JP2009044782A - Method for estimating high-order harmonic resonance frequency characteristics - Google Patents
Method for estimating high-order harmonic resonance frequency characteristics Download PDFInfo
- Publication number
- JP2009044782A JP2009044782A JP2007204002A JP2007204002A JP2009044782A JP 2009044782 A JP2009044782 A JP 2009044782A JP 2007204002 A JP2007204002 A JP 2007204002A JP 2007204002 A JP2007204002 A JP 2007204002A JP 2009044782 A JP2009044782 A JP 2009044782A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- power system
- current
- order harmonic
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
本発明は、電力系統における高次高調波の共振周波数特性を推定する高次高調波共振周波数特性推定方法に関する。 The present invention relates to a high-order harmonic resonance frequency characteristic estimation method for estimating resonance frequency characteristics of high-order harmonics in a power system.
近年、パワーエレクトロニクスによる制御には、高速スイッチングによるPWM方式を採用する機器が多い。例えば、風力発電や燃料電池などにおいては直流電力を発電し、パワーエレクトロニクス機器によるPWM方式で直流電力を交流電力に変換して電力系統に供給する。 In recent years, many control devices using power electronics employ a PWM method based on high-speed switching. For example, in wind power generation or a fuel cell, DC power is generated, and the DC power is converted into AC power by a PWM method using power electronics equipment and supplied to the power system.
パワーエレクトロニクス機器は、PWM方式による交直変換の際に周波数f0の高次高調波電流を発生し電力系統に流出する。一方、電力系統には、力率改善用コンデンサが設置されており、パワーエレクトロニクス機器が発生する周波数f0と近隣の電力系統の力率改善用コンデンサによる固有周波数fnとが近接している場合には、共振によりパワーエレクトロニクス機器が発生する周波数f0の電流が増幅され、力率改善用コンデンサの過電流を誘起し電磁騒音や過熱など電力品質問題が生ずる。 The power electronics device generates a high-order harmonic current having a frequency f 0 during AC / DC conversion by the PWM method, and flows out to the power system. On the other hand, a power factor improving capacitor is installed in the power system, and the frequency f 0 generated by the power electronics device is close to the natural frequency fn by the power factor improving capacitor of the neighboring power system. a power electronics device is amplified current having a frequency f 0 generated induces an overcurrent of the power factor improving capacitor generated power quality problems, such as electromagnetic noise and overheating due to resonance.
このため、パワーエレクトロニクス機器の系統連系時には、電力品質問題が生ずるか否かを事前に把握することが重要となってきている。なお、ここでの高次高調波は次数が13次を越え、上限を10kHzとする周波数領域としている。 For this reason, it is important to know in advance whether or not a power quality problem will occur when the power electronics equipment is connected to the grid. The high-order harmonics here are in the frequency region where the order exceeds the 13th order and the upper limit is 10 kHz.
高次高調波共振を解析的に検討する手法としては、高次高調波電流を発生するパワーエレクトロニクス機器の連系点に等価な電流源を置き、周波数応答法で力率改善用コンデンサの電流の増幅特性を得る方法がある。また、高調波発生源の特定方法として、配電系統を数値的に模擬した模擬回路を設定し、この模擬回路の固有値とその固有ベクトルを算出し、固有値の複素数部からその固有モードの共振周波数を、それぞれの固有ベクトルの各要素の絶対値からその固有モードにおける各ノードの感度を算出し、一方、配電系統に並列に接続されている力率改善用コンデンサの内の一つの充電波形に基づいて周波数分析を行って実際の発生モードでの共振周波数とその強度を求め、これらを比較して転流振動を発生させる整流器負荷を特定し、高調波発生源と見なすようにしたものがある(例えば、特許文献1参照)。
しかし、特許文献1のものでは、模擬回路の固有値及びその固有ベクトルから求めた共振周波数及び感度と、配電系統で実際に発生している発生モードでの共振周波数及びその強度を求めて、転流振動を発生させる整流器負荷を特定して高調波発生源を特定するものであり、新たにパワーエレクトロニクス機器を系統に連系しようとした場合の高次高調波の共振周波数特性を把握することはできない。従って、新たにパワーエレクトロニクス機器を系統に連系しようとする際に、その連系に問題がないか否かの判定に用いることができない。
However, in
一方、新たに系統連系しようとするパワーエレクトロニクス機器の連系点に等価な電流源を置き、周波数応答法で力率改善用コンデンサの電流の増幅特性を得る方法では、多数の周波数に対する計算例が必要となり煩雑である。 On the other hand, in the method of obtaining the current amplification characteristics of the power factor correction capacitor by the frequency response method by placing an equivalent current source at the connection point of the power electronics device to be newly connected to the grid, calculation examples for many frequencies Is necessary and complicated.
また、線路インピーダンスRLは表皮効果などで周波数により変化する。高次高調波の領域では、特に抵抗分Rが急激に増大する。この抵抗分Rの増大を無視すると精度の良い周波数応答を得ることができず実用性に乏しくなるので、これを考慮した解析手法が望まれている。 Further, the line impedance RL varies depending on the frequency due to the skin effect or the like. Particularly in the region of higher harmonics, the resistance component R increases rapidly. If this increase in resistance R is ignored, an accurate frequency response cannot be obtained and the practicality becomes poor, so an analysis method considering this is desired.
本発明の目的は、新たにパワーエレクトロニクス機器を系統に連系しようとした場合に高次高調波の共振周波数特性を精度よく把握できる高次高調波共振周波数特性推定方法を提供することである。 An object of the present invention is to provide a high-order harmonic resonance frequency characteristic estimation method capable of accurately grasping the resonance frequency characteristic of a high-order harmonic when a power electronics device is newly connected to a system.
請求項1の発明に係わる高次高調波共振周波数特性推定方法は、電力系統の線路インピーダンス及び前記電力系統の力率改善用コンデンサを線形回路素子RLCよりなる解析モデルで模擬して電力系統の状態微分方程式を導き、前記状態微分方程式の係数行列の固有値で定まる時定数及び固有周波数を持つRLC回路による等価回路を導き、前記等価回路の力率改善用コンデンサ電流の高次高調波電流源の電流に対する電流増幅率に基づいて電力系統における高次高調波の共振周波数特性を推定することを特徴とする。 According to the first aspect of the present invention, there is provided a high-order harmonic resonance frequency characteristic estimation method in which a line impedance of a power system and a power factor improving capacitor of the power system are simulated by an analysis model comprising a linear circuit element RLC. A differential equation is derived, an equivalent circuit by an RLC circuit having a time constant and a natural frequency determined by the eigenvalues of the coefficient matrix of the state differential equation is derived, and the current of the higher-order harmonic current source of the capacitor current for power factor improvement of the equivalent circuit The resonance frequency characteristics of high-order harmonics in the power system are estimated based on the current amplification factor.
請求項2の発明に係わる高次高調波共振周波数特性推定方法は、請求項1の発明において、表皮効果による前記線路インピーダンスの周波数特性を線形素子RLのRL並列回路よりなる解析モデルで追加模擬して前記状態微分方程式を導くことを特徴とする。 According to a second aspect of the present invention, there is provided a high-order harmonic resonance frequency characteristic estimation method according to the first aspect of the invention, wherein the frequency characteristic of the line impedance due to the skin effect is additionally simulated by an analysis model comprising an RL parallel circuit of a linear element RL. Then, the state differential equation is derived.
請求項3の発明に係わる高次高調波共振周波数特性推定方法は、請求項2の発明において、前記解析モデルは、前記RL並列回路を直列多段接続し、模擬可能な周波数領域を拡大したことを特徴とする。 According to a third aspect of the present invention, there is provided a high-order harmonic resonance frequency characteristic estimation method according to the second aspect of the invention, wherein the analysis model includes a multistage connection of the RL parallel circuits to expand a frequency region that can be simulated. Features.
本発明によれば、電力系統の状態微分方程式の係数行列の固有値で定まる時定数及び固有周波数を持つRLC回路による等価回路を導き、その等価回路の力率改善用コンデンサ電流の高次高調波電流源の電流に対する電流増幅率に基づいて電力系統における高次高調波の共振周波数特性を推定するので、高次高調波電流源であるパワーエレクトロニクス機器を新たに系統に連系しようとする際に、その連系に問題がないか否かの判定を容易に行うことができる。 According to the present invention, an equivalent circuit is derived from an RLC circuit having a time constant and a natural frequency determined by the eigenvalues of the coefficient matrix of the state differential equation of the power system, and the higher-order harmonic current of the power factor improving capacitor current of the equivalent circuit is derived. Since the resonant frequency characteristics of high-order harmonics in the power system are estimated based on the current amplification factor with respect to the current of the source, when trying to newly connect the power electronics equipment that is a high-order harmonic current source to the system, It is possible to easily determine whether or not there is a problem with the interconnection.
また、表皮効果による線路インピーダンスの周波数特性を線形素子RLのRL並列回路からなる解析モデルで追加模擬して電力系統の状態微分方程式を導くので、表皮効果を考慮に入れた線路インピーダンスの高次高調波の共振周波数特性を精度よく推定できる。さらに、RL並列回路を直列多段接続した解析モデルを用いることにより、模擬可能な周波数領域を拡大できる。 In addition, the frequency characteristic of the line impedance due to the skin effect is additionally simulated by an analytical model consisting of an RL parallel circuit of the linear element RL, and the state differential equation of the power system is derived, so the higher order harmonics of the line impedance taking the skin effect into account. It is possible to accurately estimate the resonance frequency characteristic of the wave. Furthermore, by using an analysis model in which RL parallel circuits are connected in series in multiple stages, the frequency range that can be simulated can be expanded.
まず、本発明に至るまでの検討事項について説明する。電力系統の高次高調波共振を検討するあたっては、電力系統の解析モデルを作成し、その解析モデルを用いて固有値及びその固有ベクトルを求めて共振周波数及びその感度を得ることはできる。しかし、解析モデルの固有値及びその固有ベクトルでは、振動が発生する周波数及び振動の強弱は分かるが、新たにパワーエレクトロニクス機器を系統に連系した場合に、そのパワーエレクトロニクス機器が発生する高次高調波電流が力率改善用コンデンサによりどの程度電流増幅されるかどうかを把握することはできない。 First, considerations up to the present invention will be described. When examining high-order harmonic resonance of a power system, an analysis model of the power system is created, and an eigenvalue and its eigenvector are obtained using the analysis model to obtain a resonance frequency and its sensitivity. However, although the eigenvalues and eigenvectors of the analysis model show the frequency and strength of vibration, the higher harmonic current generated by the power electronics device when the power electronics device is newly connected to the grid. It is impossible to determine how much current is amplified by the power factor improving capacitor.
そこで、力率改善用コンデンサ電流の高次高調波電流源の電流に対する電流増幅率を求めるあたり、本発明では、解析モデルの固有値は電力系統では一般に複素数であり、その固有値の実数部は時定数、虚数部は固有周波数となることに着目し、固有値で定まる時定数及び固有周波数を持つRLC回路による等価回路を導くこととした。そして、導き出した等価回路に高次高調波電流源を接続して高次高調波電流を変化させ、等価回路での力率改善用コンデンサ電流の高次高調波電流源の電流に対する電流増幅率を求め、その電流増幅率に基づいて電力系統における高次高調波の共振周波数特性を推定するようにした。 Therefore, in determining the current amplification factor of the power factor improving capacitor current with respect to the current of the higher harmonic current source, in the present invention, the eigenvalue of the analysis model is generally a complex number in the power system, and the real part of the eigenvalue is a time constant. Focusing on the fact that the imaginary part becomes a natural frequency, an equivalent circuit by an RLC circuit having a time constant and a natural frequency determined by the natural value is derived. Then, a high-order harmonic current source is connected to the derived equivalent circuit to change the high-order harmonic current, and the current gain of the power factor improving capacitor current in the equivalent circuit with respect to the current of the high-order harmonic current source is changed. The resonance frequency characteristics of higher harmonics in the power system are estimated based on the current amplification factor.
図1は本発明の実施の形態に係わる高次高調波共振周波数特性推定方法の内容を示すフローチャートである。まず、電力系統の解析モデルの固有値を求めるために電力系統の状態微分方程式を求める(S1)。以下、電力系統の一例として高圧配電系統について説明する。また、電力系統の解析モデルを簡潔化するため、次のような仮定を設定する。 FIG. 1 is a flowchart showing the contents of a high-order harmonic resonance frequency characteristic estimation method according to an embodiment of the present invention. First, a state differential equation of the power system is obtained in order to obtain an eigenvalue of the analysis model of the power system (S1). Hereinafter, a high-voltage distribution system will be described as an example of the power system. In order to simplify the analysis model of the power system, the following assumptions are set.
(1)線路インピーダンスは三相平衡であるとする。 (1) The line impedance is assumed to be three-phase balanced.
(2)線路キャパシタンスは力率改善用コンデンサCに比べ十分小であるので無視する。 (2) Since the line capacitance is sufficiently smaller than the power factor improving capacitor C, it is ignored.
これにより、解析モデルは、図2に示すように、作用インダクタンスL、抵抗R、力率改善用コンデンサCなどの定数からなる単相回路となる。また、解析時の変数は、上位系や線路インピーダンスRLのブランチ11a〜11nのブランチ電流I(I1、I2…In)と、力率改善用コンデンサC(C1、C2…Cn)の接続点におけるブランチ12a〜12nのノード電圧V(V1、V2…Vn)とを採用する。また、電源は高次高調波の等価電流源Jのみとする。以上の条件下で電力系統の状態微分方程式を求める。
Thereby, as shown in FIG. 2, the analysis model becomes a single-phase circuit composed of constants such as a working inductance L, a resistance R, and a power factor improving capacitor C. The variables at the time of analysis are the branch currents I (I 1 , I 2 ... I n ) of the branches 11a to 11n of the upper system and the line impedance RL, and the power factor improving capacitors C (C 1 , C 2 ... C n ) Node voltages V (V 1 , V 2 ... V n ) of the
図2に示す力率改善用コンデンサC(C1、C2…Cn)の接続点であるノード12a〜12nでの電流バランス(ノード電流平衡式)を求め、ブランチ11a〜11nでの電圧バランス(ブランチ電圧平衡式)を求める。ノード電流平衡式は下記(1)式で示され、ブランチ電圧平衡式は下記(2)式で示される。
(1)、(2)式により、電力系統の状態微分方程式は(3)式で示される。
次に、(3)式で示される状態微分方程式の係数行列の固有値λを求める(S2)。この(3)式の係数行列の固有値λは、電力系統では一般に複素数となり、よく知られるように、時定数T0、固有周波数f0としたとき、実数部及び虚数部は(4)式で示すような関係となる。
この固有値λは一般に複数個求まるので、固有値λごとに時定数T0及び固有振動数f0を求める(S3)。 Since a plurality of eigenvalues λ are generally obtained, a time constant T 0 and a natural frequency f 0 are obtained for each eigenvalue λ (S3).
次に、時定数T0及び固有周波数f0を持つRLC回路による等価回路を求める(S4)。この等価回路は固有値λの個数だけ求め、各固有値λの固有モードでの現象を個々のモード別に考察することで、その物理的評価が容易かつ明確となる。 Next, an equivalent circuit by an RLC circuit having a time constant T 0 and a natural frequency f 0 is obtained (S4). This equivalent circuit is obtained as many as the number of eigenvalues λ, and the phenomenon in each eigenvalue λ in the eigenmode is considered for each mode, so that the physical evaluation becomes easy and clear.
図3は、時定数T0及び固有周波数f0を持つRLC回路による等価回路の回路図である。等価回路は、線路インピーダンスR0、L0、力率改善用コンデンサCのRLC回路であり、力率改善用コンデンサCに高次高調波の電流源Jλが並列配置されている。この等価回路の抵抗R0、作用インダクタンスL0、力率改善用コンデンサCと、時定数T0、固有周波数ω0(ω0=2πf0)との関係は、次の(5)式のようになる。
そして、得られた等価回路の力率改善用コンデンサCの電流icを求め、この電流icの電流源Jλに対する増幅率Q(ω)を求める(S5)。この増幅率Q(ω)の特性により、共振周波数特性を推定する(S6)。 Then, the current ic of the power factor improving capacitor C of the obtained equivalent circuit is obtained, and the amplification factor Q (ω) of the current ic with respect to the current source Jλ is obtained (S5). A resonance frequency characteristic is estimated based on the characteristic of the amplification factor Q (ω) (S6).
すなわち、図3に示す等価回路の方程式は下記の(6)式で示される。
この(6)式より増幅率Q(ω)は(7)式で示される。
また、(7)式内のL0C、CR0は(5)式から(8)式で示される。
従って、(7)式のL0C、CR0に(8)式を代入すると、各固有モードの増幅率Q(ω)は、角周波数ωと、時定数T0と固有角周波数ω0との簡潔な式で示されるので、各固有モードの増幅率Q(ω)は計算で容易に求まる。 Therefore, when Eq. (8) is substituted into L 0 C and CR 0 of Eq. (7), the amplification factor Q (ω) of each eigenmode is expressed as follows: angular frequency ω, time constant T 0 , eigenangular frequency ω 0 Therefore, the amplification factor Q (ω) of each eigenmode can be easily obtained by calculation.
このように、電力系統の状態微分方程式の係数行列の固有値λで定まる時定数T0及び固有周波数f0を持つRLC回路による等価回路を導き、その等価回路の力率改善用コンデンサ電流icの高次高調波電流源Jλの電流に対する増幅率Q(ω)に基づいて電力系統における高次高調波の共振周波数特性を推定するので、高次高調波電流源であるパワーエレクトロニクス機器を新たに系統に連系しようとする際に、その連系に問題がないか否かの判定を容易に行うことができる。 Thus, an equivalent circuit is derived from an RLC circuit having a time constant T 0 and a natural frequency f 0 determined by the eigenvalue λ of the coefficient matrix of the state differential equation of the power system, and the power factor improving capacitor current ic of the equivalent circuit is derived. Since the resonance frequency characteristics of high-order harmonics in the power system are estimated based on the amplification factor Q (ω) with respect to the current of the high-order harmonic current source Jλ, a power electronics device that is a high-order harmonic current source is newly added to the system. It is possible to easily determine whether or not there is a problem in the connection when trying to connect to the system.
次に、線路インピーダンスRLの表皮効果の考慮について説明する。線路インピーダンスRLは図4に示すように周波数特性を持っており、特に抵抗Rは周波数fの上昇により急激に増大する一方、作用インダクタンスLは僅かながら低下する。共振による電流増幅は(L/R)に比例するため、これを無視しては実用的な精度確保ができない。そこで、次に抵抗R及び作用インダクタンスLの周波数f依存性の模擬方法について検討する。 Next, consideration of the skin effect of the line impedance RL will be described. The line impedance RL has a frequency characteristic as shown in FIG. 4, and in particular, the resistance R increases rapidly as the frequency f increases, while the working inductance L decreases slightly. Since current amplification by resonance is proportional to (L / R), practical accuracy cannot be ensured if this is ignored. Then, next, the simulation method of the frequency f dependence of resistance R and action inductance L is examined.
周波数fの依存性を考慮する場合のポイントは、固有モード法の利点を生かせる線形の状態微分方程式となる模擬法が必須のことにある。関数の近似法に多く用いるラグランジェ補間など多項式近似では、方程式は非線形となり固有値などは得られない。 The point when considering the dependence of the frequency f is that a simulation method that is a linear state differential equation that takes advantage of the eigenmode method is essential. In polynomial approximation such as Lagrangian interpolation, which is often used for function approximation, the equations are nonlinear and eigenvalues cannot be obtained.
そこで、状態微分方程式を線形に保つ模擬方法として、図5に示す線形素子Rp、LpのRL並列回路を考える。このRL並列回路の等価抵抗Re、等価インダクタンスLeは、よく知られるように次の(9)式で与えられる。
(9)式より周波数fとともに等価抵抗Reは増大し、等価インダクタンスLeは減少するので、線路インピーダンスRLの対周波数特性は模擬可能となる。これより図6に示すように、模擬回路は、ベース分を抵抗Rs及び作用インダクタンスLsの直列RL回路で、対周波数特性を等価抵抗Re及び等価インダクタンスLsのRL並列回路で分担する回路となる。 Since the equivalent resistance R e increases and the equivalent inductance L e decreases with the frequency f from the equation (9), the line frequency characteristic of the line impedance RL can be simulated. As shown in FIG. 6, in the simulation circuit, the base portion is shared by a series RL circuit of a resistor R s and an action inductance L s , and the anti-frequency characteristic is shared by an RL parallel circuit of an equivalent resistance R e and an equivalent inductance L s. It becomes a circuit.
一方、等価抵抗Reは図7のように変曲点fmを境にして増大率は低下するので、模擬すべき周波数領域が広い場合には、変曲点fmより高い周波数領域の近似精度は低下する。変曲点fmは(10)式で示される。
また、等価抵抗Reは(11)式で示される。
変曲点fmを高く設定すれば、(11)式より等価抵抗Reは、増大開始の周波数fが高くなり低い周波数領域の近似精度が低下する。図8は1つのRL並列回路を用いた抵抗Rの対周波数特性を示す特性図である。点線は抵抗R(R=Rs+Re)の対周波数特性、実線は抵抗R(R=Rs)の対周波数特性である。点線の抵抗R(R=Rs+Re)の対周波数特性から分かるように、模擬可能な周波数fは3kHzまで達していない。 If the inflection point f m is set high, the equivalent resistance R e increases from the expression (11), and the frequency f of the increase start increases, and the approximation accuracy in the low frequency region decreases. FIG. 8 is a characteristic diagram showing the frequency characteristic of the resistor R using one RL parallel circuit. The dotted line is the frequency characteristic of the resistor R (R = R s + R e ), and the solid line is the frequency characteristic of the resistor R (R = R s ). As can be seen from the frequency characteristic of the dotted resistance R (R = R s + R e ), the frequency f that can be simulated does not reach 3 kHz.
これにより、1つのRL並列回路で近似可能な周波数領域は限定されるのが分かる。そこで、変曲点fmがより高い第2のRL並列回路を追加し直列接続することで、より高い周波数領域を模擬する。 Thus, it can be seen that the frequency region that can be approximated by one RL parallel circuit is limited. Therefore, a higher frequency region is simulated by adding a second RL parallel circuit having a higher inflection point fm and connecting them in series.
図9は対周波数特性を模擬する2つのRL並列回路を直列接続した模擬回路図である。この場合の、10kHzまでの周波数領域で、最大誤差は一般に約2%程度であり、十分な実用性を有している。さらに、精度向上や模擬周波数領域を拡大する場合には、RL並列回路の直列段数を増すことで対応可能である。 FIG. 9 is a simulation circuit diagram in which two RL parallel circuits for simulating anti-frequency characteristics are connected in series. In this case, in the frequency region up to 10 kHz, the maximum error is generally about 2%, which is sufficiently practical. Furthermore, when the accuracy is improved or the simulated frequency region is expanded, it can be dealt with by increasing the number of series stages of the RL parallel circuit.
次に、RL並列回路の追加により、周波数特性を模擬した場合の回路方程式が線形であることを、2つのRL並列回路を直列接続した場合を例に取り説明する。RL並列回路の追加による状態微分方程式への影響はインダクタンスと抵抗の係数行列に現れる。 Next, the fact that the circuit equation when the frequency characteristic is simulated by adding the RL parallel circuit is linear will be described by taking an example in which two RL parallel circuits are connected in series. The effect on the state differential equation due to the addition of the RL parallel circuit appears in the coefficient matrix of inductance and resistance.
いま、図9において、ブランチnの両端ノードをj、kとし、電流Inはjからkに流れるとする。そして、第1のRL並列回路の抵抗Rp1を流れる電流をIp1,n、第2のRL並列回路の抵抗Rp2を流れる電流をIp2,n、とする。この場合、電圧平衡式は(12)式で示される。
これを全ブランチ体で表記すれば、(13)式で示される。
これより、全体の回路方程式は次の(14)式のように、固有値計算可能な線形の状態微分方程式になり、RL並列回路が2つ以上に増えた場合でも、一般性を失わない。
前述の(3)式の場合と同様に、(14)式で示される状態微分方程式の係数行列の固有値λを求め、固有値λごとに時定数T0及び固有振動数f0を求め、時定数T0及び固有周波数f0を持つRLC回路による等価回路を求める。そして、得られた等価回路の力率改善用コンデンサCの電流icを求め、この電流icの電流源Jλに対する増幅率Q(ω)を求め、この増幅率Q(ω)の特性により共振周波数特性を推定する(S6)。 As in the previous (3), (14) eigenvalues lambda of the coefficient matrix of state differential equation of formula to obtain the time constant T 0 and the natural frequency f 0 for each eigenvalue lambda, the time constant An equivalent circuit by an RLC circuit having T 0 and natural frequency f 0 is obtained. Then, a current i c of the resulting equivalent circuit of the power factor improving capacitor C, determine the amplification factor Q (omega) for current source J lambda of the current i c, the characteristics of the amplification factor Q (omega) Resonance frequency characteristics are estimated (S6).
このように、線路インピーダンスRLの表皮効果による周波数特性を線形素子RLのRL並列回路よりなる解析モデルで追加模擬して電力系統の状態微分方程式を導くので、線路インピーダンスRLの表皮効果を考慮に入れた高次高調波の共振周波数特性を推定できる。さらに、線形素子RLのRL並列回路を直列多段接続した解析モデルを用いることにより、模擬可能な周波数領域を拡大できる。 In this way, the frequency characteristic due to the skin effect of the line impedance RL is additionally simulated by an analytical model composed of an RL parallel circuit of the linear element RL, and the state differential equation of the power system is derived, so the skin effect of the line impedance RL is taken into account. The resonance frequency characteristics of higher harmonics can be estimated. Furthermore, by using an analysis model in which RL parallel circuits of linear elements RL are connected in series in multiple stages, the frequency range that can be simulated can be expanded.
11…ブランチ、12…ノード 11 ... branch, 12 ... node
Claims (3)
前記状態微分方程式の係数行列の固有値で定まる時定数及び固有周波数を持つRLC回路による等価回路を導き、
前記等価回路の力率改善用コンデンサ電流の高次高調波電流源の電流に対する電流増幅率に基づいて電力系統における高次高調波の共振周波数特性を推定することを特徴とする高次高調波共振周波数特性推定方法。 The line impedance of the power system and the power factor improving capacitor of the power system are simulated by an analysis model composed of a linear circuit element RLC to derive a state differential equation of the power system,
Deriving an equivalent circuit by an RLC circuit having a time constant and a natural frequency determined by the eigenvalues of the coefficient matrix of the state differential equation,
A high-order harmonic resonance characterized by estimating a resonance frequency characteristic of a high-order harmonic in a power system based on a current amplification factor of a capacitor current for power factor improvement of the equivalent circuit with respect to a current of a high-order harmonic current source Frequency characteristic estimation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007204002A JP4845133B2 (en) | 2007-08-06 | 2007-08-06 | High-order harmonic resonance frequency characteristic estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007204002A JP4845133B2 (en) | 2007-08-06 | 2007-08-06 | High-order harmonic resonance frequency characteristic estimation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009044782A true JP2009044782A (en) | 2009-02-26 |
JP4845133B2 JP4845133B2 (en) | 2011-12-28 |
Family
ID=40444930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007204002A Expired - Fee Related JP4845133B2 (en) | 2007-08-06 | 2007-08-06 | High-order harmonic resonance frequency characteristic estimation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4845133B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110896218A (en) * | 2019-11-08 | 2020-03-20 | 山东大学 | Harmonic modeling method and system for establishing collective residential load |
CN114895104A (en) * | 2022-05-19 | 2022-08-12 | 西南交通大学 | Method for identifying parallel harmonic resonance frequency of traction power supply system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564372A (en) * | 1991-08-29 | 1993-03-12 | Fuji Electric Co Ltd | Specification of higher harmonic source of distribution system |
JPH1114677A (en) * | 1997-06-20 | 1999-01-22 | Kansai Electric Power Co Inc:The | Method for estimating higher harmonics voltage of power system |
JP2004140983A (en) * | 2002-08-19 | 2004-05-13 | Nagoya Kogyo Univ | Distribution system control system |
-
2007
- 2007-08-06 JP JP2007204002A patent/JP4845133B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564372A (en) * | 1991-08-29 | 1993-03-12 | Fuji Electric Co Ltd | Specification of higher harmonic source of distribution system |
JPH1114677A (en) * | 1997-06-20 | 1999-01-22 | Kansai Electric Power Co Inc:The | Method for estimating higher harmonics voltage of power system |
JP2004140983A (en) * | 2002-08-19 | 2004-05-13 | Nagoya Kogyo Univ | Distribution system control system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110896218A (en) * | 2019-11-08 | 2020-03-20 | 山东大学 | Harmonic modeling method and system for establishing collective residential load |
CN114895104A (en) * | 2022-05-19 | 2022-08-12 | 西南交通大学 | Method for identifying parallel harmonic resonance frequency of traction power supply system |
Also Published As
Publication number | Publication date |
---|---|
JP4845133B2 (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mühlethaler et al. | Loss modeling of inductive components employed in power electronic systems | |
Hoffmann et al. | Minimal invasive equivalent grid impedance estimation in inductive–resistive power networks using extended Kalman filter | |
JP4679525B2 (en) | Active filter | |
JP5924617B2 (en) | Equivalent circuit synthesis method and apparatus, and circuit diagnostic method | |
JP2011141228A (en) | Battery characteristic evaluation device | |
EP3828557B1 (en) | Determining thevenin equivalent model for a converter | |
JP6256027B2 (en) | Parameter estimation apparatus and parameter estimation method for equivalent circuit of secondary battery | |
CN109932568A (en) | The measurement method of gird-connected inverter impedance | |
Prasanth et al. | Condition monitoring of electrolytic capacitor based on ESR estimation and thermal impedance model using improved power loss computation | |
Zhao et al. | A practical core loss estimation method for three-phase three-level grid-connected inverters | |
JP4845133B2 (en) | High-order harmonic resonance frequency characteristic estimation method | |
Gopalan et al. | Voltage unbalance: Impact of various definitions on severity assessment for adjustable speed drives | |
JP2012100515A (en) | Method of suppressing high-order harmonic resonance | |
JP6161783B2 (en) | Method for obtaining impedance of power transmission / distribution network by computer support, power generation apparatus and computer program for implementing the method | |
Kaufhold et al. | Measurement-based black-box harmonic stability assessment of single-phase power electronic devices based on air coils | |
Ben-Yaakov | SPICE simulation of ferrite core losses and hot spot temperature estimation | |
Wang et al. | Digital twin modeling and simulation of the high-frequency transformer based on electromagnetic-thermal coupling analysis | |
JP5953780B2 (en) | Power system simulator, interface device | |
Huerta et al. | Experimental Validation of Differential and Common Mode Equivalent Circuit of a Three-Phase/Level Vienna Rectifier | |
CN116522773A (en) | WPT system modeling method based on data driving | |
Ang et al. | Analysis of 4th-order LCLC resonant power converters | |
US7212934B1 (en) | String resistance detector | |
CN115630546A (en) | Three-phase converter soft fault diagnosis method considering influence of working temperature | |
Uhl et al. | Non-linear behavioral X-Parameters model of single-phase rectifier in the frequency domain | |
Ranta et al. | Inclusion of hysteresis and eddy current losses in nonlinear time-domain inductance models |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110920 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111006 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |