JP2009041662A - Torque converter with lock-up clutch - Google Patents

Torque converter with lock-up clutch Download PDF

Info

Publication number
JP2009041662A
JP2009041662A JP2007207076A JP2007207076A JP2009041662A JP 2009041662 A JP2009041662 A JP 2009041662A JP 2007207076 A JP2007207076 A JP 2007207076A JP 2007207076 A JP2007207076 A JP 2007207076A JP 2009041662 A JP2009041662 A JP 2009041662A
Authority
JP
Japan
Prior art keywords
clutch
torque
impeller
turbine impeller
torque converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007207076A
Other languages
Japanese (ja)
Other versions
JP4987617B2 (en
Inventor
Tomohiko Usui
友彦 薄井
Hiroya Abe
浩也 安部
Yoshimune Mishima
義崇 三島
Hideki Matsuoka
英樹 松岡
Akira Tsuboi
彰 坪井
Tomohiko Tsuchiya
智彦 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yutaka Giken Co Ltd
FCC Co Ltd
Original Assignee
Honda Motor Co Ltd
Yutaka Giken Co Ltd
FCC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yutaka Giken Co Ltd, FCC Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007207076A priority Critical patent/JP4987617B2/en
Publication of JP2009041662A publication Critical patent/JP2009041662A/en
Application granted granted Critical
Publication of JP4987617B2 publication Critical patent/JP4987617B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series

Landscapes

  • Control Of Fluid Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torque converter with a lock-up clutch, having compact construction for improving the vibration reducing effect of a driving system resulting in a wider low-vehicle-speed region of the torque converter to which the lock-up clutch is directly connected, to improve low mileage performance. <P>SOLUTION: In the torque converter, an inertia mass 35 is arranged between a transmission cover 5 and a turbine blade 2 rotatably relative thereto, the transmission cover 5 and the inertia mass 35 are connected to each other via a first torque damper spring 36 and the inertia mass 35 and the turbine blade 2 are connected to each other via a second torque damper spring 37, and the first and second torque damper springs 36, 37 are arranged radially outward from a maximum swollen point 48 on the outside face of the turbine blade 2 along the peripheral direction of the turbine blade 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,ポンプ羽根車と,これに作動オイルの循環回路を介して連結されるタービン羽根車と,ポンプ羽根車に連設されてタービン羽根車外側面を覆う伝動カバーと,この伝動カバー及びタービン羽根車間を機械的に連結し得るロックアップクラッチとを備える,ロックアップクラッチ付きトルクコンバータの改良に関する。   The present invention relates to a pump impeller, a turbine impeller connected to the pump impeller via a circulation circuit of working oil, a transmission cover that is connected to the pump impeller and covers an outer surface of the turbine impeller, and the transmission cover and the turbine. The present invention relates to an improvement in a torque converter with a lock-up clutch, which includes a lock-up clutch that can mechanically connect impellers.

近年,かゝるロックアップクラッチ付きトルクコンバータを搭載した自動変速車両では,低燃費性能の向上のため,ロックアップクラッチの接続によるトルクコンバータの直結領域を,より低車速領域に広げる傾向があるが,それに伴ないエンジンの回転変動による駆動系の振動が発生し易くなる。その駆動系の振動を低減するために,かゝるロックアップクラッチ付きトルクコンバータにおいては,ロックアップクラッチの接続によるトルクコンバータの直結状態での駆動系の振動を低減するために,ロックアップクラッチ及びタービン羽根車間にトルクダンパスプリングを介装することが,例えば特許文献1に開示されるように知られている。このような従来のロックアップクラッチ付きトルクコンバータの直結状態での車両の駆動系の簡易振動モデルを図8に示す。
特開昭61−252958号公報
In recent years, automatic transmission vehicles equipped with such a torque converter with a lock-up clutch tend to expand the direct connection area of the torque converter by connecting the lock-up clutch to a lower vehicle speed range in order to improve fuel efficiency. As a result, vibrations of the drive system due to engine rotation fluctuations are likely to occur. In order to reduce the vibration of the drive system, in such a torque converter with a lock-up clutch, in order to reduce the vibration of the drive system in the direct connection state of the torque converter due to the connection of the lock-up clutch, It is known that a torque damper spring is interposed between the turbine impellers as disclosed in Patent Document 1, for example. FIG. 8 shows a simple vibration model of a vehicle drive system in such a state where the conventional torque converter with a lockup clutch is directly connected.
JP 61-252958 A

上記従来のものでは,トルクダンパスプリングに,ばね定数が小さく,ストローク長の大きい圧縮コイルばねを用いてポンプ羽根車及びタービン羽根車間の捩じり剛性を極力小さくしようとしている。しかしながら,ばね定数が小さく,ストローク長の大きい圧縮コイルばねは,コイル径を極力大径にする必要があるため,トルクコンバータ内に配置する際のスペース上の制約から,上記捩じり剛性の低減には限界があり,駆動系の振動低減効果は大きいとは言えない。   In the above conventional one, a torsional rigidity between the pump impeller and the turbine impeller is made as small as possible by using a compression coil spring having a small spring constant and a large stroke length for the torque damper spring. However, compression coil springs with small spring constants and large stroke lengths require the coil diameter to be as large as possible, so the torsional rigidity is reduced due to space limitations when placed in the torque converter. There is a limit to this, and it cannot be said that the vibration reduction effect of the drive system is great.

本発明は,かゝる事情に鑑みてなされたもので,低燃費性能の向上のため,ロックアップクラッチの接続によるトルクコンバータの直結領域を,より低車速領域に広げることを可能にすべく駆動系の振動低減効果を高め,しかもコンパクトに構成し得るロックアップクラッチ付きトルクコンバータを提供することを目的とする。   The present invention has been made in view of such circumstances. In order to improve fuel efficiency, the present invention is driven so as to make it possible to expand the direct connection region of the torque converter by connecting the lock-up clutch to a lower vehicle speed region. An object of the present invention is to provide a torque converter with a lock-up clutch that can enhance the vibration reduction effect of the system and can be configured compactly.

上記目的を達成するために,本発明は,ポンプ羽根車と,これに作動オイルの循環回路を介して連結されるタービン羽根車と,ポンプ羽根車に連設されてタービン羽根車外側面を覆う伝動カバーと,この伝動カバー及びタービン羽根車間を機械的に連結し得るロックアップクラッチとを備える,ロックアップクラッチ付きトルクコンバータにおいて,伝動カバー及びタービン羽根車間に,それらと相対回転可能な慣性質量体を配設すると共に,伝動カバー及び慣性質量体間を第1トルクダンパスプリングを介して,また慣性質量体及びタービン羽根車間を第2トルクダンパスプリングを介してそれぞれ連結し,これら第1及び第2トルクダンパスプリングを,トーラス状をなすポンプ羽根車及びタービン羽根車の外面の,タービン羽根車側の側方最大膨らみ点より半径方向外方にタービン羽根車の周方向に沿って配置したことを第1の特徴とする。   In order to achieve the above object, the present invention provides a pump impeller, a turbine impeller connected to the pump impeller through a circulation circuit of hydraulic oil, and a transmission that is connected to the pump impeller and covers an outer surface of the turbine impeller. In a torque converter with a lock-up clutch comprising a cover and a lock-up clutch that can mechanically connect the transmission cover and the turbine impeller, an inertia mass body that can rotate relative to the transmission cover and the turbine impeller is provided between the transmission cover and the turbine impeller. The transmission cover and the inertia mass body are connected via a first torque damper spring, and the inertia mass body and the turbine impeller are connected via a second torque damper spring, respectively. Install the damper spring on the outer surface of the torus-shaped pump impeller and turbine impeller on the turbine impeller side. That is arranged along the circumferential direction of the turbine impeller radially outward of square maximum bulge point to the first feature.

また本発明は,第1の特徴に加えて,前記慣性質量体に第2の慣性質量体を回転自在に連結すると共に,この第2の慣性質量体を弾性部材を介して前記慣性質量体に連結し,これら第2の慣性質量体及び弾性部材により,前記慣性質量体の振動を打ち消す吸振器を構成したことを第2の特徴とする。   According to the present invention, in addition to the first feature, a second inertial mass is rotatably coupled to the inertial mass, and the second inertial mass is connected to the inertial mass via an elastic member. A second feature is that a vibration absorber that is coupled and cancels the vibration of the inertial mass body is constituted by the second inertial mass body and the elastic member.

尚,前記弾性部材は,後述する本発明の第2実施例中のコイルスプリング53に対応する。   The elastic member corresponds to a coil spring 53 in a second embodiment of the present invention to be described later.

本発明の第1の特徴によれば,伝動カバー及びタービン羽根車間に,それらと相対回転可能な慣性質量体を配設すると共に,伝動カバー及び慣性質量体間を第1トルクダンパスプリングを介して,また慣性質量体及びタービン羽根車間を第2トルクダンパスプリングを介してそれぞれ連結し,これら第1及び第2トルクダンパスプリングを,トーラス状をなすポンプ羽根車及びタービン羽根車の外面の,タービン羽根車側の側方最大膨らみ点より半径方向外方にタービン羽根車の周方向に沿って配置したことにより,第1及び第2トルクダンパスプリングの合成ばね定数を大幅に減少させて,共振振動数を大幅に低くすることができる。その結果,トルクコンバータの実際の直結領域をエンジン回転数の低速側に広げることが可能となり,低燃費性の向上を図ることができる。またトルクコンバータを実際に直結にするエンジン回転数を従来のものと同一に設定した場合には,振動伝達率を従来のものより下げることができ,NV性能の向上に寄与し得る。   According to the first aspect of the present invention, an inertial mass body that is rotatable relative to the transmission cover and the turbine impeller is disposed, and the transmission cover and the inertial mass body are interposed between the transmission cover and the inertial mass body via the first torque damper spring. In addition, the inertia mass body and the turbine impeller are connected to each other through a second torque damper spring, and the first and second torque damper springs are connected to the turbine impeller on the outer surface of the pump impeller and the turbine impeller having a torus shape. By arranging along the circumferential direction of the turbine impeller radially outward from the maximum lateral bulge point on the vehicle side, the combined spring constant of the first and second torque damper springs can be greatly reduced, and the resonance frequency can be reduced. Can be significantly reduced. As a result, the actual direct connection region of the torque converter can be expanded to the low speed side of the engine speed, and the fuel efficiency can be improved. Further, when the engine speed at which the torque converter is actually directly connected is set to be the same as that of the conventional one, the vibration transmissibility can be lowered as compared with the conventional one, which can contribute to the improvement of the NV performance.

さらに,第1及び第2トルクダンパスプリング間に介在する慣性質量体がエンジンから入力される回転変動を打ち消すように作用するため,負荷側への回転変動の伝達を更に小さくすることができる。   Furthermore, since the inertia mass body interposed between the first and second torque damper springs acts to cancel the rotational fluctuation input from the engine, the transmission of the rotational fluctuation to the load side can be further reduced.

しかも,タービン羽根車の外側面外周側のデッドスペースが第1及び第2トルクダンパスプリングの設置に有効利用され,ロックアップクラッチ付きトルクコンバータのコンパクト化に寄与し得る。   In addition, the dead space on the outer peripheral side of the outer surface of the turbine impeller is effectively used for installing the first and second torque damper springs, and can contribute to the compactness of the torque converter with the lockup clutch.

本発明の第2の特徴によれば,慣性質量体と,それと逆位相で第2の慣性質量体が振動することで,両慣性質量体が互いに振動を打ち消し合うことになり,負荷側への回転変動の伝達をより小さく抑えることができ,NV特性の更なる向上に寄与することができる。   According to the second feature of the present invention, the inertial mass body and the second inertial mass body vibrate in the opposite phase to each other, so that the two inertial mass bodies cancel each other's vibrations to the load side. Transmission of rotational fluctuation can be suppressed to a smaller level, which can contribute to further improvement in NV characteristics.

本発明の実施の形態を,添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

図1は本発明の第1実施例に係るロックアップクラッチ付きトルクコンバータの上半部縦断側面図,図2は同トルクコンバータの直結状態での車両の駆動系の簡易振動モデル図,図3は上記駆動系の振動特性の計算結果を示す図表,図4は本発明の第2実施例を示す,図1との対応図,図5は同トルクコンバータの直結状態での車両の駆動系の簡易振動モデル図,図6は上記駆動系の振動特性の計算結果を示す図表,図7は本発明の第3実施例を示す,図1との対応図,図8は従来のロックアップクラッチ付きトルクコンバータの直結状態での車両の駆動系の簡易振動モデル図である。   FIG. 1 is a vertical side view of the upper half of a torque converter with a lock-up clutch according to a first embodiment of the present invention, FIG. 2 is a simplified vibration model diagram of a vehicle drive system when the torque converter is directly connected, and FIG. FIG. 4 is a chart showing the calculation results of the vibration characteristics of the drive system, FIG. 4 is a diagram corresponding to FIG. 1 showing a second embodiment of the present invention, and FIG. 5 is a simplified diagram of the vehicle drive system in the direct connection state of the torque converter. FIG. 6 is a diagram showing the calculation results of the vibration characteristics of the drive system, FIG. 7 is a diagram corresponding to FIG. 1, showing a third embodiment of the present invention, and FIG. 8 is a conventional torque with a lock-up clutch. It is a simple vibration model figure of the drive system of a vehicle in the direct connection state of a converter.

先ず,本発明の第1実施例の説明より始める。図1において,トルクコンバータTは,ポンプ羽根車1と,このポンプ羽根車1に作動オイルの循環回路3を介して連結されるタービン羽根車2と,それらの内周部間に配置されて循環回路3における作動オイルの流れを制御するステータ羽根車4とより構成される。   First, the description starts with the description of the first embodiment of the present invention. In FIG. 1, a torque converter T is disposed between a pump impeller 1, a turbine impeller 2 connected to the pump impeller 1 through a working oil circulation circuit 3, and an inner peripheral portion thereof. It comprises a stator impeller 4 that controls the flow of hydraulic oil in the circuit 3.

ポンプ羽根車1には,タービン羽根車2の外側面を覆う伝動カバー5が一体的に連設される。この伝動カバー5の外周面には,始動用のリングギヤ6が固設されており,エンジンのクランク軸Eaにボルト結合した駆動板7がこのリングギヤ6にボルト結合される。   A transmission cover 5 that covers the outer surface of the turbine impeller 2 is integrally connected to the pump impeller 1. A starting ring gear 6 is fixed to the outer peripheral surface of the transmission cover 5, and a drive plate 7 bolted to the crankshaft Ea of the engine is bolted to the ring gear 6.

タービン羽根車2のハブ2aと伝動カバー5との間にスラストベアリング8が介裝される。上記ハブ2aの,スラストベアリング8に接する外端面には放射状の油溝9が設けられる。   A thrust bearing 8 is interposed between the hub 2 a of the turbine impeller 2 and the transmission cover 5. Radial oil grooves 9 are provided on the outer end surface of the hub 2a in contact with the thrust bearing 8.

トルクコンバータTの中心部にクランク軸Eaと同軸上に並ぶ出力軸10が配置され,この出力軸10は,タービン羽根車2のハブ2aにスプライン嵌合されると共に,伝動カバー5のハブ5aの内周面に軸受ブッシュ16を介して回転自在に支承される。出力軸10は多段変速機の主軸となる。   An output shaft 10 arranged coaxially with the crankshaft Ea is disposed at the center of the torque converter T. The output shaft 10 is spline-fitted to the hub 2a of the turbine impeller 2 and is connected to the hub 5a of the transmission cover 5. A bearing bush 16 is rotatably supported on the inner peripheral surface. The output shaft 10 becomes the main shaft of the multi-stage transmission.

出力軸10の外周には,ステータ羽根車4のハブ4aをフリーホイール11を介して支持する円筒状のステータ軸12が配置され,これら出力軸10及びステータ軸12間には,それらの相対回転を許容するベアリング15が介裝される。ステータ軸12の外端部はミッションケース14に回転不能に支持される。   A cylindrical stator shaft 12 for supporting the hub 4a of the stator impeller 4 via a free wheel 11 is disposed on the outer periphery of the output shaft 10, and the relative rotation between the output shaft 10 and the stator shaft 12 is arranged. The bearing 15 which accepts is interposed. The outer end portion of the stator shaft 12 is supported by the transmission case 14 so as not to rotate.

ステータ羽根車4のハブ4aと,これに対向するポンプ羽根車1及びタービン羽根車2の各ハブ1a,2aとの間にはスラストベアリング18,18′が介裝される。   Thrust bearings 18, 18 ′ are interposed between the hub 4 a of the stator impeller 4 and the hubs 1 a, 2 a of the pump impeller 1 and the turbine impeller 2 opposed to the hub 4 a.

またポンプ羽根車1のハブ1aには補機駆動軸20が連設され,この補機駆動軸20によって,前記循環回路3に作動オイルを供給するオイルポンプ21が駆動される。   An auxiliary machine drive shaft 20 is connected to the hub 1 a of the pump impeller 1, and an oil pump 21 that supplies hydraulic oil to the circulation circuit 3 is driven by the auxiliary machine drive shaft 20.

タービン羽根車2及び伝動カバー5間には,クラッチ室22が画成され,タービン羽根車2及び伝動カバー5間を直結し得るロックアップクラッチLが該室22に収容される。   A clutch chamber 22 is defined between the turbine impeller 2 and the transmission cover 5, and a lockup clutch L that can be directly connected between the turbine impeller 2 and the transmission cover 5 is accommodated in the chamber 22.

ロックアップクラッチLの主体をなすクラッチピストン25は,クラッチ室22をタービン羽根車2側の内側室22aと伝動カバー5側の外側室22bとに区画するように配置される。このクラッチピストン25は,伝動カバー5の内側面に対向する摩擦ライニング25aを外周部側壁に備えていて,この摩擦ライニング25aを伝動カバー5の内側面に圧接させる接続位置と,その内壁から離間する非接続位置との間を軸方向に移動し得るように,タービン羽根車2のハブ2aの外周面に,該ピストン25のボス25bが摺動可能に支持される。   The clutch piston 25 that forms the main body of the lockup clutch L is arranged so as to partition the clutch chamber 22 into an inner chamber 22a on the turbine impeller 2 side and an outer chamber 22b on the transmission cover 5 side. The clutch piston 25 is provided with a friction lining 25a facing the inner side surface of the transmission cover 5 on the outer peripheral side wall, and is separated from the connection position where the friction lining 25a is pressed against the inner side surface of the transmission cover 5 and the inner wall. The boss 25b of the piston 25 is slidably supported on the outer peripheral surface of the hub 2a of the turbine impeller 2 so that it can move in the axial direction between the unconnected positions.

出力軸10の中心部には,横孔26及び前記スラストベアリング8を介してクラッチ室22の外側室22bに連通する第1油路30が設けられる。また補機駆動軸20とステータ軸12との間には,前記スラストベアリング18,18′及びフリーホイール11を介して循環回路3の内周部に連通する第2油路31が形成される。   A first oil passage 30 communicating with the outer chamber 22 b of the clutch chamber 22 through the lateral hole 26 and the thrust bearing 8 is provided at the center of the output shaft 10. A second oil passage 31 communicating with the inner peripheral portion of the circulation circuit 3 is formed between the auxiliary drive shaft 20 and the stator shaft 12 through the thrust bearings 18 and 18 ′ and the free wheel 11.

前記クラッチピストン25のボス25bは,先端部をタービン羽根車2側に張り出しており,このボス25bの外周面に円板状の慣性質量体35が回転及び摺動可能に支持される。そしてクラッチピストン25及び慣性質量体35間には,その間を回転方向に沿って緩衝的に連結する第1トルクダンパスプリング36が介装され,また慣性質量体35及びタービン羽根車2間には,その間を回転方向に沿って緩衝的に連結する第2トルクダンパスプリング37が介装される。   The boss 25b of the clutch piston 25 protrudes from the tip of the boss 25b toward the turbine impeller 2, and a disc-shaped inertia mass body 35 is supported on the outer peripheral surface of the boss 25b so as to be rotatable and slidable. A first torque damper spring 36 is provided between the clutch piston 25 and the inertia mass body 35 so as to provide a buffer connection between the clutch piston 25 and the inertia mass body 35 in the rotational direction. Further, between the inertia mass body 35 and the turbine impeller 2, A second torque damper spring 37 that interposes between them along the rotational direction is interposed.

詳しくは,クラッチピストン25の外周端部には,慣性質量体35側に開口する環状の第1ばね収容溝40が形成されており,この第1ばね収容溝40にコイルばねよりなる複数の第1トルクダンパスプリング36がタービン羽根車2の周方向に沿うように収容される。そして各第1トルクダンパスプリング36は,クラッチピストン25及び慣性質量体35にそれぞれ固着される第1及び第2挟み爪41,42により第1ばね収容溝40の周方向に沿って挟持される。したがってクラッチピストン25及び慣性質量体35が相対回転すると,各第1トルクダンパスプリング36が第1及び第2挟み爪41,42間で圧縮されることになる。   Specifically, an annular first spring accommodating groove 40 that opens to the inertia mass body 35 side is formed at the outer peripheral end of the clutch piston 25, and a plurality of first springs comprising coil springs are formed in the first spring accommodating groove 40. One torque damper spring 36 is accommodated along the circumferential direction of the turbine impeller 2. Each first torque damper spring 36 is clamped along the circumferential direction of the first spring housing groove 40 by first and second clamping claws 41 and 42 fixed to the clutch piston 25 and the inertia mass body 35, respectively. Therefore, when the clutch piston 25 and the inertia mass body 35 rotate relative to each other, the first torque damper springs 36 are compressed between the first and second pinching claws 41 and 42.

また慣性質量体35の外周端部には,タービン羽根車2側に開口する第2ばね収容溝44が形成されており,この第2ばね収容溝44に複数のコイルばねよりなる複数の第2トルクダンパスプリング37がタービン羽根車2の周方向に沿うように収容される。そして各第2トルクダンパスプリング37は,慣性質量体35及びタービン羽根車2にそれぞれ固着される第3及び第4挟み爪45,46により第2ばね収容溝44の周方向に沿って挟持される。したがって慣性質量体35及びタービン羽根車2が相対回転すると,各第2トルクダンパスプリング37が第3及び第4挟み爪45,46間で圧縮されることになる。   Further, a second spring accommodating groove 44 that opens to the turbine impeller 2 side is formed at the outer peripheral end of the inertia mass body 35, and a plurality of second springs comprising a plurality of coil springs are formed in the second spring accommodating groove 44. The torque damper spring 37 is accommodated along the circumferential direction of the turbine impeller 2. The second torque damper springs 37 are clamped along the circumferential direction of the second spring accommodating groove 44 by third and fourth clamping claws 45 and 46 fixed to the inertia mass body 35 and the turbine impeller 2, respectively. . Therefore, when the inertial mass body 35 and the turbine impeller 2 rotate relative to each other, the second torque damper springs 37 are compressed between the third and fourth clamping claws 45 and 46.

ポンプ羽根車1及びタービン羽根車2の外面はトーラス状をなしており,タービン羽根車2の外側面の最大膨らみ点48より半径方向外方において,前記第1及び第2トルクダンパスプリング36,37が互いに軸方向に並びつゝタービン羽根車2の外側面に近接するように配置される。   The outer surfaces of the pump impeller 1 and the turbine impeller 2 have a torus shape, and the first and second torque damper springs 36, 37 are radially outward from the maximum bulge point 48 on the outer surface of the turbine impeller 2. Are arranged so as to be close to the outer surface of the turbine impeller 2 arranged in the axial direction.

次に,この第1実施例の作用について説明する。   Next, the operation of the first embodiment will be described.

エンジンのアイドリングないし極低速運転域では,図示しないロックアップ制御弁により第1油路30をオイルポンプ21の吐出側に接続する一方,第2油路31をオイル溜め33に開放する。この場合,エンジンのクランク軸Eaの出力トルクは,駆動板7,伝動カバー5,ポンプ羽根車1へと伝達して,それを回転駆動し,更にオイルポンプ21をも駆動するので,オイルポンプ21が吐出した作動オイルは,ロックアップ制御弁32から第1油路30,横孔26,タービン羽根車のハブ2a外端の油溝9,クラッチ室22の外側室22b,内側室22aを順次経て循環回路3に流入し,該回路3を満たした後,スラストベアリング18,18′及びフリーホイール11を順次経て第2油路31に移り,ロックアップ制御弁32からオイル溜め33に還流する。   In the idling or extremely low speed operation region of the engine, the first oil passage 30 is connected to the discharge side of the oil pump 21 by a lockup control valve (not shown), while the second oil passage 31 is opened to the oil reservoir 33. In this case, the output torque of the crankshaft Ea of the engine is transmitted to the drive plate 7, the transmission cover 5, and the pump impeller 1 to rotate and drive the oil pump 21, so that the oil pump 21 The hydraulic oil discharged from the lockup control valve 32 sequentially passes through the first oil passage 30, the lateral hole 26, the oil groove 9 at the outer end of the hub 2a of the turbine impeller, the outer chamber 22b of the clutch chamber 22, and the inner chamber 22a. After flowing into the circulation circuit 3 and filling the circuit 3, the thrust bearings 18, 18 ′ and the free wheel 11 are sequentially transferred to the second oil passage 31 and returned to the oil reservoir 33 from the lockup control valve 32.

一方,クラッチ室22では,上記のような作動オイルの流れにより外側室22bの方が内側室22aよりも高圧となり,その圧力差によりクラッチピストン25が伝動カバー5の内壁から引き離される方向へ押圧されるので,ロックアップクラッチLはオフ状態となっており,ポンプ羽根車1及びタービン羽根車2の相対回転を許容している。したがって,クランク軸Eaからポンプ羽根車1が回転駆動されると,循環回路3を満たしている作動オイルが矢印のように循環回路3を循環することにより,ポンプ羽根車3の回転トルクをタービン羽根車2に伝達し,出力軸10を駆動する。   On the other hand, in the clutch chamber 22, the outer chamber 22 b has a higher pressure than the inner chamber 22 a due to the flow of the hydraulic oil as described above, and the clutch piston 25 is pressed in a direction away from the inner wall of the transmission cover 5 due to the pressure difference. Therefore, the lockup clutch L is in an off state, and the pump impeller 1 and the turbine impeller 2 are allowed to rotate relative to each other. Therefore, when the pump impeller 1 is rotationally driven from the crankshaft Ea, the working oil that fills the circulation circuit 3 circulates in the circulation circuit 3 as indicated by the arrow, so that the rotational torque of the pump impeller 3 is reduced to the turbine blade. This is transmitted to the car 2 to drive the output shaft 10.

このとき,ポンプ羽根車1及びタービン羽根車2間でトルクの増幅作用が生じていれば,それに伴う反力がステータ羽根車4に負担され,ステータ羽根車4は,フリーホイール11のロック作用により固定される。   At this time, if a torque amplifying action is generated between the pump impeller 1 and the turbine impeller 2, the accompanying reaction force is borne by the stator impeller 4, and the stator impeller 4 is caused by the locking action of the freewheel 11. Fixed.

トルク増幅作用を終えると,ステータ羽根車4は,これが受けるトルク方向の反転により,フリーホイール11を空転させながらポンプ羽根車1及びタービン羽根車2と共に同一方向へ回転するようになる。   When the torque amplifying action is finished, the stator impeller 4 rotates in the same direction together with the pump impeller 1 and the turbine impeller 2 while the free wheel 11 is idling due to the reversal of the torque direction received by the stator impeller 4.

トルクコンバータTがこのようなカップリング状態となったとき,もしくはカップリング状態に近づいたとき,電子制御ユニットによりロックアップ制御弁32を切換える。その結果,オイルポンプ21の吐出作動オイルは,先刻とは反対に,ロックアップ制御弁32から第2油路31を経て循環回路3に流入して,該回路3を満たした後,クラッチ室22の内側室22aに移って,該内側室22aをも満たす。一方,クラッチ室22の外側室22bは,第1油路30及びロックアップ制御弁32を介してオイル溜め33に開放されるので,クラッチ室22では,内側室22aの方が外側室22bよりも高圧となり,クラッチピストン25は,その圧力差により伝動カバー5側に押圧され,摩擦ライニング25aを伝動カバー5の内側壁に圧接させ,ロックアップクラッチLは接続状態となる。   When the torque converter T enters such a coupling state or approaches the coupling state, the lockup control valve 32 is switched by the electronic control unit. As a result, the oil discharged from the oil pump 21 flows into the circulation circuit 3 from the lockup control valve 32 through the second oil passage 31 and fills the circuit 3, contrary to the previous operation, and then the clutch chamber 22. The inner chamber 22a is filled to fill the inner chamber 22a. On the other hand, the outer chamber 22b of the clutch chamber 22 is opened to the oil sump 33 via the first oil passage 30 and the lockup control valve 32. Therefore, in the clutch chamber 22, the inner chamber 22a is more than the outer chamber 22b. Due to the pressure difference, the clutch piston 25 is pressed to the transmission cover 5 side, the friction lining 25a is pressed against the inner wall of the transmission cover 5, and the lockup clutch L is connected.

この場合,クランク軸Eaからポンプ羽根車1に伝達した回転トルクは,駆動板7,伝動カバー5,クラッチピストン25,第1トルクダンパスプリング36,慣性質量体35,第2トルクダンパスプリング37をタービン羽根車2に機械的に伝達することになるから,ポンプ羽根車1及びタービン羽根車2間は直結状態となり,クランク軸Eaの出力トルクを出力軸10に効率良く伝達することができ,燃費の低減を図ることができる。   In this case, the rotational torque transmitted from the crankshaft Ea to the pump impeller 1 is transmitted through the drive plate 7, the transmission cover 5, the clutch piston 25, the first torque damper spring 36, the inertia mass body 35, and the second torque damper spring 37 to the turbine. Since it is mechanically transmitted to the impeller 2, the pump impeller 1 and the turbine impeller 2 are directly connected, and the output torque of the crankshaft Ea can be efficiently transmitted to the output shaft 10. Reduction can be achieved.

このようなトルクコンバータTの直結状態での車両の走行を想定し,その駆動系を簡易振動モデルで表現すると図2のようになる。これから明らかなように,第1及び第2トルクダンパスプリング36,37は,伝動カバー5及びタービン羽根車2間に慣性質量体35を介して直列に接続されることになり,しかもトーラス状をなすポンプ羽根車1及びタービン羽根車2の外面の,タービン羽根車2側の側方最大膨らみ点48より半径方向外方にタービン羽根車2の周方向に沿って配置されるので,各トルクダンパスプリング36,37の長さを極力長く設定すると共に,その有効巻き数を極力多くすることができ,したがって下記(1)式より明らかなように,各トルクダンパスプリング36,37のばね定数kを小さく設定することができる。   Assuming that the vehicle is traveling in such a directly connected state of the torque converter T, the drive system is expressed by a simple vibration model as shown in FIG. As is clear from this, the first and second torque damper springs 36, 37 are connected in series between the transmission cover 5 and the turbine impeller 2 via the inertia mass body 35, and have a torus shape. Since the outer surfaces of the pump impeller 1 and the turbine impeller 2 are arranged radially outward from the maximum lateral bulge point 48 on the turbine impeller 2 side along the circumferential direction of the turbine impeller 2, each torque damper spring The lengths 36 and 37 can be set as long as possible, and the effective number of windings can be increased as much as possible. Therefore, as is clear from the following equation (1), the spring constant k of each torque damper spring 36 and 37 is reduced. Can be set.

k=α×d4 /(n×D3 )・・・・・・・(1)
但し,k:個別のコイルスプリングのばね定数,α:係数,d:スプリング線径,D:スプリング外径
その上,直列接続の第1及び第2トルクダンパスプリング36,37の合成ばね定数Kは,下記(2)式より明らかなように,個別のコイルスプリング,即ちトルクダンパスプリングのばね定数に比し大幅に減少させることができ,これにより共振振動数を大幅に低くすることができる。
k = α × d 4 / (n × D 3 ) (1)
Where k is the spring constant of the individual coil spring, α is the coefficient, d is the spring wire diameter, D is the spring outer diameter, and the combined spring constant K of the first and second torque damper springs 36 and 37 connected in series is As can be seen from the following equation (2), the spring constant of the individual coil springs, that is, the torque damper springs, can be greatly reduced, and the resonance frequency can be greatly reduced.

1/K=(1/k1 )+(1/k2 )…+(1/km)・・・・・(2)
但し,K:合成ばね定数,k1 〜km:個別スプリングのばね定数
トルクコンバータTの直結状態での駆動系の振動特性の計算結果を図表にすると,図3の通りとなる。線Aは本発明の第1実施例の特性,線Bは図8に示す従来のものゝ特性を示す。
1 / K = (1 / k 1 ) + (1 / k 2 ) ... + (1 / km) (2)
However, K: composite spring constant, k 1 -km: spring constant of the individual spring When the calculation result of the vibration characteristics of the drive system in the direct connection state of the torque converter T is charted, it is as shown in FIG. Line A shows the characteristic of the first embodiment of the present invention, and line B shows the conventional characteristic shown in FIG.

図3において,縦軸は,該駆動系に入力されるエンジンのクランク軸Eaの回転変動(以下,トルク変動と同義)と,該駆動系から出力される回転変動の比を振動伝達率として表している。この振動伝達率が0dBのときは,入力される回転変動と出力される回転変動との比は1であり,その比が「+」である場合は,回転変動が増幅して出力されることを意味し,「−」である場合は,回転変動が減衰(遮断)されることを意味する。即ち,振動伝達率が小さい値であれば,低車速域におけるトルクコンバータT直結時のNV(noise&vibration)性能が高いと言うことができる。尚,図3における符号a及びbは,線A及びBにおけるタービン羽根車の共振点である。   In FIG. 3, the vertical axis represents the ratio of the rotational fluctuation (hereinafter, synonymous with torque fluctuation) of the engine crankshaft Ea input to the drive system and the rotational fluctuation output from the drive system as a vibration transmissibility. ing. When this vibration transmissibility is 0 dB, the ratio of the input rotation fluctuation to the output rotation fluctuation is 1, and when the ratio is “+”, the rotation fluctuation is amplified and output. And “−” means that the rotational fluctuation is attenuated (cut off). That is, if the vibration transmissibility is a small value, it can be said that the NV (noise & vibration) performance when the torque converter T is directly connected in the low vehicle speed range is high. Note that the symbols a and b in FIG. 3 are the resonance points of the turbine impeller on the lines A and B.

而して,共振点a及びbを比較すると明らかなように,線A(本発明第1実施例)は,線B(従来)に対して全体的に低周波数側に変位しており,伝動カバー5及び慣性質量体35間の捩じり剛性が低くなったことを意味し,前述のように第1及び第2トルクダンパスプリング36,37の合成ばね定数が低下した所以である。したがって,線A(本発明第1実施例)では,振動伝達率=0dBの領域が低周波数側に広がりことになるから,トルクコンバータTの実際の直結領域を線B(従来)に対してQだけエンジン回転数の低速側に広げることが可能となり,低燃費性の向上を図ることができる。また線A及びBにおいて,トルクコンバータTを実際に直結にするエンジン回転数を同一に設定した場合には,線A(本発明第1実施例)では,振動伝達率を線B(従来)に対してRだけ下げることができるから,NV性能の向上に寄与し得る。   Thus, as is apparent from the comparison of the resonance points a and b, the line A (first embodiment of the present invention) is displaced to the lower frequency side as a whole with respect to the line B (conventional). This means that the torsional rigidity between the cover 5 and the inertia mass body 35 has been lowered, and as described above, the combined spring constant of the first and second torque damper springs 36 and 37 has decreased. Therefore, in the line A (first embodiment of the present invention), the region of vibration transmissibility = 0 dB spreads to the low frequency side, so that the actual direct connection region of the torque converter T is Q As a result, the engine speed can be increased to the low speed side, and fuel efficiency can be improved. In addition, in the lines A and B, when the engine speed at which the torque converter T is actually directly connected is set to be the same, in the line A (the first embodiment of the present invention), the vibration transmissibility is changed to the line B (conventional). On the other hand, since R can be lowered, it can contribute to the improvement of NV performance.

さらに,線A(本発明第1実施例)では,第1及び第2トルクダンパスプリング36,37間に介在する慣性質量体35の共振点a2 が新たに発生すると共に,この慣性質量体35がエンジンから入力される回転変動を打ち消すように作用するため,慣性質量体が存在しない従来モデル(線B)に比して,負荷側への回転変動の伝達を更に小さくすることができる。 Further, in the line A (the first embodiment of the present invention), a resonance point a 2 of the inertia mass body 35 interposed between the first and second torque damper springs 36 and 37 is newly generated, and this inertia mass body 35 is also generated. Acts to cancel the rotational fluctuations input from the engine, so that the transmission of rotational fluctuations to the load side can be further reduced compared to the conventional model (line B) in which no inertial mass exists.

しかも,第1及び第2トルクダンパスプリング36,37が,トーラス状をなすポンプ羽根車1及びタービン羽根車2の外面の,タービン羽根車2側の側方最大膨らみ点48より半径方向外方にタービン羽根車2の周方向に沿って配置されることは,タービン羽根車2の外側面外周側のデッドスペースが第1及び第2トルクダンパスプリング36,37の設置に有効利用されることであり,ロックアップクラッチ付きトルクコンバータTのコンパクト化に寄与し得る。   In addition, the first and second torque damper springs 36 and 37 are radially outward from the maximum lateral bulge point 48 on the turbine impeller 2 side on the outer surfaces of the pump impeller 1 and the turbine impeller 2 having a torus shape. Arranging along the circumferential direction of the turbine impeller 2 means that the dead space on the outer peripheral side of the outer surface of the turbine impeller 2 is effectively used for installing the first and second torque damper springs 36 and 37. This can contribute to the compactness of the torque converter T with a lock-up clutch.

さらにまた,慣性質量体35がロックアップクラッチL及びタービン羽根車2間に直列に配置されることから,慣性質量体35と第2トルクダンパスプリング37との容易な一体化が可能であり,さらに慣性質量体35,クラッチピストン25及びタービン羽根車2を相互に着脱可能とすることができるから,ロックアップクラッチ付きトルクコンバータTの組み立てが容易になると共に,異なる車種への搭載が,最小の仕様変更により可能となる。   Furthermore, since the inertial mass body 35 is disposed in series between the lockup clutch L and the turbine impeller 2, the inertial mass body 35 and the second torque damper spring 37 can be easily integrated. Since the inertia mass body 35, the clutch piston 25, and the turbine impeller 2 can be attached to and detached from each other, the torque converter T with the lock-up clutch can be easily assembled and mounted on different vehicle types with minimum specifications. It becomes possible by change.

次に,図4により本発明の第2実施例について説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

この第2実施例は,前実施例に加えて,円板状の前記慣性質量体35に環状の第2の慣性質量体50を相対回転可能に連結すべく,第2の慣性質量体50に連結軸51が固設されると共に,この連結軸51が第2の慣性質量体50の周方向に摺動自在に貫通する円弧状長孔52が第2の慣性質量体50に設けられる。そして第2の慣性質量体50は,コイルスプリング53を介して前記慣性質量体35に連結される。具体的には,慣性質量体35に固着される第2挟み爪42に環状のばね収容部55が一体に形成され,それに複数のコイルスプリング53がタービン羽根車2の周方向に沿って収容され,各コイルスプリング53は,第2の慣性質量体50及びばね収容部55に固設される第5及び第6挟み爪56,57によりばね収容部55の周方向に沿って挟持される。したがって慣性質量体35及び第2の慣性質量体50が相対回転すると,各コイルスプリング53が第5及び第6挟み爪56,57間で圧縮されることになる。而して,第2の慣性質量体50及びコイルスプリング53は,協働して前記慣性質量体35の振動を打ち消す吸振器54を構成する。その他の構成は前実施例と同様であるので,図4中,前実施例と対応する部分には,同一の参照符号を付して,重複する説明を省略する。   In the second embodiment, in addition to the previous embodiment, an annular second inertia mass body 50 is connected to the disk-like inertia mass body 35 so as to be relatively rotatable. The connecting shaft 51 is fixed, and an arcuate long hole 52 through which the connecting shaft 51 passes slidably in the circumferential direction of the second inertial mass body 50 is provided in the second inertial mass body 50. The second inertial mass body 50 is connected to the inertial mass body 35 via a coil spring 53. Specifically, an annular spring accommodating portion 55 is formed integrally with the second pinch claw 42 fixed to the inertia mass body 35, and a plurality of coil springs 53 are accommodated along the circumferential direction of the turbine impeller 2. Each coil spring 53 is clamped along the circumferential direction of the spring accommodating part 55 by the second inertia mass body 50 and the fifth and sixth clamping claws 56 and 57 fixed to the spring accommodating part 55. Therefore, when the inertial mass body 35 and the second inertial mass body 50 rotate relative to each other, the coil springs 53 are compressed between the fifth and sixth sandwiching claws 56 and 57. Thus, the second inertia mass body 50 and the coil spring 53 together constitute a vibration absorber 54 that cancels the vibration of the inertia mass body 35. Since other configurations are the same as those of the previous embodiment, portions corresponding to those of the previous embodiment in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.

この第2実施例において,ロックアップクラッチLの接続によりトルクコンバータTをを直結状態にしたとき,それを含む駆動系簡易振動モデルを図5に示す。またこのときの駆動系の振動特性の計算結果は,図6に線A′で示すことができる。   FIG. 5 shows a drive system simple vibration model including the torque converter T in the second embodiment when the torque converter T is brought into a directly connected state by connecting the lockup clutch L. Further, the calculation result of the vibration characteristic of the drive system at this time can be shown by a line A ′ in FIG.

これらより明らかなように,慣性質量体35が振動するとき,それと逆位相で第2の慣性質量体50が振動する。その結果,両慣性質量体35,50が互いに振動を打ち消し合うことになり,負荷側への回転変動の伝達をより小さく抑えることができ,NV特性が更に向上する。したがって,トルクコンバータTの実際の直結領域を,前実施例の線Aにおける慣性質量体35の前記共振点a2 を越えてエンジンの低速側に拡張しても,負荷側への回転変動の伝達を小さく抑えることができ,NV特性が更に向上し,低燃費性の更なる向上に寄与することができる。 As is clear from these, when the inertial mass body 35 vibrates, the second inertial mass body 50 vibrates in the opposite phase. As a result, both the inertia mass bodies 35 and 50 cancel each other's vibrations, so that the transmission of rotational fluctuations to the load side can be further reduced, and the NV characteristics are further improved. Therefore, even if the actual direct connection region of the torque converter T is extended to the low speed side of the engine beyond the resonance point a 2 of the inertia mass body 35 in the line A of the previous embodiment, the rotation fluctuation is transmitted to the load side. Can be kept small, the NV characteristics can be further improved, and the fuel efficiency can be further improved.

次に,図7に示す本発明の第3実施例について説明する。   Next, a third embodiment of the present invention shown in FIG. 7 will be described.

この第3実施例は,第1実施例のクラッチピストン25を,専ら第1トルクダンパスプリング36を保持するダンパプレート25′に置き換えて,このダンパプレート25′と伝動カバー5との間に多板式のロックアップクラッチLを介装したものである。ダンパプレート25′のボス25′aは,第1実施例のクラッチピストン25の場合と同様にタービン羽根車2のハブ2aに回転自在に支持され,慣性質量体35は,そのボス25′aに回転自在に支持される。   In the third embodiment, the clutch piston 25 of the first embodiment is exclusively replaced with a damper plate 25 ′ that holds the first torque damper spring 36, and a multi-plate type is provided between the damper plate 25 ′ and the transmission cover 5. The lockup clutch L is interposed. The boss 25'a of the damper plate 25 'is rotatably supported by the hub 2a of the turbine impeller 2 as in the case of the clutch piston 25 of the first embodiment, and the inertia mass body 35 is supported by the boss 25'a. It is supported rotatably.

多板式のロックアップクラッチLは,伝動カバー5の内側面に固設される環状のクラッチアウタ60と,ダンパプレート25′の外側面に固設されてクラッチアウタ60の内側に同軸状に配置されるクラッチインナ61と,クラッチアウタ60の内周に摺動可能にスプライン嵌合する複数の駆動摩擦板62と,これら駆動摩擦板62と交互に重ねられてクラッチインナ61の外周に摺動可能にスプライン嵌合する複数の被動摩擦板63と,駆動及び被動摩擦板62,63群の一側面に対向するようにクラッチアウタ60に固定される受圧板64と,駆動及び被動摩擦板62,63群の他側面に対向するようにしてクラッチアウタ60の内周面にシール部材66を介して摺動自在に嵌合する加圧ピストン65とで構成される。   The multi-plate lockup clutch L is arranged on the inner surface of the transmission outer cover 5 and the annular clutch outer 60 fixed on the inner surface of the transmission cover 5 and on the outer surface of the damper plate 25 ′. Clutch inner 61, a plurality of drive friction plates 62 slidably fitted on the inner periphery of the clutch outer 60, and these drive friction plates 62 are alternately stacked to be slidable on the outer periphery of the clutch inner 61. A plurality of driven friction plates 63 to be spline-fitted, a pressure receiving plate 64 fixed to the clutch outer 60 so as to face one side of the driving and driven friction plates 62 and 63 group, and the driving and driven friction plates 62 and 63 group The pressure piston 65 is slidably fitted to the inner peripheral surface of the clutch outer 60 via a seal member 66 so as to face the other side surface.

伝動カバー5は,タービン羽根車2のハブ2aをスラストベアリング8を介して支承する円筒状の支持部5bを一体的に備えており,この支持部5bの外周面に加圧ピストン65のボス65aがシール部材67を介して摺動可能に支持される。加圧ピストン65及び伝動カバー5間には油圧室68が画成される。この油圧室68は,支持部5bに放射状に設けられた油孔69,出力軸10の油孔70及び出力軸10内の油路71に連通しており,これらを通して油圧室68に油圧を図示しない油圧源から供給すれば,加圧ピストン65がその油圧を受けて受圧板64側に移動して駆動及び被動摩擦板62,63相互を摩擦係合させるので,ロックアップクラッチLを接続状態にして,伝動カバー5及びダンパプレート25′間を直結することができる。また上記油圧室68の油圧を解放すれば,加圧ピストン65は加圧力を失うので,ロックアップクラッチLを遮断状態にすることができる。   The transmission cover 5 is integrally provided with a cylindrical support portion 5b for supporting the hub 2a of the turbine impeller 2 via a thrust bearing 8, and a boss 65a of the pressure piston 65 is provided on the outer peripheral surface of the support portion 5b. Is slidably supported through the seal member 67. A hydraulic chamber 68 is defined between the pressure piston 65 and the transmission cover 5. The hydraulic chamber 68 communicates with an oil hole 69 provided radially in the support portion 5b, an oil hole 70 of the output shaft 10, and an oil passage 71 in the output shaft 10, and the hydraulic pressure is illustrated in the hydraulic chamber 68 through these. If the pressure is supplied from the hydraulic pressure source, the pressure piston 65 receives the hydraulic pressure and moves to the pressure receiving plate 64 side to frictionally engage the driven and driven friction plates 62 and 63. Therefore, the lockup clutch L is brought into the connected state. Thus, the transmission cover 5 and the damper plate 25 'can be directly connected. Further, if the hydraulic pressure in the hydraulic chamber 68 is released, the pressurizing piston 65 loses the applied pressure, so that the lockup clutch L can be brought into a disconnected state.

その他の構成は,第1実施例と略同様であるので,図7中,第1実施例と対応する部分には同一の参照符号を付して,重複する説明を省略する。   Since other configurations are substantially the same as those of the first embodiment, portions corresponding to those of the first embodiment are denoted by the same reference numerals in FIG.

本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば直列接続されるトルクダンパスプリングの個数は2個に限るものではなく,それ以上にすることができる。その場合,トルクダンパスプリングの個数の増加に応じて第2の慣性質量体50の個数も増やすことができる。   The present invention is not limited to the above embodiments, and various design changes can be made without departing from the scope of the invention. For example, the number of torque damper springs connected in series is not limited to two, but can be increased. In that case, the number of the second inertia mass bodies 50 can be increased in accordance with the increase in the number of torque damper springs.

本発明の第1実施例に係るロックアップクラッチ付きトルクコンバータの上半部縦断側面図。The upper half vertical side view of the torque converter with a lockup clutch which concerns on 1st Example of this invention. 同トルクコンバータの直結状態での車両の駆動系の簡易振動モデル図。The simple vibration model figure of the drive system of the vehicle in the direct connection state of the torque converter. 上記駆動系の振動特性の計算結果を示す図表。The chart which shows the calculation result of the vibration characteristic of the above-mentioned drive system. 本発明の第2実施例を示す,図1との対応図。FIG. 4 is a diagram corresponding to FIG. 1 showing a second embodiment of the present invention. 同トルクコンバータの直結状態での車両の駆動系の簡易振動モデル図。The simple vibration model figure of the drive system of the vehicle in the direct connection state of the torque converter. 上記駆動系の振動特性の計算結果を示す図表Chart showing calculation results of vibration characteristics of the above drive train 本発明の第3実施例を示す,図1との対応図。FIG. 6 is a view corresponding to FIG. 1 showing a third embodiment of the present invention. 従来のロックアップクラッチ付きトルクコンバータの直結状態での車両の駆動系の簡易振動モデル図Simplified vibration model diagram of the drive system of a vehicle in a directly connected state of a torque converter with a conventional lock-up clutch

符号の説明Explanation of symbols

T・・・・・・トルクコンバータ
1・・・・・・ポンプ羽根車
2・・・・・・タービン羽根車
3・・・・・・循環回路
5・・・・・・伝動カバー
35・・・・・慣性質量体
36・・・・・第1トルクダンパスプリング
37・・・・・第2トルクダンパスプリング
48・・・・・タービン羽根車外側面の最大膨らみ点
50・・・・・第2の慣性質量体
53・・・・・弾性部材(コイルスプリング)
T ... Torque converter 1 ... Pump impeller 2 ... Turbine impeller 3 ... Circulation circuit 5 ... Transmission cover 35 ... ... Inertial mass 36 ... First torque damper spring 37 ... Second torque damper spring 48 ... Maximum bulge point 50 on the outer surface of the turbine impeller ... Second Inertia mass body 53 ... elastic member (coil spring)

Claims (2)

ポンプ羽根車(1)と,これに作動オイルの循環回路(3)を介して連結されるタービン羽根車(2)と,ポンプ羽根車(1)に連設されてタービン羽根車(2)外側面を覆う伝動カバー(5)と,この伝動カバー(5)及びタービン羽根車(2)間を機械的に連結し得るロックアップクラッチ(L)とを備える,ロックアップクラッチ付きトルクコンバータにおいて,
伝動カバー(5)及びタービン羽根車(2)間に,それらと相対回転可能な慣性質量体(35)を配設すると共に,伝動カバー(5)及び慣性質量体(35)間を第1トルクダンパスプリング(36)を介して,また慣性質量体(35)及びタービン羽根車(2)間を第2トルクダンパスプリング(37)を介してそれぞれ連結し,これら第1及び第2トルクダンパスプリング(36,37)を,トーラス状をなすポンプ羽根車(1)及びタービン羽根車(2)の外面の,タービン羽根車(2)側の側方最大膨らみ点(48)より半径方向外方にタービン羽根車(2)の周方向に沿って配置したことを特徴とする,ロックアップクラッチ付きトルクコンバータ。
A pump impeller (1), a turbine impeller (2) connected to the pump impeller (1) via a hydraulic oil circulation circuit (3), and a pump impeller (1) connected to the turbine impeller (2) A torque converter with a lockup clutch, comprising: a transmission cover (5) that covers a side surface; and a lockup clutch (L) that can mechanically connect the transmission cover (5) and the turbine impeller (2).
An inertia mass body (35) rotatable relative to the transmission cover (5) and the turbine impeller (2) is disposed, and a first torque is provided between the transmission cover (5) and the inertia mass body (35). The inertia mass body (35) and the turbine impeller (2) are connected via a damper spring (36) via a second torque damper spring (37), respectively, and the first and second torque damper springs ( 36, 37) of the pump impeller (1) and the turbine impeller (2) having a torus shape are arranged radially outward from the maximum lateral bulge point (48) on the turbine impeller (2) side. A torque converter with a lock-up clutch, characterized by being arranged along the circumferential direction of the impeller (2).
請求項1記載のロックアップクラッチ付きトルクコンバータにおいて,
前記慣性質量体(35)に第2の慣性質量体(50)を回転自在に連結すると共に,この第2の慣性質量体(50)を弾性部材(53)を介して前記慣性質量体(35)に連結し,これら第2の慣性質量体(50)及び弾性部材(53)により,前記慣性質量体(35)の振動を打ち消す吸振器(54)を構成したことを特徴とする,ロックアップクラッチ付きトルクコンバータ。
The torque converter with a lock-up clutch according to claim 1,
A second inertial mass (50) is rotatably connected to the inertial mass (35), and the second inertial mass (50) is connected to the inertial mass (35) via an elastic member (53). And the second inertial mass body (50) and the elastic member (53) constitute a vibration absorber (54) that cancels the vibration of the inertial mass body (35). Torque converter with clutch.
JP2007207076A 2007-08-08 2007-08-08 Torque converter with lock-up clutch Expired - Fee Related JP4987617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207076A JP4987617B2 (en) 2007-08-08 2007-08-08 Torque converter with lock-up clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207076A JP4987617B2 (en) 2007-08-08 2007-08-08 Torque converter with lock-up clutch

Publications (2)

Publication Number Publication Date
JP2009041662A true JP2009041662A (en) 2009-02-26
JP4987617B2 JP4987617B2 (en) 2012-07-25

Family

ID=40442609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207076A Expired - Fee Related JP4987617B2 (en) 2007-08-08 2007-08-08 Torque converter with lock-up clutch

Country Status (1)

Country Link
JP (1) JP4987617B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115112A (en) * 2007-11-01 2009-05-28 Honda Motor Co Ltd Fluid transmission device
WO2012146450A1 (en) * 2011-04-28 2012-11-01 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement, in particular hydrodynamic torque converter
JP2014070647A (en) * 2012-09-27 2014-04-21 Aisin Aw Co Ltd Starting device
JP2015014358A (en) * 2013-06-04 2015-01-22 株式会社エクセディ Lock-up device of torque converter
EP2567121B1 (en) 2010-05-07 2015-03-04 ZF Friedrichshafen AG Torque transmission arrangement for the drive train of a vehicle
JP2015121256A (en) * 2013-12-24 2015-07-02 株式会社エクセディ Lock-up device of torque converter
US20150345565A1 (en) * 2013-02-26 2015-12-03 Exedy Corporation Dynamic damper device
US9732835B2 (en) 2013-07-11 2017-08-15 Exedy Corporation Lockup device for torque converter
KR20170108860A (en) * 2016-03-18 2017-09-27 가부시키가이샤 에쿠세디 Lock-up device for torque converter
US9784352B2 (en) 2013-06-04 2017-10-10 Exedy Corporation Lock-up device for torque converter
US20180087581A1 (en) * 2016-09-29 2018-03-29 Schaeffler Technologies AG & Co. KG Torque transmitting assembly with damper assembly including two sets of outer springs in series
US10030740B2 (en) 2013-06-04 2018-07-24 Exedy Corporation Lock-up device for torque converter
DE102011017652B4 (en) 2011-04-28 2022-03-24 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement, in particular hydrodynamic torque converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082771B2 (en) 2015-05-21 2017-02-15 本田技研工業株式会社 Fluid transmission device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338733A (en) * 1986-08-04 1988-02-19 Daikin Mfg Co Ltd Flywheel assembly body
JPS63251662A (en) * 1987-04-08 1988-10-19 Daikin Mfg Co Ltd Damper device for torque converter
US5086892A (en) * 1989-11-23 1992-02-11 Fichtel & Sachs Ag Hydrodynamic torque converter
JPH0560205A (en) * 1991-08-07 1993-03-09 Luk Lamellen & Kupplungsbau Gmbh Discoid component for transmitting belt
JPH0953700A (en) * 1995-06-09 1997-02-25 Toyota Motor Corp Damper device for fluid transmitting device
JPH10318332A (en) * 1997-05-20 1998-12-04 Exedy Corp Damper assembly
JP2002161967A (en) * 2000-09-13 2002-06-07 Exedy Corp Lock up device of torque converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338733A (en) * 1986-08-04 1988-02-19 Daikin Mfg Co Ltd Flywheel assembly body
JPS63251662A (en) * 1987-04-08 1988-10-19 Daikin Mfg Co Ltd Damper device for torque converter
US5086892A (en) * 1989-11-23 1992-02-11 Fichtel & Sachs Ag Hydrodynamic torque converter
JPH0560205A (en) * 1991-08-07 1993-03-09 Luk Lamellen & Kupplungsbau Gmbh Discoid component for transmitting belt
JPH0953700A (en) * 1995-06-09 1997-02-25 Toyota Motor Corp Damper device for fluid transmitting device
JPH10318332A (en) * 1997-05-20 1998-12-04 Exedy Corp Damper assembly
JP2002161967A (en) * 2000-09-13 2002-06-07 Exedy Corp Lock up device of torque converter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115112A (en) * 2007-11-01 2009-05-28 Honda Motor Co Ltd Fluid transmission device
EP2567121B1 (en) 2010-05-07 2015-03-04 ZF Friedrichshafen AG Torque transmission arrangement for the drive train of a vehicle
EP2567120B1 (en) 2010-05-07 2015-03-18 ZF Friedrichshafen AG Torque transmission assembly, in particular hydrodynamic torque converter, fluid coupling or wet-running clutch
US9458918B2 (en) 2011-04-28 2016-10-04 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement, in particular hydrodynamic torque converter
DE102011017652B4 (en) 2011-04-28 2022-03-24 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement, in particular hydrodynamic torque converter
WO2012146450A1 (en) * 2011-04-28 2012-11-01 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement, in particular hydrodynamic torque converter
JP2014070647A (en) * 2012-09-27 2014-04-21 Aisin Aw Co Ltd Starting device
US10047844B2 (en) * 2013-02-26 2018-08-14 Exedy Corporation Dynamic damper device
US20150345565A1 (en) * 2013-02-26 2015-12-03 Exedy Corporation Dynamic damper device
US10030740B2 (en) 2013-06-04 2018-07-24 Exedy Corporation Lock-up device for torque converter
US9784352B2 (en) 2013-06-04 2017-10-10 Exedy Corporation Lock-up device for torque converter
JP2015014358A (en) * 2013-06-04 2015-01-22 株式会社エクセディ Lock-up device of torque converter
US9732835B2 (en) 2013-07-11 2017-08-15 Exedy Corporation Lockup device for torque converter
JP2015121256A (en) * 2013-12-24 2015-07-02 株式会社エクセディ Lock-up device of torque converter
KR20170108860A (en) * 2016-03-18 2017-09-27 가부시키가이샤 에쿠세디 Lock-up device for torque converter
KR102327513B1 (en) * 2016-03-18 2021-11-16 가부시키가이샤 에쿠세디 Lock-up device for torque converter
US20180087581A1 (en) * 2016-09-29 2018-03-29 Schaeffler Technologies AG & Co. KG Torque transmitting assembly with damper assembly including two sets of outer springs in series
US10663010B2 (en) * 2016-09-29 2020-05-26 Schaeffler Technologies AG & Co. KG Torque transmitting assembly with damper assembly including two sets of outer springs in series

Also Published As

Publication number Publication date
JP4987617B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4987617B2 (en) Torque converter with lock-up clutch
US9958027B2 (en) Vibration damping device
JP5051447B2 (en) Fluid transmission device
US7445099B2 (en) Torque transmission device
US9416860B2 (en) Vibration damping device
US7454902B2 (en) Torque converter
JP5645354B2 (en) 2-pass multifunction torque converter
US6575276B2 (en) Torque converter
JP5508835B2 (en) Drive device for hybrid vehicle
US20170108050A1 (en) Torsional vibration damper for hydrokinetic torque coupling device with inner and outer elastic damping members connected in series
JP2009515115A (en) Automotive powertrain with 8-cylinder engine
JP2003048438A (en) Power transmission of hybrid vehicle
JP3825219B2 (en) Fluid torque transmission device
JP5120705B2 (en) Fluid transmission device
US7401688B2 (en) Torque converter
JP2009515119A (en) Automotive power train with 3-cylinder engine
JP3664629B2 (en) Fluid torque transmission device
US6782983B2 (en) Fluid torque transmission device equipped with lockup device
JP2009515118A (en) Automotive power train with 5-cylinder engine
JP4537625B2 (en) Fluid transmission device with lock-up clutch
US6866130B2 (en) Torque converter
JP5479156B2 (en) Power transmission device
JP3598696B2 (en) Fluid transmission with direct coupling clutch
JP2009115294A (en) Fluid transmission gear
JPH11141617A (en) Damper device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees