JP2009043778A - Metal magnetic material powder for composite magnetic body - Google Patents

Metal magnetic material powder for composite magnetic body Download PDF

Info

Publication number
JP2009043778A
JP2009043778A JP2007204342A JP2007204342A JP2009043778A JP 2009043778 A JP2009043778 A JP 2009043778A JP 2007204342 A JP2007204342 A JP 2007204342A JP 2007204342 A JP2007204342 A JP 2007204342A JP 2009043778 A JP2009043778 A JP 2009043778A
Authority
JP
Japan
Prior art keywords
magnetic material
metal
powder
composite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007204342A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Sugano
博芳 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007204342A priority Critical patent/JP2009043778A/en
Publication of JP2009043778A publication Critical patent/JP2009043778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce μ" with respect to μ' of 13.56 MHz in a metal magnetic material powder used for a composite magnetic body having function of converging the magnetic flux in a magnetic field to improve the sensitivity of an antenna element, compared to a flat powder of a metal magnetic material such as Sendust (R) used for a conventional composite magnetic body for suppressing an electromagnetic noise, in an RFID (radio frequency identification) tag for performing radio communication with an electromagnetic wave having frequency 13.56 MHz. <P>SOLUTION: The metal magnetic material powder for a composite magnetic body employs powder of a metal magnetic material having a volume intrinsic resistivity value ρ larger than that of the Sendust (R) and having ductility, and comprises flat powder containing a large number of particles having a large particle size and having wide particle size distribution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、周波数13.56MHzの電磁波にて無線通信を行うRFID(Radio Frequency Identification)タグにおいて、アンテナ素子の感度を向上させるために磁場中の磁束を収束する働きをもつ複合磁性体に用いる金属磁性材料の粉末に関するものである。   The present invention relates to a metal used for a composite magnetic body that has a function of converging a magnetic flux in a magnetic field in order to improve the sensitivity of an antenna element in an RFID (Radio Frequency Identification) tag that performs radio communication with an electromagnetic wave having a frequency of 13.56 MHz. The present invention relates to a powder of magnetic material.

近年急速に普及しているモバイル端末などによるRFIDは、1m程度の至近距離の無線通信には周波数13.56MHz帯を中心に実用化されてきている。   In recent years, RFID using mobile terminals or the like that has been rapidly spread has been put to practical use mainly in the 13.56 MHz band for wireless communication at a short distance of about 1 m.

無線によるデータ通信は、通信距離が遠くなるほどデータ送受信の利便性が高く、1m以内の至近距離の無線通信においても、可能な範囲内で離れた距離でデータの送受信ができることが望まれている。通信距離は、アンテナ感度のみならずアンテナ周囲の環境に影響を受けるが、特にアンテナ近傍に金属製の部材が存在すると、電磁波信号を形成する磁束は、金属製の部材を通過し、金属製の部材で渦電流損失が発生して熱エネルギーに変換され、その結果、電磁波信号が減衰され、無線通信が良好にできなくなってしまう。   Wireless data communication is more convenient for data transmission / reception as the communication distance becomes longer, and it is desired that data can be transmitted / received within a possible distance even in close-range wireless communication within 1 m. The communication distance is affected not only by the antenna sensitivity, but also by the environment around the antenna. Especially when a metal member is present near the antenna, the magnetic flux forming the electromagnetic wave signal passes through the metal member and is made of metal. An eddy current loss occurs in the member and is converted into thermal energy. As a result, the electromagnetic wave signal is attenuated and wireless communication cannot be performed satisfactorily.

このような問題は、アンテナ素子と金属製部材の間に複素比透磁率μの高い磁性体を置くことで解決することができる。磁性体としては初透磁率μiが高い金属磁性材料の扁平粉末と結合剤を混合した複合磁性粉末からなる磁性体が用いられている。このような複合磁性粉末からなる磁性体は、例えば特許文献1、特許文献2、特許文献3、特許文献4などに示されている。   Such a problem can be solved by placing a magnetic body having a high complex relative permeability μ between the antenna element and the metal member. As the magnetic body, a magnetic body made of a composite magnetic powder obtained by mixing a flat powder of a metal magnetic material having a high initial permeability μi and a binder is used. Examples of magnetic materials made of such composite magnetic powder are shown in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like.

このような複合磁性体は、特許文献2や特許文献3、特許文献4にある通り、電磁波ノイズの抑制を目的としたものが多く、複素比透磁率μの向上化が図られている。複素比透磁率μは実数部μ'と虚数部μ”を有しているが、複素比透磁率μの実数部μ'が高い程、微弱な磁界中の磁束が収束されるため、電磁波ノイズの遮蔽性が高く、また虚数部μ”も高い方が磁界のエネルギーを熱エネルギーに変換して吸収するため、電磁波ノイズの抑制を目的とする複合磁性体の金属磁性材料粉末には、特許文献2などにあるセンダスト(登録商標)や特許文献3、特許文献4にあるパーマロイなどの高透磁率磁性材料の扁平粉末を用いてμ'の向上化やμ”の広域分散性化が図られてきた。   As described in Patent Document 2, Patent Document 3, and Patent Document 4, many of such composite magnetic bodies are intended to suppress electromagnetic noise, and the complex relative permeability μ is improved. Although the complex relative permeability μ has a real part μ ′ and an imaginary part μ ″, the higher the real part μ ′ of the complex relative permeability μ, the more the magnetic flux in a weak magnetic field converges. The higher the shielding property and the higher the imaginary part μ ”, the energy of the magnetic field is converted into heat energy and absorbed. 2 has been improved by using flat powders of high magnetic permeability magnetic materials such as Sendust (registered trademark) 2 and Permalloy in Patent Document 3 and Patent Document 4, and so on. It was.

しかし、RFIDタグのアンテナ素子と金属製の部材の間に置き、無線によるデータ送受信の通信距離を長くすることを目的とした複合磁性体においては、μ'は高い方が磁場中の微弱な磁束も磁性体に収束できるため好ましいものの、磁気損失項であるμ”は高いと磁界のエネルギーを損失させてしまうため、RFIDの通信距離を長くすることが難しく、μ”は低い方が好ましい。前記の通り、これまでは電磁波ノイズの抑制を目的としてきたため、磁気損失項であるμ”の向上化や広域分散化については検討されてきたが、μ”の低減化については図られてこなかった。   However, in a composite magnetic material that is placed between an RFID tag antenna element and a metal member and is intended to increase the communication distance for wireless data transmission and reception, the higher μ ′ is the weaker magnetic flux in the magnetic field. However, if the magnetic loss term μ ″ is high, the energy of the magnetic field is lost. Therefore, it is difficult to increase the communication distance of the RFID, and it is preferable that μ ″ is low. As described above, since the purpose has been to suppress electromagnetic wave noise, improvement of μ ″, which is a magnetic loss term, and wide-area dispersion have been studied, but no attempt has been made to reduce μ ″. It was.

特許文献1にRFIDタグ用複合磁性体の例があるが、特に磁性材料の材質や形態については検討されておらず、前記した電磁波ノイズ抑制を目的とした複合磁性体に使用している磁性材料と同じものにて対応されているものである。前記した通り、RFIDの無線通信距離を伸ばすには、周波数13.56MHzの複素比透磁率μの虚数部μ”は低いほど好ましく、かつ実数部μ'は高いほど好ましいのだが、特許文献1の実施例1は13.56MHzのμ'は61と高いがμ”も3と高く、μ”はμ'の約5%にも達している。また、特許文献1の実施例2と実施例3はセンダスト(登録商標)によるものであるが、13.56MHzのμ”は低いものの、13.56MHzのμ'も低い。   Patent Document 1 discloses an example of a composite magnetic body for an RFID tag. However, the material and form of the magnetic material are not particularly studied, and the magnetic material used for the above-described composite magnetic body for the purpose of suppressing electromagnetic noise. Is the same as the one that is supported. As described above, the imaginary part μ ″ of the complex relative permeability μ having a frequency of 13.56 MHz is preferably as low as possible and the real part μ ′ is as high as possible to extend the wireless communication distance of the RFID. In Example 1, μ ′ at 13.56 MHz is as high as 61, but μ ″ is as high as 3, and μ ″ reaches about 5% of μ ′. Also, Example 2 and Example 3 of Patent Document 1. Is due to Sendust (registered trademark), but μ ″ at 13.56 MHz is low, but μ ′ at 13.56 MHz is also low.

図1は、これらのデータとセンダスト(登録商標)の複合磁性体のデータをプロットしたものである。電磁波ノイズの抑制を目的とした従来の複合磁性体に用いる金属磁性材料粉末においては、13.56MHzは磁気損失項であるμ”が増大化しはじめる周波数であり、図1に示すとおり、周波数13.56MHzのμ'とμ”には正の相関関係があるため、13.56MHzのμ'に対してμ”を低減化することが難しいことがわかる。   FIG. 1 is a plot of these data and the data of Sendust (registered trademark) composite magnetic material. In the metal magnetic material powder used for the conventional composite magnetic body for the purpose of suppressing electromagnetic noise, 13.56 MHz is a frequency at which μ ″ which is a magnetic loss term starts to increase. As shown in FIG. Since 56 ′ μ ′ and μ ″ have a positive correlation, it can be seen that it is difficult to reduce μ ″ with respect to 13.56 MHz μ ′.

また、パーマロイなどのようにセンダスト(登録商標)よりも体積固有抵抗値が低い金属磁性材料の複合磁性体においては、μ”は13.56MHz以下の低い周波数から増大してしまうため、13.56MHzのμ'に対してμ”は高く、周波数13.56MHzの電磁波にて無線通信を行うRFIDタグにおけるアンテナ素子の感度を向上させるために磁場中の磁束を収束する働きをもつ複合磁性体用の金属磁性材料としては好ましくない。   Further, in a composite magnetic body made of a metal magnetic material having a lower volume resistivity value than Sendust (registered trademark) such as Permalloy, μ ″ increases from a low frequency of 13.56 MHz or lower, so 13.56 MHz. Μ ”is higher than μ ′, and for a composite magnetic body having a function of converging magnetic flux in a magnetic field in order to improve the sensitivity of an antenna element in an RFID tag that performs radio communication with an electromagnetic wave having a frequency of 13.56 MHz. It is not preferable as a metal magnetic material.

特許3647446号公報Japanese Patent No. 3647446 特開2005−281783号公報Japanese Patent Laid-Open No. 2005-281783 特開2005−264317号公報JP 2005-264317 A 特開2006−60008号公報Japanese Patent Laid-Open No. 2006-60008

従って、本発明の目的は、上述したような従来の技術では困難な、周波数13.56MHzの電磁波にて無線通信を行うRFIDタグにおいて、アンテナ素子の感度を向上させるために磁場中の磁束を収束する働きをもつ複合磁性体に使用される13.56MHzのμ'に対してμ”を低減化することができる複合磁性体用金属磁性材料粉末を提供することにある。   Therefore, the object of the present invention is to converge the magnetic flux in the magnetic field in order to improve the sensitivity of the antenna element in the RFID tag that performs wireless communication with the electromagnetic wave having a frequency of 13.56 MHz, which is difficult with the conventional technology as described above. An object of the present invention is to provide a metal magnetic material powder for a composite magnetic body that can reduce μ ″ with respect to 13.56 MHz μ ′ used in a composite magnetic body having the function of:

本発明は、体積固有抵抗値ρが0.9μΩm以上、飽和磁束密度Bsが1.2T以上、初透磁率μiが1000以上の特性を有し、かつ延性を有することを特徴とする複合磁性体用金属磁性材料粉末である。   The present invention provides a composite magnetic material characterized by having a volume resistivity value ρ of 0.9 μΩm or more, a saturation magnetic flux density Bs of 1.2 T or more, an initial permeability μi of 1000 or more, and ductility. Metal magnetic material powder for use.

また、本発明は、前記複合磁性体用金属磁性材料粉末の形状が薄く潰れた扁平形状であり、粒度分布が積算粒度分布で90%となる粒径が120μm以上となることを特徴とする複合磁性体用金属磁性材料粉末である。   Further, the present invention is a composite characterized in that the shape of the metal magnetic material powder for a composite magnetic material is thin and flattened, and the particle size at which the particle size distribution becomes 90% of the integrated particle size distribution is 120 μm or more. It is a metal magnetic material powder for magnetic bodies.

また、本発明は、前記複合磁性体用金属磁性材料粉末の粒度分布が積算粒度分布で10%となる粒径と90%となる粒径の比が8倍以上となることを特徴とする複合磁性体用金属磁性材料粉末である。   Further, the present invention provides the composite characterized in that the ratio of the particle size at which the particle size distribution of the metal magnetic material powder for composite magnetic material is 10% to 90% in the integrated particle size distribution is 8 times or more. It is a metal magnetic material powder for magnetic bodies.

また、本発明は、前記複合磁性体用金属磁性材料粉末が複合磁性体中に形状異方性的に配向された状態で分散されていることを特徴とする複合磁性体用金属磁性材料粉末である。   The present invention also provides the metal magnetic material powder for composite magnetic material, wherein the metal magnetic material powder for composite magnetic material is dispersed in a shape anisotropically oriented state in the composite magnetic material. is there.

また、本発明は、前記複合磁性体用金属磁性材料粉末の周波数13.56MHzにおける複素比透磁率μの実数部μ'が35以上で、周波数13.56MHz の複素比透磁率μの虚数部μ”が周波数13.56MHz の複素比透磁率μの実数部μ'の2%以下となることを特徴とする複合磁性体用金属磁性材料粉末である。   In the present invention, the real part μ ′ of the complex relative permeability μ at a frequency of 13.56 MHz of the metal magnetic material powder for composite magnetic material is 35 or more, and the imaginary part μ of the complex relative permeability μ of the frequency 13.56 MHz. "Is 2% or less of the real part μ 'of the complex relative permeability μ having a frequency of 13.56 MHz, which is a metal magnetic material powder for composite magnetic materials.

一般に純鉄や珪素鋼、パーマロイなどの高透磁率磁性材料は、体積固有抵抗値ρが低く、渦電流損失が増大してしまう周波数が低いため、高周波での複素比透磁率μの実数部μ'は高くない。体積固有抵抗値ρは金属材料の成分組成による固有値であり、磁気特性を変化させずに体積固有抵抗を大きくすることは難しい。また、磁性材料の飽和磁束密度Bsが低い磁性材料は、磁性体に磁束を収束できる容量が少なく、磁性体より磁束漏れしやすいため、磁性体を厚くする必要があり、軽量低背を求めるRFID関連の通信機器には好ましくない。   In general, high permeability magnetic materials such as pure iron, silicon steel, and permalloy have a low volume resistivity ρ and a low frequency at which eddy current loss increases. Therefore, the real part μ of the complex relative permeability μ at high frequencies 'Is not expensive. The volume specific resistance value ρ is a specific value depending on the composition of the metal material, and it is difficult to increase the volume specific resistance without changing the magnetic characteristics. In addition, the magnetic material having a low saturation magnetic flux density Bs has a smaller capacity for converging the magnetic flux on the magnetic body and is more likely to leak the magnetic flux than the magnetic body. Therefore, it is necessary to increase the thickness of the magnetic body. It is not preferable for related communication devices.

センダスト(登録商標)は体積固有抵抗値ρが0.8μΩmと高く、飽和磁束密度Bsが1T、初透磁率μiが30,000と優れた磁気特性を有する金属磁性材料である。しかも、磁歪定数λ≒0と応力の影響も受けにくく、複合磁性体には最も適合した金属磁性材料であり、複素比透磁率μの高い複合磁性体に使用されてきた。しかし、優れた透磁率を有する磁性材料ゆえに複素比透磁率μの虚数部μ”も高く、周波数13.56MHzのμ'に対してμ”を低減化させることが難しい。   Sendust (registered trademark) is a metal magnetic material having excellent magnetic properties such as a high volume resistivity ρ of 0.8 μΩm, a saturation magnetic flux density Bs of 1 T, and an initial permeability μi of 30,000. Moreover, the magnetostriction constant λ≈0 is not easily affected by stress, and is a metal magnetic material most suitable for a composite magnetic body, and has been used for a composite magnetic body having a high complex relative permeability μ. However, because of the magnetic material having excellent permeability, the imaginary part μ ″ of the complex relative permeability μ is also high, and it is difficult to reduce μ ″ with respect to μ ′ having a frequency of 13.56 MHz.

本発明者は、センダスト(登録商標)よりも体積固有抵抗値ρおよび飽和磁束密度Bsが大きく、延性を有する金属磁性材料に着目し、複合磁性体においてセンダスト(登録商標)よりも周波数13.56MHzのμ”を抑制化できる金属磁性材料の粉末を見出した。   The inventor of the present invention pays attention to a metal magnetic material having a volume resistivity value ρ and a saturation magnetic flux density Bs larger than Sendust (registered trademark) and having ductility, and in a composite magnetic body, has a frequency of 13.56 MHz than Sendust (registered trademark). Have been found to be a metal magnetic material powder capable of suppressing the μ ″.

複合磁性体に用いる金属磁性材料の粉末は、渦電流損失の抑制と反磁界の低減化を図るために粉末形状を薄く潰した扁平形状にしている。薄く粒径が小さい粉末の方が渦電流損失は抑制されるが、扁平粉末の粒径が小さいと反磁界係数が小さくなるため、高いμ'が得られない。扁平粉末のμ'を向上させるには、高透磁率の磁性材料を用いるか、扁平粉末の扁平率を高めて、反磁界係数を高めるなどの手段があるが、センダスト(登録商標)などのように硬く脆い材料は、粒径が大きい扁平粉末が得られ難く、また、扁平粉末の粒度分布も広くはない。ゆえに渦電流損失の抑制化のために扁平粉末の粒径を小さくすると全体の粉末粒度も小さくなってしまい、反磁界の影響でμ'は低減してしまう。   The powder of the metal magnetic material used for the composite magnetic body has a flat shape in which the powder shape is thinly crushed in order to suppress eddy current loss and reduce the demagnetizing field. The eddy current loss is suppressed in the case of a thin powder having a small particle size, but if the particle size of the flat powder is small, the demagnetizing factor is small, so that a high μ ′ cannot be obtained. In order to improve μ ′ of the flat powder, there are means such as using a magnetic material with high magnetic permeability or increasing the flatness of the flat powder to increase the demagnetizing factor. However, such as Sendust (registered trademark) With a hard and brittle material, it is difficult to obtain a flat powder having a large particle size, and the particle size distribution of the flat powder is not wide. Therefore, if the particle size of the flat powder is reduced to suppress eddy current loss, the overall particle size of the powder is also reduced, and μ ′ is reduced due to the influence of the demagnetizing field.

一方、延性に富む金属磁性材料の粉末は延びやすいため、薄く粒径が大きい高扁平率の扁平粉末を得ることが可能であり、粒度分布の広い扁平粉末を得ることができる。初透磁率μiが低い磁性材料でも扁平粉末の粒径を大きくし、反磁界係数を大きくできれば、透磁率を高めることができ、粒径の大きい扁平粉末を多く含むことができれば、粉末全体の透磁率を高めることが可能である。   On the other hand, since the powder of the metal magnetic material rich in ductility is easy to extend, it is possible to obtain a thin powder having a thin and large particle size and a high aspect ratio, and a flat powder having a wide particle size distribution can be obtained. Even with a magnetic material having a low initial permeability μi, if the particle size of the flat powder can be increased and the demagnetizing factor can be increased, the magnetic permeability can be increased. It is possible to increase the magnetic susceptibility.

本発明の金属磁性材料粉末は、電磁波ノイズ抑制を目的とする複合磁性体に使用されているセンダスト(登録商標)などの金属磁性材料粉末よりも、周波数13.56MHzの複素比透磁率μの虚数部μ”を実数部μ'に対して低く抑えることができる。本発明によれば、周波数13.56MHzの電磁波にて無線通信を行うRFIDタグのアンテナ素子の感度向上化を図るための複合磁性体に求められている、13.56MHz のμ'に対し、μ”を低く抑えることができる金属磁性材料の粉末を提供できる。   The metal magnetic material powder of the present invention is an imaginary number having a complex relative permeability μ having a frequency of 13.56 MHz, compared to a metal magnetic material powder such as Sendust (registered trademark) used in a composite magnetic material for the purpose of suppressing electromagnetic wave noise. The part μ ″ can be kept lower than the real part μ ′. According to the present invention, the composite magnetism for improving the sensitivity of the antenna element of the RFID tag that performs radio communication with an electromagnetic wave having a frequency of 13.56 MHz. It is possible to provide a powder of a metal magnetic material that can keep μ ″ low compared to μ ′ of 13.56 MHz required for the body.

以下、本発明の具体的構成を説明する。   The specific configuration of the present invention will be described below.

(材料特性)
本発明の複合磁性体用金属磁性材料粉末は、体積固有抵抗値ρが0.9μΩm以上、飽和磁束密度Bsが1.2T以上、初透磁率μiが1000以上の特性を有し、かつ延性を有する金属磁性材料である。体積固有抵抗値ρが0.9μΩm以上で大きければ大きいほど高周波での渦電流損失の抑制効果が高く、複素比透磁率μの虚数部”が増大化する周波数を高くすることができる。
(Material property)
The metal magnetic material powder for composite magnetic material of the present invention has the characteristics that the volume resistivity ρ is 0.9 μΩm or more, the saturation magnetic flux density Bs is 1.2 T or more, the initial permeability μi is 1000 or more, and has ductility. It has a metal magnetic material. The larger the volume resistivity ρ is 0.9 μΩm or more, the higher the effect of suppressing eddy current loss at high frequencies, and the frequency at which the imaginary part of the complex relative permeability μ increases can be increased.

しかし、体積固有抵抗が大きいほど、軟磁性材料的には良い特性が得られない傾向がある。特に初透磁率μiが著しく低い材料では複素比透磁率μの実数部μ'が低くなってしまうため、金属磁性材料としては初透磁率μiが1000以上有する必要がある。   However, as the volume resistivity increases, there is a tendency that good characteristics cannot be obtained as a soft magnetic material. In particular, in a material having a remarkably low initial permeability μi, the real part μ ′ of the complex relative permeability μ becomes low. Therefore, the metal magnetic material needs to have an initial permeability μi of 1000 or more.

さらに飽和磁束密度Bsが大きい材料の方が、磁性体に収束した磁束が飽和しにくく、磁性体からの漏れ磁束の抑制や磁性体の軽薄化を図ることができるため、飽和磁束密度Bsは1.2T以上有するものが好ましい。   Furthermore, the material having a higher saturation magnetic flux density Bs is less likely to saturate the magnetic flux converged on the magnetic material, and can suppress the leakage magnetic flux from the magnetic material and reduce the thickness of the magnetic material. Those having 2T or more are preferable.

1.2T未満では飽和磁束密度Bsが低いため、磁性体を厚くする必要があり、軽薄化が求められるRFID関連製品としては好ましくない。また、金属材料的にはロール圧延が可能な延性が必要である。延性を有することで、金属粉末は容易に延び、短時間で薄く大きい粒径の扁平粉末を作製することができる。また、粒径の小さい粉末も薄く潰れるため、粉末間の潰れ具合の差が小さい。   If it is less than 1.2T, the saturation magnetic flux density Bs is low, so it is necessary to increase the thickness of the magnetic material, which is not preferable as an RFID-related product that is required to be light and thin. In addition, the metal material must have ductility that allows roll rolling. By having ductility, the metal powder easily extends, and a flat powder having a thin and large particle size can be produced in a short time. Moreover, since the powder with a small particle size is also crushed thinly, the difference of the crushing condition between powders is small.

(扁平粉末の粒度)
本発明の複合磁性体用金属磁性材料粉末は、金属磁性材料の形状が薄く潰れた扁平形状の粉末であり、粒度分布において積算粒度分布で90%となる粒径(D90)が120μm以上で、粒度分布において積算粒度分布で10%となる粒径(D10)と90%となる粒径(D90)の比が8倍以上となることを特徴とする複合磁性体用金属磁性材料粉末である。粒度分布が広く、粒径が大きい扁平粉末を多く含む扁平粉末は、反磁界係数を大きくできるので、総合的に粉末のμ'を高めることができる。
(Particle size of flat powder)
The metal magnetic material powder for composite magnetic material of the present invention is a flat powder in which the shape of the metal magnetic material is thinly crushed, and the particle size distribution (D90) of 90% in the integrated particle size distribution is 120 μm or more, In the particle size distribution, the ratio of the particle size (D10) that becomes 10% and the particle size (D90) that becomes 90% in the cumulative particle size distribution is 8 times or more, and is a metal magnetic material powder for composite magnetic materials. A flat powder containing a large amount of flat powder having a wide particle size distribution and a large particle size can increase the demagnetizing factor, so that the μ ′ of the powder can be increased comprehensively.

なお、本発明ににおける粒度分布は、レーザー回折式粒度分布測定装置((株)日本レーザー製)で測定した。   The particle size distribution in the present invention was measured with a laser diffraction particle size distribution measuring device (manufactured by Nippon Laser Co., Ltd.).

(粉末の扁平化方法)
本発明の複合磁性体用金属磁性材料粉末を扁平化する手法は特に制限はない。所望の扁平粉末の状態にできればどのような手法を用いてもよく、効率的に行える手法を用いることが好ましい。このような手法としては、媒体攪拌ミル、ボールミルなどがあげられ、これらのうち、ピンミルなどの媒体攪拌ミルを用いることが好ましい。
(Powder flattening method)
The method for flattening the metal magnetic material powder for composite magnetic material of the present invention is not particularly limited. Any technique may be used as long as the desired flat powder state can be obtained, and it is preferable to use an efficient technique. Examples of such a method include a medium agitation mill and a ball mill, and among these, a medium agitation mill such as a pin mill is preferably used.

(熱処理)
本発明の複合磁性体用金属磁性材料粉末は、扁平化加工後に熱処理が施されることが好ましい。熱処理は材質毎に良好となる熱処理条件が異なるが、熱処理温度としては扁平粉末の応力緩和効果が始まる300℃以上から扁平粉末が焼結しない900℃以下で磁気特性的に最適となる温度を選択することが好ましい。
(Heat treatment)
The metal magnetic material powder for composite magnetic material of the present invention is preferably subjected to heat treatment after flattening. The heat treatment conditions vary depending on the material, but the heat treatment temperature is selected from 300 ° C or higher at which the stress relaxation effect of the flat powder begins to 900 ° C or lower at which the flat powder does not sinter, and optimal magnetic properties. It is preferable to do.

また、その温度での保持時間は、扁平粉末全体がその温度に到達する時間が好ましく、炉の容量や構造によっても異なるため、10分〜10時間程度保持することが好ましい。   The holding time at that temperature is preferably the time for the entire flat powder to reach that temperature, and varies depending on the capacity and structure of the furnace, and is preferably held for about 10 minutes to 10 hours.

また、熱処理雰囲気は、極力酸素が含まれない雰囲気中で行うことが好ましく、真空あるいはアルゴン、窒素などの不活性ガス雰囲気中で行うことが好ましい。   The heat treatment atmosphere is preferably performed in an atmosphere containing as little oxygen as possible, and is preferably performed in a vacuum or an inert gas atmosphere such as argon or nitrogen.

体積固有抵抗値ρが0.9μΩm以上、飽和磁束密度Bsが1.2T以上、初透磁率μiが1000以上の特性を有し、かつ延性を有する金属磁性材料として、スーパーセンダストや6.5wt%Si−Fe合金にCrを混合したFe−Si−Cr合金が好ましい。   Super sendust or 6.5 wt% is a metallic magnetic material having a volume resistivity value ρ of 0.9 μΩm or more, a saturation magnetic flux density Bs of 1.2 T or more, an initial permeability μi of 1000 or more, and a ductility. An Fe—Si—Cr alloy in which Cr is mixed with an Si—Fe alloy is preferable.

本発明の試料1〜3は、10wt%のSi、4wt%のAl、3wt%のNi、残部Feからなるスーパーセンダストの水アトマイズ粉末と6.5wt%Si−Fe合金にCrを2wt%と5wt%混合したFe−Si−Cr合金の水アトマイズ粉末を作製し、その後、媒体攪拌ミルによりその粉末を扁平化させることにより得た。比較のために、センダスト(6Si−4Al−Fe)、パーマロイ(6Mo−13Fe−Ni)、6.5wt%Si−Fe合金、アルパーム(16Al−Fe合金)及び15Si−2Cr−Fe合金の各金属磁性材料を用いた比較例の試料4〜8を本発明の試料同様の処理により得た。   Samples 1 to 3 of the present invention are super sendust water atomized powder composed of 10 wt% Si, 4 wt% Al, 3 wt% Ni, and the balance Fe, and 6.5 wt% Si—Fe alloy with 2 wt% and 5 wt% Cr. % Mixed Fe-Si-Cr alloy water atomized powder was obtained, and then the powder was flattened by a medium stirring mill. For comparison, each metal magnetism of Sendust (6Si-4Al-Fe), Permalloy (6Mo-13Fe-Ni), 6.5 wt% Si-Fe alloy, Alpalm (16Al-Fe alloy) and 15Si-2Cr-Fe alloy Comparative samples 4 to 8 using the materials were obtained by the same treatment as the sample of the present invention.

図2は、作製した扁平粉末の積算粒度分布の一例である。これらの粉末はセンダスト(登録商標)よりも軟らかく延びるため、センダスト(登録商標)の扁平粉末よりも粒径が大きく、広い粒度分布の扁平粉を得ることができた。このようにして得られた金属磁性材料の扁平粉末を窒素雰囲気中にて400℃で2時間の熱処理を施した。   FIG. 2 is an example of the cumulative particle size distribution of the produced flat powder. Since these powders extend more softly than Sendust (registered trademark), it was possible to obtain flat powder having a particle size larger than that of Sendust (registered trademark) and having a wide particle size distribution. The flat powder of the magnetic metal material thus obtained was heat-treated at 400 ° C. for 2 hours in a nitrogen atmosphere.

このようにして作製した複合磁性体用金属磁性材料粉末を塩素化ポリエチレンからなる結合剤中に形状異方性的に配向して複合磁性体を作製した。表1に、そのような複合磁性体に成形した後の周波数13.56MHz の複素比透磁率μの実数部μ'と虚数部μ”の結果を同様の方法にて作製した比較金属磁性材料の扁平粉末の複合磁性体の測定結果とともに示す。   The composite magnetic material was produced by orienting the metal magnetic material powder for composite magnetic material thus prepared in a binder made of chlorinated polyethylene in a shape anisotropic manner. Table 1 shows the results of the comparison metal magnetic material prepared by the same method for the real part μ ′ and the imaginary part μ ”of the complex relative permeability μ of frequency 13.56 MHz after being formed into such a composite magnetic body. It shows with the measurement result of the composite magnetic body of a flat powder.

Figure 2009043778
Figure 2009043778

表1より、本発明の金属磁性材料の扁平粉末の方が、比較例の金属磁性材料の扁平粉末よりも周波数13.56MHzのμ”はμ'に対し2%以下と低く抑制されているのが確認される。   According to Table 1, the flat powder of the metal magnetic material of the present invention is suppressed to 2% or less of μ ″ at 13.56 MHz with respect to μ ′, compared with the flat powder of the metal magnetic material of the comparative example. Is confirmed.

図3および図4には、体積固有抵抗値ρが0.9μΩm以上、飽和磁束密度Bsが1.2T以上、初透磁率μiが1000以上の特性を有し、かつ延性を有する金属磁性材料の扁平粉末による複合磁性体とセンダスト(登録商標)の扁平粉末による複合磁性体のμ'−fおよびμ”−fを比較したものであるが、センダスト(登録商標)よりも体積固有抵抗値が高いスーパーセンダストなどの方が、μ”が増大しはじめる周波数が高く、周波数13.56MHzのμ”が低いのが確認される。   FIGS. 3 and 4 show a metallic magnetic material having a ductility and a volume resistivity value ρ of 0.9 μΩm or more, a saturation magnetic flux density Bs of 1.2 T or more, and an initial permeability μi of 1000 or more. This is a comparison of μ′-f and μ ″ -f of a composite magnetic body made of flat powder and a composite magnetic body made of Sendust (registered trademark) flat powder, and has a higher volume resistivity than Sendust (registered trademark). It is confirmed that the super sendust or the like has a higher frequency at which μ ″ starts increasing and a lower μ ″ at a frequency of 13.56 MHz.

図5は、図1のセンダスト(登録商標)の扁平粉末による複合磁性体のデータにスーパーセンダストの扁平粉末による複合磁性体のデータをプロットしたものである。スーパーセンダストの扁平粉末は図1のセンダスト(登録商標)などの磁性材料よりも13.56MHz のμ'に対し、μ”を抑制する傾向にあることが確認される。   FIG. 5 is a plot of the composite magnetic material data of Super Sendust flat powder on the data of the composite powder of Sendust (registered trademark) flat powder of FIG. It is confirmed that the flat powder of super sendust has a tendency to suppress μ ″ with respect to μ ′ of 13.56 MHz than the magnetic material such as sendust (registered trademark) in FIG.

センダスト(登録商標)扁平粉末による複合磁性体の13.56MHzのμ'とμ”と特許文献1の実施例中のデータを示す図。The figure which shows the data in the Example of patent document 1 and 13.56-MHz (micro | micron | mu) 'and (mu) "of the composite magnetic body by Sendust (trademark) flat powder. 本発明の実施例における試料1、試料2、試料4の粒度分布を示す図。The figure which shows the particle size distribution of the sample 1, the sample 2, and the sample 4 in the Example of this invention. 本発明の実施例における試料1、試料2、試料4を複合磁性体にした際のμ'−f特性を示す図。The figure which shows the μ'-f characteristic at the time of making sample 1, sample 2, and sample 4 into a composite magnetic body in the example of the present invention. 本発明の実施例における試料1、試料2、試料4を複合磁性体にした際のμ”−f特性を示す図。The figure which shows the μ ''-f characteristic at the time of making sample 1, sample 2, and sample 4 into a composite magnetic body in the example of the present invention. 本発明の実施例における試料1、試料4を複合磁性体にした際の13.56MHzのμ'とμ”を示す図。The figure which shows (mu) 'and (micro | micron | mu) "of 13.56 MHz when the sample 1 and the sample 4 in the Example of this invention are made into a composite magnetic body.

Claims (5)

金属磁性材料粉末と結合剤とを含む複合磁性体を形成する複合磁性体用金属磁性材料粉末において、体積固有抵抗値ρが0.9μΩm以上、飽和磁束密度Bsが1.2T以上、初透磁率μiが1000以上の特性を有し、かつ延性を有することを特徴とする複合磁性体用金属磁性材料粉末。   In a metal magnetic material powder for composite magnetic material forming a composite magnetic material containing a metal magnetic material powder and a binder, the volume resistivity ρ is 0.9 μΩm or more, the saturation magnetic flux density Bs is 1.2 T or more, and the initial permeability. A metal magnetic material powder for composite magnetic materials, wherein μi has a characteristic of 1000 or more and has ductility. 前記複合磁性体用金属磁性材料粉末の形状が薄く潰れた扁平形状であり、積算粒度分布で90%となる粒径が120μm以上となることを特徴とする請求項1記載の複合磁性体用金属磁性材料粉末。   2. The metal for composite magnetic material according to claim 1, wherein the shape of the metal magnetic material powder for composite magnetic material is a flattened shape that is thinly crushed, and a particle size of 90% in an integrated particle size distribution is 120 μm or more. Magnetic material powder. 前記複合磁性体用金属磁性材料粉末の積算粒度分布で10%となる粒径と90%となる粒径の比が8倍以上となることを特徴とする請求項1または2記載の複合磁性体用金属磁性材料粉末。   3. The composite magnetic body according to claim 1, wherein a ratio of a particle size of 10% to a particle size of 90% in the cumulative particle size distribution of the metal magnetic material powder for composite magnetic material is 8 times or more. Metal magnetic material powder for use. 前記複合磁性体用金属磁性材料粉末が複合磁性体中に一定方向に配向した状態で分散している請求項1乃至3に記載の複合磁性体用金属磁性材料粉末。   The metal magnetic material powder for composite magnetic bodies according to claim 1, wherein the metal magnetic material powder for composite magnetic bodies is dispersed in a state oriented in a certain direction in the composite magnetic body. 前記複合磁性体用金属磁性材料粉末の周波数13.56MHzにおける複素比透磁率μの実数部μ’が35以上で、周波数13.56MHzの複素比透磁率μの虚数部μ”が周波数13.56MHzの複素比透磁率μの実数部μ’の2%以下となることを特徴とする請求項1乃至4記載の複合磁性体用金属磁性材料粉末。   The real part μ ′ of the complex relative permeability μ at a frequency of 13.56 MHz is 35 or more, and the imaginary part μ ″ of the complex relative permeability μ at a frequency of 13.56 MHz is 13.56 MHz. 5. The metal magnetic material powder for composite magnetic bodies according to claim 1, which is 2% or less of the real part μ ′ of the complex relative permeability μ.
JP2007204342A 2007-08-06 2007-08-06 Metal magnetic material powder for composite magnetic body Pending JP2009043778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204342A JP2009043778A (en) 2007-08-06 2007-08-06 Metal magnetic material powder for composite magnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204342A JP2009043778A (en) 2007-08-06 2007-08-06 Metal magnetic material powder for composite magnetic body

Publications (1)

Publication Number Publication Date
JP2009043778A true JP2009043778A (en) 2009-02-26

Family

ID=40444238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204342A Pending JP2009043778A (en) 2007-08-06 2007-08-06 Metal magnetic material powder for composite magnetic body

Country Status (1)

Country Link
JP (1) JP2009043778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082278A (en) * 2009-10-06 2011-04-21 Nec Tokin Corp Composite magnetic material
JP2013033966A (en) * 2011-08-01 2013-02-14 Samsung Electro-Mechanics Co Ltd Metal magnetic powder, magnetic layer material comprising metal magnetic powder, and multilayered chip components comprising magnetic layer using magnetic layer material
WO2016076275A1 (en) * 2014-11-10 2016-05-19 山陽特殊製鋼株式会社 Soft-magnetic flat powder and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082278A (en) * 2009-10-06 2011-04-21 Nec Tokin Corp Composite magnetic material
JP2013033966A (en) * 2011-08-01 2013-02-14 Samsung Electro-Mechanics Co Ltd Metal magnetic powder, magnetic layer material comprising metal magnetic powder, and multilayered chip components comprising magnetic layer using magnetic layer material
WO2016076275A1 (en) * 2014-11-10 2016-05-19 山陽特殊製鋼株式会社 Soft-magnetic flat powder and method for manufacturing same
JP2016089242A (en) * 2014-11-10 2016-05-23 山陽特殊製鋼株式会社 Soft magnetic flat powder and production method thereof
US20170323711A1 (en) * 2014-11-10 2017-11-09 Sanyo Special Steel Co., Ltd. Soft Magnetic Flaky Powder and Method for Producing the Same
US10872716B2 (en) 2014-11-10 2020-12-22 Sanyo Special Steel Co., Ltd. Soft magnetic flaky powder and method for producing the same

Similar Documents

Publication Publication Date Title
JP5481538B2 (en) Radio wave absorber
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
JP5085471B2 (en) Core-shell magnetic material, method for manufacturing core-shell magnetic material, device device, and antenna device.
JP6738160B2 (en) Soft magnetic flat powder and method for producing the same
JP2009239153A (en) High-frequency magnetic material and method of manufacturing the same
TWI664648B (en) Soft magnetic flat powder and manufacturing method thereof
JP6442236B2 (en) Soft magnetic flat powder and method for producing the same
JP2014192327A (en) Radio wave absorbing sheet for neighborhood field and method of manufacturing the same
Lee et al. A simple wireless power charging antenna system: Evaluation of ferrite sheet
CN110235212B (en) Magnetic flat powder and magnetic sheet containing the same
CN110088854B (en) Soft magnetic flat powder
JP2014204051A (en) Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
JP2009249739A (en) Metal magnetic particulate, method for producing the same and powder magnetic core
JP2009043778A (en) Metal magnetic material powder for composite magnetic body
US20220165464A1 (en) Alloy Powder for Magnetic Member
He et al. The preparation and high-frequency electromagnetic properties of Co80Ni20 alloy particles for potential antenna applications
He et al. Research on magnetic and microwave absorbing properties of Co 2 Y ferrite fabricated by sol–gel process
KR102393236B1 (en) soft magnetic flat powder
JP6735209B2 (en) Flat powder and magnetic sheet used at high frequency
WO2022172543A1 (en) Soft-magnetic flat powder
JP2010024479A (en) Flat fine particle of iron alloy and method for producing the same
JP2017118114A (en) Soft magnetic flat-particle powder, and magnetic sheet using the same
JP2010010237A (en) Magnetic material, artificial medium and magnetic material manufacturing method
WO2022202760A1 (en) Magnetic material for high frequency use, and method for producing same
JP7257150B2 (en) Flame-retardant powder for magnetic components