JP2009041706A - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
JP2009041706A
JP2009041706A JP2007209346A JP2007209346A JP2009041706A JP 2009041706 A JP2009041706 A JP 2009041706A JP 2007209346 A JP2007209346 A JP 2007209346A JP 2007209346 A JP2007209346 A JP 2007209346A JP 2009041706 A JP2009041706 A JP 2009041706A
Authority
JP
Japan
Prior art keywords
pressure
reservoir
passage
valve
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007209346A
Other languages
Japanese (ja)
Other versions
JP4787802B2 (en
Inventor
Daisuke Ishii
大輔 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2007209346A priority Critical patent/JP4787802B2/en
Publication of JP2009041706A publication Critical patent/JP2009041706A/en
Application granted granted Critical
Publication of JP4787802B2 publication Critical patent/JP4787802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock absorber for developing damping force as required without increasing the size and weight, while varying the damping force. <P>SOLUTION: The shock absorber comprises a reservoir R, an elongation side passage 4 connecting an elongation side chamber R1 with the reservoir R, an elongation side damping valve 5 provided on the way of the elongation side passage 4 for giving resistance to the flow of fluid from the elongation side chamber R1 to the reservoir R, an elongation pressure passage 6 connecting the elongation side chamber R1 with a pressure side chamber R2, a pressure reservoir passage 7 connecting the pressure side chamber R2 with the reservoir R, a pressure side damping valve 8 provided on the way of the elongation pressure passage 6 for giving resistance to the flow of fluid from the pressure side chamber R2 to the elongation side chamber R1, and a reservoir side damping valve 9 provided on the way of the pressure reservoir passage 7 for giving resistance to the flow of fluid from the pressure side chamber R2 to the reservoir R. Elongation side sub damping circuits 10a, 10b and pressure side sub damping circuits 11a, 11b are each provided in at least a pair. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、緩衝器の改良に関する。   The present invention relates to an improved shock absorber.

この種緩衝器は、たとえば、自動車や鉄道車両、建築物等に組み込まれて、制振対象における振動を減衰するものである。ここで、制振対象が鉄道車両の車体や建築物等であるような場合、制振対象の振動の方向によらず、振動速度が同じであれば等しい減衰力を発揮するとともに減衰力を可変とする緩衝器を要望されることがある。   This kind of shock absorber is incorporated in, for example, an automobile, a railway vehicle, a building, etc., and attenuates vibrations in a vibration control target. Here, when the vibration control target is the body of a railway vehicle, a building, etc., regardless of the direction of vibration of the vibration control target, if the vibration speed is the same, the same damping force is exhibited and the damping force is variable. May be desired.

このような要求を満足させる場合、たとえば、緩衝器を両ロッド型として、伸長時と収縮時において各圧力室を行き交う流体の流量を等しくすることが考えられるが、両ロッド型の緩衝器では伸長時でも収縮時でもロッドがシリンダから突出するよう動作するので、緩衝器の取付長が長くなる不利がある。   In order to satisfy these requirements, for example, it is conceivable that the shock absorber is a double rod type, and the flow rate of the fluid passing through each pressure chamber is equal during expansion and contraction. Since the rod moves so as to protrude from the cylinder both at the time and at the time of contraction, there is a disadvantage that the mounting length of the shock absorber becomes long.

そこで、緩衝器を片ロッド型とするとともに流体の流れを一方向流れとするユニフロー型に設定する提案がある。このユニフロー型の緩衝器にあっては、流体の流れを圧側室から伸側室へ向かう一方通行とするとともに、ピストン断面積とピストンに接続されるロッドの断面積を2:1の関係に設定することで、伸長でも収縮でもストローク量が同じであればシリンダ外へ流出する流量が一定となるようにしている。そして、この流出した流体の流れに複数の減衰弁を選択的に通過させるように構成すれば、ユニフロー型の緩衝器では、伸縮時において振動速度が同じであれば等しい減衰力を発揮するとともに減衰力を可変とすることができる(たとえば、特許文献1参照)。
特開平9−183368号公報(図2)
Therefore, there is a proposal to set the shock absorber to a single rod type and to a uniflow type in which the fluid flows in one direction. In this uniflow-type shock absorber, the flow of the fluid is one-way from the compression side chamber to the extension side chamber, and the cross-sectional area of the piston and the cross-sectional area of the rod connected to the piston are set in a 2: 1 relationship. Thus, the flow rate flowing out of the cylinder is constant if the stroke amount is the same for both expansion and contraction. If the plurality of damping valves are selectively allowed to pass through the flow of the fluid that flows out, the uniflow type shock absorber exhibits the same damping force as long as the vibration speed is the same during expansion and contraction and is damped. The force can be made variable (see, for example, Patent Document 1).
JP-A-9-183368 (FIG. 2)

このユニフロー型の緩衝器では、上述のように、原理的には、伸長作動しても収縮作動しても、振動速度が同じであれば発生減衰力が同じとなるのであるが、ところが、実際には流体には圧縮性があるため、伸縮の両方で同じ減衰力を発生できない。   In this uniflow-type shock absorber, as described above, in principle, the generated damping force is the same if the vibration speed is the same regardless of the expansion operation or the contraction operation. Since the fluid has compressibility, the same damping force cannot be generated by both expansion and contraction.

詳しく説明すると、ユニフロー型の緩衝器では、伸長時には伸側室内の流体のみが圧縮されるが、収縮時には伸側室内のみならず圧側室内の流体も圧縮されることになり、伸長作動と収縮作動では、圧縮される流体量が異なり伸長側と収縮側で減衰力が異なってしまうことになり、狙い通りの減衰力を発揮させ難い。詳しくは、ピストン断面積とロッドの断面積の比が2:1であるので、ピストンが中立位置から作動する場合、収縮時の圧縮流体量は伸長時の圧縮流体量の約三倍となることからも、伸長側と収縮側で減衰力が異なることを理解できよう。   More specifically, in the uniflow type shock absorber, only the fluid in the expansion side chamber is compressed during expansion, but not only the expansion side chamber but also the fluid in the compression side chamber is compressed during contraction. Then, the amount of fluid to be compressed is different, and the damping force is different between the expansion side and the contraction side, and it is difficult to exert the damping force as intended. Specifically, since the ratio of the cross-sectional area of the piston to the cross-sectional area of the rod is 2: 1, when the piston operates from the neutral position, the amount of compressed fluid when contracted should be about three times the amount of compressed fluid when extended. From this, it can be understood that the damping force is different between the expansion side and the contraction side.

特に、ストローク長が長い緩衝器では、シリンダ長も長く流体量も多いためにこの傾向が顕著に現れることになる。なお、流体に作動油を用いる場合でも、作動油中には気体が混入され、これを除去することが難しく、圧縮性を持っているため、同様の傾向を示すことになる。   In particular, in a shock absorber with a long stroke length, this tendency appears remarkably because the cylinder length is long and the amount of fluid is large. Even when hydraulic oil is used as the fluid, gas is mixed in the hydraulic oil, and it is difficult to remove the hydraulic oil.

さらに、ユニフロー型の緩衝器の場合、上述のように、ピストン断面積とロッド断面積を2:1の関係に設定しておかねばならず、設計自由度が低く、また、ピストン径あるいはロッド径が強度上無駄に大径となって緩衝器の大型化を招くとともに重量増を招くことになり、またさらには、伸縮で異なる減衰力を発揮させたい場合には、伸縮の方向によって減衰弁を選択する必要があり、減衰弁の選択に制御装置が必要となって装置がさらに大型化してしまう。   Furthermore, in the case of a uniflow type shock absorber, as described above, the piston cross-sectional area and the rod cross-sectional area must be set to a 2: 1 relationship, and the design freedom is low. However, if it is desired to exert different damping force due to expansion and contraction, a damping valve is used depending on the direction of expansion and contraction. It is necessary to make a selection, and a control device is required to select the damping valve, which further increases the size of the device.

そこで、本発明は上記不具合を改善するために創案されたものであって、その目的とするところは、大型化や重量増加を招かず、狙い通りの減衰力を発揮することが可能であるとともに減衰力を可変とすることができる緩衝器を提供することである。   Therefore, the present invention was devised in order to improve the above-mentioned problems, and the object of the present invention is to bring about a damping force as intended without causing an increase in size and weight. To provide a shock absorber capable of making the damping force variable.

上記した目的を達成するため、本発明の課題解決手段における緩衝器は、シリンダと、シリンダ内に摺動自在に挿入されるとともにシリンダ内を伸側室と圧側室とに区画するピストンと、シリンダ内に移動自在に挿入されるともに一端がピストンに連結されるロッドと、リザーバと、伸側室とリザーバ或いは圧側室とを連通する伸側通路と伸側通路の途中に設けられて伸側室からリザーバ或いは圧側室へ向かう流体の流れに抵抗を与える伸側減衰弁と、伸側室と圧側室とを連通する伸圧通路と、圧側室とリザーバとを連通する圧リザーバ通路と、伸圧通路の途中に設けられて圧側室から伸側室へ向かう流体の流れに抵抗を与える圧側減衰弁と、圧リザーバ通路の途中に設けられて圧側室からリザーバへ向かう流体の流れに抵抗を与えるリザーバ側減衰弁と、を備えた緩衝器であって、対をなす伸側副減衰回路と圧側副減衰回路を少なくとも一対以上設け、伸側副減衰回路は、伸側室とリザーバ或いは圧側室とを連通する伸側副通路と、伸側副通路の途中に設けられて伸側室からリザーバ或いは圧側室へ向かう流体の流れに抵抗を与える伸側副減衰弁と、伸側副通路の途中に設けられて伸側副通路を開閉する伸側副切換弁とを備え、圧側副減衰回路は、伸側室と圧側室とを連通する伸圧副通路と、圧側室とリザーバとを連通する圧リザーバ副通路と、伸圧副通路の途中に設けられて圧側室から伸側室へ向かう流体の流れに抵抗を与える圧側副減衰弁と、圧リザーバ副通路の途中に設けられて圧側室からリザーバへ向かう流体の流れに抵抗を与えるリザーバ側副減衰弁と、伸圧副通路の途中に設けられて伸圧副通路を開閉する圧側副切換弁と、圧リザーバ副通路の途中に設けられて圧リザーバ副通路を開閉するリザーバ側副切換弁とを備えてなることを特徴とした。   In order to achieve the above-described object, a shock absorber in the problem solving means of the present invention includes a cylinder, a piston that is slidably inserted into the cylinder and that divides the cylinder into an extension side chamber and a pressure side chamber, The rod is connected to the piston at one end and is connected to the piston, the reservoir, the extension side passage communicating with the extension side chamber and the reservoir or the pressure side chamber, and the extension side passage. An expansion side damping valve that provides resistance to the flow of fluid toward the compression side chamber, an expansion passage that communicates the expansion side chamber and the compression side chamber, a pressure reservoir passage that communicates the compression side chamber and the reservoir, A pressure-side damping valve that provides resistance to the flow of fluid from the pressure-side chamber to the expansion-side chamber, and a reserver that is provided in the middle of the pressure reservoir passage and provides resistance to the flow of fluid from the pressure-side chamber to the reservoir And a damping side auxiliary damping circuit and at least one pair of an extension side auxiliary damping circuit and a compression side auxiliary damping circuit, and the extension side auxiliary damping circuit communicates the extension side chamber with the reservoir or the pressure side chamber. An extension side sub-passage, an extension side sub-passage valve provided in the middle of the extension side sub-passage to provide resistance to the flow of fluid from the extension side chamber toward the reservoir or pressure side chamber, and provided in the middle of the extension side sub-passage. An extension side sub-switching valve that opens and closes the extension side sub passage, and the pressure side sub damping circuit includes a pressure extension sub passage that communicates the extension side chamber and the pressure side chamber, and a pressure reservoir sub passage that communicates the pressure side chamber and the reservoir. A pressure side secondary damping valve provided in the middle of the pressure side sub-passage to provide resistance to the flow of fluid from the pressure side chamber toward the pressure side chamber, and a fluid flow provided in the middle of the pressure reservoir side passage to the reservoir from the pressure side chamber Of the reservoir side auxiliary damping valve that gives resistance to the A pressure side sub-switching valve that opens and closes the pressure extension sub-passage, and a reservoir-side sub-switching valve that is provided in the middle of the pressure reservoir sub-passage and opens and closes the pressure reservoir sub-passage. .

本発明の緩衝器によれば、バイフローに設定されていても、伸側副減衰回路および圧側副減衰回路を対として選択的に機能させることによって、減衰力を可変とすることができる。   According to the shock absorber of the present invention, even if the bi-flow is set, the damping force can be made variable by selectively functioning the extension side auxiliary damping circuit and the compression side auxiliary damping circuit as a pair.

そして、この緩衝器では、伸長時には伸側室内の流体が圧縮され、収縮時にシリンダ内の全体ではなく圧側室内の作動油が圧縮されることになるので、ユニフローに見られるように伸長時と収縮時で圧縮される流体量が著しく異なることがなく、伸長側と収縮側で作用する減衰弁の設定によって狙い通りの減衰力を緩衝器に発生させることができ、さらには、ピストン速度が同じであれば伸縮の両側で等しい減衰力を発揮させることも出来るのである。   In this shock absorber, the fluid in the expansion side chamber is compressed during expansion, and the hydraulic oil in the compression side chamber is compressed instead of the entire cylinder during contraction. The amount of fluid compressed by time does not differ significantly, and the damping force can be generated in the shock absorber by setting the damping valve that acts on the expansion side and contraction side, and the piston speed is the same. If it exists, the same damping force can be exerted on both sides of the expansion and contraction.

換言すれば、この緩衝器にあっては、減衰力を可変とするとともに伸縮の両側で狙い通りの減衰力を発揮させつつバイフローを採用することができることから、伸縮時に圧縮される流体量を比較的小さくすることができるので、伸縮量が非常に小さい微振動に対しても、充分に減衰力を発揮することが出来るのである。   In other words, in this shock absorber, it is possible to adopt a bi-flow while making the damping force variable and exhibiting the desired damping force on both sides of the expansion and contraction, so compare the amount of fluid compressed during expansion and contraction Therefore, the damping force can be sufficiently exerted even with a minute vibration with a very small expansion / contraction amount.

さらに、この緩衝器にあっては、バイフローに設定されるので、ピストン断面積とロッド断面積の関係に制限が無く、緩衝器の設計自由度が高くなり、また、ピストン径あるいはロッド径が強度上無駄に大径となる不具合もないので、緩衝器の大型化と重量増を招くことがない。   Furthermore, since this shock absorber is set to bi-flow, there is no restriction on the relationship between the piston cross-sectional area and the rod cross-sectional area, the design freedom of the shock absorber is high, and the piston diameter or rod diameter is strong. Since there is no problem of unnecessarily large diameter, there is no increase in the size and weight of the shock absorber.

また、緩衝器における減衰力を可変とするに際して、伸縮動作の切換わりに伸側減衰弁、圧側減衰弁、リザーバ側減衰弁、伸側副減衰弁、圧側副減衰弁およびリザーバ側副減衰弁を都度選択する必要が無いので、大掛かりな制御装置の介在を要せず、この点でも緩衝器を含めたシステム全体の大型化を避けることができる。   When changing the damping force in the shock absorber, the expansion side damping valve, the pressure side damping valve, the reservoir side damping valve, the stretching side sub damping valve, the pressure side sub damping valve, and the reservoir side sub damping valve are used each time instead of switching the expansion / contraction operation. Since there is no need to make a selection, it is not necessary to intervene a large-scale control device, and in this respect as well, an increase in the size of the entire system including the shock absorber can be avoided.

以下、図に示した実施の形態に基づき、本発明を説明する。図1は、一実施の形態における緩衝器における回路図である。図2は、一実施の形態における緩衝器の減衰特性図である。図3は、一実施の形態の一変形例における緩衝器における回路図である。   The present invention will be described below based on the embodiments shown in the drawings. FIG. 1 is a circuit diagram of a shock absorber according to an embodiment. FIG. 2 is a damping characteristic diagram of the shock absorber according to the embodiment. FIG. 3 is a circuit diagram of a shock absorber according to a modification of the embodiment.

一実施の形態における緩衝器Dは、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されるとともにシリンダ1内を伸側室R1と圧側室R2とに区画するピストン2と、シリンダ1内に移動自在に挿入されるともに一端がピストン2に連結されるロッド3と、リザーバRと、伸側室R1とリザーバRとを連通する伸側通路4と、伸側通路4の途中に設けられて伸側室R1からリザーバRへ向かう流体の流れに抵抗を与える伸側減衰弁5と、伸側室R1と圧側室R2とを連通する伸圧通路6と、圧側室R2とリザーバRとを連通する圧リザーバ通路7と、伸圧通路6の途中に設けられて圧側室R2から伸側室R1へ向かう流体の流れに抵抗を与える圧側減衰弁8と、圧リザーバ通路7の途中に設けられて圧側室R2からリザーバRへ向かう流体の流れに抵抗を与えるリザーバ側減衰弁9と、二対の伸側副減衰回路10a,10bと圧側副減衰回路11a,11bとを備えて構成されている。   As shown in FIG. 1, a shock absorber D in one embodiment includes a cylinder 1 and a piston 2 that is slidably inserted into the cylinder 1 and that partitions the cylinder 1 into an extension side chamber R1 and a pressure side chamber R2. A rod 3 that is movably inserted into the cylinder 1 and has one end connected to the piston 2, a reservoir R, an extension side passage 4 that communicates the extension side chamber R 1 and the reservoir R, and an extension side passage 4. The expansion side damping valve 5 provided in the middle and resists the flow of fluid from the expansion side chamber R1 to the reservoir R, the expansion channel 6 communicating the expansion side chamber R1 and the compression side chamber R2, the compression side chamber R2 and the reservoir R A pressure reservoir passage 7 that communicates with the pressure side passage, a pressure side damping valve 8 that is provided in the middle of the pressure expansion passage 6 and provides resistance to the flow of fluid from the pressure side chamber R2 toward the expansion side chamber R1, and a pressure reservoir passage 7 provided in the middle of the pressure reservoir passage 7 Reserved from pressure side chamber R2 A reservoir side damping valve 9 which provides resistance to the flow of fluid to the R, two pairs of extension-side sub damping circuit 10a, 10b and the compression side sub damping circuit 11a, is configured to include a 11b.

以下、各部について詳細に説明すると、シリンダ1は、筒状に形成され、その上下端は、それぞれヘッド部材12とボトム部材13によって閉塞されて流体たる作動油が充填されている。なお、本実施の形態においては、流体は作動油とされているが、これに限られるものではなく、これ以外の液体であっても気体であってもよい。   Hereinafter, each part will be described in detail. The cylinder 1 is formed in a cylindrical shape, and the upper and lower ends thereof are respectively closed by a head member 12 and a bottom member 13 and filled with hydraulic fluid as fluid. In the present embodiment, the fluid is hydraulic oil, but is not limited to this, and may be liquid or gas other than this.

そして、シリンダ1内は、摺動自在に挿入されるピストン2によって伸側室R1と圧側室R2とに区画されており、ピストン2の図1中左端には、ロッド3が連結され、当該ロッド3は、ヘッド部材12に摺動自在に軸支されている。   The cylinder 1 is partitioned into an extension side chamber R1 and a pressure side chamber R2 by a piston 2 slidably inserted. A rod 3 is connected to the left end of the piston 2 in FIG. Is slidably supported on the head member 12.

すなわち、この緩衝器の場合、取付長の点で有利となる片ロッド型の緩衝器として構成されている。   In other words, this shock absorber is configured as a single rod-type shock absorber that is advantageous in terms of mounting length.

また、伸側通路4は、ヘッド部材12を介して伸側室R1とリザーバRとを連通しており、伸側減衰弁5はヘッド部材12に内設されている。この伸側減衰弁5は、伸側室R1の圧力が開弁圧を超えると伸側通路4を開放するとともに当該伸側室R1の圧力に比例して流路面積を増大させる圧力比例弁とされ、伸側室R1からリザーバRへ向かう作動油の流れに抵抗を与えるようになっている。すなわち、この伸側減衰弁5は、伸側室R1圧力がリザーバRの圧力を下回ることがあっても開放動作せず、逆止弁としても機能している。   Further, the extension side passage 4 communicates the extension side chamber R1 and the reservoir R via the head member 12, and the extension side damping valve 5 is provided in the head member 12. The expansion side damping valve 5 is a pressure proportional valve that opens the expansion side passage 4 and increases the flow area in proportion to the pressure of the expansion side chamber R1 when the pressure in the expansion side chamber R1 exceeds the valve opening pressure. Resistance is provided to the flow of hydraulic oil from the extension side chamber R1 toward the reservoir R. That is, the expansion side damping valve 5 does not open even when the pressure on the expansion side chamber R1 falls below the pressure in the reservoir R, and functions as a check valve.

さらに、この実施の形態の場合、伸側室R1と圧側室R2とを連通する伸圧通路6はピストン2に設けられており、圧側減衰弁8もピストン2に設けられている。この圧側減衰弁8は、圧側室R2の圧力が開弁圧を超えると伸圧通路6を開放するとともに当該圧側室R2の圧力に比例して流路面積を増大させる圧力比例弁とされ、圧側室R2から伸側室R1へ向かう作動油の流れに抵抗を与えるようになっている。すなわち、この圧側減衰弁8は、圧側室R2の圧力が伸側室R1の圧力を下回ることがあっても開放動作せず、逆止弁としても機能している。   Furthermore, in the case of this embodiment, the pressure increasing passage 6 that connects the expansion side chamber R1 and the pressure side chamber R2 is provided in the piston 2, and the pressure side damping valve 8 is also provided in the piston 2. The pressure-side damping valve 8 is a pressure proportional valve that opens the expansion passage 6 when the pressure in the pressure-side chamber R2 exceeds the valve opening pressure and increases the flow passage area in proportion to the pressure in the pressure-side chamber R2. Resistance is provided to the flow of hydraulic oil from the chamber R2 toward the extension side chamber R1. That is, the pressure side damping valve 8 does not open even if the pressure in the pressure side chamber R2 falls below the pressure in the expansion side chamber R1, and functions as a check valve.

また、ピストン2には、伸側室R1と圧側室R2とを連通する一対のリリーフ流路14,15が設けられており、一方のリリーフ流路14の途中には伸側室R1内の圧力が開弁圧を超えるとリリーフ流路14を開放して伸側室R1と圧側室R2とを連通する伸側リリーフ弁16が設けられ、他方のリリーフ流路15の途中には圧側室R2内の圧力が開弁圧を超えるとリリーフ流路15を開放して伸側室R1と圧側室R2とを連通する圧側リリーフ弁17が設けられている。   The piston 2 is provided with a pair of relief passages 14 and 15 communicating the extension side chamber R1 and the pressure side chamber R2. The pressure in the extension side chamber R1 is opened in the middle of the one relief passage 14. When the valve pressure is exceeded, an extension side relief valve 16 is provided that opens the relief flow path 14 and communicates the extension side chamber R1 and the pressure side chamber R2, and the pressure in the pressure side chamber R2 is in the middle of the other relief flow path 15. A pressure-side relief valve 17 is provided that opens the relief flow path 15 when the valve-opening pressure is exceeded and communicates the expansion-side chamber R1 and the pressure-side chamber R2.

これら伸側リリーフ弁16および圧側リリーフ弁17にあっては、緩衝器Dの伸縮時に伸側室R1と圧側室R2の一方が所定圧力となると、対応する伸側リリーフ弁16あるいは圧側リリーフ弁17が動作して、圧力を伸側室R1と圧側室R2の他方へ逃がして、緩衝器Dの発生減衰力を制限する。   In the extension side relief valve 16 and the pressure side relief valve 17, when one of the extension side chamber R1 and the pressure side chamber R2 reaches a predetermined pressure when the shock absorber D is expanded and contracted, the corresponding extension side relief valve 16 or pressure side relief valve 17 is In operation, the pressure is released to the other of the expansion side chamber R1 and the compression side chamber R2, and the generated damping force of the shock absorber D is limited.

なお、上記した伸圧通路6およびリリーフ流路14,15は、シリンダ1外に設けてもよいが、ピストン2に設けられることで、緩衝器Dの無用な大型化を避けることがでできる。   In addition, although the above-mentioned pressure expansion passage 6 and the relief flow paths 14 and 15 may be provided outside the cylinder 1, unnecessary enlargement of the shock absorber D can be avoided by being provided in the piston 2.

つづいて、圧リザーバ通路7は、ボトム部材13を介して圧側室R2とリザーバRとを連通しており、リザーバ側減衰弁9は当該ボトム部材13に内設されている。このリザーバ側減衰弁9は、圧側室R2の圧力が開弁圧を超えると圧リザーバ通路7を開放するとともに当該伸側室R1の圧力に比例して流路面積を増大させる圧力比例弁とされ、圧側室R2からリザーバRへ向かう作動油の流れに抵抗を与えるようになっている。すなわち、このリザーバ側減衰弁9は、圧側室R2の圧力がリザーバRの圧力を下回ることがあっても開放動作せず、逆止弁としても機能している。   Subsequently, the pressure reservoir passage 7 communicates the pressure side chamber R <b> 2 and the reservoir R via the bottom member 13, and the reservoir side damping valve 9 is provided in the bottom member 13. The reservoir side damping valve 9 is a pressure proportional valve that opens the pressure reservoir passage 7 when the pressure in the pressure side chamber R2 exceeds the valve opening pressure and increases the flow path area in proportion to the pressure in the extension side chamber R1, Resistance is applied to the flow of hydraulic oil from the pressure side chamber R2 toward the reservoir R. That is, the reservoir-side damping valve 9 does not open even when the pressure in the pressure-side chamber R2 falls below the pressure in the reservoir R, and functions as a check valve.

なお、ボトム部材13には、リザーバRと圧側室R2とを連通する吸込通路18が設けられており、この吸込通路18の途中にはリザーバRから圧側室R2への流れのみを許容する逆止弁19が設けられている。   The bottom member 13 is provided with a suction passage 18 that allows the reservoir R and the pressure side chamber R2 to communicate with each other. In the middle of the suction passage 18, only a flow from the reservoir R to the pressure side chamber R2 is allowed. A valve 19 is provided.

そして、緩衝器Dが伸長作動をするときには、伸側室R1が圧縮されるので伸側室R1からリザーバRへ伸側減衰弁5を介して作動油が流出されるとともに、圧側室R2へはリザーバRから吸込通路18を介して作動油が供給される。反対に、緩衝器Dが収縮作動をするときには、伸側室R1の容積膨張分の作動油が圧側室R2から圧側減衰弁8を介して供給され、シリンダ1内に侵入するロッド3の体積分の作動油が圧側室R2からリザーバ側減衰弁9を介してリザーバRへ吐き出される。   When the shock absorber D is extended, the expansion side chamber R1 is compressed, so that hydraulic fluid flows out from the expansion side chamber R1 to the reservoir R via the expansion side damping valve 5, and to the compression side chamber R2 the reservoir R Hydraulic fluid is supplied through the suction passage 18. On the contrary, when the shock absorber D performs the contraction operation, the hydraulic oil corresponding to the volume expansion of the expansion side chamber R1 is supplied from the pressure side chamber R2 via the pressure side damping valve 8, and the volume of the rod 3 entering the cylinder 1 is obtained. The hydraulic oil is discharged from the pressure side chamber R2 to the reservoir R through the reservoir side damping valve 9.

このように、緩衝器Dでは、ユニフローではなくバイフローの緩衝器として構成され、伸長時には伸側減衰弁5で減衰力を発生し、収縮時には圧側減衰弁8およびリザーバ側減衰弁9で減衰力を発生するのであるが、ピストン速度が同じである場合に伸縮時で同じ減衰力を発生できるように、伸側減衰弁5、圧側減衰弁8およびリザーバ側減衰弁9における開弁圧、圧力に対する流路面積の比例度合が調整されている。   Thus, the shock absorber D is configured as a bi-flow shock absorber instead of a uniflow, and generates a damping force at the expansion side damping valve 5 at the time of expansion, and a damping force at the compression side damping valve 8 and the reservoir side damping valve 9 at the time of contraction. However, when the piston speed is the same, the flow with respect to the valve opening pressure and pressure in the expansion side damping valve 5, the pressure side damping valve 8, and the reservoir side damping valve 9 is such that the same damping force can be generated during expansion and contraction. The proportion of road area is adjusted.

引き続き、伸側副減衰回路10aは、伸側室R1とリザーバRとを連通する伸側副通路20aと、伸側副通路20aの途中に設けられて伸側室R1からリザーバRへ向かう流体の流れに抵抗を与える伸側副減衰弁20bと、伸側副通路20aを開閉する伸側副切換弁として機能する収束切換弁41とを備えて構成されており、この伸側副減衰回路10aと対を成す圧側副減衰回路11aは、伸側室R1と圧側室R2とを連通する伸圧副通路21aと、圧側室R2とリザーバRとを連通する圧リザーバ副通路21bと、伸圧副通路21aの途中に設けられて圧側室R2から伸側室R1へ向かう流体の流れに抵抗を与える圧側副減衰弁21cと、圧リザーバ副通路21bの途中に設けられて圧側室R2からリザーバRへ向かう流体の流れに抵抗を与えるリザーバ側副減衰弁21dと、伸圧副通路21aの途中に設けられて伸圧副通路21aを開閉する圧側副切換弁21eと、圧リザーバ副通路21bを開閉するリザーバ側副切換弁として機能する収束切換弁41とを備えて構成されている。   Subsequently, the extension side sub-attenuation circuit 10a is provided in the middle of the extension side sub-passage 20a and the extension side sub-passage 20a for communicating the extension side chamber R1 and the reservoir R. The expansion side sub damping valve 20b for providing resistance and the convergence switching valve 41 functioning as an expansion side sub switching valve for opening and closing the expansion side sub passage 20a are provided. The compression side sub-attenuation circuit 11a includes a pressure expansion sub passage 21a that communicates the expansion side chamber R1 and the pressure side chamber R2, a pressure reservoir sub passage 21b that communicates the pressure side chamber R2 and the reservoir R, and an intermediate portion of the pressure expansion sub passage 21a. The pressure side secondary damping valve 21c that provides resistance to the flow of fluid from the pressure side chamber R2 to the expansion side chamber R1 and the fluid flow from the pressure side chamber R2 to the reservoir R provided in the middle of the pressure reservoir sub passage 21b. Resistance Function as a reservoir side sub damping valve 21d, a pressure side sub switching valve 21e provided in the middle of the pressure expansion sub passage 21a to open and close the pressure expansion sub passage 21a, and a reservoir side sub switching valve to open and close the pressure reservoir sub passage 21b. And a convergence switching valve 41.

伸側副通路20aは、伸側通路4と並列して伸側室R1とリザーバRとを連通し、伸圧副通路21aは、伸圧通路6と並列して伸側室R1と圧側室R2とを連通し、圧リザーバ副通路21bは、圧リザーバ通路7と並列して圧側室R2とリザーバRとを連通している。   The expansion side auxiliary passage 20a communicates the expansion side chamber R1 and the reservoir R in parallel with the expansion side passage 4, and the expansion side auxiliary passage 21a connects the expansion side chamber R1 and the compression side chamber R2 in parallel with the expansion passage 6. The pressure reservoir sub passage 21 b communicates with the pressure side chamber R 2 and the reservoir R in parallel with the pressure reservoir passage 7.

すなわち、伸側副減衰弁20bは、伸側減衰弁5に並列配置され、圧側副減衰弁21cは、圧側減衰弁8に並列配置され、リザーバ側副減衰弁21dも同様にリザーバ側減衰弁9に並列配置されている。   That is, the expansion side auxiliary damping valve 20b is arranged in parallel with the expansion side damping valve 5, the pressure side auxiliary damping valve 21c is arranged in parallel with the compression side damping valve 8, and the reservoir side auxiliary damping valve 21d is similarly arranged in the reservoir side damping valve 9. Are arranged in parallel.

そして、この実施の形態の場合、伸側副通路20aと圧リザーバ副通路21bとが収束通路40によって収束されてリザーバRへ連通されるようになっており、この収束通路40の途中に収束切換弁41が設けられている。この収束切換弁41は、収束通路40を遮断する状態では、伸側副通路20aと圧リザーバ副通路21bの両方を遮断し、収束通路40を開放する状態では、伸側副通路20aと圧リザーバ副通路21bの両方を開放するようになっている。すなわち、収束切換弁41は、伸側副切換弁とリザーバ側副切換弁の両方の機能を兼ね備えている。このように、収束通路40を設けることによって、伸側副切換弁としての機能とリザーバ側副切換弁としての機能を一つの収束切換弁41に集約させることが可能となる。なお、収束通路40を設けずに、伸側副切換弁とリザーバ側副切換弁とを独立に設けることも当然可能である。   In this embodiment, the expansion side sub-passage 20a and the pressure reservoir sub-passage 21b are converged by the converging passage 40 and communicated with the reservoir R, and convergence switching is performed in the middle of the converging passage 40. A valve 41 is provided. The convergence switching valve 41 shuts off both the expansion side sub-passage 20a and the pressure reservoir sub-passage 21b in a state where the convergence passage 40 is blocked, and the expansion side sub-passage 20a and the pressure reservoir in a state where the convergence passage 40 is opened. Both sub passages 21b are opened. That is, the convergence switching valve 41 has both functions of the extension side sub switching valve and the reservoir side sub switching valve. Thus, by providing the convergence passage 40, the function as the expansion side sub switching valve and the function as the reservoir side sub switching valve can be integrated into one convergence switching valve 41. Of course, it is possible to provide the extension side sub-switching valve and the reservoir side sub-switching valve independently without providing the convergence passage 40.

また、伸側副減衰弁20bは、上述の伸側減衰弁5と同様の構成とされた圧力比例弁であって、伸側室R1の圧力が開弁圧を超えると開放動作するとともに、伸側室R1圧力がリザーバRの圧力を下回ることがあっても開放動作せず、逆止弁としても機能する。なお、この伸側副減衰弁20bは、伸側減衰弁5と同じ開弁圧で開弁するとともに、圧力に対する流路面積の比例度合も同じに設定されている。   The expansion side auxiliary damping valve 20b is a pressure proportional valve having the same configuration as that of the above-described expansion side damping valve 5, and opens when the pressure in the expansion side chamber R1 exceeds the valve opening pressure. Even if the R1 pressure is lower than the pressure in the reservoir R, it does not open and functions as a check valve. The expansion side auxiliary damping valve 20b is opened at the same valve opening pressure as that of the expansion side damping valve 5, and the proportionality of the flow path area to the pressure is set to be the same.

さらに、圧側副減衰弁21cも、上述の圧側減衰弁8と同様の構成とされた圧力比例弁であって、圧側室R2の圧力が開弁圧を超えると開放動作するとともに、圧側室R2圧力が伸側室R1の圧力を下回ることがあっても開放動作せず、逆止弁としても機能する。なお、この圧側副減衰弁21cは、圧側減衰弁8と同じ開弁圧で開弁するとともに、圧力に対する流路面積の比例度合も同じに設定されている。   Further, the pressure side auxiliary damping valve 21c is a pressure proportional valve having the same configuration as the pressure side damping valve 8 described above, and opens when the pressure in the pressure side chamber R2 exceeds the valve opening pressure, and the pressure side chamber R2 pressure. Even if the pressure is lower than the pressure in the extension side chamber R1, it does not open and functions as a check valve. The pressure side auxiliary damping valve 21c is opened at the same valve opening pressure as the pressure side damping valve 8, and the proportionality of the flow path area to the pressure is set to be the same.

同様に、リザーバ側副減衰弁21dにあっても、上述のリザーバ側減衰弁9と同様の構成とされた圧力比例弁であって、圧側室R2の圧力が開弁圧を超えると開放動作するとともに、圧側室R2圧力がリザーバRの圧力を下回ることがあっても開放動作せず、逆止弁としても機能する。なお、このリザーバ側副減衰弁21dは、リザーバ側減衰弁9と同じ開弁圧で開弁するとともに、圧力に対する流路面積の比例度合も同じに設定されている。   Similarly, the reservoir side auxiliary damping valve 21d is a pressure proportional valve having the same configuration as the reservoir side damping valve 9 described above, and opens when the pressure in the pressure side chamber R2 exceeds the valve opening pressure. At the same time, even if the pressure on the pressure side chamber R2 falls below the pressure in the reservoir R, it does not open and functions as a check valve. The reservoir side auxiliary damping valve 21d is opened at the same valve opening pressure as the reservoir side damping valve 9, and the proportionality of the flow path area to the pressure is set to be the same.

また、収束切換弁41および圧側副切換弁21eは、手動操作によって連通ポジションと遮断ポジションとを選択的に切換可能とされているが、ソレノイドによって切換えられる電磁弁とされても良い。   Further, the convergence switching valve 41 and the pressure side sub switching valve 21e can be selectively switched between the communication position and the cutoff position by manual operation, but may be electromagnetic valves switched by a solenoid.

そして、収束切換弁41および圧側副切換弁21eを連通ポジションとすると、緩衝器Dの伸長時には作動油は、伸側減衰弁5のみならず、これに並列される伸側副減衰弁20bをも通過して伸側室R1からリザーバRへ流出することになり、緩衝器Dの収縮時には作動油は、圧側室R2から圧側減衰弁8のみならず圧側副減衰弁21cをも介して伸側室R1へ移動するとともに、圧側室R2からリザーバ側減衰弁9のみならずリザーバ側副減衰弁21dをも介してリザーバRへ流れるようになる。他方、収束切換弁41および圧側副切換弁21eを遮断ポジションとすると、緩衝器Dの伸縮時に、作動油は、伸側副減衰弁20b、圧側副減衰弁21cおよびリザーバ側副減衰弁21dを通過せずに、伸側減衰弁5、圧側減衰弁8およびリザーバ側減衰弁9のみを通過することになる。   When the convergence switching valve 41 and the pressure side auxiliary switching valve 21e are in the communication position, when the shock absorber D is extended, the hydraulic oil includes not only the expansion side damping valve 5 but also the expansion side auxiliary damping valve 20b arranged in parallel therewith. The oil passes through the expansion side chamber R1 and flows out to the reservoir R. When the shock absorber D is contracted, the hydraulic oil flows from the pressure side chamber R2 to the expansion side chamber R1 not only through the pressure side damping valve 8 but also through the pressure side auxiliary damping valve 21c. While moving, the pressure side chamber R2 flows to the reservoir R not only through the reservoir side damping valve 9 but also through the reservoir side sub damping valve 21d. On the other hand, when the convergence switching valve 41 and the pressure side sub switching valve 21e are set to the shut-off position, the hydraulic oil passes through the expansion side sub damping valve 20b, the pressure side sub damping valve 21c, and the reservoir side sub damping valve 21d when the shock absorber D expands and contracts. Without passing through, only the expansion side damping valve 5, the pressure side damping valve 8, and the reservoir side damping valve 9 are passed.

つまり、収束切換弁41および圧側副切換弁21eは、伸側副減衰回路10aおよび圧側副減衰回路11aの減衰機能の発揮と停止とを切換えるスイッチとして機能している。また、伸側副減衰回路10aおよび圧側副減衰回路11aは対を成しており、収束切換弁41および圧側副切換弁21eが連通ポジションを採ると両方ともその減衰機能を発揮し、反対に遮断ポジションではその減衰機能を停止する。   That is, the convergence switching valve 41 and the pressure side sub switching valve 21e function as a switch that switches between exhibiting and stopping the damping function of the expansion side sub damping circuit 10a and the pressure side sub damping circuit 11a. Further, the extension side sub-attenuation circuit 10a and the pressure side sub-attenuation circuit 11a form a pair, and when the convergence switching valve 41 and the pressure side sub-switching valve 21e take the communication position, both exhibit the damping function, and conversely shut off. In position, the damping function is stopped.

なお、伸側副減衰回路10aおよび圧側副減衰回路11aにおける伸側副減衰弁20b、圧側副減衰弁21cおよびリザーバ側副減衰弁21dは、緩衝器Dのピストン速度が同じである場合、伸縮時で同じ減衰力を発生できるように、伸側副減衰弁20b、圧側副減衰弁21cおよびリザーバ側副減衰弁21dにおける開弁圧、圧力に対する流路面積の比例度合が調整されている。   Note that the expansion side sub damping valve 20b, the pressure side sub damping valve 21c, and the reservoir side sub damping valve 21d in the expansion side sub damping circuit 10a and the compression side sub damping circuit 11a have the same piston speed of the shock absorber D, and are expanded and contracted. In order to generate the same damping force, the proportionality of the flow passage area to the valve opening pressure and pressure in the expansion side sub damping valve 20b, the pressure side sub damping valve 21c and the reservoir side sub damping valve 21d is adjusted.

さらに、伸側副減衰回路10bは、伸側室R1とリザーバRとを連通する伸側副通路22aと、伸側副通路22aの途中に設けられて伸側室R1からリザーバRへ向かう流体の流れに抵抗を与える伸側副減衰弁22bと、伸側副通路22aを開閉する伸側副切換弁として機能する収束切換弁43とを備えて構成されており、この伸側副減衰回路10bと対を成す圧側副減衰回路11bは、伸側室R1と圧側室R2とを連通する伸圧副通路23aと、圧側室R2とリザーバRとを連通する圧リザーバ副通路23bと、伸圧副通路23aの途中に設けられて圧側室R2から伸側室R1へ向かう流体の流れに抵抗を与える圧側副減衰弁23cと、圧リザーバ副通路23bの途中に設けられて圧側室R2からリザーバRへ向かう流体の流れに抵抗を与えるリザーバ側副減衰弁23dと、伸圧副通路21aの途中に設けられて伸圧副通路23aを開閉する圧側副切換弁23eと、圧リザーバ副通路23bを開閉するリザーバ側副切換弁として機能する収束切換弁43とを備えて構成されている。   Further, the extension side sub-attenuation circuit 10b is provided in the middle of the extension side sub-passage 22a and the extension side sub-passage 22a for communicating the extension side chamber R1 and the reservoir R. The expansion side sub damping valve 22b for providing resistance and the convergence switching valve 43 functioning as an expansion side sub switching valve for opening and closing the expansion side sub passage 22a are configured. The compression side sub-attenuation circuit 11b includes a pressure expansion sub-passage 23a that connects the expansion-side chamber R1 and the pressure-side chamber R2, a pressure reservoir sub-passage 23b that connects the pressure-side chamber R2 and the reservoir R, and a middle of the pressure expansion sub-passage 23a. A pressure side auxiliary damping valve 23c that provides resistance to the flow of fluid from the pressure side chamber R2 to the expansion side chamber R1, and a fluid flow that is provided in the middle of the pressure reservoir sub passage 23b and flows from the pressure side chamber R2 to the reservoir R. Give resistance Functions as a reservoir side sub damping valve 23d, a pressure side sub switching valve 23e provided in the middle of the pressure expansion sub passage 21a to open and close the pressure expansion sub passage 23a, and a reservoir side sub switching valve to open and close the pressure reservoir sub passage 23b. And a convergence switching valve 43 to be configured.

伸側副通路22aは、伸側通路4および伸側副通路20aと並列して伸側室R1とリザーバRとを連通し、伸圧副通路23aは、伸圧通路6および伸圧副通路21aと並列して伸側室R1と圧側室R2とを連通し、圧リザーバ副通路23bは、圧リザーバ通路7および圧リザーバ副通路21bと並列して圧側室R2とリザーバRとを連通している。   The extension side sub-passage 22a communicates the extension side chamber R1 and the reservoir R in parallel with the extension side passage 4 and the extension side sub passage 20a, and the pressure increase sub passage 23a includes the pressure increase passage 6 and the pressure extension sub passage 21a. The expansion side chamber R1 and the pressure side chamber R2 communicate with each other in parallel, and the pressure reservoir sub-passage 23b communicates with the pressure side chamber R2 and the reservoir R in parallel with the pressure reservoir passage 7 and the pressure reservoir sub-passage 21b.

すなわち、伸側副減衰弁22bは、伸側減衰弁5および伸側副減衰弁20bに並列配置され、圧側副減衰弁23cは、圧側減衰弁8および圧側副減衰弁21cに並列配置され、リザーバ側副減衰弁23dも同様にリザーバ側減衰弁9およびリザーバ側副減衰弁21dに並列配置されている。   That is, the expansion side auxiliary damping valve 22b is arranged in parallel with the expansion side damping valve 5 and the extension side auxiliary damping valve 20b, and the pressure side auxiliary damping valve 23c is arranged in parallel with the pressure side damping valve 8 and the pressure side auxiliary damping valve 21c. Similarly, the side auxiliary damping valve 23d is arranged in parallel with the reservoir side damping valve 9 and the reservoir side auxiliary damping valve 21d.

そして、この実施の形態の場合、伸側副通路22aと圧リザーバ副通路23bとが収束通路42によって収束されてリザーバRへ連通されるようになっており、この収束通路42の途中に収束切換弁43が設けられている。この収束切換弁43は、収束通路42を遮断する状態では、伸側副通路22aと圧リザーバ副通路23bの両方を遮断し、収束通路42を開放する状態では、伸側副通路22aと圧リザーバ副通路23bの両方を開放するようになっている。すなわち、収束切換弁43は、伸側副切換弁とリザーバ側副切換弁の両方の機能を兼ね備えている。このように、収束通路42を設けることによって、伸側副切換弁としての機能とリザーバ側副切換弁としての機能を一つの収束切換弁43に集約させることが可能となる。なお、収束通路42を設けずに、伸側副切換弁とリザーバ側副切換弁とを独立に設けることも当然可能である。   In this embodiment, the expansion side sub-passage 22a and the pressure reservoir sub-passage 23b are converged by the converging passage 42 and communicated with the reservoir R. Convergence switching is performed in the middle of the converging passage 42. A valve 43 is provided. The convergence switching valve 43 blocks both the expansion side sub-passage 22a and the pressure reservoir sub-passage 23b in a state where the convergence passage 42 is blocked, and the expansion side sub-passage 22a and the pressure reservoir in a state where the convergence passage 42 is opened. Both sub passages 23b are opened. That is, the convergence switching valve 43 has both functions of the extension side sub switching valve and the reservoir side sub switching valve. Thus, by providing the convergence passage 42, it is possible to consolidate the function as the expansion side sub switching valve and the function as the reservoir side sub switching valve into one convergence switching valve 43. Of course, it is possible to provide the extension side sub-switching valve and the reservoir side sub-switching valve independently without providing the convergence passage 42.

また、伸側副減衰弁22bは、上述の伸側減衰弁5および伸側副減衰弁20bと同様の構成とされた圧力比例弁で、伸側減衰弁5と同じ開弁圧で開弁するとともに、圧力に対する流路面積の比例度合は二倍に設定されている。   The expansion side auxiliary damping valve 22b is a pressure proportional valve having the same configuration as the above-described expansion side attenuation valve 5 and expansion side auxiliary damping valve 20b, and opens at the same valve opening pressure as the expansion side attenuation valve 5. At the same time, the degree of proportionality of the channel area to the pressure is set to double.

さらに、圧側副減衰弁23cも、上述の圧側減衰弁8および圧側副減衰弁21cと同様の構成とされた圧力比例弁で、圧側減衰弁8と同じ開弁圧で開弁するとともに、圧力に対する流路面積の比例度合は二倍に設定されている。   Further, the pressure side auxiliary damping valve 23c is a pressure proportional valve having the same configuration as the pressure side damping valve 8 and the pressure side auxiliary damping valve 21c described above, and is opened at the same valve opening pressure as that of the pressure side damping valve 8, and also with respect to the pressure. The proportionality of the channel area is set to double.

同様に、リザーバ側副減衰弁23dにあっても、上述のリザーバ側減衰弁9およびリザーバ側副減衰弁21dと同様の構成とされた圧力比例弁で、リザーバ側減衰弁9と同じ開弁圧で開弁するとともに、圧力に対する流路面積の比例度合は二倍に設定されている。   Similarly, the reservoir side auxiliary damping valve 23d is a pressure proportional valve having the same configuration as the reservoir side damping valve 9 and the reservoir side auxiliary damping valve 21d, and has the same valve opening pressure as the reservoir side damping valve 9. And the proportionality of the channel area to the pressure is set to double.

また、収束切換弁43および圧側副切換弁23eは、手動操作によって連通ポジションと遮断ポジションとを選択的に切換可能とされているが、ソレノイドによって切換えられる電磁弁とされても良い。   Further, the convergence switching valve 43 and the pressure side sub switching valve 23e can be selectively switched between the communication position and the shut-off position by manual operation, but may be electromagnetic valves switched by a solenoid.

そして、収束切換弁43および圧側副切換弁23eを連通ポジションとすると、緩衝器Dの伸長時には作動油は、伸側減衰弁5のみならず、これに並列される伸側副減衰弁22bをも通過して伸側室R1からリザーバRへ流出することになり、緩衝器Dの収縮時には作動油は、圧側室R2から圧側減衰弁8のみならず圧側副減衰弁23cをも介して伸側室R1へ移動するとともに、圧側室R2からリザーバ側減衰弁9のみならずリザーバ側副減衰弁23dをも介してリザーバRへ流れるようになる。   When the convergence switching valve 43 and the pressure side auxiliary switching valve 23e are in the communication position, when the shock absorber D is extended, the hydraulic oil includes not only the expansion side damping valve 5 but also the expansion side auxiliary damping valve 22b arranged in parallel therewith. The oil passes through the expansion side chamber R1 and flows out to the reservoir R. When the shock absorber D contracts, the hydraulic oil flows from the pressure side chamber R2 to the expansion side chamber R1 not only through the pressure side damping valve 8 but also through the pressure side auxiliary damping valve 23c. While moving, the pressure side chamber R2 flows to the reservoir R not only through the reservoir side damping valve 9 but also through the reservoir side sub damping valve 23d.

他方、収束切換弁43および圧側副切換弁23eを遮断ポジションとすると、緩衝器Dの伸縮時に、作動油は、伸側副減衰弁22b、圧側副減衰弁23cおよびリザーバ側副減衰弁23dを通過せずに、伸側減衰弁5、圧側減衰弁8およびリザーバ側減衰弁9のみを通過することになる。   On the other hand, when the convergence switching valve 43 and the pressure side sub switching valve 23e are set to the shut-off position, the hydraulic oil passes through the expansion side sub damping valve 22b, the pressure side sub damping valve 23c, and the reservoir side sub damping valve 23d when the shock absorber D expands and contracts. Without passing through, only the expansion side damping valve 5, the pressure side damping valve 8, and the reservoir side damping valve 9 are passed.

つまり、収束切換弁43および圧側副切換弁23eは、伸側副減衰回路10bおよび圧側副減衰回路11bの減衰機能の発揮と停止とを切換えるスイッチとして機能している。また、伸側副減衰回路10bおよび圧側副減衰回路11bは、伸側副減衰回路10aおよび圧側副減衰回路11aと同様に対を成しており、収束切換弁43および圧側副切換弁23eが連通ポジションを採ると両方ともその減衰機能を発揮し、反対に遮断ポジションではその減衰機能を停止する。   That is, the convergence switching valve 43 and the pressure side sub switching valve 23e function as a switch that switches between exhibiting and stopping the damping function of the expansion side sub damping circuit 10b and the pressure side sub damping circuit 11b. The expansion side sub-attenuation circuit 10b and the pressure side sub-attenuation circuit 11b are paired in the same manner as the expansion side sub-attenuation circuit 10a and the pressure side sub-attenuation circuit 11a, and the convergence switching valve 43 and the pressure side sub-switching valve 23e communicate with each other. Both take their positions when they are in position, and on the other hand they stop their functions at the blocking position.

なお、伸側副減衰回路10bおよび圧側副減衰回路11bにおける伸側副減衰弁22b、圧側副減衰弁23cおよびリザーバ側副減衰弁23dもまた、緩衝器Dのピストン速度が同じである場合、伸縮時で同じ減衰力を発生できるように、伸側副減衰弁22b、圧側副減衰弁23cおよびリザーバ側副減衰弁23dにおける開弁圧、圧力に対する流路面積の比例度合が調整されている。   The expansion side sub damping valve 22b, the pressure side sub damping valve 23c, and the reservoir side sub damping valve 23d in the expansion side sub damping circuit 10b and the compression side sub damping circuit 11b also expand and contract when the piston speed of the shock absorber D is the same. The degree of proportionality of the flow passage area to the valve opening pressure and pressure in the expansion side sub damping valve 22b, the pressure side sub damping valve 23c, and the reservoir side sub damping valve 23d is adjusted so that the same damping force can be generated.

以上、緩衝器Dは、上述のように構成され、以下、その作動について説明する。   The shock absorber D is configured as described above, and the operation thereof will be described below.

(1)まず、収束切換弁41,43および圧側副切換弁21e,23eがともに遮断ポジションにあって伸側副減衰回路10a,10bおよび圧側副減衰回路11a,11bが機能しない場合、緩衝器Dの伸側減衰力は、作動油が伸側減衰弁5を通過することによって生じ、他方、緩衝器Dの圧側減衰力は、作動油が圧側減衰弁8、およびリザーバ側減衰弁9を通過することによって生じ、その発生減衰力は、図2中実線で示すように、ピストン速度が同じ場合には伸側と圧側で等しくなるとともに、ピストン速度に比例して増大する。この緩衝器Dでは、作動油が伸長時には伸側減衰弁5のみ、収縮時には圧側減衰弁8およびリザーバ側減衰弁9のみを通過するので、伸縮の両方で流路面積が最小となって、減衰係数が最大となる。なお、図2中、実線で示す減衰特性(ピストン速度に対する減衰力の変化をしめしたもの)のラインが途中で変曲しているが、これは、変曲点で伸側リリーフ弁16および圧側リリーフ弁17が開弁し減衰力の増加が抑制されるからである。また、ピストン速度が0のときに、減衰力が発生されるのは、伸側減衰弁5、圧側減衰弁8およびリザーバ側減衰弁9が開弁するまでは、ピストン2が動かない状態で伸縮に抗する力を発生するからである。   (1) First, when the convergence switching valves 41 and 43 and the pressure side auxiliary switching valves 21e and 23e are both in the cut-off position and the extension side auxiliary damping circuits 10a and 10b and the pressure side auxiliary damping circuits 11a and 11b do not function, the buffer D The expansion side damping force of the shock absorber D is caused by the hydraulic oil passing through the expansion side damping valve 5, while the compression side damping force of the shock absorber D is caused by the hydraulic oil passing through the compression side damping valve 8 and the reservoir side damping valve 9. As shown by the solid line in FIG. 2, when the piston speed is the same, the generated damping force becomes equal on the expansion side and the compression side, and increases in proportion to the piston speed. In this shock absorber D, the hydraulic fluid passes only through the expansion side damping valve 5 when extended, and only passes through the compression side damping valve 8 and the reservoir side damping valve 9 when contracted. The coefficient is the maximum. In FIG. 2, the line of the damping characteristic indicated by the solid line (in which the change in damping force with respect to the piston speed is changed) is bent halfway. This is because the expansion side relief valve 16 and the pressure side are changed at the inflection point. This is because the relief valve 17 is opened and an increase in damping force is suppressed. Further, when the piston speed is 0, the damping force is generated because the piston 2 does not move until the expansion side damping valve 5, the pressure side damping valve 8 and the reservoir side damping valve 9 are opened. This is because a force that resists this is generated.

(2)つづいて、収束切換弁41および圧側副切換弁21eが連通ポジションとされ、収束切換弁43および圧側副切換弁23eが遮断ポジションにあって伸側副減衰回路10aおよび圧側副減衰回路11aは機能するが、伸側副減衰回路10bおよび圧側副減衰回路11bが機能しない場合、緩衝器Dの伸側減衰力は、作動油が伸側減衰弁5および伸側副減衰弁20bを通過することによって生じ、他方、緩衝器Dの圧側減衰力は、作動油が圧側減衰弁8、圧側副減衰弁21c、リザーバ側減衰弁9およびリザーバ側副減衰弁21dを通過することによって生じ、その発生減衰力は、図2中破線で示すように、ピストン速度が同じ場合には伸側と圧側で等しくなるとともに、ピストン速度に比例して増大する。この場合、伸側減衰弁5、圧側減衰弁8およびリザーバ側減衰弁9のみを通過する場合に比較して、作動油は伸側副減衰弁20b、圧側副減衰弁21cおよびリザーバ側副減衰弁21dをも通過するので、流路面積が二倍となり、減衰係数が半分となる。なお、図2中、破線で示す減衰特性のラインが途中で変曲するのは、上記したのと同様、伸側リリーフ弁16および圧側リリーフ弁17が開弁するからであり、ピストン速度が0のときに、減衰力が発生されるのも上述と同様である。   (2) Subsequently, the convergence switching valve 41 and the pressure side auxiliary switching valve 21e are in the communication position, the convergence switching valve 43 and the pressure side auxiliary switching valve 23e are in the cutoff position, and the extension side auxiliary damping circuit 10a and the pressure side auxiliary damping circuit 11a. However, when the expansion side sub-attenuation circuit 10b and the compression side sub-attenuation circuit 11b do not function, the expansion side damping force of the shock absorber D causes the hydraulic oil to pass through the expansion side attenuation valve 5 and the expansion side auxiliary attenuation valve 20b. On the other hand, the pressure side damping force of the shock absorber D is generated by the hydraulic oil passing through the pressure side damping valve 8, the pressure side auxiliary damping valve 21c, the reservoir side damping valve 9 and the reservoir side auxiliary damping valve 21d, and is generated. As indicated by a broken line in FIG. 2, when the piston speed is the same, the damping force becomes equal on the expansion side and the compression side, and increases in proportion to the piston speed. In this case, as compared with the case where only the expansion side damping valve 5, the pressure side damping valve 8 and the reservoir side damping valve 9 are passed, the hydraulic oil is expanded side auxiliary damping valve 20b, pressure side auxiliary damping valve 21c and reservoir side auxiliary damping valve. Since it also passes through 21d, the flow path area is doubled and the attenuation coefficient is halved. In FIG. 2, the reason why the line of the damping characteristic indicated by the broken line is bent in the middle is that, as described above, the expansion side relief valve 16 and the pressure side relief valve 17 are opened, and the piston speed is 0. At this time, the damping force is generated as described above.

(3)つづいて、収束切換弁41および圧側副切換弁21eが遮断ポジションとされ、収束切換弁43および圧側副切換弁23eが連通ポジションにあって伸側副減衰回路10aおよび圧側副減衰回路11aは機能しないが、伸側副減衰回路10bおよび圧側副減衰回路11bが機能する場合、緩衝器Dの伸側減衰力は、作動油が伸側減衰弁5および伸側副減衰弁22bを通過することによって生じ、他方、緩衝器Dの圧側減衰力は、作動油が圧側減衰弁8、圧側副減衰弁23c、リザーバ側減衰弁9およびリザーバ側副減衰弁23dを通過することによって生じ、その発生減衰力は、図2中一点鎖線で示すように、ピストン速度が同じ場合には伸側と圧側で等しくなるとともに、ピストン速度に比例して増大する。この場合、伸側減衰弁5、圧側減衰弁8およびリザーバ側減衰弁9のみを通過する場合に比較して、作動油は伸側副減衰弁22b、圧側副減衰弁23cおよびリザーバ側副減衰弁23dをも通過するので、流路面積が三倍となり、減衰係数が三分の一となる。なお、図2中、破線で示す減衰特性のラインが途中で変曲するのは、上記したのと同様、伸側リリーフ弁16および圧側リリーフ弁17が開弁するからであり、ピストン速度が0のときに、減衰力が発生されるのも上述と同様である。   (3) Subsequently, the convergence switching valve 41 and the pressure side auxiliary switching valve 21e are set to the shut-off position, the convergence switching valve 43 and the pressure side auxiliary switching valve 23e are in the communication position, and the expansion side auxiliary damping circuit 10a and the pressure side auxiliary damping circuit 11a. Does not function, but when the expansion side sub-attenuation circuit 10b and the compression side sub-attenuation circuit 11b function, the expansion side damping force of the shock absorber D passes through the expansion side attenuation valve 5 and the expansion side auxiliary attenuation valve 22b. On the other hand, the pressure side damping force of the shock absorber D is generated by the hydraulic oil passing through the pressure side damping valve 8, the pressure side auxiliary damping valve 23c, the reservoir side damping valve 9 and the reservoir side auxiliary damping valve 23d, and is generated. As indicated by a one-dot chain line in FIG. 2, when the piston speed is the same, the damping force becomes equal on the expansion side and the compression side, and increases in proportion to the piston speed. In this case, compared with the case where only the expansion side attenuation valve 5, the pressure side attenuation valve 8 and the reservoir side attenuation valve 9 are passed, the hydraulic oil is expanded side auxiliary attenuation valve 22b, pressure side auxiliary attenuation valve 23c and reservoir side auxiliary attenuation valve. 23d is also passed, so the flow path area is tripled and the attenuation coefficient is one third. In FIG. 2, the reason why the line of the damping characteristic indicated by the broken line is bent in the middle is that, as described above, the expansion side relief valve 16 and the pressure side relief valve 17 are opened, and the piston speed is 0. At this time, the damping force is generated as described above.

(4)さらに、収束切換弁41,43および圧側副切換弁21e,23eがともに連通ポジションにあって伸側副減衰回路10a,10bおよび圧側副減衰回路11a,11bがともに機能する場合、緩衝器Dの伸側減衰力は、作動油が伸側減衰弁5、伸側副減衰弁20bおよび伸側副減衰弁22bを通過することによって生じ、他方、緩衝器Dの圧側減衰力は、作動油が圧側減衰弁8、圧側副減衰弁21c、圧側副減衰弁23c、リザーバ側減衰弁9、リザーバ側副減衰弁21dおよびリザーバ側副減衰弁23dを通過することによって生じ、その発生減衰力は、図2中二点鎖線で示すように、ピストン速度が同じ場合には伸側と圧側で等しくなるとともに、ピストン速度に比例して増大する。この場合、伸側減衰弁5、圧側減衰弁8およびリザーバ側減衰弁9のみを通過する場合に比較して、作動油は伸側副減衰弁20b、伸側副減衰弁22b、圧側副減衰弁21c、圧側副減衰弁23c、リザーバ側副減衰弁21dおよびリザーバ側副減衰弁23dをも通過するので、流路面積が四倍となり、減衰係数が四分の一となる。なお、図2中、破線で示す減衰特性のラインが途中で変曲するのは、上記したのと同様、伸側リリーフ弁16および圧側リリーフ弁17が開弁するからであり、ピストン速度が0のときに、減衰力が発生されるのも上述と同様である。   (4) Further, when the convergence switching valves 41 and 43 and the pressure side auxiliary switching valves 21e and 23e are both in the communication position and the extension side auxiliary damping circuits 10a and 10b and the pressure side auxiliary damping circuits 11a and 11b function together, the shock absorber The extension side damping force of D is generated by the hydraulic oil passing through the extension side damping valve 5, the extension side auxiliary damping valve 20b, and the extension side auxiliary damping valve 22b, while the compression side damping force of the shock absorber D is the hydraulic oil. Is caused by passing through the pressure side damping valve 8, the pressure side secondary damping valve 21c, the pressure side secondary damping valve 23c, the reservoir side damping valve 9, the reservoir side secondary damping valve 21d and the reservoir side secondary damping valve 23d, and the generated damping force is As indicated by a two-dot chain line in FIG. 2, when the piston speed is the same, the expansion side and the compression side are equal and increase in proportion to the piston speed. In this case, compared with the case where only the expansion side damping valve 5, the pressure side attenuation valve 8 and the reservoir side attenuation valve 9 are passed, the hydraulic oil is expanded side auxiliary damping valve 20b, extension side auxiliary damping valve 22b, pressure side auxiliary damping valve. 21c, the pressure side auxiliary damping valve 23c, the reservoir side auxiliary damping valve 21d and the reservoir side auxiliary damping valve 23d are also passed through, so that the flow path area is quadrupled and the damping coefficient is reduced to a quarter. In FIG. 2, the reason why the line of the damping characteristic indicated by the broken line is bent in the middle is that, as described above, the expansion side relief valve 16 and the pressure side relief valve 17 are opened, and the piston speed is 0. At this time, the damping force is generated as described above.

このように、この緩衝器Dにあっては、バイフローに設定されていても、伸側副減衰回路10a,10bおよび圧側副減衰回路11a,11bを対として選択的に機能させることによって、減衰力を可変とすることができる。   As described above, in the shock absorber D, even if the bi-flow is set, the extension side sub-attenuation circuits 10a and 10b and the compression side sub-attenuation circuits 11a and 11b are selectively functioned as a pair, thereby reducing the damping force. Can be made variable.

そして、この緩衝器Dでは、伸長時には伸側室R1内の流体たる作動油が圧縮され、収縮時にシリンダ1内の全体ではなく圧側室R2内の作動油が圧縮されることになるので、ユニフローに見られるように伸長時と収縮時で圧縮される流体量が著しく異なることがなく、伸長側と収縮側で作用する減衰弁の設定、この実施の形態では、伸側減衰弁5、圧側減衰弁8、リザーバ側減衰弁9、伸側副減衰弁20b,22b、圧側副減衰弁21c,23cおよびリザーバ側副減衰弁21d,23dの設定によって狙い通りの減衰力を緩衝器Dに発生させることができ、さらに、この実施の形態のように、各減衰弁を上述のように設定すれば、緩衝器Dにピストン速度が同じであれば伸縮の両側で等しい減衰力を発揮させることが出来るのである。   In the shock absorber D, the hydraulic oil as the fluid in the expansion side chamber R1 is compressed during expansion, and the hydraulic oil in the compression side chamber R2 is compressed instead of the entire cylinder 1 during contraction. As can be seen, the amount of fluid compressed at the time of expansion and contraction does not differ significantly, and a damping valve that operates on the expansion side and the contraction side is set. In this embodiment, the expansion side damping valve 5 and the pressure side damping valve 8. It is possible to generate a damping force as intended in the buffer D by setting the reservoir side damping valve 9, the extension side subsidiary damping valves 20b and 22b, the pressure side subsidiary damping valves 21c and 23c, and the reservoir side subsidiary damping valves 21d and 23d. In addition, if each damping valve is set as described above as in this embodiment, the damping force can be made to exert equal damping force on both sides of the expansion and contraction if the piston speed is the same. .

換言すれば、この緩衝器Dにあっては、減衰力を可変とするとともに伸縮の両側で狙い通りの減衰力を発揮させつつバイフローを採用することができることから、伸縮時に圧縮される流体量を比較的小さくすることができるので、伸縮量が非常に小さい微振動に対しても、充分に減衰力を発揮することが出来るのである。   In other words, in this shock absorber D, since the damping force can be made variable and the biflow can be adopted while exhibiting the desired damping force on both sides of the expansion and contraction, the amount of fluid compressed during expansion and contraction can be reduced. Since it can be made relatively small, a damping force can be sufficiently exerted even with respect to a minute vibration with a very small expansion / contraction amount.

さらに、この緩衝器Dにあっては、バイフローに設定されるので、ピストン断面積とロッド断面積の関係に制限が無く、緩衝器Dの設計自由度が高くなり、また、ピストン径あるいはロッド径が強度上無駄に大径となる不具合もないので、緩衝器の大型化と重量増を招くことがない。   Further, since the shock absorber D is set to biflow, there is no restriction on the relationship between the piston cross-sectional area and the rod cross-sectional area, the design freedom of the shock absorber D increases, and the piston diameter or rod diameter. However, there is no inconvenience that the diameter becomes unnecessarily large in terms of strength, so that the buffer is not increased in size and weight.

また、緩衝器Dにおける減衰力を可変とするに際して、伸縮動作の切換わりに伸側減衰弁5、圧側減衰弁8、リザーバ側減衰弁9、伸側副減衰弁20b,22b、圧側副減衰弁21c,23cおよびリザーバ側副減衰弁21d,23dを都度選択する必要が無いので、大掛かりな制御装置の介在を要せず、この点でも緩衝器Dを含めたシステム全体の大型化を避けることができる。   Further, when the damping force in the shock absorber D is made variable, the expansion side damping valve 5, the pressure side damping valve 8, the reservoir side damping valve 9, the stretching side sub damping valves 20b and 22b, and the pressure side sub damping valve 21c are switched instead of switching the expansion / contraction operation. , 23c and the reservoir side auxiliary damping valves 21d, 23d need not be selected each time, so that there is no need for a large-scale control device, and in this respect as well, an increase in the size of the entire system including the buffer D can be avoided. .

そして、また、この緩衝器Dでは、伸側減衰弁5、伸側副減衰弁20b,22b、圧側減衰弁8、圧側副減衰弁21c,23c、リザーバ側減衰弁9およびリザーバ側副減衰弁21d,23dが各々圧力比例弁とされているので、減衰係数を可変にすることができる。また、これにより、伸縮量が非常に小さい微振動に対しても、減衰力の変化幅を確保することができる。   Further, in the shock absorber D, the expansion side damping valve 5, the expansion side sub damping valves 20b and 22b, the pressure side damping valve 8, the pressure side sub damping valves 21c and 23c, the reservoir side damping valve 9 and the reservoir side sub damping valve 21d. , 23d are pressure proportional valves, so that the damping coefficient can be made variable. In addition, this makes it possible to secure a change range of the damping force even with a minute vibration with a very small expansion / contraction amount.

さらに、伸側減衰弁5、伸側副減衰弁20b,22b、圧側減衰弁8、圧側副減衰弁21c,23c、リザーバ側減衰弁9およびリザーバ側副減衰弁21d,23dは、逆止弁としても機能するので、伸側通路4、圧側通路6、圧リザーバ通路7、伸側副通路20a,22a、伸圧副通路21a,23aおよび圧リザーバ副通路21b,23bの各通路に別途の逆止弁を設ける必要が無いので、この点でも緩衝器Dの無用な大型化を防止している。   Further, the extension side damping valve 5, the extension side auxiliary damping valves 20b and 22b, the pressure side damping valve 8, the pressure side auxiliary damping valves 21c and 23c, the reservoir side damping valve 9 and the reservoir side auxiliary damping valves 21d and 23d are used as check valves. Is also functioning, and a separate check is provided in each of the expansion side passage 4, the pressure side passage 6, the pressure reservoir passage 7, the expansion side sub passages 20a and 22a, the pressure expansion sub passages 21a and 23a, and the pressure reservoir sub passages 21b and 23b. Since it is not necessary to provide a valve, unnecessary increase in size of the shock absorber D is prevented in this respect as well.

なお、この場合、二対の伸側副減衰回路10a,10bおよび圧側副減衰回路11a,11bを設けているので、減衰力を4通りに変化させることができるが、伸側副減衰回路と圧側副減衰回路で成る対を増やせば、さらに減衰力の変化パターンを増加させることができる。たとえば、上記対の数をnとすると、減衰力の変化パターンは、2通りとなる。 In this case, since the two pairs of the extension side sub-attenuation circuits 10a and 10b and the compression side sub-attenuation circuits 11a and 11b are provided, the damping force can be changed in four ways. If the number of pairs of sub-damping circuits is increased, the change pattern of the damping force can be further increased. For example, if the number of pairs is n, the change pattern of the damping force is 2n .

つづいて、図3に示した、一実施の形態の一変形例における緩衝器D’について説明する。この緩衝器D’は、一実施の形態の緩衝器Dの圧側減衰弁8、リザーバ側減衰弁9、圧側副減衰弁21c,23cおよびリザーバ側副減衰弁21d,23dの各々に並列する複数の固定オリフィス51,52,53,54,55,56を設けている。   Next, the shock absorber D 'in a modification of the embodiment shown in FIG. 3 will be described. The shock absorber D ′ includes a plurality of pressure side damping valves 8, reservoir side damping valves 9, pressure side auxiliary damping valves 21 c and 23 c, and reservoir side auxiliary damping valves 21 d and 23 d of the buffer D according to the embodiment. Fixed orifices 51, 52, 53, 54, 55, 56 are provided.

なお、リザーバ側副減衰弁21d,23dにそれぞれ並列される固定オリフィス54,56に対して、圧側室R2からリザーバRへ向かう流れのみを許容する逆止弁57,58が直列に配置されており、緩衝器D’の伸長時に伸側副減衰弁20b,22bを通過した作動油が固定オリフィス54,56を通過して伸側室R1から圧側室R2へ流入してしまうことを防止している。   In addition, check valves 57 and 58 that permit only a flow from the pressure side chamber R2 to the reservoir R are arranged in series with respect to the fixed orifices 54 and 56 that are arranged in parallel with the reservoir side auxiliary damping valves 21d and 23d, respectively. The hydraulic oil that has passed through the extension side auxiliary damping valves 20b and 22b during the extension of the shock absorber D ′ is prevented from passing through the fixed orifices 54 and 56 and flowing into the compression side chamber R2 from the extension side chamber R1.

また、収束通路40,42を設けずに、伸側副切換弁とリザーバ側副切換弁とを独立に設けるようにする場合には、上記逆止弁57,58を設けなくとも良い。   Further, when the expansion side sub switching valve and the reservoir side sub switching valve are provided independently without providing the convergence passages 40, 42, the check valves 57, 58 may not be provided.

そして、このように緩衝器D’に固定オリフィス51,52,53,54,55,56を設けることによって、伸縮時のピストン速度に対する減衰力の立ち上がりにおける減衰特性のラインを二乗特性となるように設定することが可能となる。ここで、伸側減衰弁5、伸側副減衰弁20b,22bのそれぞれには対応する固定オリフィスが並列配置されていないが、伸長時にあっては、作動油は固定オリフィス51,53,55を通過して伸側室R1から圧側室R2へ移動するので、伸長側のピストン速度に対する減衰力の立ち上がりにおける減衰特性のラインもオリフィス特性である二乗特性となるので、伸側減衰弁5、伸側副減衰弁20b,22bのそれぞれに固定オリフィスを並列させずともよく、また、固定オリフィス51,52,53,54,55,56の設定によって伸縮の両側で等しい減衰力を発生させることが可能となる。   By providing the fixed orifices 51, 52, 53, 54, 55, and 56 in the shock absorber D 'in this way, the damping characteristic line at the rising of the damping force with respect to the piston speed during expansion and contraction becomes a square characteristic. It becomes possible to set. Here, the fixed orifices corresponding to the extension side damping valve 5 and the extension side auxiliary damping valves 20b, 22b are not arranged in parallel. However, when the extension side is extended, the hydraulic oil passes through the fixed orifices 51, 53, 55. Since it passes through and moves from the expansion side chamber R1 to the compression side chamber R2, the line of the damping characteristic at the rise of the damping force with respect to the piston speed on the expansion side also becomes the square characteristic that is the orifice characteristic. It is not necessary to arrange a fixed orifice in parallel with each of the damping valves 20b and 22b, and equal damping force can be generated on both sides of expansion and contraction by setting the fixed orifices 51, 52, 53, 54, 55 and 56. .

なお、上記構成に加えて固定オリフィスを伸側減衰弁5、伸側副減衰弁20b,22bのそれぞれに並列して設けてもよく、また、緩衝器D’に要求される減衰力によって、伸側減衰弁5、伸側副減衰弁20b,22b、圧側減衰弁8、リザーバ側減衰弁9、圧側副減衰弁21c,23cおよびリザーバ側副減衰弁21d,23dのうち任意のものに対して固定オリフィスを並列させるようにしても良い。   In addition to the above configuration, a fixed orifice may be provided in parallel with each of the expansion side damping valve 5 and the expansion side auxiliary damping valves 20b and 22b. Further, the fixed orifice may be expanded by the damping force required for the shock absorber D ′. Fixed to any one of the side damping valve 5, the extension side sub damping valve 20b, 22b, the pressure side damping valve 8, the reservoir side damping valve 9, the pressure side sub damping valve 21c, 23c and the reservoir side sub damping valve 21d, 23d. Orifices may be arranged in parallel.

なお、各実施の形態において、伸側通路4、伸側副減衰回路10a,10bにおける伸側副通路20a,22aは、上述したところでは、伸側室R1とリザーバRとを連通するようにされているが、伸側室R1と圧側室R2とを連通するようにしてもよい。この場合、が伸長作動するときに、作動油は伸側室R1から圧側室R2へ移動するが、圧側室R2はリザーバRから吸込通路18を介してロッド4がシリンダ1から退出する体積分の作動油の供給を受けるため圧側室R2内はリザーバR内と等圧となるので、作動は上述緩衝器D,D’と全く同じとなる。したがって、このように、伸側通路4、伸側副通路20a,22aで伸側室R1と圧側室R2とを連通する場合、ピストン2にこれら通路を設けてよい。   In each of the embodiments, the extension side sub-passages 20a and 22a in the extension side passage 4 and the extension side auxiliary attenuation circuits 10a and 10b are configured to communicate the extension side chamber R1 and the reservoir R as described above. However, the extension side chamber R1 and the compression side chamber R2 may communicate with each other. In this case, the hydraulic oil moves from the expansion side chamber R1 to the pressure side chamber R2 when the expansion operation is performed, but the pressure side chamber R2 is operated for the volume of the rod 4 leaving the cylinder 1 through the suction passage 18 from the reservoir R. Since the oil supply is received, the pressure side chamber R2 has the same pressure as the inside of the reservoir R. Therefore, the operation is exactly the same as the above-described shock absorbers D and D ′. Therefore, when the extension side chamber R1 and the compression side chamber R2 are communicated with each other by the extension side passage 4 and the extension side sub passages 20a and 22a, these passages may be provided in the piston 2.

また、図示したところでは、伸側副減衰回路10a,10bおよび圧側副減衰回路11a,11bにおける伸側減衰弁5、伸側副減衰弁20b,22b、圧側減衰弁8、リザーバ側減衰弁9、圧側副減衰弁21c,23c、リザーバ側副減衰弁21d,23d、圧側副切換弁21e,23eおよび収束切換弁41,43が、シリンダ1の外方に設けられているが、これらをヘッド部材12およびボトム部材13の内部に設置するようにしても良いことは無論である。   Further, in the drawing, the expansion side sub-attenuation circuits 10a and 10b and the compression side sub-attenuation circuits 11a and 11b have the expansion side attenuation valve 5, the expansion side auxiliary attenuation valves 20b and 22b, the compression side attenuation valve 8, the reservoir side attenuation valve 9, The pressure side auxiliary damping valves 21c and 23c, the reservoir side auxiliary damping valves 21d and 23d, the pressure side auxiliary switching valves 21e and 23e, and the convergence switching valves 41 and 43 are provided on the outer side of the cylinder 1. Of course, it may be installed inside the bottom member 13.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。   This is the end of the description of the embodiment of the present invention, but the scope of the present invention is of course not limited to the details shown or described.

一実施の形態における緩衝器における回路図である。It is a circuit diagram in the buffer in one embodiment. 一実施の形態における緩衝器の減衰特性図である。It is an attenuation characteristic figure of a buffer in one embodiment. 一実施の形態の一変形例における緩衝器における回路図である。It is a circuit diagram in the buffer in one modification of one embodiment.

符号の説明Explanation of symbols

1 シリンダ
2 ピストン
3 ロッド
4 伸側通路
5 伸側減衰弁
6 伸圧通路
7 圧リザーバ通路
8 圧側減衰弁
9 リザーバ側減衰弁
10a,10b 伸側副減衰回路
11a,11b 圧側副減衰回路
12 ヘッド部材
13 ボトム部材
14,15 リリーフ流路
16 伸側リリーフ弁
17 圧側リリーフ弁
18 吸込通路
19,57,58 逆止弁
20a,22a 伸側副通路
20b,22b 伸側副減衰弁
21a,23a 伸圧副通路
21b,23b 圧リザーバ副通路
21c,23c 圧側副減衰弁
21d,23d リザーバ側副減衰弁
21e,23e 圧側副切換弁
40,42 収束通路
41,43 収束切換弁
51,52,53,54,55,56 固定オリフィス
D,D’ 緩衝器
R リザーバ
R1 伸側室
R2 圧側室
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Piston 3 Rod 4 Extension side channel | path 5 Extension side damping valve 6 Extension pressure passage 7 Pressure reservoir passage 8 Pressure side damping valve 9 Reservoir side damping valve 10a, 10b Extension side auxiliary damping circuit 11a, 11b Pressure side auxiliary damping circuit 12 Head member 13 Bottom member 14, 15 Relief channel 16 Stretch side relief valve 17 Pressure side relief valve 18 Suction passage 19, 57, 58 Check valve 20a, 22a Stretch side sub passage 20b, 22b Stretch side sub damping valve 21a, 23a Stretch side Passages 21b, 23b Pressure reservoir sub-passages 21c, 23c Pressure-side sub-damping valves 21d, 23d Reservoir-side sub-damping valves 21e, 23e Pressure-side sub-switching valves 40, 42 Converging passages 41, 43 Converging switching valves 51, 52, 53, 54, 55 , 56 Fixed orifice D, D 'Buffer R Reservoir R1 Extension side chamber R2 Pressure side chamber

Claims (4)

シリンダと、シリンダ内に摺動自在に挿入されるとともにシリンダ内を伸側室と圧側室とに区画するピストンと、シリンダ内に移動自在に挿入されるともに一端がピストンに連結されるロッドと、リザーバと、伸側室とリザーバ或いは圧側室とを連通する伸側通路と伸側通路の途中に設けられて伸側室からリザーバ或いは圧側室へ向かう流体の流れに抵抗を与える伸側減衰弁と、伸側室と圧側室とを連通する伸圧通路と、圧側室とリザーバとを連通する圧リザーバ通路と、伸圧通路の途中に設けられて圧側室から伸側室へ向かう流体の流れに抵抗を与える圧側減衰弁と、圧リザーバ通路の途中に設けられて圧側室からリザーバへ向かう流体の流れに抵抗を与えるリザーバ側減衰弁と、を備えた緩衝器において、対をなす伸側副減衰回路と圧側副減衰回路を少なくとも一対以上設け、伸側副減衰回路は、伸側室とリザーバ或いは圧側室とを連通する伸側副通路と、伸側副通路の途中に設けられて伸側室からリザーバ或いは圧側室へ向かう流体の流れに抵抗を与える伸側副減衰弁と、伸側副通路の途中に設けられて伸側副通路を開閉する伸側副切換弁とを備え、圧側副減衰回路は、伸側室と圧側室とを連通する伸圧副通路と、圧側室とリザーバとを連通する圧リザーバ副通路と、伸圧副通路の途中に設けられて圧側室から伸側室へ向かう流体の流れに抵抗を与える圧側副減衰弁と、圧リザーバ副通路の途中に設けられて圧側室からリザーバへ向かう流体の流れに抵抗を与えるリザーバ側副減衰弁と、伸圧副通路の途中に設けられて伸圧副通路を開閉する圧側副切換弁と、圧リザーバ副通路の途中に設けられて圧リザーバ副通路を開閉するリザーバ側副切換弁とを備えてなることを特徴とする緩衝器。 A cylinder, a piston that is slidably inserted into the cylinder and that divides the cylinder into an extension side chamber and a pressure side chamber, a rod that is movably inserted into the cylinder and has one end connected to the piston, and a reservoir An extension side passage that communicates between the extension side chamber and the reservoir or the compression side chamber, and an extension side damping valve that is provided in the middle of the extension side passage and that provides resistance to the flow of fluid from the extension side chamber toward the reservoir or the pressure side chamber; A pressure-side damping that provides resistance to the flow of fluid from the pressure-side chamber to the extension-side chamber, provided in the middle of the pressure-reduction passage, and a pressure-retention passage that communicates the pressure-side chamber with the pressure-side chamber In a shock absorber comprising a valve and a reservoir-side damping valve that is provided in the middle of the pressure reservoir passage and provides resistance to the flow of fluid from the pressure-side chamber toward the reservoir, a pair of expansion-side sub-attenuation circuit and pressure-side At least one pair of damping circuits is provided, and the extension side sub-attenuation circuit is provided in the middle of the extension side sub passage and the extension side sub passage from the extension side chamber to the reservoir or pressure side chamber. An expansion side sub-damping valve that provides resistance to the flow of the fluid to be directed, and an expansion side sub-switching valve that is provided in the middle of the expansion side sub-passage to open and close the expansion side sub-passage. A pressure expansion sub-passage that communicates with the pressure side chamber, a pressure reservoir sub-passage that communicates the pressure side chamber and the reservoir, and a resistance provided to the flow of fluid from the pressure side chamber toward the expansion side chamber. A pressure side auxiliary damping valve, a reservoir side auxiliary damping valve that is provided in the middle of the pressure reservoir auxiliary passage and resists the flow of fluid from the pressure side chamber toward the reservoir, and a pressure extension auxiliary passage that is provided in the middle of the pressure extension auxiliary passage Pressure side sub-switching valve for opening and closing and pressure reservoir sub-passage Shock absorber, characterized by comprising a reservoir collateral control valve for opening and closing the pressure reservoir sub passage provided in the middle of the. 対となる伸側副減衰回路と圧側副減衰回路における伸側副通路と圧リザーバ副通路とをリザーバへ接続する収束通路を設け、当該収束通路の途中に収束通路を開閉する収束切換弁を設け、当該収束切換弁が伸側副切換弁とリザーバ側副切換弁とを兼ねることを特徴とする請求項1に記載の緩衝器。 A converging passage that connects the expansion side sub-passage and the pressure reservoir sub-passage in the pair of extension side sub-attenuation circuit and pressure side sub-attenuation circuit to the reservoir is provided, and a convergence switching valve that opens and closes the convergence passage is provided in the middle of the convergence passage 2. The shock absorber according to claim 1, wherein the convergence switching valve serves as an expansion side sub switching valve and a reservoir side sub switching valve. 伸側減衰弁、圧側減衰弁、リザーバ側減衰弁、伸側副減衰弁、圧側副減衰弁およびリザーバ側副減衰弁のうちの任意のものに固定オリフィスを並列したことを特徴とする請求項1または2に記載の緩衝器。 The fixed orifice is arranged in parallel with any one of the expansion side damping valve, the pressure side damping valve, the reservoir side damping valve, the stretching side sub damping valve, the pressure side sub damping valve, and the reservoir side sub damping valve. Or the shock absorber according to 2. 伸側減衰弁、圧側減衰弁、リザーバ側減衰弁、伸側副減衰弁、圧側副減衰弁およびリザーバ側副減衰弁の各々を圧力比例弁としたことを特徴とする請求項1から3のいずれかに記載の緩衝器。 4. The expansion side damping valve, the pressure side damping valve, the reservoir side damping valve, the stretching side secondary damping valve, the pressure side secondary damping valve, and the reservoir side secondary damping valve are pressure proportional valves, respectively. A shock absorber according to the above.
JP2007209346A 2007-08-10 2007-08-10 Shock absorber Expired - Fee Related JP4787802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209346A JP4787802B2 (en) 2007-08-10 2007-08-10 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209346A JP4787802B2 (en) 2007-08-10 2007-08-10 Shock absorber

Publications (2)

Publication Number Publication Date
JP2009041706A true JP2009041706A (en) 2009-02-26
JP4787802B2 JP4787802B2 (en) 2011-10-05

Family

ID=40442643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209346A Expired - Fee Related JP4787802B2 (en) 2007-08-10 2007-08-10 Shock absorber

Country Status (1)

Country Link
JP (1) JP4787802B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441739A (en) * 1987-08-07 1989-02-14 Nat House Ind Ventilator
JPH03219133A (en) * 1990-01-20 1991-09-26 Atsugi Unisia Corp Hydraulic pressure buffer
JPH06330977A (en) * 1993-05-20 1994-11-29 Tokico Ltd Damping force regulation type hydraulic buffer
JPH11101291A (en) * 1997-09-30 1999-04-13 Tokico Ltd Damping force regulation type hydraulic buffer
JPH11132277A (en) * 1997-10-27 1999-05-18 Tokico Ltd Damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441739A (en) * 1987-08-07 1989-02-14 Nat House Ind Ventilator
JPH03219133A (en) * 1990-01-20 1991-09-26 Atsugi Unisia Corp Hydraulic pressure buffer
JPH06330977A (en) * 1993-05-20 1994-11-29 Tokico Ltd Damping force regulation type hydraulic buffer
JPH11101291A (en) * 1997-09-30 1999-04-13 Tokico Ltd Damping force regulation type hydraulic buffer
JPH11132277A (en) * 1997-10-27 1999-05-18 Tokico Ltd Damper

Also Published As

Publication number Publication date
JP4787802B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4840557B2 (en) Damping force adjustable hydraulic shock absorber
JP4919045B2 (en) Damping force adjustable fluid pressure shock absorber
WO2013069469A1 (en) Suspension device for vehicle
WO2016060066A1 (en) Cylinder device
JP2011075060A (en) Damping force adjustment type shock absorber
JP2010038348A (en) Damping force adjustable shock absorber
WO2016199667A1 (en) Damper
CN102878236A (en) Adjustable damping valve device having an emergency operation valve
US20050029063A1 (en) Shock absorber having variable damping characteristics and method of damping vibrations with the shock absorber
JP6263032B2 (en) damper
JP5672502B2 (en) Vehicle suspension system
JP6305102B2 (en) Fluid pressure buffer
JP4787802B2 (en) Shock absorber
JP2002257179A (en) Hydraulic buffer
EP4317738A1 (en) Fluid pressure shock absorber
JP2008008471A (en) Damping force adjustment type hydraulic shock absorber
JP2022165374A (en) damper
JP6593127B2 (en) Damper
JP5330003B2 (en) Shock absorber
JP2000283210A (en) Hydraulic shock absorber
CN103228945B (en) Damping cylinder
JP4426956B2 (en) Shock absorber
JP6143517B2 (en) damper
JP2019183979A (en) Damper for railroad vehicle
WO2023171508A1 (en) Fluid pressure buffer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R151 Written notification of patent or utility model registration

Ref document number: 4787802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees