側に位相を速やかに変更することができる。よって、エンジン(内燃機関)12と共に駆動源としてハイブリッド車両に搭載されるときも所望の発進駆動力を速やかに得ることができ、運転フィーリングの低下を招くこともない。   In this embodiment, as described above, when hydraulic oil (working fluid) is supplied, the outer peripheral side (first) rotor 42a and the inner peripheral side (second) rotor 42b are relatively rotated. The retarded side (first) working chamber 54d is held at a strong phase position where the combined magnetic flux by the magnet pieces 46a and 46b is strengthened, and the advanced angle side (second) is held at the weak phase position where the combined magnetic flux is weakened. ) The working chamber 54c and the hydraulic oil are supplied to the retarded-side working chamber 54d and the advanced-side working chamber 54c or discharged from the retarded-side working chamber 54d and the advanced-side working chamber 54c to return to the reservoir (storage source) 70a. A MOTEC (control device) 30 for controlling the operation of the hydraulic mechanism 70 of the electric motor 10 mounted on the vehicle as a drive source together with the engine (internal combustion engine) 12. Electric motor 10 ( More specifically, when the engine 12) is stopped, the hydraulic mechanism 70 is operated so that the hydraulic oil in the advance side working chamber 54c is discharged (S10 to S32), that is, the working fluid supply / discharge mechanism operation. Since the control means is provided, the electric motor 10 has the characteristic that it is stabilized at the weak phase position, and there is no residual oil in the advanced angle working chamber 54c on the weak side even at the time of low temperature start. When 12 is started, the phase can be quickly changed to the stronger side. Therefore, even when mounted on a hybrid vehicle as a drive source together with the engine (internal combustion engine) 12, a desired starting driving force can be quickly obtained, and the driving feeling is not reduced.

即ち、外周側の回転子42aと内周側の回転子42bを相対回転させて位相を変更する場合、遅角側作動室54dと進角側作動室54cは、その一方に作動油を供給するには他方から排出させる構造とならざるを得ないが、その場合、電動機10(より具体的にはエンジン12)が停止されているときに進角側作動室の作動油が排出されるように油圧機構70を動作させることで、電動機10が弱め位相位置で安定する特性を備えると共に、低温始動時であっても、強め側に位相を速やかに変更することができる。   That is, when the phase is changed by relative rotation of the outer rotor 42a and the inner rotor 42b, the retard-side working chamber 54d and the advance-side working chamber 54c supply hydraulic oil to one of them. In this case, the hydraulic oil in the advance side working chamber is discharged when the electric motor 10 (more specifically, the engine 12) is stopped. By operating the hydraulic mechanism 70, the electric motor 10 has the characteristic of being stabilized at the weak phase position, and the phase can be quickly changed to the strong side even at the time of cold start.

より具体的には、エンジン12が停止されているとき、作動油を遅角側作動室54dと進角側作動室54cに給排して強め位相位置と弱め位相位置の間を往復させ、よって進角側作動室54cの作動油が排出されるように油圧機構70を動作させる如く構成したので、上記で述べた効果に加え、エンジン12が停止されているときに進角側作動室54cの作動油が確実に排出されることとなり、よってその後のエンジン12の始動時に強め側に位相を一層速やかに変更することができる。   More specifically, when the engine 12 is stopped, the hydraulic oil is supplied to and discharged from the retard side working chamber 54d and the advance side working chamber 54c to reciprocate between the strong phase position and the weak phase position. Since the hydraulic mechanism 70 is configured to operate so that the hydraulic oil in the advance side working chamber 54c is discharged, in addition to the effects described above, the advance side working chamber 54c can be operated when the engine 12 is stopped. The hydraulic oil is surely discharged, and therefore the phase can be changed to the stronger side more quickly when the engine 12 is subsequently started.

尚、この実施例においては電動機10が弱め位相位置で安定する特性を備えるとしたが、電動機10が強め位相位置と弱め位相位置の中間付近の位置で安定する特性を備える場合であっても、弱め側の進角作動室54cの残存油がないことから、その後にエンジン12が始動されるとき、強め側に位相を速やかに変更することができる。これは、後述する第2実施例と第3実施例でも同様である。   In this embodiment, the electric motor 10 has the characteristic of being stable at the weak phase position. However, even when the electric motor 10 has the characteristic of being stable at a position near the middle of the strong phase position and the weak phase position, Since there is no residual oil in the advance side working chamber 54c on the weak side, when the engine 12 is subsequently started, the phase can be quickly changed to the strong side. This is the same in the second and third embodiments described later.

また、作動油を昇温するヒータ72を備え、油温(作動油の温度に相当する温度)がβ℃(所定値)未満であるとき、ヒータ72を作動させて作動油を昇温させる如く構成したので、上記した効果に加え、作動油の排出抵抗を低下させることができ、作動室54c,54dで速やかに給排させることができて位相を一層速やかに変更することができる。   Further, a heater 72 for raising the temperature of the hydraulic oil is provided, and when the oil temperature (temperature corresponding to the temperature of the hydraulic oil) is lower than β ° C. (predetermined value), the heater 72 is operated to raise the temperature of the hydraulic oil. Since it comprised, in addition to the above-mentioned effect, the discharge resistance of hydraulic fluid can be reduced, it can be made to supply / discharge quickly by the working chambers 54c and 54d, and the phase can be changed more rapidly.

図8は、この発明の第2実施例に係る電動機の制御装置の動作を示す、図8フロー・チャートと類似するフロー・チャートである。図8フロー・チャートの処理もMOTECU30によってエンジン12が停止されているときに周期的に実行される。   FIG. 8 is a flowchart similar to the flowchart of FIG. 8 showing the operation of the motor control apparatus according to the second embodiment of the present invention. 8 is also periodically executed by the MOTECU 30 when the engine 12 is stopped.

以下説明すると、S100においてエンジン12のイグニション・スイッチが運転者によってオフ(IGOFF)されたか否か、換言すれば電動機10が停止されているか否か判断し、肯定されるときはS102に進み、位相センサ70nで検出された実位相θがα未満か否か判断し、肯定されるときは以降の処理をスキップする。αは例えば45度程度の遅角側の値である。これは、実位相θが45度未満の遅角側にあるときは後述する処理は不要のためである。   In the following description, it is determined whether or not the ignition switch of the engine 12 has been turned off (IGOFF) by the driver in S100, in other words, whether or not the motor 10 has been stopped. It is determined whether or not the actual phase θ detected by the sensor 70n is less than α. If the result is affirmative, the subsequent processing is skipped. α is, for example, a value on the retard side of about 45 degrees. This is because the later-described processing is not necessary when the actual phase θ is on the retard side of less than 45 degrees.

S102で否定されるときはS104に進み、油温が所定値β℃未満か否か再び判断し、否定されるときは移行の処理をスキップする。これは第2実施例においては油温が低いときの作動油の高粘性をかえって利用するためである。   When the result in S102 is negative, the program proceeds to S104, in which it is determined again whether the oil temperature is lower than the predetermined value β ° C., and when the result is negative, the transition process is skipped. This is because in the second embodiment, the high viscosity of the hydraulic oil when the oil temperature is low is used instead.

エンジン12が停止されてしばらくの間はS104では否定されるが、やがてエンジン12の温度が低下するとS104で肯定されてS106に進み、チェックタイマ(ダウンカウンタ)に3sec相当の値をセットし、ダウンカウント(時間計測)を開始し、S108に進み、フルRTDを指令する。   For a while after the engine 12 is stopped, the result in S104 is negative. However, when the temperature of the engine 12 decreases, the result is affirmative in S104 and the process proceeds to S106, and a value corresponding to 3 seconds is set in the check timer (down counter). Counting (time measurement) is started, and the process proceeds to S108 to command full RTD.

即ち、第2の電動機70dと油圧ポンプ70dの駆動を開始し、リニアソレノイド弁70gの電磁ソレノイド70g1を消磁して切換弁70eのスプールを第2位置に切り換え、油路70cを遅角側作動室54dに接続すると共に、進角側作動室54cをドレン側に接続し、作動油を遅角側作動室54dに供給して回転子42を最遅角位置(位相0度。強め位相位置)に駆動する。   That is, the driving of the second electric motor 70d and the hydraulic pump 70d is started, the electromagnetic solenoid 70g1 of the linear solenoid valve 70g is demagnetized, the spool of the switching valve 70e is switched to the second position, and the oil passage 70c is connected to the retard side working chamber. 54d, the advance side working chamber 54c is connected to the drain side, and hydraulic oil is supplied to the retard side working chamber 54d to bring the rotor 42 to the most retarded position (phase 0 degree, stronger phase position). To drive.

次いでS110に進み、チェックタイマの値が0に達したか、具体的には回転子42を最遅角位置に駆動してから3秒経過したか否か判断し、否定されるときはS108に戻ると共に、肯定されるときはS112に進み、チェックタイマに3sec相当の値を再びセットし、S114に進み、中間指令を行う。   Next, in S110, it is determined whether or not the value of the check timer has reached 0, specifically, whether or not 3 seconds have elapsed since the rotor 42 is driven to the most retarded position. At the same time, if the result is affirmative, the process proceeds to S112, the value corresponding to 3 seconds is set again in the check timer, and the process proceeds to S114 to perform an intermediate command.

即ち、リニアソレノイド弁70gの電磁ソレノイド70g1をPWM制御して切換弁70eのスプールに比較的小さな油圧を作用させ、切換弁70eのスプールが第1位置と第2位置の間の中間位置に切り換わるように駆動し、よって切換弁70eの4つのポートを閉鎖して進角側作動室54cと遅角側作動室54dに連通する油路62,64が遮断されるように駆動する。   That is, the solenoid solenoid 70g1 of the linear solenoid valve 70g is PWM-controlled to apply a relatively small hydraulic pressure to the spool of the switching valve 70e, and the spool of the switching valve 70e is switched to an intermediate position between the first position and the second position. Accordingly, the four ports of the switching valve 70e are closed, and the oil passages 62 and 64 communicating with the advance side working chamber 54c and the retard side working chamber 54d are driven.

次いでS116に進み、チェックタイマの値が0に達したか、具体的には切換弁70eを中間位置に駆動されてから3秒経過したか否か判断し、否定されるときはS114に戻ると共に、肯定されるときは第2の電動機70jと油圧ポンプ70dを停止させて図8の処理を終了する。   Next, the process proceeds to S116, in which it is determined whether or not the value of the check timer has reached 0, specifically, whether or not 3 seconds have elapsed since the switching valve 70e was driven to the intermediate position. When the result is affirmative, the second electric motor 70j and the hydraulic pump 70d are stopped, and the process of FIG. 8 is terminated.

尚、S100で否定されるときはS118に進み、油温(温度センサ70mで検出された作動油の温度に相当する温度)が所定値β℃以上か否か判断し、否定されるときはS120に進み、ヒータ72を作動(オン)させる一方、S118で肯定されるときはS122に進み、ヒータ72への通電を停止させてその作動を停止(OFF)させる。   When the result in S100 is negative, the program proceeds to S118, in which it is determined whether or not the oil temperature (the temperature corresponding to the temperature of the hydraulic oil detected by the temperature sensor 70m) is equal to or higher than a predetermined value β ° C. In step S118, the heater 72 is operated (turned on). On the other hand, when the result in S118 is affirmative, the process proceeds to step S122, in which the power supply to the heater 72 is stopped and the operation is stopped (OFF).

第2実施例にあっては上記の如く、作動油(作動流体)を供給されるとき、外周側(第1)の回転子42aと内周側(第2)の回転子42bを相対回転させて磁石片46a,46bによる合成磁束が強められる強め位相位置に保持する遅角側(第1の)作動室54dと、逆に合成磁束が弱められる弱め位相位置に保持する進角側(第2の)作動室54cと、作動油を遅角側作動室54dと進角側作動室54cに供給あるいは遅角側作動室54dと進角側作動室54cから排出させてリザーバ(貯留源)70aに復帰させる油圧機構(作動流体給排機構)70とを少なくとも備え、エンジン(内燃機関)12と共に駆動源として車両に搭載される電動機10の油圧機構70の動作を制御するMOTECU(制御装置)30において、エンジン12が停止されていると共に、作動油の温度に相当する温度が所定値β℃未満であるとき、作動油を遅角側作動室54dに供給した後、流路62,64を閉鎖するように油圧機構70を動作させる(S100からS116)、即ち、作動動流体給排機構動作制御手段を備える如く構成したので、電動機10(より具体的にはエンジン12)の停止から時間が経過して作動油の温度が低下して高粘性となったときの状態をむしろ利用して位相を強め側あるいはその近傍に保持しておくことができ、電動機10が弱め位相位置で安定する特性を備えると共に、低温始動時であっても、強め側に位相を速やかに変更することができる。よって、エンジン(内燃機関)12と共に駆動源としてハイブリッド車両に搭載されるときも所望の発進駆動力を速やかに得ることができ、運転フィーリングの低下を招くこともない。   In the second embodiment, as described above, when hydraulic oil (working fluid) is supplied, the outer (first) rotor 42a and the inner (second) rotor 42b are relatively rotated. The retarded-side (first) working chamber 54d that holds the strengthened phase position where the combined magnetic flux by the magnet pieces 46a and 46b is strengthened, and the advanced-angle side (second) that holds the weakly phase position where the combined magnetic flux is weakened. The working chamber 54c and the working oil are supplied to the retarding-side working chamber 54d and the advance-side working chamber 54c, or discharged from the retarding-side working chamber 54d and the advance-side working chamber 54c to the reservoir 70a. In a MOTECU (control device) 30 that includes at least a hydraulic mechanism (working fluid supply / discharge mechanism) 70 that returns, and controls the operation of the hydraulic mechanism 70 of the electric motor 10 mounted on the vehicle as a drive source together with the engine (internal combustion engine) 12. , Engine 1 Is stopped, and when the temperature corresponding to the temperature of the hydraulic oil is less than the predetermined value β ° C., the hydraulic oil is supplied so as to close the flow paths 62 and 64 after supplying the hydraulic oil to the retard side working chamber 54d. Since the mechanism 70 is operated (S100 to S116), that is, the operation fluid supply / discharge mechanism operation control means is provided, the hydraulic oil is operated after a lapse of time from the stop of the electric motor 10 (more specifically, the engine 12). Rather, the state when the temperature is lowered and becomes highly viscous can be used to maintain the phase on the stronger side or in the vicinity thereof, and the motor 10 has the characteristic of being weak and stable at the phase position. Even at the time of starting, the phase can be quickly changed to the stronger side. Therefore, even when mounted on a hybrid vehicle as a drive source together with the engine (internal combustion engine) 12, a desired starting driving force can be quickly obtained, and the driving feeling is not reduced.

また、流路62,64に配置され、そのスプール(弁体)が作動油を進角側作動室54cに供給する第1位置と、遅角側作動室54dに供給する第2位置と、それらの中間位置に移動自在な切換弁(方向切換弁)70eを備えると共に、MOTECU30は、切換弁70eのスプールを第2位置に駆動した後、中間位置に駆動し、よって作動油を遅角側作動室54dに供給した後に流路62,64を閉鎖するように油圧機構70を動作させる如く構成したので、上記で述べた効果に加え、エンジン12の停止時に位相を強め側あるいはその近傍に確実に保持しておくことができ、始動時に強め側に位相を一層速やかに変更することができる。   Further, a first position where the spool (valve) is disposed in the flow paths 62 and 64 supplies hydraulic oil to the advance side working chamber 54c, a second position supplying the retard side working chamber 54d, and these In addition, the MOTECU 30 drives the spool of the switching valve 70e to the second position and then drives it to the intermediate position, thereby operating the hydraulic oil on the retard side. Since the hydraulic mechanism 70 is configured to be operated so as to close the flow paths 62 and 64 after being supplied to the chamber 54d, in addition to the effects described above, the phase is surely increased or close to the side when the engine 12 is stopped. The phase can be maintained, and the phase can be changed more rapidly at the time of starting.

また、作動油を昇温するヒータ72を備え、作動油の温度に相当する温度が所定値β℃未満であるとき、ヒータ72を作動させて作動油を昇温させる如く構成したので、上記で述べた効果に加え、作動油の排出抵抗を低下させることができ、位相を一層速やかに変更することができる。   Further, the heater 72 for raising the temperature of the hydraulic oil is provided, and when the temperature corresponding to the temperature of the hydraulic oil is less than a predetermined value β ° C., the heater 72 is operated to raise the temperature of the hydraulic oil. In addition to the effects described above, the hydraulic oil discharge resistance can be reduced, and the phase can be changed more quickly.

図9は、この発明の第3実施例に係る電動機の制御装置を示す、図6と同様の油圧機構70の油圧回路図である。   FIG. 9 is a hydraulic circuit diagram of a hydraulic mechanism 70 similar to that of FIG. 6, showing an electric motor control apparatus according to a third embodiment of the present invention.

第1実施例と相違する点に焦点をおいて説明すると、切換弁70eは電磁ソレノイド70e2を備えたリニアソレノイド弁とすると共に、第1実施例で使用されたリニアソレノイド弁70gを除去するようにした。   The description will focus on the differences from the first embodiment. The switching valve 70e is a linear solenoid valve having an electromagnetic solenoid 70e2, and the linear solenoid valve 70g used in the first embodiment is removed. did.

従って、切換弁70eのスプールの位置は、その電磁ソレノイド70e2の励磁・消磁によって制御される。より具体的には、切換弁70eは、電磁ソレノイド70e2が大きな電力で励磁されると、そのスプールは第1位置に切り換えられる一方、比較的小さな電力で励磁されると、そのスプールは中間位置に切り換えられ、さらに電磁ソレノイド70e2への通電が停止されると、スプールはスプリング70e1の力で第2位置に切り換えられる。   Therefore, the spool position of the switching valve 70e is controlled by the excitation / demagnetization of the electromagnetic solenoid 70e2. More specifically, the switching valve 70e has its spool switched to the first position when the electromagnetic solenoid 70e2 is energized with a large electric power, while the spool is in an intermediate position when energized with a relatively small electric power. When the switching is performed and the energization of the electromagnetic solenoid 70e2 is further stopped, the spool is switched to the second position by the force of the spring 70e1.

尚、作動油の流量が流量調整弁70fで調整される構成も含めて残余の構成は、図6に示す第1実施例のそれと異ならない。   The remaining configuration including the configuration in which the flow rate of the hydraulic oil is adjusted by the flow rate adjusting valve 70f is the same as that of the first embodiment shown in FIG.

図10は、第3実施例に係る電動機の制御装置で実行されるフロー・チャートを示す、図9と同様なフロー・チャートである。図9フロー・チャートの処理もMOTECU30によってエンジン12が停止されているときに周期的に実行される。   FIG. 10 is a flow chart similar to FIG. 9, showing a flow chart executed by the motor control apparatus according to the third embodiment. 9 is also periodically executed by the MOTECU 30 when the engine 12 is stopped.

以下説明すると、S200からS212まで図9に示す第2実施例と同様の処理を行う。尚、S212においてはタイマ値のセットと同時に、第2の電動機70jへの通電を停止し、油圧ポンプ70dを停止させる。   In the following, from S200 to S212, the same processing as in the second embodiment shown in FIG. 9 is performed. In S212, simultaneously with the setting of the timer value, energization to the second electric motor 70j is stopped and the hydraulic pump 70d is stopped.

次いでS214に進み、リニアソレノイド中間指令を行う。即ち、S216で肯定されるまで、切換弁70eに電磁ソレノイド70e2を比較的小さな電力で励磁し、切換弁70eを中間位置に保持させる。尚、S218からS222までの処理は第1あるいは第2実施例のそれと異ならない。   Next, in S214, a linear solenoid intermediate command is issued. In other words, the electromagnetic solenoid 70e2 is excited in the switching valve 70e with relatively small power until the result in S216 is positive, and the switching valve 70e is held at the intermediate position. The processing from S218 to S222 is not different from that in the first or second embodiment.

第3実施例は上記の如く構成したので、第2実施例で述べたと同様の効果を得ることができると共に、第2の電動機70jと油圧ポンプ70dを停止した後、切換弁70eの電磁ソレノイド70e2に通電して中間位置に保持する如く構成したので、第2実施例に比し、第2の電動機70jへの通電を不要とすることで消費電力を低減させることができる。また、油圧ポンプ70dに代えて切換弁70eの電磁ソレノイド70e2への通電によって保持することで、より良好な保持性を得ることができる。   Since the third embodiment is configured as described above, the same effects as described in the second embodiment can be obtained, and after the second electric motor 70j and the hydraulic pump 70d are stopped, the electromagnetic solenoid 70e2 of the switching valve 70e. Therefore, the power consumption can be reduced by eliminating the need to energize the second electric motor 70j as compared with the second embodiment. Further, better holding performance can be obtained by holding the switching valve 70e by energizing the electromagnetic solenoid 70e2 instead of the hydraulic pump 70d.

第1実施例は上記の如く、磁石片46aをその長手方向が径方向を向くように配置される第1(外周側)の回転子42aと、磁石片46bをその長手方向が周方向を向くように配置される第2(内周側)の回転子42bと、作動流体(例えば作動油)を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が強められる強め位相位置に保持する第1(遅角側)の作動室54dと、前記作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が弱められる弱め位相位置に保持する第2(進角側)の作動室54cと、前記作動流体の貯留源(リザーバ)70aと前記第1、第2の作動室を流路70c,62,64で接続し、前記貯留源の作動流体を圧送して前記流路を介して前記第1、第2の作動室に供給あるいは前記第1、第2の作動室から排出させて前記貯留源に復帰させる作動流体給排機構(油圧機構)70とを少なくとも備えた電動機10、より具体的には内燃機関(エンジン)12と共に駆動源として車両に搭載される電動機10の作動流体給排機構70の動作を制御する制御装置(MOTECU30)において、前記電動機10(より具体的には内燃機関12)が停止されているとき、前記第2の作動室の作動流体が排出されるように前記作動流体給排機構を動作させる作動流体給排機構動作制御手段(S10からS38)を備える如く構成した。   In the first embodiment, as described above, the magnet piece 46a is arranged so that the longitudinal direction thereof is directed in the radial direction, and the first (outer peripheral side) rotor 42a and the magnet piece 46b are arranged so that the longitudinal direction thereof is directed in the circumferential direction. When the second (inner peripheral side) rotor 42b and the working fluid (for example, working oil) are supplied, the first and second rotors are relatively rotated to synthesize the magnet pieces. When the working fluid is supplied to the first (retarding side) working chamber 54d that holds the magnetic flux in a strong phase position, the first and second rotors are rotated relative to each other, and the magnet piece The second (advance side) working chamber 54c that holds the weakened phase position where the combined magnetic flux is weakened, the working fluid reservoir 70a, and the first and second working chambers are flow paths 70c and 62. 64, and the working fluid of the storage source is pumped to pass through the flow path. An electric motor 10 having at least a working fluid supply / discharge mechanism (hydraulic mechanism) 70 that is supplied to the first and second working chambers or discharged from the first and second working chambers to return to the storage source; More specifically, in the control device (MOT ECU 30) for controlling the operation of the working fluid supply / discharge mechanism 70 of the electric motor 10 mounted on the vehicle as a drive source together with the internal combustion engine (engine) 12, the electric motor 10 (more specifically, Working fluid supply / discharge mechanism operation control means (S10 to S38) for operating the working fluid supply / discharge mechanism so that the working fluid in the second working chamber is discharged when the internal combustion engine 12) is stopped. It was configured as follows.

また、前記作動流体給排機構動作制御手段は、前記内燃機関が停止されているとき、前記作動流体を前記第1、第2の作動室に給排して前記強め位相位置と前記弱め位相位置の間を往復させ、よって前記第2の作動室の作動流体が排出されるように前記作動流体給排機構を動作させる(S10からS38)如く構成した。   The working fluid supply / discharge mechanism operation control means supplies and discharges the working fluid to and from the first and second working chambers when the internal combustion engine is stopped. And the working fluid supply / discharge mechanism is operated so that the working fluid in the second working chamber is discharged (S10 to S38).

第2、第3実施例は上記の如く、磁石片46aをその長手方向が径方向を向くように配置される第1(外周側)の回転子42aと、磁石片46bをその長手方向が周方向を向くように配置される第2(内周側)の回転子42bと、作動流体(作動油)を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が強められる強め位相位置に保持する第1(遅角側)の作動室54dと、前記作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が弱められる弱め位相位置に保持する第2(進角側)の作動室54cと、前記作動流体の貯留源(リザーバ)70aと前記第1、第2の作動室を流路70c,62,64で接続し、前記貯留源の作動流体を圧送して前記流路を介して前記第1、第2の作動室に供給あるいは前記第1、第2の作動室から排出させて前記貯留源に復帰させる作動流体給排機構(油圧機構)70とを少なくとも備えた電動機10、より具体的には内燃機関(エンジン)12と共に駆動源として車両に搭載される電動機10の作動流体給排機構70の動作を制御する制御装置(MOTECU30)において、前記電動機10(より具体的には内燃機関12)が停止されていると共に、前記作動流体の温度に相当する温度が所定値未満であるとき、前記作動流体を前記第1の作動室に供給した後、前記流路を閉鎖するように前記作動流体給排機構を動作させる作動流体給排機構動作制御手段(S100からS122,S200からS222)とを備える如く構成した。   In the second and third embodiments, as described above, the magnet piece 46a is arranged so that the longitudinal direction thereof faces the radial direction, and the first (outer peripheral side) rotor 42a and the magnet piece 46b are arranged in the longitudinal direction. When the second (inner peripheral side) rotor 42b arranged to face the direction and the working fluid (hydraulic oil) are supplied, the first and second rotors are relatively rotated so that the magnet piece When the working fluid is supplied to the first (retarding side) working chamber 54d that is held at a strong phase position where the combined magnetic flux of the first and second magnetic fluxes is strengthened, the first and second rotors are relatively rotated and the magnet A second (advanced side) working chamber 54c that holds the weakened phase position where the combined magnetic flux generated by the piece is weakened, the working fluid storage source (reservoir) 70a, and the first and second working chambers through the flow path 70c. 62, 64, and the working fluid of the storage source is pumped to pass through the flow path. An electric motor 10 having at least a working fluid supply / discharge mechanism (hydraulic mechanism) 70 that is supplied to the first and second working chambers or discharged from the first and second working chambers to return to the storage source; More specifically, in the control device (MOT ECU 30) for controlling the operation of the working fluid supply / discharge mechanism 70 of the electric motor 10 mounted on the vehicle as a drive source together with the internal combustion engine (engine) 12, the electric motor 10 (more specifically, When the internal combustion engine 12) is stopped and the temperature corresponding to the temperature of the working fluid is less than a predetermined value, the working fluid is supplied to the first working chamber and then the flow path is closed. Is provided with working fluid supply / discharge mechanism operation control means (S100 to S122, S200 to S222) for operating the working fluid supply / discharge mechanism.

また、前記作動流体給排機構は、前記流路70c,62,64に配置され、その弁体(スプール)が前記作動流体を前記第2の作動室に供給する第1位置と、前記作動流体を前記第1の作動室に供給する第2位置と、前記第1位置と第2位置の間の中間位置に移動自在な切換弁70eを備えると共に、前記作動流体給排機構動作制御手段は、前記切換弁70eの弁体を前記第1位置に駆動した後、前記中間位置に駆動し、よって前記作動流体を前記第1の作動室に供給した後に前記流路を閉鎖するように前記作動流体給排機構を動作させる(S114からS122,S214からS222)如く構成した。   The working fluid supply / discharge mechanism is disposed in the flow paths 70c, 62, and 64, and a valve body (spool) of the working fluid is supplied to the second working chamber, a first position, and the working fluid And a switching valve 70e movable to an intermediate position between the first position and the second position, and the working fluid supply / discharge mechanism operation control means includes: After the valve body of the switching valve 70e is driven to the first position, it is driven to the intermediate position, so that the working fluid is closed after the working fluid is supplied to the first working chamber. The supply / discharge mechanism is operated (S114 to S122, S214 to S222).

また第1から第3実施例は上記の如く、前記作動流体を昇温するヒータ72を備え、前記作動流体給排機構動作制御手段は、前記作動流体の温度に相当する温度が前記所定値未満であるとき、前記ヒータを作動させて前記作動流体を昇温させる(S12からS16,S102からS106,S200からS206)如く構成した。   Further, as described above, the first to third embodiments include the heater 72 that raises the temperature of the working fluid, and the working fluid supply / discharge mechanism operation control means has a temperature corresponding to the temperature of the working fluid less than the predetermined value. In this case, the heater is operated to raise the temperature of the working fluid (S12 to S16, S102 to S106, S200 to S206).

尚、上記において、パラレルハイブリッド車に搭載された電動機を例にとってこの発明に係る電動機の制御装置を説明したが、この発明は、シリーズハイブリッド車に搭載された電動機、さらには内燃機関を備えない電気自動車に搭載された電動機にも妥当する。   In the above description, the electric motor control device according to the present invention has been described by taking the electric motor mounted on the parallel hybrid vehicle as an example. However, the present invention is not limited to the electric motor mounted on the series hybrid vehicle, and further, the electric motor without the internal combustion engine. Applicable to motors installed in automobiles.

また、第1、第2の回転子の少なくともいずれか、より具体的には第2の回転子42bを回転軸線(回転軸44)を中心として相対回転させて両者の相対変位角を示す位相θを変更するように構成したが、第1、第2の回転子の双方を相対回転させて位相を変更するようにしても良い。   Further, at least one of the first and second rotors, more specifically, the phase θ indicating the relative displacement angle of the second rotor 42b by relatively rotating the second rotor 42b about the rotation axis (rotation shaft 44). However, the phase may be changed by relatively rotating both the first and second rotors.

さらに、ヒータ72にバッテリ24から通電して作動油を昇温するようにしたが、ヒータ72に代え、エンジン12の廃熱を利用した蓄熱器を用いても良い。   Furthermore, although the heater 72 is energized from the battery 24 to raise the temperature of the hydraulic oil, a heat accumulator using waste heat of the engine 12 may be used instead of the heater 72.

さらに、作動流体として作動油を例示したが、その他の流体であっても良い。   Furthermore, although the working oil has been exemplified as the working fluid, other fluids may be used.

この発明の第1実施例に係る電動機の制御装置の全体構成を示す概略図である。1 is a schematic diagram showing an overall configuration of an electric motor control device according to a first embodiment of the present invention; FIG. 図1に示す電動機の要部断面図である。It is principal part sectional drawing of the electric motor shown in FIG. 図2に示す電動機の位相変更機構を示す分解斜視図である。It is a disassembled perspective view which shows the phase change mechanism of the electric motor shown in FIG. 図2に示す回転子の磁石の磁極の向きを示す模式図である。It is a schematic diagram which shows direction of the magnetic pole of the magnet of the rotor shown in FIG. 図2に示す電動機の回転子の側面図である。It is a side view of the rotor of the electric motor shown in FIG. 図5に示す位相変更機構の作動室に油圧を供給する油圧機構の油圧回路図である。FIG. 6 is a hydraulic circuit diagram of a hydraulic mechanism that supplies hydraulic pressure to the working chamber of the phase change mechanism shown in FIG. 5. 図1などに示す電動機の制御装置の動作を示すフロー・チャートである。It is a flowchart which shows operation | movement of the control apparatus of the electric motor shown in FIG. この発明の第2実施例に係る電動機の制御装置の動作を示す、図7と同様のフロー・チャートである。FIG. 8 is a flow chart similar to FIG. 7 showing the operation of the motor control device according to the second embodiment of the present invention; FIG. この発明の第3実施例に係る電動機の制御装置を示す、図6と同様の油圧機構の油圧回路図である。FIG. 7 is a hydraulic circuit diagram of a hydraulic mechanism similar to FIG. 6, showing a motor control device according to a third embodiment of the present invention. 第3実施例に係る電動機の制御装置の動作を示す、図7と同様のフロー・チャートである。FIG. 9 is a flowchart similar to FIG. 7 illustrating the operation of the motor control apparatus according to the third embodiment. FIG.

符号の説明Explanation of symbols

10 電動機(電動モータ)、12 エンジン(内燃機関)、16 変速機、22 PDU(パワードライブユニット)、30 モータ制御ユニット、40 固定子、42 回転子、42a 外周側(第1)の回転子、42b 内周側(第2)の回転子、44 回転軸(回転軸線)、46a,46b 磁石片、50 位相変更機構、52 ベーンロータ、52a ベーン、54 環状ハウジング、54a 仕切壁、54c 進角側作動室(第2の作動室)、54d 遅角側作動室(第1の作動室)、56 ドライブプレート、62,64 油路、70 油圧機構、70c 油路、70d 油圧ポンプ、70e 切換弁(4ポート弁)、70g リニアソレノイド弁、70m 温度センサ、72 ヒータ   DESCRIPTION OF SYMBOLS 10 Electric motor (electric motor), 12 Engine (internal combustion engine), 16 Transmission, 22 PDU (power drive unit), 30 Motor control unit, 40 Stator, 42 Rotor, 42a Outer peripheral side (first) rotor, 42b Inner peripheral side (second) rotor, 44 rotating shaft (rotating axis), 46a, 46b magnet piece, 50 phase change mechanism, 52 vane rotor, 52a vane, 54 annular housing, 54a partition wall, 54c advance side working chamber (Second working chamber), 54d retarded side working chamber (first working chamber), 56 drive plate, 62, 64 oil passage, 70 hydraulic mechanism, 70c oil passage, 70d hydraulic pump, 70e selector valve (4 ports) Valve), 70g linear solenoid valve, 70m temperature sensor, 72 heater

Claims (5)

磁石片をその長手方向が径方向を向くように配置される第1の回転子と、磁石片をその長手方向が周方向を向くように配置される第2の回転子と、作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が強められる強め位相位置に保持する第1の作動室と、前記作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が弱められる弱め位相位置に保持する第2の作動室と、前記作動流体の貯留源と前記第1、第2の作動室を流路で接続し、前記貯留源の作動流体を圧送して前記流路を介して前記第1、第2の作動室に供給あるいは前記第1、第2の作動室から排出させて前記貯留源に復帰させる作動流体給排機構とを少なくとも備えた電動機の前記作動流体給排機構の動作を制御する制御装置において、前記電動機が停止されているとき、前記第2の作動室の作動流体が排出されるように前記作動流体給排機構を動作させる作動流体給排機構動作制御手段を備えたことを特徴とする電動機の制御装置。   Supplying a working fluid, a first rotor in which the magnet piece is arranged so that the longitudinal direction thereof is in the radial direction, a second rotor in which the magnet piece is arranged so that the longitudinal direction thereof is in the circumferential direction, and When the working fluid is supplied, the first working chamber that holds the first and second rotors in a strong phase position where the combined magnetic flux by the magnet pieces is strengthened by relatively rotating the first and second rotors, A second working chamber for rotating the first and second rotors relative to each other to maintain a weak phase position where the combined magnetic flux by the magnet pieces is weakened; a working fluid storage source; and the first and second workings The chambers are connected by a flow path, the working fluid of the storage source is pumped and supplied to the first and second working chambers via the flow path or discharged from the first and second working chambers. The working flow of the electric motor having at least a working fluid supply / discharge mechanism for returning to the storage source In the control device for controlling the operation of the supply / discharge mechanism, the working fluid supply / discharge mechanism that operates the working fluid supply / discharge mechanism so that the working fluid in the second working chamber is discharged when the electric motor is stopped. An electric motor control device comprising an operation control means. 前記作動流体給排機構動作制御手段は、前記電動機が停止されているとき、前記作動流体を前記第1、第2の作動室に給排して前記強め位相位置と前記弱め位相位置の間を往復させ、よって前記第2の作動室の作動流体が排出されるように前記作動流体給排機構を動作させることを特徴とする請求項1記載の電動機の制御装置。   The working fluid supply / discharge mechanism operation control means supplies and discharges the working fluid to and from the first and second working chambers when the electric motor is stopped, between the strong phase position and the weak phase position. 2. The motor control device according to claim 1, wherein the working fluid supply / discharge mechanism is operated so as to reciprocate, and thereby the working fluid in the second working chamber is discharged. 磁石片をその長手方向が径方向を向くように配置される第1の回転子と、磁石片をその長手方向が周方向を向くように配置される第2の回転子と、作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が強められる強め位相位置に保持する第1の作動室と、前記作動流体を供給されるとき、前記第1、第2の回転子を相対回転させて前記磁石片による合成磁束が弱められる弱め位相位置に保持する第2の作動室と、前記作動流体の貯留源と前記第1、第2の作動室を流路で接続し、前記貯留源の作動流体を圧送して前記流路を介して前記第1、第2の作動室に供給あるいは前記第1、第2の作動室から排出させて前記貯留源に復帰させる作動流体給排機構とを少なくとも備えた電動機の前記作動流体給排機構の動作を制御する制御装置において、前記電動機が停止されていると共に、前記作動流体の温度に相当する温度が所定値未満であるとき、前記作動流体を前記第1の作動室に供給した後、前記流路を閉鎖するように前記作動流体給排機構を動作させる作動流体給排機構動作制御手段を備えたことを特徴とする電動機の制御装置。   Supplying a working fluid, a first rotor in which the magnet piece is arranged so that the longitudinal direction thereof is in the radial direction, a second rotor in which the magnet piece is arranged so that the longitudinal direction thereof is in the circumferential direction, and When the working fluid is supplied, the first working chamber that holds the first and second rotors in a strong phase position where the combined magnetic flux by the magnet pieces is strengthened by relatively rotating the first and second rotors, A second working chamber for rotating the first and second rotors relative to each other to maintain a weak phase position where the combined magnetic flux by the magnet pieces is weakened; a working fluid storage source; and the first and second workings The chambers are connected by a flow path, the working fluid of the storage source is pumped and supplied to the first and second working chambers via the flow path or discharged from the first and second working chambers. The working flow of the electric motor having at least a working fluid supply / discharge mechanism for returning to the storage source In the control device for controlling the operation of the supply / discharge mechanism, when the electric motor is stopped and the temperature corresponding to the temperature of the working fluid is less than a predetermined value, the working fluid is supplied to the first working chamber. And a working fluid supply / discharge mechanism operation control means for operating the working fluid supply / discharge mechanism so as to close the flow path. 前記作動流体給排機構は、前記流路に配置され、その弁体が前記作動流体を前記第1の作動室に供給する第1位置と、前記作動流体を前記第2の作動室に供給する第2位置と、前記第1位置と第2位置の間の中間位置に移動自在な切換弁を備えると共に、前記作動流体給排機構動作制御手段は、前記切換弁の弁体を前記第1位置に駆動した後、前記中間位置に駆動し、よって前記作動流体を前記第1の作動室に供給した後に前記流路を閉鎖するように前記作動流体給排機構を動作させることを特徴とする請求項3記載の電動機の制御装置。   The working fluid supply / discharge mechanism is disposed in the flow path, and the valve body supplies a first position where the working fluid is supplied to the first working chamber, and supplies the working fluid to the second working chamber. A switching valve that is movable to a second position and an intermediate position between the first position and the second position, and the working fluid supply / discharge mechanism operation control means moves the valve body of the switching valve to the first position. Then, the working fluid supply / discharge mechanism is operated so as to close the flow path after being driven to the intermediate position and thus supplying the working fluid to the first working chamber. Item 4. A motor control device according to Item 3. 前記作動流体を昇温するヒータを備え、前記作動流体給排機構動作制御手段は、前記作動流体の温度に相当する温度が前記所定値未満であるとき、前記ヒータを作動させて前記作動流体を昇温させることを特徴とする請求項1から4のいずれかに記載の電動機の制御装置。   A heater for raising the temperature of the working fluid, and the working fluid supply / discharge mechanism operation control means activates the heater to cause the working fluid to flow when the temperature corresponding to the temperature of the working fluid is less than the predetermined value. The motor control device according to any one of claims 1 to 4, wherein the temperature is raised.
JP2007204589A 2007-08-06 2007-08-06 Electric motor control device Expired - Fee Related JP5124203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204589A JP5124203B2 (en) 2007-08-06 2007-08-06 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204589A JP5124203B2 (en) 2007-08-06 2007-08-06 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2009044804A true JP2009044804A (en) 2009-02-26
JP5124203B2 JP5124203B2 (en) 2013-01-23

Family

ID=40444951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204589A Expired - Fee Related JP5124203B2 (en) 2007-08-06 2007-08-06 Electric motor control device

Country Status (1)

Country Link
JP (1) JP5124203B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259256A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Controller of motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210424A (en) * 1998-01-30 1999-08-03 Toyota Motor Corp Valve timing control device for internal combustion engine
JP2003172109A (en) * 2001-12-05 2003-06-20 Aisin Seiki Co Ltd Valve opening-closing timing control device
JP2003247434A (en) * 2002-02-22 2003-09-05 Denso Corp Valve timing control device
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor
JP2006220154A (en) * 2006-03-31 2006-08-24 Denso Corp Variable valve timing controller for internal combustion engine
WO2007074612A1 (en) * 2005-12-27 2007-07-05 Aisin Seiki Kabushiki Kaisha Device for controlling timing of opening and closing valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210424A (en) * 1998-01-30 1999-08-03 Toyota Motor Corp Valve timing control device for internal combustion engine
JP2003172109A (en) * 2001-12-05 2003-06-20 Aisin Seiki Co Ltd Valve opening-closing timing control device
JP2003247434A (en) * 2002-02-22 2003-09-05 Denso Corp Valve timing control device
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor
WO2007074612A1 (en) * 2005-12-27 2007-07-05 Aisin Seiki Kabushiki Kaisha Device for controlling timing of opening and closing valve
JP2006220154A (en) * 2006-03-31 2006-08-24 Denso Corp Variable valve timing controller for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259256A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Controller of motor

Also Published As

Publication number Publication date
JP5124203B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN107276316B (en) Device for controlling an electric machine
US7671500B2 (en) Motor using working fluid distributed into chambers, which are provided for rotating rotors in opposite relative rotation directions
WO2015049713A1 (en) Electric pump
US20130336808A1 (en) Out rotor drive electrical vane pump
JPH11287316A (en) Hydraulic pressure supplying device
JP2007138744A (en) Valve timing adjusting device
JP5124204B2 (en) Electric motor control device
JP5124203B2 (en) Electric motor control device
JP2008230281A (en) Hybrid vehicle
JP2009268269A (en) Electric motor
JP2009044805A (en) Electric motor controller
JP6036600B2 (en) Valve timing control device
JP5037083B2 (en) Electric motor
JP5979093B2 (en) Valve timing control device
JP4960799B2 (en) Control device for hybrid vehicle
JP5300139B2 (en) Electric motor control device
JP4584206B2 (en) Electric motor
JP2008281166A (en) Control device of hydraulic actuator
JP4409551B2 (en) Power transmission device for internal combustion engine
JP4409555B2 (en) Vehicle torque control device
JP2008259298A (en) Motor
JP4732281B2 (en) Vehicle oil supply device
JP4828392B2 (en) Variable motor characteristics system
JP2009166652A (en) Controller for hybrid vehicle
JP2007244063A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees