JP2009043715A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009043715A
JP2009043715A JP2008177608A JP2008177608A JP2009043715A JP 2009043715 A JP2009043715 A JP 2009043715A JP 2008177608 A JP2008177608 A JP 2008177608A JP 2008177608 A JP2008177608 A JP 2008177608A JP 2009043715 A JP2009043715 A JP 2009043715A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
holding member
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008177608A
Other languages
Japanese (ja)
Other versions
JP4712837B2 (en
Inventor
Yukihiro Okada
行広 岡田
Yoshiyuki Muraoka
芳幸 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008177608A priority Critical patent/JP4712837B2/en
Priority to US12/175,878 priority patent/US8999585B2/en
Publication of JP2009043715A publication Critical patent/JP2009043715A/en
Application granted granted Critical
Publication of JP4712837B2 publication Critical patent/JP4712837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in cycle characteristic. <P>SOLUTION: The nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a porous insulating layer, and nonaqueous electrolyte. The porous insulating layer is interposed between the positive electrode and the negative electrode. The nonaqueous electrolyte is contained at least in the porous insulating layer. The mixture layer of the positive electrode and the porous insulating layer each include a structure retainer. As the structure retainer, a ceramic particle of a dendrite, carbon fiber or the like is used, and expansion in a thickness direction of a negative electrode active substance layer is controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、電子機器のポータブル化およびコードレス化が急速に進んでおり、このような電子機器の駆動用電源として、小型かつ軽量で、高エネルギー密度を有する二次電池を用いるという要望が高まっている。また、二次電池を、小型の民生機器用の電源だけでなく、電力貯蔵用の電源または電気自動車の電源などといった長期に渡って耐久性が要求される機器の電源にも用いることが提案されており、二次電池に対する技術展開が加速してきている。   2. Description of the Related Art In recent years, electronic devices have become rapidly portable and cordless, and there is an increasing demand for using a secondary battery that is small and lightweight and has a high energy density as a driving power source for such electronic devices. In addition, it is proposed that secondary batteries be used not only for power sources for small consumer devices, but also for power sources for long-term durability such as power storage power sources or electric vehicle power sources. Technology development for secondary batteries is accelerating.

二次電池のなかでも、非水電解質二次電池、特にリチウムイオン二次電池が、高電圧でありかつ高エネルギー密度を有する。そのため、非水電解質二次電池は、電子機器用の電源、電力貯蔵用の電源、または、電気自動車の電源として期待されている。   Among secondary batteries, non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, have a high voltage and a high energy density. Therefore, the nonaqueous electrolyte secondary battery is expected as a power source for electronic devices, a power source for power storage, or a power source for electric vehicles.

非水電解質二次電池は、正極、負極、セパレータおよび非水電解質を備えている。セパレータは、正極と負極との間に介在しており、セパレータには、主としてポリオレフィン製の微多孔膜が用いられている。非水電解質は、少なくともセパレータに保持されており、非水電解質には、LiBFまたはLiPF等のリチウム塩を非プロトン性の有機溶媒に溶解させた液状の非水電解質が用いられている。また、正極の活物質としてリチウムに対する電位が高くリチウムイオンを電気化学的に吸蔵および放出可能な活物質(例えばLiCoO、LiNiO、LiMn、LiFePO)を用い、負極の活物質として黒鉛などの種々の炭素材料もしくは金属酸化物などを用いた非水電解質二次電池が、実用化されつつある。 The nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte. The separator is interposed between the positive electrode and the negative electrode, and a polyolefin microporous film is mainly used for the separator. The non-aqueous electrolyte is held at least in the separator, and a liquid non-aqueous electrolyte in which a lithium salt such as LiBF 4 or LiPF 6 is dissolved in an aprotic organic solvent is used as the non-aqueous electrolyte. Moreover, an active material (for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 ) having a high potential with respect to lithium and capable of electrochemically occluding and releasing lithium ions is used as the positive electrode active material, Non-aqueous electrolyte secondary batteries using various carbon materials such as graphite or metal oxides are being put into practical use.

このような非水電解質二次電池では、充電時には、リチウムイオンが正極の活物質から負極の活物質の結晶層間に挿入され、放電時には、リチウムイオンが負極の活物質の結晶間から正極の活物質に戻る。そのため、非水電解質二次電池を充放電させると、正極の活物質および負極の活物質が膨張または収縮する。   In such a non-aqueous electrolyte secondary battery, during charging, lithium ions are inserted from the positive electrode active material between the crystal layers of the negative electrode active material, and during discharge, lithium ions are inserted between the negative electrode active material crystals between the positive electrode active material crystals. Return to material. Therefore, when the nonaqueous electrolyte secondary battery is charged and discharged, the positive electrode active material and the negative electrode active material expand or contract.

詳細には、正極の活物質では、充電時にリチウムイオンを放出し、放電時にそのリチウムイオンが戻る。ここで、正極の活物質は、リチウム酸化物、リチウムのリン酸塩またはリチウムの硫酸塩として存在し、これらリチウム酸化物、リチウムのリン酸塩またはリチウムの硫酸塩の結晶構造は、層状岩塩構造、スピネル構造またはオリビン構造などの強固な骨格を持つため、リチウムの出入りによる正極の活物質の膨張または収縮は非常に小さい。   Specifically, the positive electrode active material releases lithium ions during charging and returns to the lithium ions during discharging. Here, the active material of the positive electrode exists as lithium oxide, lithium phosphate or lithium sulfate, and the crystal structure of these lithium oxide, lithium phosphate or lithium sulfate is a layered rock salt structure In addition, since it has a strong skeleton such as a spinel structure or an olivine structure, expansion or contraction of the active material of the positive electrode due to the entry and exit of lithium is very small.

一方、負極の活物質では、充電時にリチウムイオンが負極の活物質の結晶層の間隔を広げてその結晶層間に入り込むため、負極の活物質は充電により膨張する。また、負極の活物質として合金を用いた場合には、負極の活物質の膨張は非常に大きい。   On the other hand, in the negative electrode active material, the lithium active material expands by charging because the lithium ions widen the gap between the crystal layers of the negative electrode active material and enter the crystal layer during charging. When an alloy is used as the negative electrode active material, the expansion of the negative electrode active material is very large.

負極の活物質が膨張すると、正極およびセパレータを圧縮する虞がある。正極およびセパレータが圧縮されると、正極の合剤層およびセパレータ内に存在する空孔が潰れる。その空孔には非水電解質が保持されているので、空孔が潰れると、目詰まりがおこり、非水電解質が空孔から押し出されてしまう。その結果、充放電のサイクルを行うにつれて電池容量が低下する(サイクル特性が悪化する)場合がある。そのため、充電時における負極の活物質の膨張を抑制することが好ましい。   If the active material of the negative electrode expands, the positive electrode and the separator may be compressed. When the positive electrode and the separator are compressed, pores existing in the positive electrode mixture layer and the separator are crushed. Since the non-aqueous electrolyte is held in the pores, when the pores are crushed, clogging occurs and the non-aqueous electrolyte is pushed out of the pores. As a result, the battery capacity may decrease (cycle characteristics deteriorate) as the charge / discharge cycle is performed. Therefore, it is preferable to suppress the expansion of the negative electrode active material during charging.

充放電のサイクルを行うにつれ容量が低下することを改良する目的で、負極に気相成長炭素繊維(VGCF;Vapor Grown Carbon Fiber)を混入させるという方法が提案されている(特許文献1参照)。特許文献1には、気相成長炭素繊維が負極の活物質の膨張および圧縮を吸収するので、負極の変形を抑制することができ、その結果、充放電のサイクルを行うにつれ容量が低下することを抑制できる、と記載されている。
特開平10−162811号公報
In order to improve the decrease in capacity as a charge / discharge cycle is performed, a method of mixing vapor grown carbon fiber (VGCF) in the negative electrode has been proposed (see Patent Document 1). In Patent Document 1, since the vapor-grown carbon fiber absorbs the expansion and compression of the active material of the negative electrode, the deformation of the negative electrode can be suppressed, and as a result, the capacity decreases as the charge / discharge cycle is performed. It can be suppressed.
Japanese Patent Laid-Open No. 10-162811

しかしながら、特許文献1に開示された技術を用いても、負極の活物質の膨張を完全に抑制することは難しい。そのため、上述のように、負極の活物質の膨張によりセパレータおよび正極が押しつぶされ、セパレータおよび正極の合剤層中に存在する空孔が潰れ、その結果、空孔内に存在していた非水電解質がその空孔から押し出される虞がある。よって、サイクル特性の悪化を招来するという課題を有している。   However, even if the technique disclosed in Patent Document 1 is used, it is difficult to completely suppress the expansion of the active material of the negative electrode. Therefore, as described above, the separator and the positive electrode are crushed due to the expansion of the active material of the negative electrode, and the pores existing in the mixture layer of the separator and the positive electrode are crushed. As a result, the non-water that was present in the pores There is a risk that the electrolyte will be pushed out of the pores. Therefore, there is a problem that the cycle characteristics are deteriorated.

また、非水電解質二次電池の更なる高容量化が求められる中で、負極の活物質として合金、金属酸化物またはSi酸化物といった炭素材料よりも高容量の活物質が望まれている。このような高容量の活物質を用いると、黒鉛などの炭素材料を活物質として用いる場合に比べ、多くのリチウムイオンを負極の活物質の結晶層間に挿入することができるので充電時の膨張率が高くなる。よって、特許文献1に開示された技術を用いても、負極の活物質の膨張を十分に抑制できない場合がある。   In addition, in the demand for higher capacity of nonaqueous electrolyte secondary batteries, an active material having a higher capacity than a carbon material such as an alloy, metal oxide, or Si oxide is desired as an active material for the negative electrode. When such a high-capacity active material is used, more lithium ions can be inserted between the crystal layers of the active material of the negative electrode than when a carbon material such as graphite is used as the active material. Becomes higher. Therefore, even if the technique disclosed in Patent Document 1 is used, the expansion of the negative electrode active material may not be sufficiently suppressed.

さらに、最近では、負極として、負極の活物質が負極の集電体の表面に真空蒸着されたものが検討されている。このような負極では、特許文献1に開示された方法を用いることは難しい。   Furthermore, recently, a negative electrode in which the negative electrode active material is vacuum-deposited on the surface of the negative electrode current collector has been studied. In such a negative electrode, it is difficult to use the method disclosed in Patent Document 1.

そこで本発明はこのような課題を解決し、サイクル特性に優れた非水電解質二次電池を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such problems and to provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics.

本発明の非水電解質二次電池は、正極と、負極と、多孔質絶縁層と、非水電解質とを備えている。正極は、リチウムイオンを電気化学的に吸蔵および放出可能な活物質を含む合剤層を有している。負極は、リチウムイオンを電気化学的に吸蔵および放出可能な活物質を含む層(以下では、「負極の活物質層」という)を有している。多孔質絶縁層は、正極と負極との間に配置されている。非水電解質は、少なくとも多孔質絶縁層に保持されている。正極の合剤層は構造保持部材を含んでおり、多孔質絶縁層は構造保持部材を含んでいるまたは構造保持部材からなる。   The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a porous insulating layer, and a nonaqueous electrolyte. The positive electrode has a mixture layer containing an active material capable of electrochemically occluding and releasing lithium ions. The negative electrode has a layer containing an active material capable of electrochemically inserting and extracting lithium ions (hereinafter referred to as “active material layer of negative electrode”). The porous insulating layer is disposed between the positive electrode and the negative electrode. The nonaqueous electrolyte is held at least in the porous insulating layer. The positive electrode mixture layer includes a structure holding member, and the porous insulating layer includes a structure holding member or includes the structure holding member.

本発明の非水電解質二次電池では、多孔質絶縁層および正極の合剤層が構造保持部材を含んでいるので、負極の活物質が膨張しようとしてもその膨張を抑制できる、すなわち、膨張した負極にセパレータと正極とが押しつぶされることを抑制できる。これにより、非水電解質がセパレータおよび正極の合剤層のそれぞれに存在する空孔から押し出されることを抑制でき、サイクル特性の低下を抑制できる。   In the nonaqueous electrolyte secondary battery of the present invention, since the porous insulating layer and the positive electrode mixture layer include the structure holding member, even if the active material of the negative electrode tries to expand, the expansion can be suppressed, that is, the expanded layer has expanded. It can suppress that a separator and a positive electrode are crushed by the negative electrode. Thereby, it can suppress that a nonaqueous electrolyte is extruded from the void | hole which exists in each of the separator and the positive mix layer, and can suppress the fall of cycling characteristics.

本発明によれば、サイクル特性に優れている。   According to the present invention, the cycle characteristics are excellent.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下に示す実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to embodiment shown below.

本実施形態にかかる非水電解質二次電池は、正極と、負極と、多孔質絶縁層と、非水電解質とを備えている。正極では、集電体の両面または片面に合剤層が設けられており、正極の合剤層には、リチウムイオンを電気化学的に吸蔵および放出可能な活物質、結着剤および導電剤が含まれている。負極では、集電体の両面または片面に活物質を含む活物質層が設けられており、負極の活物質は、リチウムイオンを電気化学的に吸蔵および放出可能な物質である。多孔質絶縁層は、正極と負極との間に配置されている。非水電解質は、正極、負極およびセパレータに保持されている。そして、正極の合剤層内および多孔質絶縁層内には、それぞれ、構造保持部材が設けられている。   The non-aqueous electrolyte secondary battery according to this embodiment includes a positive electrode, a negative electrode, a porous insulating layer, and a non-aqueous electrolyte. In the positive electrode, a mixture layer is provided on both sides or one side of the current collector, and in the positive electrode mixture layer, an active material, a binder, and a conductive agent capable of electrochemically inserting and extracting lithium ions are provided. include. In the negative electrode, an active material layer containing an active material is provided on both surfaces or one surface of the current collector, and the active material of the negative electrode is a material capable of electrochemically occluding and releasing lithium ions. The porous insulating layer is disposed between the positive electrode and the negative electrode. The nonaqueous electrolyte is held by the positive electrode, the negative electrode, and the separator. A structure holding member is provided in each of the positive electrode mixture layer and the porous insulating layer.

このように本実施形態にかかる非水電解質二次電池では、正極の合剤層内および多孔質絶縁層内に構造保持部材が含まれているので、充電時に負極の活物質が膨張しても、正極および多孔質絶縁層が潰れてしまうことを抑制できる。その結果、負極の活物質が膨張しても、正極の合剤層および多孔質絶縁層のそれぞれに存在する空孔から非水電解質が押し出されることを抑制でき、サイクル特性の低下を抑制できる。   As described above, in the nonaqueous electrolyte secondary battery according to the present embodiment, since the structure holding member is included in the mixture layer and the porous insulating layer of the positive electrode, the active material of the negative electrode expands during charging. The positive electrode and the porous insulating layer can be prevented from being crushed. As a result, even if the active material of the negative electrode expands, it is possible to suppress the nonaqueous electrolyte from being pushed out from the pores existing in the positive electrode mixture layer and the porous insulating layer, and it is possible to suppress a decrease in cycle characteristics.

図1(a)〜(c)を用いて構造保持部材を説明する。図1(a)〜(c)では、充電により負極の活物質Aが膨張した結果、発生する圧縮力(正極または多孔質絶縁層を圧縮する力)を模式的に示している。図1(a)には、負極の活物質Aの膨張を抑制する抑制剤と構造保持部材との両方が設けられていない場合を示しており、図1(b)には、抑制剤が負極の活物質層N内にのみ設けられているが構造保持部材が設けられていない場合を示しており、図1(c)には、抑制剤が設けられていないが構造保持部材が正極の合剤層P内および多孔質絶縁層I内に設けられている場合を示している。図1(a)〜(c)において、Fx,FyおよびFzは、それぞれ、x軸方向、y軸方向およびz軸方向における圧縮力の大きさである。x軸方向は紙面に対して垂直な方向であり、y軸方向は紙面の横方向であり、z軸方向は紙面の縦方向である。   The structure holding member will be described with reference to FIGS. 1A to 1C schematically show the compression force (force for compressing the positive electrode or the porous insulating layer) generated as a result of expansion of the negative electrode active material A by charging. FIG. 1A shows a case where both the inhibitor that suppresses the expansion of the active material A of the negative electrode and the structure holding member are not provided, and FIG. In FIG. 1C, the structure holding member is provided only in the active material layer N, but the structure holding member is not provided. FIG. The case where it is provided in the agent layer P and the porous insulating layer I is shown. 1A to 1C, Fx, Fy, and Fz are the magnitudes of compressive forces in the x-axis direction, the y-axis direction, and the z-axis direction, respectively. The x-axis direction is a direction perpendicular to the paper surface, the y-axis direction is the horizontal direction of the paper surface, and the z-axis direction is the vertical direction of the paper surface.

ここで、抑制剤は特許文献1に開示されているように負極の活物質の膨張を等方的に抑制する材料であり、構造保持部材は負極の活物質の膨張のうち特に負極の活物質層の層厚方向における膨張を抑制する材料である。   Here, the inhibitor is a material that isotropically suppresses the expansion of the negative electrode active material as disclosed in Patent Document 1, and the structure holding member is the negative electrode active material in particular among the negative electrode active material expansion. It is a material that suppresses expansion in the layer thickness direction of the layer.

一般に、非水電解質二次電池を充電させると、正極の活物質中のリチウムイオンが負極の活物質の結晶層の層間に挿入され、その結果、負極の活物質が膨張する。   Generally, when a non-aqueous electrolyte secondary battery is charged, lithium ions in the positive electrode active material are inserted between the crystal layers of the negative electrode active material, and as a result, the negative electrode active material expands.

抑制剤および構造保持部材が存在していない場合、図1(a)に示すように、負極の活物質Aは等方的に膨張する。そのため、Fx(1)≒Fy(1)≒Fz(1)である。このように負極の活物質Aは図1(a)に示すz軸方向(負極の活物質層の厚み方向)に膨張するので、セパレータIおよび正極には圧縮力(Fz(1)≠0)がかかり、その結果、正極の合剤層PおよびセパレータIが圧縮してしまう。正極の合剤層PおよびセパレータIには非水電解質を保持するための空孔が存在しているが、圧縮によりその空孔が潰れるので、目詰まりをおこし、非水電解質がその空孔から押し出されてしまう。   When the inhibitor and the structure holding member are not present, the active material A of the negative electrode expands isotropically as shown in FIG. Therefore, Fx (1) ≈Fy (1) ≈Fz (1). Thus, since the negative electrode active material A expands in the z-axis direction (the thickness direction of the negative electrode active material layer) shown in FIG. 1A, the separator I and the positive electrode have a compressive force (Fz (1) ≠ 0). As a result, the positive electrode mixture layer P and the separator I are compressed. The positive electrode mixture layer P and the separator I have pores for holding the non-aqueous electrolyte, but the pores are crushed by compression, causing clogging, and the non-aqueous electrolyte is removed from the pores. It will be pushed out.

また、特許文献1に示すように抑制剤が負極の活物質層N内に存在している場合、図1(b)に示すように、抑制剤(不図示)は負極の活物質Aの膨張を等方的に抑制する。そのため、Fx(2)<Fx(1),Fy(2)<Fy(1),Fz(2)<Fz(1)であるが、Fx(2)≒Fy(2)≒Fz(2)≠0である。よって、正極の合剤層PおよびセパレータIが圧縮されることを抑制することは難しい。   In addition, when the inhibitor is present in the negative electrode active material layer N as shown in Patent Document 1, as shown in FIG. 1B, the inhibitor (not shown) is the expansion of the negative electrode active material A. Isotropically suppressed. Therefore, Fx (2) <Fx (1), Fy (2) <Fy (1), Fz (2) <Fz (1), but Fx (2) ≒ Fy (2) ≒ Fz (2) ≠ 0. Therefore, it is difficult to suppress the positive electrode mixture layer P and the separator I from being compressed.

一方、本実施形態にかかる非水電解質二次電池のように正極の合剤層P内および多孔質絶縁層I内に構造保持部材(不図示)が存在している場合、正極の合剤層Pおよび多孔質絶縁層Iに圧縮力がかかっても、正極の合剤層Pおよび多孔質絶縁層Iの構造を保持しようとする保持力が圧縮力に反発して負極にかかる。このように保持力が正極の合剤層Pおよび多孔質絶縁層Iから負極にかかるので、図1(c)に示すように負極の活物質Aがz軸方向に膨張することを抑制でき(Fz(3)≒0)、その結果、正極の合剤層Pおよび多孔質絶縁層Iが圧縮されることを抑制できる。よって、正極の合剤層P内および多孔質絶縁層I内に存在する空孔が潰れることを抑制できるので、非水電解質がその空孔から押し出されることを抑制できる。これにより、サイクル特性の低下を防止することができる。   On the other hand, when a structure holding member (not shown) is present in the positive electrode mixture layer P and in the porous insulating layer I as in the nonaqueous electrolyte secondary battery according to the present embodiment, the positive electrode mixture layer Even if a compressive force is applied to P and the porous insulating layer I, the holding force for maintaining the structure of the positive electrode mixture layer P and the porous insulating layer I is repelled by the compressive force and applied to the negative electrode. Since the holding force is applied from the positive electrode mixture layer P and the porous insulating layer I to the negative electrode in this way, the negative electrode active material A can be suppressed from expanding in the z-axis direction as shown in FIG. Fz (3) ≈0) As a result, it is possible to prevent the positive electrode mixture layer P and the porous insulating layer I from being compressed. Therefore, since it can suppress that the void | hole which exists in the mixture layer P of the positive electrode and the porous insulating layer I is crushed, it can suppress that a nonaqueous electrolyte is extruded from the void | hole. As a result, deterioration of cycle characteristics can be prevented.

また、負極の活物質は、このようにz軸方向における膨張が抑制されても、充電時には、負極の活物質層内に存在する空孔を充填するようにx軸方向およびy軸方向に膨張する(Fx(3)≠0,Fy(3)≠0)。よって、本実施形態にかかる非水電解質二次電池では、充電特性を低下させることなく、正極の合剤層およびセパレータの潰れを抑制することができる。   Further, the negative electrode active material expands in the x-axis direction and the y-axis direction so as to fill vacancies existing in the negative electrode active material layer during charging even if expansion in the z-axis direction is suppressed in this way. (Fx (3) ≠ 0, Fy (3) ≠ 0). Therefore, in the nonaqueous electrolyte secondary battery according to the present embodiment, the mixture layer of the positive electrode and the separator can be prevented from being crushed without deteriorating the charging characteristics.

なお、特許文献1に示す抑制剤は、負極の活物質Aの膨張を等方的に抑制する。そのため、図1(b)に示す場合において、言い換えると特許文献1に示すように抑制剤が負極の活物質層N内に存在している場合において、負極の活物質Aの膨張を完全に抑制すると、充電時にリチウムイオンが負極の活物質の結晶層間に入ることができなくなるので、充電特性の悪化を引き起こす虞がある。   The inhibitor shown in Patent Document 1 isotropically suppresses the expansion of the negative electrode active material A. Therefore, in the case shown in FIG. 1B, in other words, as shown in Patent Document 1, when the inhibitor is present in the negative electrode active material layer N, the expansion of the negative electrode active material A is completely suppressed. As a result, lithium ions cannot enter the crystal layer of the active material of the negative electrode during charging, which may cause deterioration of charging characteristics.

構造保持部材は、負極の活物質層内にも含まれていることが好ましい。これにより、負極の活物質の膨張が抑制されるので、正極の合剤層および多孔質絶縁層の圧縮をさらに抑制することができる。   It is preferable that the structure holding member is also included in the active material layer of the negative electrode. Thereby, since expansion of the active material of the negative electrode is suppressed, compression of the positive electrode mixture layer and the porous insulating layer can be further suppressed.

以上をまとめると、本実施形態では、構造保持部材は、正極の合剤層内および多孔質絶縁層内に設けられており、さらには負極の活物質層内にも設けられていることが好ましい。構造保持部材を正極の合剤層内および多孔質絶縁層内に設けると、正極の合剤層および多孔質絶縁層の構造が保持されるので、その結果、負極の活物質層の厚み方向における負極の活物質の膨張が抑制される。よって、正極の合剤層内および多孔質絶縁層内では、構造保持部材は、耐圧縮部材として機能する。一方、構造保持部材を負極の活物質層内に設けると、負極の活物質の膨張が抑制される。別の言い方をすると、負極の活物質層内では、構造保持部材は、耐膨張部材として機能する。   In summary, in the present embodiment, the structure holding member is provided in the mixture layer and the porous insulating layer of the positive electrode, and more preferably in the active material layer of the negative electrode. . When the structure holding member is provided in the positive electrode mixture layer and in the porous insulating layer, the structure of the positive electrode mixture layer and the porous insulating layer is held. As a result, in the thickness direction of the active material layer of the negative electrode Expansion of the negative electrode active material is suppressed. Therefore, the structure holding member functions as a compression resistant member in the positive electrode mixture layer and the porous insulating layer. On the other hand, when the structure holding member is provided in the active material layer of the negative electrode, expansion of the active material of the negative electrode is suppressed. In other words, the structure holding member functions as an expansion resistant member in the active material layer of the negative electrode.

構造保持部材は、正極の合剤層内および多孔質絶縁層内の両方に設けられていることが好ましい。なぜならば、構造保持部材が正極の合剤層内にしか設けられていなければ、負極の活物質の膨張による圧縮力が多孔質絶縁層に集中し、多孔質絶縁層が圧縮される場合があるからである。同様に、構造保持部材が多孔質絶縁層内にしか設けられていなければ、負極の活物質の膨張による圧縮力が正極の合剤層に集中し、正極の合剤層が圧縮される場合があるからである。   The structure holding member is preferably provided in both the positive electrode mixture layer and the porous insulating layer. This is because if the structure holding member is provided only in the positive electrode mixture layer, the compressive force due to the expansion of the negative electrode active material concentrates on the porous insulating layer, and the porous insulating layer may be compressed. Because. Similarly, if the structure holding member is provided only in the porous insulating layer, the compressive force due to the expansion of the negative electrode active material is concentrated on the positive electrode mixture layer, and the positive electrode mixture layer may be compressed. Because there is.

構造保持部材の形状としては、構造保持部材単独では目詰まりしにくい形状、すなわちタップ密度が大きくならない形状が好ましい。構造保持部材の形状は、例えば、アスペクト比の高い形状、糸状のものが絡み合った形状、樹枝状または撒菱状などが好ましい。これにより、構造保持部材同士は互いに絡み合って存在するので、正極の合剤層および多孔質絶縁層の耐圧縮性を向上させることができ、また、負極の活物質層の耐膨張性を向上させることができる。以下、具体的に示す。   The shape of the structure holding member is preferably a shape that is not easily clogged by the structure holding member alone, that is, a shape that does not increase the tap density. The shape of the structure holding member is preferably, for example, a shape with a high aspect ratio, a shape in which yarns are intertwined, a dendritic shape, or a rhomboid shape. Thereby, since the structure holding members are entangled with each other, the compression resistance of the positive electrode mixture layer and the porous insulating layer can be improved, and the expansion resistance of the active material layer of the negative electrode can be improved. be able to. Specific description will be given below.

多孔質絶縁層内に存在する構造保持部材は、セラミックス粒子であることが好ましい。セラミックス粒子は外力が加わっても潰れにくいので、多孔質絶縁層の耐圧縮性を高めることができる。また、セラミックス粒子は絶縁性に優れているので、正極と負極との絶縁性を確保することができる。   The structure holding member present in the porous insulating layer is preferably ceramic particles. Since the ceramic particles are not easily crushed even when an external force is applied, the compression resistance of the porous insulating layer can be improved. Moreover, since the ceramic particles are excellent in insulation, insulation between the positive electrode and the negative electrode can be ensured.

セラミックス粒子としては、形状が樹枝状であるセラミックス粒子を用いることが好ましい。形状が樹枝状であると個々のセラミックス粒子が互いに絡み合うので、例えば球状のセラミックス粒子を用いた場合に比べて多孔質絶縁層の耐圧縮性をさらに向上させることができる。   As the ceramic particles, it is preferable to use ceramic particles having a dendritic shape. When the shape is dendritic, the individual ceramic particles are entangled with each other, so that the compression resistance of the porous insulating layer can be further improved as compared with the case where, for example, spherical ceramic particles are used.

ここで、多孔質絶縁層は、構造保持部材を含んでいても良く、または、構造保持部材からなっていても良い。多孔質絶縁層が構造保持部材からなるには、文字通り構造保持部材のみからなる場合だけでなく、接着剤などを介して構造保持部材が互いに接着されて構成されている場合も含まれている。例えば上述のように構造保持部材がセラミックス粒子である場合、多孔質絶縁層は、接着能のある樹脂またはポリエチレン、ポリプロピレンもしくはポリイミドなどの樹脂とセラミックス粒子とで構成されていても良く、または、複数のセラミックス粒子が互いに接着されて構成されていてもよい。   Here, the porous insulating layer may include a structure holding member or may be formed of a structure holding member. The case where the porous insulating layer is made of the structure holding member includes not only the case where the structure holding member literally consists of only the structure holding member but also the case where the structure holding members are bonded to each other via an adhesive or the like. For example, when the structure holding member is ceramic particles as described above, the porous insulating layer may be composed of an adhesive resin or a resin such as polyethylene, polypropylene, or polyimide and ceramic particles, or a plurality of them. The ceramic particles may be bonded to each other.

正極の合剤層内に存在する構造保持部材は、形状が樹枝状であるセラミックス粒子であってもよく、炭素繊維であってもよい。形状が樹枝状であるセラミックス粒子を用いると、上述のように、個々のセラミックス粒子が互いに絡み合うので、正極の合剤層の耐圧縮性を向上させることができる。なお、セラミックス粒子は絶縁性を有するが、正極の合剤層内にセラミックス粒子を設けても電池の出力特性を確保できることを本願発明者らは確認している。その理由は定かでないが、正極の合剤層にセラミックス粒子を入れることにより正極の合剤層の耐圧縮性を高めることができるので、正極の合剤層における非水電解質の通り道を確保することができるからではないか,と本願発明者らは考えている。   The structure holding member present in the mixture layer of the positive electrode may be a ceramic particle having a dendritic shape or may be a carbon fiber. When ceramic particles having a dendritic shape are used, as described above, the individual ceramic particles are entangled with each other, so that the compression resistance of the mixture layer of the positive electrode can be improved. The present inventors have confirmed that although the ceramic particles have insulating properties, the output characteristics of the battery can be secured even if the ceramic particles are provided in the positive electrode mixture layer. The reason for this is not clear, but it is possible to improve the compression resistance of the positive electrode mixture layer by putting ceramic particles in the positive electrode mixture layer. Therefore, ensure the passage of the nonaqueous electrolyte in the positive electrode mixture layer. The present inventors consider that this is possible.

また、炭素繊維を用いると、個々の炭素繊維が互いに絡み合うので、正極の合剤層の耐圧縮性を向上させることができる。また、炭素繊維は導電性に優れているので、正極の合剤層の導電性を確保することができる。   Further, when carbon fibers are used, the individual carbon fibers are entangled with each other, so that the compression resistance of the mixture layer of the positive electrode can be improved. Moreover, since carbon fiber is excellent in electroconductivity, the electroconductivity of the positive mix layer can be ensured.

負極の活物質層内に存在する構造保持部材は、炭素繊維であることが好ましい。個々の炭素繊維が互いに絡み合うことにより、負極の活物質が膨張することを抑制することができる。   The structure holding member present in the active material layer of the negative electrode is preferably carbon fiber. It can suppress that the active material of a negative electrode expand | swells because each carbon fiber becomes mutually entangled.

構造保持部材の材質の具体例を更に示す。   Specific examples of the material of the structure holding member will be further shown.

多孔質絶縁層内および正極の合剤層内に構造保持部材としてセラミックス粒子を設ける場合、そのセラミックス粒子は、金属酸化物、金属窒化物または金属炭化物等を単独で、もしくは複数を組み合わせて用いることができる。金属酸化物、金属窒化物および金属炭化物のうちでは、入手が容易である等の理由から金属酸化物を用いることが好ましい。金属酸化物としては、アルミナ(酸化アルミニウム)、チタニア(酸化チタン)、ジルコニア(酸化ジルコニウム)、マグネシア(酸化マグネシウム)、酸化亜鉛、または、シリカ(酸化ケイ素)等を用いることができる。これらの金属酸化物のうちでは、アルミナが好ましく、α−アルミナが特に好ましい。α−アルミナは化学的に安定であり、高純度のものは特に化学的に安定である。化学的に安定であるとは、例えば、非水電解質に接しても非水電解質に侵されないことであり、正極および負極に酸化還元電位が印加されても分解または反応しないことであり、さらには、電池特性に悪影響を及ぼすような副反応を起こさないことである。   When ceramic particles are provided as a structure holding member in the porous insulating layer and in the positive electrode mixture layer, the ceramic particles may be used alone or in combination of metal oxides, metal nitrides, metal carbides, etc. Can do. Among metal oxides, metal nitrides, and metal carbides, it is preferable to use metal oxides for reasons such as availability. As the metal oxide, alumina (aluminum oxide), titania (titanium oxide), zirconia (zirconium oxide), magnesia (magnesium oxide), zinc oxide, silica (silicon oxide), or the like can be used. Of these metal oxides, alumina is preferable, and α-alumina is particularly preferable. α-alumina is chemically stable, and high purity is particularly chemically stable. “Chemically stable” means, for example, that it is not attacked by the non-aqueous electrolyte even when it is in contact with the non-aqueous electrolyte, and that it does not decompose or react even when a redox potential is applied to the positive electrode and the negative electrode It does not cause side reactions that adversely affect battery characteristics.

セラミックス粒子の粒径としては、単結晶の平均粒子径が0.05μm〜1μm程度であることが好ましい。また、セラミックス粒子の形状としては、通常の一次粒子がファンデアワールス力で凝集して形成された球状であってもよいが、図2に示すように単結晶の核同士を結合する連結部を有する形状であることが望ましい。図2に示すセラミックス粒子では成長した単結晶の核が連結しているので、多結晶粒子21は、球状ではなく、通常、瘤、隆起もしくは膨らみを有しており、好ましくは樹枝状、珊瑚状もしくは房状である。セラミックス粒子としては、単結晶の核同士を連結させる連結部にいわゆるネックが形成されていることが好ましいが(図2を参照)、ネックが明確に判別できない粒子であっても用いることができる。   As the particle diameter of the ceramic particles, the average particle diameter of the single crystal is preferably about 0.05 μm to 1 μm. The shape of the ceramic particles may be a spherical shape formed by agglomerating normal primary particles by van der Waals force. However, as shown in FIG. It is desirable to have a shape. In the ceramic particle shown in FIG. 2, since the grown single crystal nuclei are connected, the polycrystalline particle 21 is not spherical but usually has a bump, a bulge, or a bulge, and preferably has a dendritic shape or a cocoon shape. Or it is tufted. As the ceramic particles, it is preferable that a so-called neck is formed at a connecting portion for connecting single crystal nuclei (see FIG. 2), but even a particle in which the neck cannot be clearly distinguished can be used.

このような多結晶粒子を含むセラミックス粒子は、例えばセラミックス前駆体を焼成してセラミックス焼成体を得る工程とセラミックス焼成体を機械的に解砕する工程とを経ることにより、得られる。セラミックス焼成体は、成長した単結晶の核が3次元状に連結した構造を有する。このような焼成体を機械的にかつ適度に解砕すれば、多結晶粒子を含むセラミックス粒子が得られる。なお、セラミックス粒子は多結晶粒子からなることが好ましいが、多結晶粒子以外の粒子、例えば球状もしくはほぼ球状の一次粒子または一次粒子がファンデアワールス力で凝集して形成された球状の粒子を例えば30重量%未満含んでも良い。   Ceramic particles containing such polycrystalline particles can be obtained, for example, by going through a step of firing a ceramic precursor to obtain a ceramic fired body and a step of mechanically crushing the ceramic fired body. The ceramic fired body has a structure in which the nuclei of grown single crystals are three-dimensionally connected. If such a fired body is mechanically and appropriately crushed, ceramic particles containing polycrystalline particles can be obtained. The ceramic particles are preferably composed of polycrystalline particles, but particles other than polycrystalline particles, such as spherical or nearly spherical primary particles or spherical particles formed by agglomeration of primary particles by van der Waals force, for example, It may contain less than 30% by weight.

多孔質絶縁層は、セラミックス粒子と結着剤とで構成されていることが好ましい。この場合、結着剤には、例えばフッ素樹脂を用いることができる。フッ素樹脂としては、ポリフッ化ビニリデン(PVDF;PolyVinylidene Fluoride)ポリテトラフルオロエチレン(PTFE;polytetrafluoroethylene)、または、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP;Fluorinated-Ethylene-Propylene)等を用いることができる。また、結着剤には、ポリアクリル酸誘導体またはポリアクリロニトリル誘導体などを用いることもできる。ポリアクリル酸誘導体およびポリアクリロニトリル誘導体は、それぞれ、アクリル酸単位およびアクリロニトリル単位の他に、アクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸メチル単位およびメタクリル酸エチル単位よりなる群から選ばれる少なくとも1種を含むことが好ましい。また、結着剤には、ポリエチレンまたはスチレン−ブタジエンゴムなども用いることができる。結着剤としては、上記の材料を単独で用いてもよく、2種以上の材料を組み合わせて用いてもよい。上記材料のうちでは、特に、アクリロニトリル単位を含む高分子、すなわちポリアクリロニトリル誘導体が好ましい。このような材料を結着剤として用いると、多孔質絶縁層をより一層柔軟にすることができるので、多孔質絶縁層にひび割れが発生することを抑制でき、また、正極または負極から多孔質絶縁層が剥がれてしまうことを抑制できる。   The porous insulating layer is preferably composed of ceramic particles and a binder. In this case, for example, a fluororesin can be used as the binder. As the fluororesin, polyvinylidene fluoride (PVDF) polytetrafluoroethylene (PTFE) or tetrafluoroethylene-hexafluoropropylene copolymer (FEP) may be used. it can. As the binder, a polyacrylic acid derivative or a polyacrylonitrile derivative can also be used. The polyacrylic acid derivative and the polyacrylonitrile derivative are at least one selected from the group consisting of a methyl acrylate unit, an ethyl acrylate unit, a methyl methacrylate unit, and an ethyl methacrylate unit, in addition to the acrylic acid unit and the acrylonitrile unit, respectively. It is preferable to contain. Also, polyethylene or styrene-butadiene rubber can be used as the binder. As the binder, the above materials may be used alone, or two or more materials may be used in combination. Among the above materials, a polymer containing an acrylonitrile unit, that is, a polyacrylonitrile derivative is particularly preferable. When such a material is used as a binder, the porous insulating layer can be made more flexible, so that cracks can be prevented from occurring in the porous insulating layer, and the porous insulating layer can be prevented from the positive or negative electrode. It can suppress that a layer peels.

なお、多孔質絶縁層の空隙率は、30〜80%であることが好ましく、40〜80%でることが更に好ましく、更には50〜80%であることが好ましい。空隙率が30%以上特に40%以上である多孔質絶縁層を用いた場合には、電池に大電流を流した際の充放電特性および低温環境下における充放電特性の低下を抑制できるので好ましい。しかし、空隙率が80%を超えると、多孔質絶縁層の機械的強度が弱くなってしまうので好ましくない。   The porosity of the porous insulating layer is preferably 30 to 80%, more preferably 40 to 80%, and further preferably 50 to 80%. When a porous insulating layer having a porosity of 30% or more, particularly 40% or more is used, it is possible to suppress deterioration of charge / discharge characteristics when a large current is passed through the battery and charge / discharge characteristics in a low temperature environment. . However, if the porosity exceeds 80%, the mechanical strength of the porous insulating layer becomes weak, which is not preferable.

正極の合剤層に構造保持部材として炭素繊維を設ける場合、炭素繊維としては、気相成長炭素繊維(VGCF)、カーボンファイバーまたはカーボンナノチューブなどが挙げられる。気相成長炭素繊維は一般的に凝集体を形成しているため、この凝集体を構造保持部材として用いる。この凝集体は、繊維径が0.01〜5μmである気相成長炭素繊維が凝集したものであり、気相成長炭素繊維が互いに接する接点の一部がタールまたはピッチなどの有機化合物の炭化物によって化学的に結合して固着され径が5〜500μmのフロック状または糸鞠状の構造体であり、凝集体の内部には、種々の大きさの微細空洞が形成されている。このような凝集体は以下に示す2つの製法のどちらかを用いて製造することができる。1つ目の製法では、まず、繊維径が0.05〜5μmである気相成長炭素繊維を圧縮することにより嵩密度が0.02g/cm以上である成形体に成形し、次に、成形体を600℃、好ましくは800℃以上で加熱し、さらに機械的に解砕する。2つ目の製法では、気相成長炭素繊維を0.1kg/cm以上の圧力で圧縮しながら、600℃以上好ましくは800℃以上で加熱し、さらに解砕する(特開平9−132846号公報を参照)。気相成長炭素繊維は、特に限定されず、分岐を有しない単繊維であってもよく、分岐を有する繊維であってもよく、または、単繊維と分岐を有する繊維との混合であってもよいが、熱処理されていない生成したままの粗製の繊維であることが好ましい。粗製の炭素繊維には、約5〜20重量%のタールまたはピッチ等が吸着されており、タールまたはピッチ等は、炭素繊維を圧縮する際には炭素繊維間を結合するバインダーとして機能し、加熱すると容易に炭化して炭素繊維同士を接着する。もし、熱処理後の気相成長炭素繊維を使用するのであれば、ピッチ等を添加して成形することが望ましい。 When carbon fibers are provided as a structure holding member in the mixture layer of the positive electrode, examples of the carbon fibers include vapor grown carbon fibers (VGCF), carbon fibers, and carbon nanotubes. Since vapor grown carbon fiber generally forms an aggregate, this aggregate is used as a structure holding member. This agglomerate is an agglomeration of vapor-grown carbon fibers having a fiber diameter of 0.01 to 5 μm, and some of the contacts where the vapor-grown carbon fibers are in contact with each other are made of a carbide of an organic compound such as tar or pitch. It is a flock-like or string-like structure that is chemically bonded and fixed and has a diameter of 5 to 500 μm, and fine cavities of various sizes are formed inside the aggregate. Such agglomerates can be produced using either of the following two production methods. In the first production method, first, a vapor-grown carbon fiber having a fiber diameter of 0.05 to 5 μm is compressed into a molded body having a bulk density of 0.02 g / cm 3 or more, and then, The molded body is heated at 600 ° C., preferably 800 ° C. or higher, and further mechanically crushed. In the second production method, vapor-grown carbon fiber is heated at 600 ° C. or higher, preferably 800 ° C. or higher while being compressed at a pressure of 0.1 kg / cm 2 or higher, and further pulverized (Japanese Patent Laid-Open No. 9-132646). See the publication). The vapor-grown carbon fiber is not particularly limited, and may be a single fiber having no branch, a fiber having a branch, or a mixture of a single fiber and a fiber having a branch. Although it is good, it is preferable that it is a crude fiber which is not heat-treated and remains as produced. About 5 to 20% by weight of tar or pitch is adsorbed on the crude carbon fiber, and tar or pitch functions as a binder for bonding between carbon fibers when the carbon fibers are compressed, and is heated. Then, it carbonizes easily and adhere | attaches carbon fibers. If the vapor-grown carbon fiber after heat treatment is used, it is desirable to form by adding pitch or the like.

このような炭素繊維は、上述のように、負極の活物質層内にも設けられていることが好ましい。   Such carbon fibers are preferably provided also in the active material layer of the negative electrode as described above.

以下では、正極、負極および非水電解質の構成を順に示す。   Below, the structure of a positive electrode, a negative electrode, and a nonaqueous electrolyte is shown in order.

上述のように、正極では、正極の集電体の両面または片面に合剤層が設けられており、正極の合剤層には、少なくともリチウムイオンを電気化学的に吸蔵および放出可能な活物質からなる正極の活物質と結着剤と導電剤と構造保持部材とが含まれている。   As described above, in the positive electrode, a mixture layer is provided on both sides or one side of the current collector of the positive electrode, and the positive electrode mixture layer has an active material capable of electrochemically occluding and releasing at least lithium ions. And a positive electrode active material, a binder, a conductive agent, and a structure holding member.

リチウムイオンを電気化学的に吸蔵および放出可能な活物質は、リチウム以外の他の金属元素とリチウムとを含む酸化物、リン酸塩、硫酸塩、または珪酸塩であり、リチウム以外の他の金属元素は、一種であっても一種以上であってもよい。リチウムイオンを電気化学的に吸蔵および放出可能な活物質としては、コバルト酸リチウム(LiCoO)、コバルト酸リチウムの変性体、ニッケル酸リチウム(LiNiO)、ニッケル酸リチウムの変性体、マンガン酸リチウム(LiMn)、マンガン酸リチウムの変性体、リン酸鉄リチウム(LiFePO)、リン酸鉄リチウムの変性体、リン酸マンガンリチウム(LiMnPO)、リン酸マンガンリチウムの変性体、または、硫酸鉄リチウム(LiFeSO)を用いることが好ましい。また、正極の活物質としては、上記化合物中のCo、Ni、MnもしくはFeの一部を他の遷移金属元素または典型金属元素(例えば、アルミニウムもしくはマグネシウム等)で置換したものを用いてもよい。 The active material capable of electrochemically occluding and releasing lithium ions is an oxide, phosphate, sulfate, or silicate containing a metal element other than lithium and lithium, and other metal other than lithium. One or more elements may be used. Examples of the active material capable of electrochemically occluding and releasing lithium ions include lithium cobaltate (LiCoO 2 ), modified lithium cobaltate, lithium nickelate (LiNiO 2 ), modified lithium nickelate, lithium manganate (LiMn 2 O 2 ), a modified product of lithium manganate, a lithium iron phosphate (LiFePO 4 ), a modified product of lithium iron phosphate, a lithium manganese phosphate (LiMnPO 4 ), a modified product of lithium manganese phosphate, or It is preferable to use lithium iron sulfate (LiFeSO 4 ). Further, as the active material of the positive electrode, a material obtained by substituting a part of Co, Ni, Mn or Fe in the above compound with another transition metal element or a typical metal element (for example, aluminum or magnesium) may be used. .

正極の結着剤は、特に限定されず、ポリテトラフルオロエチレン(PTFE;polytetrafluoroethylene)、PTFEの変性体、PVDF、PVDFの変性体、または、変性ア
クリロニトリルゴム粒子を用いることができる。結着剤としてPTFEまたは変性アクリロニトリルゴム粒子バインダー(例えば、日本ゼオン(株)製のBM−500Bなど)を用いる場合には、増粘剤として、カルボキシメチルセルロース(CMC;carboxymethylcellulose)、ポリエチレンオキシド(PEO;polyethylene oxide)、または、変性アクリロニトリルゴムと併用することが好ましい。
The binder for the positive electrode is not particularly limited, and polytetrafluoroethylene (PTFE), a modified PTFE, a modified PVDF, a modified PVDF, or modified acrylonitrile rubber particles can be used. When PTFE or a modified acrylonitrile rubber particle binder (for example, BM-500B manufactured by Nippon Zeon Co., Ltd.) is used as the binder, carboxymethylcellulose (CMC), polyethylene oxide (PEO; polyethylene oxide) or a modified acrylonitrile rubber is preferably used in combination.

正極の導電剤としては、アセチレンブラック、ケッチェンブラック、または、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the conductive agent for the positive electrode, acetylene black, ketjen black, or various graphites can be used. These may be used alone or in combination of two or more.

正極の集電体としては、正極電位が印加されても分解または溶融などしない安定な金属を含んでいることが好ましく、例えば、アルミニウム箔またはアルミニウムなどの金属がフィルム表面に設けられたフィルム等を用いることができる。集電体の表面に凹凸が設けられていても良く、また、集電体に穿孔されていても良い。   The positive electrode current collector preferably contains a stable metal that does not decompose or melt even when a positive electrode potential is applied. For example, an aluminum foil or a film in which a metal such as aluminum is provided on the film surface is used. Can be used. Irregularities may be provided on the surface of the current collector, or the current collector may be perforated.

負極では、上述のように負極の集電体の両面または片面に負極の活物質層が設けられている。負極の活物質層には、負極の活物質と結着剤とが含まれていてもよく、増粘剤がさらに含まれていても良く、構造保持部材がさらに含まれていても良い。   In the negative electrode, as described above, the negative electrode active material layer is provided on both sides or one side of the negative electrode current collector. The negative electrode active material layer may contain a negative electrode active material and a binder, may further contain a thickener, and may further contain a structure holding member.

負極の活物質としては、リチウムイオンを電気化学的に吸蔵および放出することができる材料であれば限定されることなく用いることができるが、具体的には、各種天然黒鉛、各種人造黒鉛、石油コークス、炭素繊維、有機高分子焼成物等の炭素材料、金属酸化物、シリコン、シリコン含有複合材料(シリコンとシリコン以外の少なくとも一種の元素とを含む材料)、スズ含有複合材料(スズとスズ以外の少なくとも一種の元素とを含む材料)、各種金属または合金等を用いることができる。   The negative electrode active material can be used without limitation as long as it is a material capable of electrochemically occluding and releasing lithium ions. Specifically, various natural graphites, various artificial graphites, petroleum Carbon materials such as coke, carbon fiber, and fired organic polymer, metal oxide, silicon, silicon-containing composite material (material containing silicon and at least one element other than silicon), tin-containing composite material (other than tin and tin) A material containing at least one kind of element), various metals, alloys, and the like.

負極の結着剤としては、特に限定されないが、少量で優れた結着性を発揮できるという理由からゴム粒子を用いることが好ましく、特にスチレン基およびブタジエン基を含むものが好ましい。結着剤としては、例えばスチレン−ブタジエン共重合体(SBR;styrene-butadiene rubber)またはSBRの変性体などを用いることができる。負極の結着剤としてゴム粒子を用いる場合には、水溶性高分子からなる増粘剤を併用することが望ましい。水溶性高分子としては、セルロース系樹脂が好ましく、特にCMCが好ましい。負極の活物質層における結着剤および増粘剤の量は、それぞれ、負極の活物質100重量部あたり0.1〜5重量部であることが好ましい。さらに、結着剤としては、PVDFまたはPVDFの変性体などを用いることもできる。   The binder for the negative electrode is not particularly limited, but rubber particles are preferably used because they can exhibit excellent binding properties in a small amount, and those containing a styrene group and a butadiene group are particularly preferable. As the binder, for example, a styrene-butadiene copolymer (SBR) or a modified SBR can be used. When rubber particles are used as the binder for the negative electrode, it is desirable to use a thickener composed of a water-soluble polymer. As the water-soluble polymer, a cellulose resin is preferable, and CMC is particularly preferable. The amount of the binder and the thickener in the negative electrode active material layer is preferably 0.1 to 5 parts by weight per 100 parts by weight of the negative electrode active material. Further, PVDF or a modified PVDF can be used as the binder.

または、負極では、負極の集電体の表面に、蒸着法などを用いて上記活物質を析出させてもよい。   Alternatively, in the negative electrode, the active material may be deposited on the surface of the negative electrode current collector by vapor deposition or the like.

負極の集電体としては、負極電位が印加されても分解または溶融などしない安定な金属を含んでいることが好ましく、例えば、銅箔または銅などの金属がフィルム表面に設けられたフィルム等を用いることができる。集電体の表面に凹凸が設けられていても良く、また、集電体に穿孔されていても良い。   The negative electrode current collector preferably contains a stable metal that does not decompose or melt even when a negative electrode potential is applied. For example, a film in which a metal such as copper foil or copper is provided on the film surface is used. Can be used. Irregularities may be provided on the surface of the current collector, or the current collector may be perforated.

非水電解質としては、有機系非水溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩の濃度は、一般に0.5〜2mol/Lである。   As the nonaqueous electrolyte, a lithium salt dissolved in an organic nonaqueous solvent is used. The concentration of the lithium salt is generally 0.5 to 2 mol / L.

リチウム塩は、特に限定されないが、例えば、6フッ化燐酸リチウム(LiPF)、過塩素酸リチウム(LiClO)またはホウフッ化リチウム(LiBF)等を用いることが好ましい。リチウム塩として、これらのうちの1つを単独で用いてもよく、これらのうちの2種以上を組み合わせて用いてもよい。 The lithium salt is not particularly limited, but for example, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), or the like is preferably used. As the lithium salt, one of these may be used alone, or two or more of these may be used in combination.

有機系非水溶媒としては、特に限定されないが、例えば、エチレンカーボネート(EC;ethylene carbonate)、プロピレンカーボネート(PC;propylene carbonate)、ジ
メチルカーボネート(DMC;dimethyl carbonate)、ジエチルカーボネート(DEC;diethyl carbonate)またはエチルメチルカーボネート(EMC;ethyl methyl carbonate)等の炭酸エステル;γ−ブチロラクトン、γ−バレロラクトン、蟻酸メチル、酢酸メチルまたはプロピオン酸メチル等のカルボン酸エステル;ジメチルエーテル、ジエチルエーテルまたはテトラヒドロフラン等のエーテル等が用いられる。有機系非水溶媒としては、上記のうちの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特に炭酸エステルを用いることが好ましい。
Although it does not specifically limit as an organic nonaqueous solvent, For example, ethylene carbonate (EC; ethylene carbonate), propylene carbonate (PC; propylene carbonate), dimethyl carbonate (DMC; dimethyl carbonate), diethyl carbonate (DEC; diethyl carbonate) Or carbonates such as ethyl methyl carbonate (EMC); carboxylic acid esters such as γ-butyrolactone, γ-valerolactone, methyl formate, methyl acetate or methyl propionate; ethers such as dimethyl ether, diethyl ether or tetrahydrofuran, etc. Is used. As the organic non-aqueous solvent, one of the above may be used alone, or two or more may be used in combination. Among these, it is particularly preferable to use a carbonate ester.

さらに、電極上に良好な皮膜を形成して過充電時の安定性を確保するためには、ビニレンカーボネート(VC;Vinylene Carbonate)、シクロヘキシルベンゼン(CHB;cyclohexylbenzene)またはVCもしくはCHBの変性体等を非水電解質に添加することが好
ましい。
Further, in order to form a good film on the electrode and to ensure the stability during overcharge, vinylene carbonate (VC), cyclohexylbenzene (CHB) or a modified product of VC or CHB is used. It is preferable to add to the non-aqueous electrolyte.

なお、本実施形態では、正極の合剤層には、構造保持部材として、セラミックス粒子または炭素繊維が含まれていることが好ましいとしたが、セラミックス粒子および炭素繊維の両方が含まれていても良い。   In the present embodiment, the positive electrode mixture layer preferably includes ceramic particles or carbon fibers as the structure holding member. However, both the ceramic particles and the carbon fibers may be included. good.

また、電極群の構成については言及していないが、本実施形態にかかる電極群では、多孔質絶縁層を介して正極と負極とを捲回させてもよく、または、多孔質絶縁層を介して正極と負極とを積層させてもよい。正極と負極とが捲回されている場合、電極群の端面の形状は、円形であってもまたは扁平な円形であっても良い。このような電極群を作製する際、多孔質絶縁層を正極と負極との間に介在させて積層または捲回してもよいし、多孔質絶縁層の材料を含むペーストを正極または負極の表面に塗布しそのペーストが乾燥してから捲回または積層させてもよい。   Further, although the configuration of the electrode group is not mentioned, in the electrode group according to the present embodiment, the positive electrode and the negative electrode may be wound through the porous insulating layer, or the electrode group according to the present embodiment may be wound through the porous insulating layer. The positive electrode and the negative electrode may be laminated. When the positive electrode and the negative electrode are wound, the shape of the end face of the electrode group may be a circle or a flat circle. When producing such an electrode group, the porous insulating layer may be laminated or wound with the positive electrode and the negative electrode interposed therebetween, or a paste containing the material of the porous insulating layer may be applied to the surface of the positive electrode or the negative electrode. It may be wound or laminated after being applied and the paste dried.

さらに、電解質の一例として非水電解液の形態を挙げたが、ゲル状の電解質であっても同様の効果を発揮することは言うまでもない。   Furthermore, although the form of the non-aqueous electrolyte was mentioned as an example of electrolyte, it cannot be overemphasized that the same effect is exhibited even if it is a gel-like electrolyte.

以下、本発明を実施例に基づいて具体的に説明するが、ここで述べる内容は本発明の例示に過ぎず、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, the content described here is only the illustration of this invention, and this invention is not limited to these.

(I)多結晶粒子を含むセラミックス粒子の調製
ここでは、α−アルミナを含むセラミックス粒子を調製した。
(I) Preparation of ceramic particles containing polycrystalline particles Here, ceramic particles containing α-alumina were prepared.

まず、アルミニウムトリブトキシド(アルミニウムアルコキシド)を用意した。アルミニウムトリブトキシドに純水を加えて加水分解し、アルミナゲルを生成して乾燥させた。このアルミナゲルをセラミックス前駆体として用いた。   First, aluminum tributoxide (aluminum alkoxide) was prepared. Aluminum tributoxide was hydrolyzed by adding pure water to produce an alumina gel and dried. This alumina gel was used as a ceramic precursor.

次いで、アルミナゲル(セラミックス前駆体)を1200℃で3時間焼成し、α−アルミナの焼成体(セラミックス焼成体)を得た。得られたα−アルミナの焼成体のSEM(scanning electron microscope)写真を撮影しα−アルミナの単結晶からなる核の平均粒子径を求めたところ、その平均粒子径は約0.2μmであった。   Next, the alumina gel (ceramic precursor) was fired at 1200 ° C. for 3 hours to obtain an α-alumina fired body (ceramic fired body). When the SEM (scanning electron microscope) photograph of the obtained α-alumina fired body was taken and the average particle size of the nucleus composed of the single crystal of α-alumina was determined, the average particle size was about 0.2 μm. .

得られたα−アルミナの焼成体をジェットミルで解砕した。ここでは、セラミックス粒子の嵩密度が0.05〜1.1g/cmになるように且つBET比表面積が3〜22m/gになるように解砕条件を制御した。 The obtained fired α-alumina was pulverized with a jet mill. Here, the crushing conditions were controlled so that the bulk density of the ceramic particles was 0.05 to 1.1 g / cm 3 and the BET specific surface area was 3 to 22 m 2 / g.

なお、ホソカワミクロン(株)製の「パウダテスタ(商品名)」を用いて静置法によりα−アルミナの嵩密度を測定し、BET(Brunauer-Emmett-Teller)法を用いてα−アルミナのBET比表面積を測定した。また、得られた粒子をSEM写真で観察したところ、いずれも樹枝状の多結晶粒子であることが確認された。
(II)多孔質絶縁層の原料を含むスラリーの調製
所定の多結晶アルミナ粒子100重量部に対し、4重量部のポリアクリル酸誘導体(日本ゼオン(株)製の「BM−720H(商品名)」、結着剤)と、適量のN−メチル−2−ピロリドン(以下、NMP;N-methylpyrrolidone、分散媒)とを混合し、不揮発分が60重量%であるスラリーを調製した。
In addition, the bulk density of α-alumina was measured by a stationary method using “Powder Tester (trade name)” manufactured by Hosokawa Micron Co., Ltd., and the BET ratio of α-alumina was measured using a BET (Brunauer-Emmett-Teller) method. The surface area was measured. Moreover, when the obtained particle | grains were observed with the SEM photograph, it was confirmed that all are dendritic polycrystalline particles.
(II) Preparation of slurry containing raw material of porous insulating layer 4 parts by weight of polyacrylic acid derivative (“BM-720H (trade name) manufactured by Nippon Zeon Co., Ltd.) with respect to 100 parts by weight of predetermined polycrystalline alumina particles ”, A binder) and an appropriate amount of N-methyl-2-pyrrolidone (hereinafter, NMP; N-methylpyrrolidone, dispersion medium) were mixed to prepare a slurry having a nonvolatile content of 60% by weight.

ここでは、多結晶アルミナ粒子と結着剤と分散媒との混合物をエムテクニック(株)製のメディアレス分散機「クレアミックス(商品名)」において攪拌させ、多結晶アルミナ粒子と結着剤とがNMPに均一になるまで分散させてスラリーを得た。
〈a〉正極の作製
コバルト酸リチウム(正極の活物質)3kgと、呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液、正極の結着剤)1kgと、アセチレンブラック(導電剤)90gと、昭和電工(株)製のVGCF(構造保持部材)60gと、適量のNMPとを、双腕式練合機において攪拌し、正極の合剤塗料を調製した。厚み15μmのアルミニウム箔(正極の集電体)を用意し、アルミニウム箔のうち正極のリードを接続する部分(正極リードの接続部)以外の部分に正極の合剤塗料を塗布して塗膜を形成した。塗膜が乾燥したらローラを用いて乾燥した塗膜を圧延させた。これにより、正極の合剤層がアルミニウム箔の上に形成され、活物質の密度(=活物質の重量/合剤層の体積)は3.3g/cmであった。この際、アルミニウム箔の厚みと正極の合剤層の層厚との合計(正極の厚み)を160μmにした。その後、円筒型電池(品番18650)の電池缶に挿入可能な幅に正極を切断し、正極のフープを得た。
〈b〉負極の作製
人造黒鉛(負極の活物質)3kgと、日本ゼオン(株)製の「BM−400B(商品名)」(スチレン−ブタジエン共重合体の変性体を40重量%含む水性分散液、結着剤)75gと、CMC(増粘剤)30gと、適量の水とを、双腕式練合機において攪拌させ、負極の合剤塗料を調製した。厚み10μmの銅箔を用意し、銅箔のうち負極のリードを接続する部分(負極リードの接続部)以外の部分に負極の合剤塗料を塗布して塗膜を形成した。塗膜が乾燥したらローラを用いて乾燥した塗膜を圧延させた。これにより、負極の活物質層が銅箔の上に形成され、活物質の密度(=活物質の重量/活物質層の体積)は1.4g/cmであった。この際、銅箔の厚みと負極の活物質層の層厚との合計(負極の厚み)を180μmに制御した。その後、円筒型電池(品番18650)の電池缶に挿入可能な幅に負極を切断し、負極のフープを得た。
〈c〉多孔質絶縁層の形成
グラビアロール法を用いて、0.5m/分の速度で、多孔質絶縁層の原料を含むスラリーを上記負極フープの両面に塗布した。その後、120℃の熱風を0.5m/秒の風量でスラリーに当てて乾燥させた。これにより、厚みが20μmである多孔質絶縁層を負極の両面にそれぞれ形成した。
〈d〉非水電解液の調製
ECとDMCとEMCとを体積比2:3:3で含む非水溶媒の混合物に、LiPFを1mol/Lの濃度で溶解して非水電解液を調製した。また、非水電解液100重量部あたり2重量部となるようにVCを添加した。
〈e〉電池の作製
上述の正極、負極および非水電解液を用いて、以下の要領で品番18650の円筒型電池を作製した。なお、図3に、非水電解質二次電池の概略縦断面図を示す。
Here, the mixture of the polycrystalline alumina particles, the binder, and the dispersion medium is stirred in a medialess disperser “CLEAMIX (trade name)” manufactured by M Technique Co., Ltd., and the polycrystalline alumina particles, the binder, Was dispersed in NMP until uniform, to obtain a slurry.
<a> Production of Positive Electrode 3 kg of lithium cobalt oxide (positive electrode active material) and 1 kg of “# 1320 (trade name)” (NMP solution containing 12% by weight of PVDF, positive electrode binder) manufactured by Kureha Chemical Co., Ltd. Then, 90 g of acetylene black (conductive agent), 60 g of VGCF (structure holding member) manufactured by Showa Denko KK, and an appropriate amount of NMP are stirred in a double-arm kneader to prepare a positive electrode mixture paint did. Prepare an aluminum foil (positive electrode current collector) with a thickness of 15 μm, and apply the positive electrode mixture paint to a portion of the aluminum foil other than the portion where the positive electrode lead is connected (positive electrode lead connecting portion). Formed. When the coating film was dried, the dried coating film was rolled using a roller. Thereby, the mixture layer of the positive electrode was formed on the aluminum foil, and the density of the active material (= weight of the active material / volume of the mixture layer) was 3.3 g / cm 3 . At this time, the total of the thickness of the aluminum foil and the thickness of the mixture layer of the positive electrode (the thickness of the positive electrode) was 160 μm. Thereafter, the positive electrode was cut to a width that could be inserted into a battery can of a cylindrical battery (Part No. 18650) to obtain a positive electrode hoop.
<B> Production of Negative Electrode 3 kg of artificial graphite (negative electrode active material) and “BM-400B (trade name)” manufactured by Nippon Zeon Co., Ltd. (an aqueous dispersion containing 40% by weight of a modified styrene-butadiene copolymer) Liquid, binder) 75 g, CMC (thickener) 30 g, and an appropriate amount of water were stirred in a double-arm kneader to prepare a negative electrode mixture paint. A copper foil having a thickness of 10 μm was prepared, and a coating film was formed by applying a negative electrode mixture paint to a portion of the copper foil other than a portion to which the negative electrode lead was connected (negative electrode lead connecting portion). When the coating film was dried, the dried coating film was rolled using a roller. Thereby, the active material layer of the negative electrode was formed on the copper foil, and the density of the active material (= weight of active material / volume of active material layer) was 1.4 g / cm 3 . Under the present circumstances, the sum total (thickness of a negative electrode) of the thickness of copper foil and the active material layer of a negative electrode was controlled to 180 micrometers. Thereafter, the negative electrode was cut into a width that could be inserted into a battery can of a cylindrical battery (Part No. 18650) to obtain a negative electrode hoop.
<C> Formation of Porous Insulating Layer A slurry containing the raw material for the porous insulating layer was applied to both surfaces of the negative electrode hoop using a gravure roll method at a speed of 0.5 m / min. Thereafter, hot air at 120 ° C. was applied to the slurry at an air flow rate of 0.5 m / sec and dried. As a result, porous insulating layers having a thickness of 20 μm were formed on both sides of the negative electrode.
<D> Preparation of Nonaqueous Electrolyte Solution A nonaqueous electrolyte solution is prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixture of nonaqueous solvents containing EC, DMC, and EMC at a volume ratio of 2: 3: 3. did. Moreover, VC was added so that it might become 2 weight part per 100 weight part of non-aqueous electrolyte.
<E> Production of Battery A cylindrical battery of product number 18650 was produced in the following manner using the above-described positive electrode, negative electrode, and non-aqueous electrolyte. In addition, in FIG. 3, the schematic longitudinal cross-sectional view of a nonaqueous electrolyte secondary battery is shown.

まず、正極フープと、多孔質絶縁層が両面に形成された負極フープとを、それぞれ、所定の長さに切断した。これにより、正極板1と、多孔質絶縁層3が両面に形成された負極板2とを作製した。   First, the positive electrode hoop and the negative electrode hoop in which the porous insulating layer was formed on both surfaces were each cut into a predetermined length. This produced the positive electrode plate 1 and the negative electrode plate 2 in which the porous insulating layer 3 was formed on both surfaces.

次に、正極リードの接続部に正極リード5の一端を抵抗溶接し、負極リードの接続部に負極リード6の一端を抵抗溶接した。その後、多孔質絶縁層3を正極板1と負極板2とで挟むようにして正極板1と負極板2とを配置し、正極板1と負極板2とを捲回して円筒状の電極群4を構成した。ここで、電極群4では、多孔質絶縁層3の厚みは20μmであった。   Next, one end of the positive electrode lead 5 was resistance welded to the connection portion of the positive electrode lead, and one end of the negative electrode lead 6 was resistance welded to the connection portion of the negative electrode lead. Thereafter, the positive electrode plate 1 and the negative electrode plate 2 are arranged so that the porous insulating layer 3 is sandwiched between the positive electrode plate 1 and the negative electrode plate 2, and the positive electrode plate 1 and the negative electrode plate 2 are wound to form the cylindrical electrode group 4. Configured. Here, in the electrode group 4, the thickness of the porous insulating layer 3 was 20 μm.

下部絶縁リング10に負極リード6を通した後、電極群4を金属製の有底ケース(電池ケース)7に収容した。続いて、負極リード6を金属製の有底ケース7の底部に抵抗溶接させ、負極リード6と有底ケース7とを電気的に接続した。そして、この電極群4の上端面に上部絶縁リング9を配置し、上部絶縁リング9に正極リード5を通した後、金属製の有底ケース7の開放端付近に座部を形成した。   After passing the negative electrode lead 6 through the lower insulating ring 10, the electrode group 4 was accommodated in a metal bottomed case (battery case) 7. Subsequently, the negative electrode lead 6 was resistance-welded to the bottom of the bottomed case 7 made of metal, and the negative electrode lead 6 and the bottomed case 7 were electrically connected. Then, the upper insulating ring 9 was disposed on the upper end surface of the electrode group 4, and the positive lead 5 was passed through the upper insulating ring 9, and then a seat was formed near the open end of the bottomed case 7 made of metal.

続いて、樹脂製のアウターガスケット11が取り付けられた封口板8の金属製のフィルター8aに正極リード5をレーザ溶接させ、正極リード5と封口板8とを電気的に接続した。そして、金属製の有底ケース7の開放端から非水電解液を注入し、133Paに減圧して非水電解液を電極群4に含浸させた。   Subsequently, the positive electrode lead 5 was laser welded to the metal filter 8a of the sealing plate 8 to which the resin outer gasket 11 was attached, and the positive electrode lead 5 and the sealing plate 8 were electrically connected. Then, a non-aqueous electrolyte was injected from the open end of the bottomed case 7 made of metal, the pressure was reduced to 133 Pa, and the electrode group 4 was impregnated with the non-aqueous electrolyte.

そして、正極リード5を折り曲げ、樹脂製のアウターガスケット11が取り付けられた封口板8を有底ケース7の座部にとりつけてかしめることにより有底ケース7の開放端を封口した。このようにして、円筒型の非水電解質二次電池Aを製造した。   Then, the open end of the bottomed case 7 was sealed by bending the positive electrode lead 5 and attaching the sealing plate 8 to which the resin outer gasket 11 was attached to the seat of the bottomed case 7. In this way, a cylindrical nonaqueous electrolyte secondary battery A was manufactured.

構造保持部材としてVGCFを負極の活物質層に添加する以外は実施例1と同様にして、非水電解質二次電池Bを作製した。具体的には、実施例1の負極の合剤塗料に昭和電工(株)製のVGCFを60g添加させて、実施例2の負極の合剤塗料を調製した。   A nonaqueous electrolyte secondary battery B was produced in the same manner as in Example 1 except that VGCF was added as a structure holding member to the negative electrode active material layer. Specifically, 60 g of VGCF manufactured by Showa Denko KK was added to the negative electrode mixture paint of Example 1 to prepare the negative electrode mixture paint of Example 2.

正極の合剤層における構造保持部材としてVGCFの代わりに多結晶粒子が含まれたセラミックス粒子を用いること以外は実施例1と同様にして、非水電解質二次電池Cを作成した。具体的には、昭和電工(株)製のVGCF60gを添加させる代わりに実施例1の「(I)多結晶粒子を含むセラミックス粒子の調製」で作製したセラミックス粒子60gを添加させて、実施例3の正極の合剤塗料を調製した。   A nonaqueous electrolyte secondary battery C was produced in the same manner as in Example 1 except that ceramic particles containing polycrystalline particles were used instead of VGCF as the structure holding member in the positive electrode mixture layer. Specifically, instead of adding 60 g of VGCF manufactured by Showa Denko KK, 60 g of ceramic particles produced in “(I) Preparation of ceramic particles containing polycrystalline particles” in Example 1 were added, and Example 3 was added. A positive electrode mixture paint was prepared.

多孔質絶縁層の原料として、樹枝状の多結晶粒子の代わりに、平均粒子径が0.3μmである球状もしくはほぼ球状の一次粒子からなるアルミナ粒子を用いたこと以外は実施例1と同様にして、非水電解質二次電池Dを作製した。
(比較例1)
正極の合剤層に構造保持部材を設けないこと、および、多孔質絶縁層の代わりにポリエチレン樹脂製の微多孔膜(セパレータ)を用いたこと以外は実施例1と同様にして非水電解質二次電池Eを作製した。電池の作製方法を以下に示す。
〈e〉電池の作製
上述の正極、負極および非水電解液を用いて、以下の要領で品番18650の円筒型電池を作製した。
As the raw material for the porous insulating layer, the same procedure as in Example 1 was used, except that alumina particles made of spherical or nearly spherical primary particles having an average particle diameter of 0.3 μm were used instead of dendritic polycrystalline particles. Thus, a non-aqueous electrolyte secondary battery D was produced.
(Comparative Example 1)
The non-aqueous electrolyte 2 is the same as in Example 1 except that no structure holding member is provided in the positive electrode mixture layer and that a microporous film (separator) made of polyethylene resin is used instead of the porous insulating layer. A secondary battery E was produced. A method for manufacturing the battery is described below.
<E> Production of Battery A cylindrical battery having a product number of 18650 was produced in the following manner using the above-described positive electrode, negative electrode, and non-aqueous electrolyte.

まず、正極と負極とをそれぞれ所定の長さに切断した。そして、正極リードの接続部に正極リードの一端を接続させ、負極リードの接続部に負極リードの一端を接続した。   First, the positive electrode and the negative electrode were each cut to a predetermined length. Then, one end of the positive electrode lead was connected to the connection portion of the positive electrode lead, and one end of the negative electrode lead was connected to the connection portion of the negative electrode lead.

次に、厚み20μmのポリエチレン樹脂製の微多孔膜を介して正極と負極とを捲回し、円筒状の電極群を構成した。   Next, the positive electrode and the negative electrode were wound through a microporous film made of polyethylene resin having a thickness of 20 μm to form a cylindrical electrode group.

以下、実施例1と同様にして、非水電解質二次電池Eを作製した。
(比較例2)
負極の活物質層に構造保持部材としてVGCFを設けること以外は比較例1と同様にして非水電解質二次電池Fを作製した。すなわち、負極としては、実施例2の負極を用いた。
(比較例3)
正極の合剤層に構造保持部材としてVGCFを設けること以外は比較例1と同様にして非水電解質二次電池Gを作製した。すなわち、正極としては、実施例1の正極を用いた。(比較例4)
正極の合剤層に構造保持部材を設けないこと、すなわち正極に昭和電工(株)製のVGCF(構造保持部材)を設けないこと以外は、実施例1と同様にして非水電解質二次電池Hを作製した。すなわち、正極としては、比較例1の正極を用いた。
Thereafter, in the same manner as in Example 1, a nonaqueous electrolyte secondary battery E was produced.
(Comparative Example 2)
A nonaqueous electrolyte secondary battery F was produced in the same manner as in Comparative Example 1 except that VGCF was provided as a structure holding member on the active material layer of the negative electrode. That is, the negative electrode of Example 2 was used as the negative electrode.
(Comparative Example 3)
A nonaqueous electrolyte secondary battery G was produced in the same manner as in Comparative Example 1 except that VGCF was provided as a structure holding member in the positive electrode mixture layer. That is, the positive electrode of Example 1 was used as the positive electrode. (Comparative Example 4)
A non-aqueous electrolyte secondary battery in the same manner as in Example 1 except that no structure holding member is provided in the positive electrode mixture layer, that is, VGCF (structure holding member) manufactured by Showa Denko KK is not provided in the positive electrode. H was produced. That is, the positive electrode of Comparative Example 1 was used as the positive electrode.

負極の活物質として人造黒鉛の代わりにSiを用いたこと、多孔質絶縁層を負極の両面ではなく正極の両面に設けたこと、および、VCを添加することなく非水電解液を作製したこと以外は実施例1と同様にして、非水電解質二次電池Iを作製した。具体的には以下に示す方法に従って負極、多孔質絶縁層および電池を作製した。
〈b〉負極の作製
Siの単体インゴット(高純度化学製 純度が99.999%であり平均粒径が5〜35mmである)を、黒鉛るつぼの中に入れた。このるつぼを真空蒸着装置内に入れて、電解Cu箔(古河サーキットフォイル製、厚み;20μm、負極の集電体)に対して電子ビームによる真空蒸着(加速電圧;−8kV、電流;150mA、真空度;3x10-5Torr)を行った。電解Cu箔の片面に対してSiの蒸着が終了すると、電解Cu箔のもう一方の面(未蒸着面)に対しても同様に真空蒸着を行った。これにより、電解Cu箔の両面に負極の活物質層を形成した。その後、円筒型電池(品番18650)の電池缶に挿入可能な幅に極板をスリットし、負極のフープを得た。
〈c〉多孔質絶縁層の形成
グラビアロール法を用いて、0.5m/分の速度で、多孔質絶縁層の原料を含むスラリーを上記正極フープの両面に塗布した。その後、120℃の熱風を0.5m/秒の風量でスラリーに当てて乾燥させた。これにより、厚みが20μmである多孔質絶縁層を正極の両面にそれぞれ形成した。
(比較例5)
多孔性絶縁層の代わりにポリエチレン樹脂製の微多孔膜を用いたこと以外は実施例5と同様にして、非水電解質二次電池Jを作製した。具体的には、実施例1と同様にして正極を作製し、実施例5と同様にして負極を作製し、比較例1と同様にして電池を作製した。
Si was used instead of artificial graphite as the negative electrode active material, a porous insulating layer was provided on both sides of the positive electrode instead of both sides of the negative electrode, and a non-aqueous electrolyte was prepared without adding VC A nonaqueous electrolyte secondary battery I was produced in the same manner as Example 1 except for the above. Specifically, a negative electrode, a porous insulating layer, and a battery were produced according to the following method.
<B> Production of Negative Electrode A simple Si ingot (manufactured by High Purity Chemical Co., Ltd. has a purity of 99.999% and an average particle size of 5 to 35 mm) was placed in a graphite crucible. This crucible is put in a vacuum deposition apparatus, and vacuum deposition (acceleration voltage: −8 kV, current: 150 mA, vacuum) by an electron beam is applied to an electrolytic Cu foil (Furukawa Circuit Foil, thickness: 20 μm, negative electrode current collector). Degree; 3 × 10 −5 Torr). When the deposition of Si was completed on one side of the electrolytic Cu foil, vacuum deposition was similarly performed on the other side (non-deposited surface) of the electrolytic Cu foil. This formed the negative electrode active material layer on both surfaces of the electrolytic Cu foil. Thereafter, the electrode plate was slit to a width that could be inserted into a battery can of a cylindrical battery (Part No. 18650) to obtain a negative electrode hoop.
<C> Formation of Porous Insulating Layer A slurry containing the raw material for the porous insulating layer was applied to both surfaces of the positive electrode hoop using a gravure roll method at a speed of 0.5 m / min. Thereafter, hot air at 120 ° C. was applied to the slurry at an air flow rate of 0.5 m / sec and dried. As a result, porous insulating layers having a thickness of 20 μm were formed on both sides of the positive electrode.
(Comparative Example 5)
A nonaqueous electrolyte secondary battery J was produced in the same manner as in Example 5 except that a microporous film made of polyethylene resin was used instead of the porous insulating layer. Specifically, a positive electrode was produced in the same manner as in Example 1, a negative electrode was produced in the same manner as in Example 5, and a battery was produced in the same manner as in Comparative Example 1.

実施例2における多孔質絶縁層の代わりにポリエチレン樹脂製の微多孔膜内にアルミナ粒子を存在させた微多孔膜を用いること以外は実施例2と同様にして、非水電解質二次電池Kを作製した。ポリエチレン樹脂製の微多孔膜内にアルミナ粒子を存在させた微多孔膜については、特開2005−71979号公報に記載の方法を用いて作製した。電池の作製方法を以下に示す。
〈e〉電池の作製
上述の正極、負極および非水電解液を用いて、以下の要領で品番18650の円筒型電池を作製した。まず、正極と負極とをそれぞれ所定の長さに切断した。そして正極リードの接続部に正極リードの一端を接続させ、負極リードの接続部に負極リードの一端を接続した。次に、厚み20μmのポリエチレン樹脂製の微多孔膜内にセラミックス粒子を存在させた微多孔膜を介して正極と負極とを捲回し、円筒状の極板群を構成した。以下、実施例1と同様にして、非水電解質二次電池Kを作製した。
A nonaqueous electrolyte secondary battery K was prepared in the same manner as in Example 2 except that a microporous membrane having alumina particles present in a polyethylene resin microporous membrane was used instead of the porous insulating layer in Example 2. Produced. A microporous membrane in which alumina particles were present in a polyethylene resin microporous membrane was prepared using the method described in JP-A-2005-71979. A method for manufacturing the battery is described below.
<E> Production of Battery A cylindrical battery having a product number of 18650 was produced in the following manner using the above-described positive electrode, negative electrode, and non-aqueous electrolyte. First, the positive electrode and the negative electrode were each cut to a predetermined length. Then, one end of the positive electrode lead was connected to the connection portion of the positive electrode lead, and one end of the negative electrode lead was connected to the connection portion of the negative electrode lead. Next, the positive electrode and the negative electrode were wound through a microporous membrane in which ceramic particles were present in a microporous membrane made of polyethylene resin having a thickness of 20 μm to constitute a cylindrical electrode plate group. Thereafter, a nonaqueous electrolyte secondary battery K was produced in the same manner as in Example 1.

次に、実施例にかかる非水電解質二次電池A〜D,IおよびKと比較例にかかる非水電解質二次電池E〜HおよびJとを用いて、以下に示す方法に従ってサイクル数を測定した。   Next, using the nonaqueous electrolyte secondary batteries A to D, I and K according to the example and the nonaqueous electrolyte secondary batteries E to H and J according to the comparative example, the number of cycles is measured according to the following method. did.

各電池に対して2度の予備充放電を行い、充電状態で45℃環境下で7日間保存した。その後、20℃環境下で、次の充放電サイクルを行った。   Each battery was preliminarily charged / discharged twice and stored in a charged state in a 45 ° C. environment for 7 days. Then, the following charging / discharging cycle was performed in a 20 degreeC environment.

<サイクル条件>
1000mAの電流を流して電圧が4.2Vになるまで充電(定電流充電)させ、その後1分間放置した。続いて、1000mAの電流を流して電圧が3.0Vになるまで放電(定電流放電)させ、その後1分間放置した。
<Cycle conditions>
The battery was charged with a current of 1000 mA until the voltage reached 4.2 V (constant current charging), and then left for 1 minute. Subsequently, a current of 1000 mA was applied to discharge until the voltage reached 3.0 V (constant current discharge), and then left for 1 minute.

サイクル数の測定結果を表1に示す。なお、表1における「サイクル数」には、放電容量が初期の放電容量の80%を下回ったときのサイクル数を示している。   The measurement results of the cycle number are shown in Table 1. The “cycle number” in Table 1 indicates the cycle number when the discharge capacity falls below 80% of the initial discharge capacity.

Figure 2009043715
Figure 2009043715

非水電解質二次電池A〜HおよびKを考察すると、実施例にかかる非水電解質二次電池A〜DおよびKでは、比較例にかかる非水電解質二次電池E〜Hに比べてサイクル数が増加した。以下では、比較例にかかる非水電解質二次電池E〜Hについて考察し、その後、実施例にかかる非水電解質二次電池A〜DおよびKについて考察する。   Considering the nonaqueous electrolyte secondary batteries A to H and K, in the nonaqueous electrolyte secondary batteries A to D and K according to the example, the number of cycles is larger than that of the nonaqueous electrolyte secondary batteries E to H according to the comparative example. increased. Hereinafter, the nonaqueous electrolyte secondary batteries E to H according to the comparative example will be considered, and then the nonaqueous electrolyte secondary batteries A to D and K according to the examples will be considered.

比較例2の非水電解質二次電池Fでは、負極の活物質層内に構造保持部材が設けられているので、非水電解質二次電池E(比較例1)よりもサイクル数が多かった。しかし、その効果(サイクル数の増加率)は、実施例にかかる非水電解質二次電池A〜DおよびKに比べて小さかった。同様に、比較例3の非水電解質二次電池Gでは正極の合剤層内に構造保持部材が設けられており、比較例4の非水電解質二次電池Hでは多孔質絶縁層内に構造保持部材が設けられているので、非水電解質二次電池Eよりもサイクル数が多かった。しかし、その効果は、実施例にかかる非水電解質二次電池A〜DおよびKに比べて小さかった。その理由として、非水電解質二次電池を充放電させると、正極の活物質および多孔質絶縁層は膨張もしくは収縮しない、または、ほとんど膨張もしくは収縮しないが、負極の活物質は正極の活物質および多孔質絶縁層よりも大きく膨張もしくは収縮するからである、と考えている。   In the non-aqueous electrolyte secondary battery F of Comparative Example 2, the number of cycles was larger than that of the non-aqueous electrolyte secondary battery E (Comparative Example 1) because the structure holding member was provided in the active material layer of the negative electrode. However, the effect (the rate of increase in the number of cycles) was small compared to the nonaqueous electrolyte secondary batteries A to D and K according to the examples. Similarly, in the nonaqueous electrolyte secondary battery G of Comparative Example 3, a structure holding member is provided in the positive electrode mixture layer, and in the nonaqueous electrolyte secondary battery H of Comparative Example 4, the structure is provided in the porous insulating layer. Since the holding member was provided, the number of cycles was larger than that of the nonaqueous electrolyte secondary battery E. However, the effect was small compared with the non-aqueous electrolyte secondary batteries A to D and K according to the examples. The reason is that when the non-aqueous electrolyte secondary battery is charged and discharged, the positive electrode active material and the porous insulating layer do not expand or contract, or hardly expand or contract, but the negative electrode active material and the positive electrode active material and This is because it expands or contracts more than the porous insulating layer.

非水電解質二次電池E〜Hにおいてサイクル数が少なかった理由としては、以下に示す理由を考えている。   The reason why the number of cycles is small in the nonaqueous electrolyte secondary batteries E to H is considered as follows.

非水電解質二次電池Eにおいて負極の活物質が膨張すると、正極およびセパレータが圧縮されるので、正極およびセパレータ内に存在する空孔が潰れる。その結果、非水電解液が、空孔から押し出される。   When the active material of the negative electrode expands in the nonaqueous electrolyte secondary battery E, the positive electrode and the separator are compressed, so that the pores existing in the positive electrode and the separator are crushed. As a result, the non-aqueous electrolyte is pushed out from the holes.

非水電解質二次電池Fでは、構造保持部材が負極の活物質の膨張を抑制しているが、負極の活物質の膨張を十分に抑制することは難しい。そのため、負極の活物質が膨張すると正極およびセパレータが圧縮され、その結果、非水電解液が正極の合剤層およびセパレータから押し出される。   In the nonaqueous electrolyte secondary battery F, the structure holding member suppresses the expansion of the negative electrode active material, but it is difficult to sufficiently suppress the expansion of the negative electrode active material. Therefore, when the active material of the negative electrode expands, the positive electrode and the separator are compressed, and as a result, the nonaqueous electrolytic solution is pushed out from the mixture layer and the separator of the positive electrode.

非水電解質二次電池Gでは、構造保持部材が正極の合剤層に設けられているが、負極の活物質が膨張するとセパレータが圧縮されるので、非水電解液はセパレータから押し出される。   In the nonaqueous electrolyte secondary battery G, the structure holding member is provided in the positive electrode mixture layer, but when the active material of the negative electrode expands, the separator is compressed, so that the nonaqueous electrolyte is pushed out of the separator.

同様に、非水電解質二次電池Hでは、セパレータの代わりに多孔質絶縁層が設けられており、その多孔質絶縁層に構造保持部材が設けられている。しかし、構造保持部材は正極の合剤層には設けられていない。よって、負極の活物質が膨張すると正極が圧縮され、その結果、非水電解液が正極の合剤層から押し出される。   Similarly, in the nonaqueous electrolyte secondary battery H, a porous insulating layer is provided instead of the separator, and a structure holding member is provided in the porous insulating layer. However, the structure holding member is not provided in the positive electrode mixture layer. Therefore, when the active material of the negative electrode expands, the positive electrode is compressed, and as a result, the nonaqueous electrolytic solution is pushed out from the mixture layer of the positive electrode.

一方、実施例にかかる非水電解質二次電池A〜DおよびKでは、正極の合剤層および多孔質絶縁層の両方に構造保持部材が設けられている。よって、負極の活物質が膨張しようとしても、構造保持部材は、負極の活物質の膨張(特に、負極の活物質層の厚み方向における負極の活物質の膨張)を抑制する。そのため、正極の合剤層、多孔質絶縁層および負極の活物質層から非水電解液が押し出されることを抑制することができる。よって、サイクル数を増加させることができ、サイクル特性を向上させることができた。   On the other hand, in the nonaqueous electrolyte secondary batteries A to D and K according to the examples, the structure holding member is provided in both the positive electrode mixture layer and the porous insulating layer. Therefore, even if the active material of the negative electrode is about to expand, the structure holding member suppresses expansion of the active material of the negative electrode (particularly, expansion of the active material of the negative electrode in the thickness direction of the active material layer of the negative electrode). Therefore, it can suppress that a non-aqueous electrolyte is extruded from the mixture layer of a positive electrode, the porous insulating layer, and the active material layer of a negative electrode. Therefore, the number of cycles can be increased and the cycle characteristics can be improved.

また、実施例1の非水電解質二次電池Aと実施例4の非水電解質二次電池Dとを比較すると、構造保持部材としては、形状が樹枝状であるセラミックス粒子を用いる方が、形状が球状であるセラミックス粒子を用いるよりも、サイクル数が増加した。この理由としては、形状が樹枝状であるセラミックス粒子を用いる方が、形状が球状であるセラミックス粒子を用いるよりも、セラミックス粒子同士が絡み合い易いので、構造保持部材の強度を高めることができるからであると考えている。   Further, when comparing the non-aqueous electrolyte secondary battery A of Example 1 and the non-aqueous electrolyte secondary battery D of Example 4, it is preferable to use ceramic particles having a dendritic shape as the structure holding member. The number of cycles increased compared to using ceramic particles having a spherical shape. The reason for this is that the ceramic particles having a dendritic shape are more likely to be entangled with each other than the ceramic particles having a spherical shape, so that the strength of the structure holding member can be increased. I think there is.

次に、実施例5の非水電解質二次電池Iと比較例5の非水電解質二次電池Jとを比べると、非水電解質二次電池Iの方が非水電解質二次電池Jよりもサイクル数が増加した。負極の活物質として合金または金属酸化物を用いると、負極の活物質として炭素を用いた場合に比べて、容量を大きくすることができるが膨張率が高くなる。よって、非水電解質二次電池Jのように多孔質絶縁層の代わりにポリエチレン樹脂製のセパレータを用いると、サイクル数が大幅に減少する。一方、非水電解質二次電池Iでは、正極の合剤層および多孔質絶縁層の両方に構造保持部材が設けられているので、負極の活物質が膨張しても、構造保持部材が正極および多孔質絶縁層の圧縮を抑制する。よって、非水電解液が正極の合剤層、多孔質絶縁層および負極の活物質層から押し出されることを抑制でき、サイクル数が増加した。   Next, when comparing the non-aqueous electrolyte secondary battery I of Example 5 and the non-aqueous electrolyte secondary battery J of Comparative Example 5, the non-aqueous electrolyte secondary battery I is more than the non-aqueous electrolyte secondary battery J. The number of cycles has increased. When an alloy or a metal oxide is used as the active material for the negative electrode, the capacity can be increased, but the expansion coefficient is higher than when carbon is used as the active material for the negative electrode. Therefore, when a polyethylene resin separator is used instead of the porous insulating layer as in the non-aqueous electrolyte secondary battery J, the number of cycles is greatly reduced. On the other hand, in the nonaqueous electrolyte secondary battery I, since the structure holding member is provided in both the positive electrode mixture layer and the porous insulating layer, even if the negative electrode active material is expanded, the structure holding member is Suppresses compression of the porous insulating layer. Therefore, it was possible to suppress the non-aqueous electrolyte from being pushed out of the positive electrode mixture layer, the porous insulating layer, and the negative electrode active material layer, and the number of cycles was increased.

以上より、実施例1〜6にかかる構成を採用することにより、サイクル特性に優れた非水電解質二次電池を提供できた。   As mentioned above, the nonaqueous electrolyte secondary battery excellent in cycling characteristics was able to be provided by adopting the composition concerning Examples 1-6.

本発明は、ノートパソコンまたは携帯電話用などの小型民生用途、および電力貯蔵用や電気自動車、ハイブリッド電気自動車といった長期に渡る耐久性が要求される大型の用途に適用される。   The present invention is applied to small-sized consumer applications such as notebook computers or mobile phones, and large-scale applications that require long-term durability such as power storage, electric vehicles, and hybrid electric vehicles.

(a)〜(c)は、充電時に負極の活物質の膨張に伴い発生する圧縮力を模式的に示した図である。(a)には構造保持部材および抑制剤が設けられていない場合を示し、(b)には抑制剤のみが負極の活物質層に設けられている場合を示し、(c)には構造保持部材が正極の合剤層および多孔質絶縁層の両方に設けられている場合を示す。(A)-(c) is the figure which showed typically the compressive force which generate | occur | produces with the expansion of the active material of a negative electrode at the time of charge. (A) shows the case where the structure holding member and the inhibitor are not provided, (b) shows the case where only the inhibitor is provided in the active material layer of the negative electrode, and (c) shows the structure retention. The case where the member is provided in both the mixture layer and the porous insulating layer of the positive electrode is shown. 形状が樹枝状であるセラミックス粒子の走査型電子顕微鏡の写真である。It is a photograph of the scanning electron microscope of the ceramic particle whose shape is dendritic. 非水電解質二次電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of a nonaqueous electrolyte secondary battery.

符号の説明Explanation of symbols

1 正極板
2 負極板
3 多孔質絶縁層
4 極板群
5 正極リード
6 負極リード
7 有底ケース
8 封口板
8a フィルター
11 アウターガスケット
21 樹枝状のセラミックス多結晶粒子
A 負極の活物質
N 負極の活物質層(負極の層)
P 正極の合剤層
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Porous insulating layer 4 Electrode plate group 5 Positive electrode lead 6 Negative electrode lead 7 Bottomed case 8 Sealing plate 8a Filter 11 Outer gasket 21 Dendritic ceramic polycrystal particle A Active material N of negative electrode Active of negative electrode Material layer (negative electrode layer)
P Positive electrode mixture layer

Claims (8)

リチウムイオンを電気化学的に吸蔵および放出可能な活物質を含む合剤層を有する正極と、
リチウムイオンを電気化学的に吸蔵および放出可能な活物質を含む層を有する負極と、
前記正極と前記負極との間に配置された多孔質絶縁層と、
少なくとも前記多孔質絶縁層に保持された非水電解質とを備え、
前記正極の前記合剤層は、構造保持部材を含んでおり、
前記多孔質絶縁層は、前記構造保持部材を含んでいる、または、前記構造保持部材からなる、非水電解質二次電池。
A positive electrode having a mixture layer containing an active material capable of electrochemically occluding and releasing lithium ions;
A negative electrode having a layer containing an active material capable of electrochemically occluding and releasing lithium ions;
A porous insulating layer disposed between the positive electrode and the negative electrode;
A non-aqueous electrolyte held in at least the porous insulating layer,
The mixture layer of the positive electrode includes a structure holding member,
The porous insulating layer is a non-aqueous electrolyte secondary battery including the structure holding member or made of the structure holding member.
前記構造保持部材は、前記負極の前記活物質が前記負極の前記層の厚み方向に膨張することを抑制する、請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the structure holding member suppresses expansion of the active material of the negative electrode in a thickness direction of the layer of the negative electrode. 前記多孔質絶縁層内に存在する前記構造保持部材は、セラミックス粒子である、請求項1または2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the structure holding member present in the porous insulating layer is ceramic particles. 前記セラミックス粒子の形状は、樹枝状である、請求項3に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 3, wherein the ceramic particles have a dendritic shape. 前記正極の前記合剤層内に存在する前記構造保持部材は、形状が樹枝状のセラミックス粒子である、請求項1または2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the structure holding member present in the mixture layer of the positive electrode is a dendritic ceramic particle. 前記正極の前記合剤層内に存在する前記構造保持部材は、炭素繊維である、請求項1または2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the structure holding member present in the mixture layer of the positive electrode is a carbon fiber. 前記構造保持部材は、前記負極の前記層内にも含まれている、請求項1または2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the structure holding member is also included in the layer of the negative electrode. 前記負極の前記層内に存在する前記構造保持部材は、炭素繊維である、請求項7に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 7, wherein the structure holding member present in the layer of the negative electrode is a carbon fiber.
JP2008177608A 2007-07-18 2008-07-08 Nonaqueous electrolyte secondary battery Active JP4712837B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008177608A JP4712837B2 (en) 2007-07-18 2008-07-08 Nonaqueous electrolyte secondary battery
US12/175,878 US8999585B2 (en) 2007-07-18 2008-07-18 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007186589 2007-07-18
JP2007186589 2007-07-18
JP2008177608A JP4712837B2 (en) 2007-07-18 2008-07-08 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009043715A true JP2009043715A (en) 2009-02-26
JP4712837B2 JP4712837B2 (en) 2011-06-29

Family

ID=40444199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177608A Active JP4712837B2 (en) 2007-07-18 2008-07-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4712837B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232077A (en) * 2009-03-27 2010-10-14 Toyota Industries Corp Electrode for nonaqueous secondary battery and method for manufacturing the same
WO2011036797A1 (en) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method therefor
WO2011045848A1 (en) * 2009-10-13 2011-04-21 トヨタ自動車株式会社 Nonaqueous electrolyte lithium ion secondary battery
JP2017204364A (en) * 2016-05-10 2017-11-16 日産自動車株式会社 Method for manufacturing alkali metal-containing amorphous carbon active material, and method for manufacturing electrode by use thereof
US10700358B2 (en) 2017-11-08 2020-06-30 Samsung Sdi Co., Ltd. Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrode for non-aqueous rechargeable lithium battery
WO2021095293A1 (en) * 2019-11-13 2021-05-20 株式会社Gsユアサ Nonaqueous electrolyte electricity storage element
WO2023032499A1 (en) 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JPH10255842A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
JP2000243381A (en) * 1999-02-22 2000-09-08 Kao Corp Nonaqueous secondary battery
JP2001135317A (en) * 1999-10-29 2001-05-18 Toshiba Battery Co Ltd Nonaqueous electrolytic secondary battery
JP2002025531A (en) * 2000-07-07 2002-01-25 Ube Ind Ltd Separator for battery and lithium secondary battery using it
JP2003297431A (en) * 2002-04-04 2003-10-17 Sony Corp Battery
WO2005124899A1 (en) * 2004-06-22 2005-12-29 Matsushita Electric Industrial Co., Ltd. Secondary battery and method for producing same
JP2006172777A (en) * 2004-12-14 2006-06-29 Hitachi Maxell Ltd Lithium secondary battery
JP2007012496A (en) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2007042601A (en) * 2005-07-06 2007-02-15 Bridgestone Corp Carbon electrode, production method therefor and nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JPH10255842A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
JP2000243381A (en) * 1999-02-22 2000-09-08 Kao Corp Nonaqueous secondary battery
JP2001135317A (en) * 1999-10-29 2001-05-18 Toshiba Battery Co Ltd Nonaqueous electrolytic secondary battery
JP2002025531A (en) * 2000-07-07 2002-01-25 Ube Ind Ltd Separator for battery and lithium secondary battery using it
JP2003297431A (en) * 2002-04-04 2003-10-17 Sony Corp Battery
WO2005124899A1 (en) * 2004-06-22 2005-12-29 Matsushita Electric Industrial Co., Ltd. Secondary battery and method for producing same
JP2006172777A (en) * 2004-12-14 2006-06-29 Hitachi Maxell Ltd Lithium secondary battery
JP2007012496A (en) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2007042601A (en) * 2005-07-06 2007-02-15 Bridgestone Corp Carbon electrode, production method therefor and nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232077A (en) * 2009-03-27 2010-10-14 Toyota Industries Corp Electrode for nonaqueous secondary battery and method for manufacturing the same
WO2011036797A1 (en) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method therefor
CN102549813A (en) * 2009-09-28 2012-07-04 丰田自动车株式会社 Lithium secondary battery and manufacturing method therefor
WO2011045848A1 (en) * 2009-10-13 2011-04-21 トヨタ自動車株式会社 Nonaqueous electrolyte lithium ion secondary battery
JP5392585B2 (en) * 2009-10-13 2014-01-22 トヨタ自動車株式会社 Non-aqueous electrolyte type lithium ion secondary battery
KR101368124B1 (en) * 2009-10-13 2014-02-27 도요타지도샤가부시키가이샤 Nonaqueous electrolyte lithium ion secondary battery
US9184446B2 (en) 2009-10-13 2015-11-10 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte lithium ion secondary battery
JP2017204364A (en) * 2016-05-10 2017-11-16 日産自動車株式会社 Method for manufacturing alkali metal-containing amorphous carbon active material, and method for manufacturing electrode by use thereof
US10700358B2 (en) 2017-11-08 2020-06-30 Samsung Sdi Co., Ltd. Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrode for non-aqueous rechargeable lithium battery
WO2021095293A1 (en) * 2019-11-13 2021-05-20 株式会社Gsユアサ Nonaqueous electrolyte electricity storage element
WO2023032499A1 (en) 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4712837B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
US8999585B2 (en) Nonaqueous electrolyte secondary battery
JP5162825B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6321539B2 (en) Structured particles
JP5904125B2 (en) Method for producing electrode for electrochemical device and electrochemical device
US8771859B2 (en) Separator for battery and nonaqueous electrolyte battery using same
JP4135074B2 (en) Negative electrode manufacturing method and battery manufacturing method
EP1657767A1 (en) Secondary battery and method for producing same
JP2007179864A (en) Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP4712837B2 (en) Nonaqueous electrolyte secondary battery
US20130157106A1 (en) Lithium metal powder-carbon powder composite anode for lithium secondary battery and lithium metal secondary battery comprising the same
JP2002203552A (en) Non-aqueous electrolyte battery
CN113474913A (en) Electrochemical device, electronic device, and method for manufacturing electrochemical device
CN111386616B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
US20240088366A1 (en) Negative electrode and secondary battery including the same
KR101739654B1 (en) Negative active material for lithium secondary battery and method of preparing same
US20240047692A1 (en) Secondary battery and method for manufacturing the same
WO2018180372A1 (en) Secondary battery and manufacturing method thereof
CN113644232A (en) Negative pole piece, electrochemical device comprising same and electronic device
US20220367855A1 (en) Composite negative electrode active material, method of preparing the same, negative electrode and secondary battery comprising the same
JP2009146581A (en) Sheet-shaped negative electrode for lithium ion secondary battery, and manufacturing method thereof
WO2014007035A1 (en) Negative electrode material, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material
CN114342148A (en) Method for manufacturing secondary battery
JP2015195167A (en) Negative electrode for nonaqueous secondary batteries, nonaqueous secondary battery, nonaqueous secondary battery system, and method for manufacturing nonaqueous secondary battery
JP2011070802A (en) Nonaqueous electrolyte secondary battery
WO2017204077A1 (en) Electrode for batteries, battery provided with said electrode, and method for producing said electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R150 Certificate of patent or registration of utility model

Ref document number: 4712837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150