JP2009041874A - Evaporative cooling device - Google Patents

Evaporative cooling device Download PDF

Info

Publication number
JP2009041874A
JP2009041874A JP2007209329A JP2007209329A JP2009041874A JP 2009041874 A JP2009041874 A JP 2009041874A JP 2007209329 A JP2007209329 A JP 2007209329A JP 2007209329 A JP2007209329 A JP 2007209329A JP 2009041874 A JP2009041874 A JP 2009041874A
Authority
JP
Japan
Prior art keywords
cooling fluid
cooling
ejectors
cooled
jacket portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209329A
Other languages
Japanese (ja)
Inventor
Nobuhide Hara
伸英 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2007209329A priority Critical patent/JP2009041874A/en
Publication of JP2009041874A publication Critical patent/JP2009041874A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporative cooling device capable of uniformly and efficiently performing evaporative cooling of an entire cooled object. <P>SOLUTION: A cooling fluid injection nozzle 16 is disposed on an outer periphery of a jacket portion 2 of a reaction pot 1, and connected with a branch pipe 15. A cooling fluid accumulating portion 3 is formed on a bottom portion of the jacket portion 2. A circulation pump 10 and a plurality of ejectors 11 are connected through pipe conduits 9 at a lower face of the cooling fluid accumulating portion 3. The jacket portion 2 is communicated with outlet sides of the plurality of ejectors 11 through the pipe conduits 14. Suction ports 13 of the ejectors 11 are directly connected with the jacket portion 2. In a case of cooling the reaction pot 1, the cooling fluid is injected from the cooling fluid injection nozzle 16 into the jacket portion 2, thus the cooling fluid of a prescribed temperature is supplied to the entire reaction pot 1, and the reaction pot 1 can be evenly evaporatively cooled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、気化冷却室で冷却流体の蒸発潜熱によって被冷却物を冷却する気化冷却装置に関する。   The present invention relates to a vaporization cooling apparatus that cools an object to be cooled by the latent heat of vaporization of a cooling fluid in a vaporization cooling chamber.

気化冷却装置は、気化冷却室内に複数の冷却流体噴射口を有する冷却流体管路を設けて、この冷却流体噴射口から被冷却物に冷却流体を噴射すると共に、気化冷却室を吸引手段と接続したもので、被冷却物の全体に且つ均一に冷却流体を供給することにより、被冷却物の全体をムラなく冷却することができるものである。   The evaporative cooling device is provided with a cooling fluid conduit having a plurality of cooling fluid injection ports in the evaporative cooling chamber, injecting the cooling fluid from the cooling fluid injection port to the object to be cooled, and connecting the evaporative cooling chamber to the suction means. Thus, by supplying the cooling fluid uniformly and uniformly to the entire object to be cooled, the entire object to be cooled can be cooled evenly.

この気化冷却装置においては、気化冷却を行う初期段階に、冷却流体供給管内の冷却流体の温度を精度良く所定値に維持することができないために、被冷却物の全体を均一に且つ効率良く気化冷却することができない問題があった。供給する冷却流体の温度が所定値よりも低い場合は、冷却流体が蒸発気化するまでに時間を要して時間遅れを生じてしまい、一方、冷却流体の温度が所定値よりも高い場合は十分な冷却が行えないためである。
特開2006−258316号公報
In this evaporative cooling device, since the temperature of the cooling fluid in the cooling fluid supply pipe cannot be accurately maintained at a predetermined value in the initial stage of evaporative cooling, the entire object to be cooled is vaporized uniformly and efficiently. There was a problem that could not be cooled. If the temperature of the cooling fluid to be supplied is lower than the predetermined value, it takes time until the cooling fluid evaporates, causing a time delay. On the other hand, it is sufficient if the temperature of the cooling fluid is higher than the predetermined value. This is because proper cooling cannot be performed.
JP 2006-258316 A

解決しようとする課題は、被冷却物の全体を均一に且つ効率良く気化冷却することのできる気化冷却装置を提供することである。   The problem to be solved is to provide an evaporative cooling apparatus that can uniformly and efficiently evaporate and cool the entire object to be cooled.

本発明は、被冷却物を冷却する気化冷却室を形成して、当該気化冷却室に冷却流体を供給すると共に、気化冷却室を吸引手段と接続して被冷却物を気化冷却するものにおいて、気化冷却室内に所定量の冷却流体を溜め置く冷却流体溜部を形成して、当該冷却流体溜部に循環ポンプと複数のエゼクタを順次に接続し、当該複数のエゼクタの吸込口を気化冷却室と最短距離で接続すると共に、複数のエゼクタの出口側も気化冷却室と接続したものである。   The present invention forms a vaporization cooling chamber for cooling an object to be cooled, supplies a cooling fluid to the vaporization cooling chamber, and vaporizes and cools the object to be cooled by connecting the vaporization cooling chamber to suction means. A cooling fluid reservoir for storing a predetermined amount of cooling fluid in the evaporative cooling chamber is formed, and a circulation pump and a plurality of ejectors are sequentially connected to the cooling fluid reservoir, and the suction ports of the plurality of ejectors are connected to the evaporative cooling chamber. And the outlet side of the plurality of ejectors are also connected to the evaporative cooling chamber.

本発明の気化冷却装置は、冷却流体溜部に循環ポンプと複数のエゼクタを順次に接続して、この複数のエゼクタの吸込口を気化冷却室と最短距離で接続すると共に、複数のエゼクタの出口側も気化冷却室と接続したことによって、複数のエゼクタの吸込口で発生する真空吸引力で気化冷却室を所望の減圧状態に維持することができると共に、冷却流体溜部の所定温度の冷却流体を循環ポンプを介して気化冷却室へ供給することによって、被冷却物の全体をムラなく気化冷却することができる。   In the evaporative cooling device of the present invention, a circulation pump and a plurality of ejectors are sequentially connected to the cooling fluid reservoir, and the suction ports of the plurality of ejectors are connected to the evaporative cooling chamber at the shortest distance, and the outlets of the plurality of ejectors Since the side is also connected to the evaporative cooling chamber, the evaporative cooling chamber can be maintained in a desired reduced pressure state by the vacuum suction force generated at the suction ports of the plurality of ejectors, and the cooling fluid at a predetermined temperature in the cooling fluid reservoir Is supplied to the evaporative cooling chamber via the circulation pump, so that the entire object to be cooled can be evaporatively cooled without unevenness.

本発明は、気化冷却室に所定量の冷却流体を溜め置く冷却流体溜部を形成するものであるが、冷却流体溜部としては、気化冷却室の底部の一部を共用することができる。   The present invention forms a cooling fluid reservoir for storing a predetermined amount of cooling fluid in the evaporative cooling chamber, but a part of the bottom of the evaporative cooling chamber can be shared as the cooling fluid reservoir.

本実施例においては、気化冷却室として反応釜1のジャケット部2を用いた例を示す。反応釜1の内部に入れた図示しない被冷却物を、ジャケット部2に供給する冷却源としての冷却流体によって冷却するものである。   In the present embodiment, an example in which the jacket portion 2 of the reaction kettle 1 is used as a vaporization cooling chamber is shown. An object to be cooled (not shown) placed inside the reaction kettle 1 is cooled by a cooling fluid as a cooling source supplied to the jacket portion 2.

反応釜1の上面を除くほぼ全周にわたりジャケット部2を形成して、このジャケット部2の底部を冷却流体溜部3とする。本実施例においては、冷却流体溜部3の流体中に蒸気管5を挿入する。蒸気管5の入口側には、供給蒸気量を制御するための制御弁6を取り付けると共に、蒸気管5の出口側には、蒸気の凝縮した復水だけを系外へ自動的に排出する蒸気トラップ7を取り付ける。蒸気管5から供給される蒸気によって冷却流体3が加熱されて蒸発して、ジャケット部2内に充満することにより反応釜1を蒸気加熱することもできるものである。   A jacket portion 2 is formed over substantially the entire circumference except for the upper surface of the reaction kettle 1, and the bottom of the jacket portion 2 is used as a cooling fluid reservoir 3. In the present embodiment, the steam pipe 5 is inserted into the fluid of the cooling fluid reservoir 3. A control valve 6 for controlling the amount of supplied steam is attached to the inlet side of the steam pipe 5, and steam that automatically discharges only condensate condensed with steam is discharged to the outlet side of the steam pipe 5. A trap 7 is attached. The cooling fluid 3 is heated and evaporated by the steam supplied from the steam pipe 5, and the reaction vessel 1 can be steam-heated by filling the jacket portion 2.

冷却流体溜部3の下端面に管路9を介して循環ポンプ10とエゼクタ11を順次に接続する。エゼクタ11の吸引口13を直接にジャケット部2内と接続することによって、最短距離で接続する。エゼクタ11の出口側は、管路14によってジャケット部2の上部と連通する。なお、図1においては、エゼクタ11を1台だけ図示したが、実際には複数台のエゼクタを取り付ける。 A circulation pump 10 and an ejector 11 are sequentially connected to the lower end surface of the cooling fluid reservoir 3 via a conduit 9. By connecting the suction port 13 of the ejector 11 directly to the inside of the jacket portion 2, the connection is made at the shortest distance. The outlet side of the ejector 11 communicates with the upper portion of the jacket portion 2 through a conduit 14. Although only one ejector 11 is illustrated in FIG. 1, a plurality of ejectors are actually attached.

循環ポンプ10の吐出側管路を分岐した分岐管15を配置して、その上端をジャケット部2の全周に取り付けた冷却流体噴射ノズル16と接続する。分岐管15には、供給する冷却流体量を制御するための制御弁17を取り付ける。また、管路9には、冷却流体を補給するための冷却流体補給管18を接続する。この冷却流体補給管18にも、供給する冷却流体量を制御するための制御弁23を取り付ける。   A branch pipe 15 branched from the discharge side pipe of the circulation pump 10 is arranged, and an upper end thereof is connected to a cooling fluid injection nozzle 16 attached to the entire circumference of the jacket portion 2. A control valve 17 for controlling the amount of cooling fluid to be supplied is attached to the branch pipe 15. Further, a cooling fluid supply pipe 18 for supplying a cooling fluid is connected to the pipe line 9. A control valve 23 for controlling the amount of cooling fluid to be supplied is also attached to the cooling fluid supply pipe 18.

冷却流体溜部3の下端には、溜まっている冷却流体の温度を検出する温度センサ19を取り付けると共に、余剰流体排出管20を接続する。余剰流体排出管20には開閉弁21を取り付ける。また、ジャケット部2の上部には、ジャケット部2内の圧力を検出する圧力センサ22を取り付ける。それぞれのセンサ19,22は、図示しないコントローラを介して、制御弁6,17,23と電気的に接続する。   A temperature sensor 19 for detecting the temperature of the accumulated cooling fluid is attached to the lower end of the cooling fluid reservoir 3 and an excess fluid discharge pipe 20 is connected thereto. An open / close valve 21 is attached to the surplus fluid discharge pipe 20. A pressure sensor 22 that detects the pressure in the jacket portion 2 is attached to the upper portion of the jacket portion 2. Each of the sensors 19 and 22 is electrically connected to the control valves 6, 17 and 23 via a controller (not shown).

反応釜1内の被冷却物を冷却する場合は、循環ポンプ10を駆動して分岐管15と冷却流体噴射ノズル16から反応釜1の外表面へ冷却流体を噴射すると共に、エゼクタ11で発生する吸引力でもってジャケット部2内を所定の圧力状態、例えば大気圧以下の真空状態、に維持することによって、供給される冷却流体が反応釜1の熱を奪って蒸発気化して、反応釜1を気化冷却する。   When the object to be cooled in the reaction vessel 1 is cooled, the circulating pump 10 is driven to inject the cooling fluid from the branch pipe 15 and the cooling fluid injection nozzle 16 to the outer surface of the reaction vessel 1 and is generated in the ejector 11. By maintaining the inside of the jacket portion 2 with a suction force in a predetermined pressure state, for example, a vacuum state equal to or lower than the atmospheric pressure, the supplied cooling fluid takes the heat of the reaction kettle 1 and evaporates and evaporates. Evaporate to cool.

ジャケット部2内で蒸発した気化蒸気は、冷却流体噴射ノズル16から供給される冷却流体により、あるいは、エゼクタ11を通り管路14から供給される冷却流体により、凝縮されて冷却流体溜部3へ滴下し、再度循環ポンプ10に至る。なお、冷却流体溜部3の冷却流体温度は、冷却流体補給管18からの補給量を適宜制御することにより、あるいは、蒸気管5からの加熱度合を適宜制御することにより、任意にコントロールすることができる。 The vaporized vapor evaporated in the jacket portion 2 is condensed by the cooling fluid supplied from the cooling fluid injection nozzle 16 or the cooling fluid supplied from the conduit 14 through the ejector 11 to the cooling fluid reservoir 3. Dripping and reaching the circulation pump 10 again. The cooling fluid temperature in the cooling fluid reservoir 3 is arbitrarily controlled by appropriately controlling the replenishment amount from the cooling fluid replenishment pipe 18 or by appropriately controlling the heating degree from the steam pipe 5. Can do.

このように反応釜1を冷却する場合に、ジャケット部2内へ任意の温度の冷却流体を供給することによって、反応釜1の全体を均一に気化冷却することができる。また、ジャケット部2内で発生した気化蒸気の一部を噴射する冷却流体の一部で冷却して凝縮することによって、ジャケット部2内での気化蒸気の対流が促進され、反応釜1内の被冷却物の冷却効率を向上させることができる。 When the reaction kettle 1 is thus cooled, the entire reaction kettle 1 can be uniformly vaporized and cooled by supplying a cooling fluid having an arbitrary temperature into the jacket portion 2. Further, by cooling and condensing with a part of the cooling fluid for injecting a part of the vaporized steam generated in the jacket part 2, convection of the vaporized steam in the jacket part 2 is promoted, The cooling efficiency of the object to be cooled can be improved.

本発明の気化冷却装置の実施例を示す構成図。The block diagram which shows the Example of the vaporization cooling device of this invention.

符号の説明Explanation of symbols

1 反応釜
2 ジャケット部
3 冷却流体溜部
5 蒸気管
9 管路
10 循環ポンプ
11 エゼクタ
15 分岐管
16 冷却流体噴射ノズル
18 冷却流体補給管
19 温度センサ
22 圧力センサ
DESCRIPTION OF SYMBOLS 1 Reaction kettle 2 Jacket part 3 Cooling fluid storage part 5 Steam pipe 9 Pipe line 10 Circulation pump 11 Ejector 15 Branch pipe 16 Cooling fluid injection nozzle 18 Cooling fluid supply pipe 19 Temperature sensor 22 Pressure sensor

Claims (1)

被冷却物を冷却する気化冷却室を形成して、当該気化冷却室に冷却流体を供給すると共に、気化冷却室を吸引手段と接続して被冷却物を気化冷却するものにおいて、気化冷却室内に所定量の冷却流体を溜め置く冷却流体溜部を形成して、当該冷却流体溜部に循環ポンプと複数のエゼクタを順次に接続し、当該複数のエゼクタの吸込口を気化冷却室と最短距離で接続すると共に、複数のエゼクタの出口側も気化冷却室と接続したことを特徴とする気化冷却装置。
A vaporization cooling chamber for cooling an object to be cooled is formed, and a cooling fluid is supplied to the vaporization cooling chamber, and the vaporization cooling chamber is connected to a suction means to evaporate and cool the object to be cooled. A cooling fluid reservoir for storing a predetermined amount of cooling fluid is formed, and a circulation pump and a plurality of ejectors are sequentially connected to the cooling fluid reservoir, and the suction ports of the plurality of ejectors are located at the shortest distance from the vaporization cooling chamber. An evaporative cooling device characterized in that the outlet side of a plurality of ejectors is connected to an evaporative cooling chamber while being connected.
JP2007209329A 2007-08-10 2007-08-10 Evaporative cooling device Pending JP2009041874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209329A JP2009041874A (en) 2007-08-10 2007-08-10 Evaporative cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209329A JP2009041874A (en) 2007-08-10 2007-08-10 Evaporative cooling device

Publications (1)

Publication Number Publication Date
JP2009041874A true JP2009041874A (en) 2009-02-26

Family

ID=40442793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209329A Pending JP2009041874A (en) 2007-08-10 2007-08-10 Evaporative cooling device

Country Status (1)

Country Link
JP (1) JP2009041874A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338241A (en) * 1991-05-15 1992-11-25 Tlv Co Ltd Heating/cooling device
JPH05322401A (en) * 1991-05-15 1993-12-07 Tlv Co Ltd Pressure reducing vaporization cooling device
JPH09250706A (en) * 1996-03-15 1997-09-22 Tlv Co Ltd Heating-cooling device
JP2004147888A (en) * 2002-10-31 2004-05-27 Miura Co Ltd Sterilizer
JP2005257225A (en) * 2004-03-15 2005-09-22 Tlv Co Ltd Closed type heat exchanger
JP2006010301A (en) * 2004-05-25 2006-01-12 Jfe Engineering Kk Cold generating system, and cold generating method
JP2006258316A (en) * 2005-03-15 2006-09-28 Tlv Co Ltd Heating/cooling device
JP2006258317A (en) * 2005-03-15 2006-09-28 Tlv Co Ltd Evaporative cooling device
JP2008096058A (en) * 2006-10-13 2008-04-24 Tlv Co Ltd Evaporative cooling device
JP2008096059A (en) * 2006-10-13 2008-04-24 Tlv Co Ltd Decompression steam heating device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338241A (en) * 1991-05-15 1992-11-25 Tlv Co Ltd Heating/cooling device
JPH05322401A (en) * 1991-05-15 1993-12-07 Tlv Co Ltd Pressure reducing vaporization cooling device
JPH09250706A (en) * 1996-03-15 1997-09-22 Tlv Co Ltd Heating-cooling device
JP2004147888A (en) * 2002-10-31 2004-05-27 Miura Co Ltd Sterilizer
JP2005257225A (en) * 2004-03-15 2005-09-22 Tlv Co Ltd Closed type heat exchanger
JP2006010301A (en) * 2004-05-25 2006-01-12 Jfe Engineering Kk Cold generating system, and cold generating method
JP2006258316A (en) * 2005-03-15 2006-09-28 Tlv Co Ltd Heating/cooling device
JP2006258317A (en) * 2005-03-15 2006-09-28 Tlv Co Ltd Evaporative cooling device
JP2008096058A (en) * 2006-10-13 2008-04-24 Tlv Co Ltd Evaporative cooling device
JP2008096059A (en) * 2006-10-13 2008-04-24 Tlv Co Ltd Decompression steam heating device

Similar Documents

Publication Publication Date Title
JP2006258316A (en) Heating/cooling device
JP2006258317A (en) Evaporative cooling device
JP4954660B2 (en) Evaporative cooling device
JP2007330896A (en) Heating and cooling device
JP4949965B2 (en) Evaporative cooling device
JP2008122041A (en) Heating/cooling device
JP2009041874A (en) Evaporative cooling device
JP2009300014A (en) Evaporative cooling device
JP2008096060A (en) Heating/cooling device
JP4828369B2 (en) Vacuum steam heater
JP2006329513A (en) Evaporative cooling device
JP2006349248A (en) Heating/cooling apparatus
JP4964655B2 (en) Evaporative cooling device
JP2006349253A (en) Evaporative cooling device
JP2008151381A (en) Evaporative cooling system
JP2008224175A (en) Heating and cooling device
JP2006258315A (en) Evaporative cooling device
JP2006308185A (en) Evaporative cooling device
JP5813355B2 (en) Vacuum steam thawing device
JP2006329514A (en) Evaporative cooling device
JP2008096061A (en) Evaporative cooling apparatus
JP2008122040A (en) Evaporative cooling device
JP2006329517A (en) Evaporative cooling device
JP4964656B2 (en) Evaporative cooling device
JP2008196814A (en) Evaporative cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

A977 Report on retrieval

Effective date: 20111128

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403