JP2009041377A - Reheat type steam turbine - Google Patents

Reheat type steam turbine Download PDF

Info

Publication number
JP2009041377A
JP2009041377A JP2007204776A JP2007204776A JP2009041377A JP 2009041377 A JP2009041377 A JP 2009041377A JP 2007204776 A JP2007204776 A JP 2007204776A JP 2007204776 A JP2007204776 A JP 2007204776A JP 2009041377 A JP2009041377 A JP 2009041377A
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
reheat
turbine
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007204776A
Other languages
Japanese (ja)
Other versions
JP4674225B2 (en
Inventor
Hiroshi Horiie
弘 堀家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2007204776A priority Critical patent/JP4674225B2/en
Publication of JP2009041377A publication Critical patent/JP2009041377A/en
Application granted granted Critical
Publication of JP4674225B2 publication Critical patent/JP4674225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preferable reheat type steam turbine minimizing a thermal deformation of a casing along with temperature fluctuations of reheated steam, thereby preventing a contact between a labyrinth packing and a rotor. <P>SOLUTION: In a reheat type steam turbine 1, a high pressure turbine 4 and an intermediate pressure turbine 5 are arranged on the same shaft center within a casing 3 formed in series, and reheated steam is supplied from an inflowing pipe 5A to the intermediate pressure turbine 5. The reheated steam supplied to the intermediate pressure turbine 5 was made to come into contact with an inner wall of an intermediate pressure turbine casing 5C after passing a nozzle 7a of at least one stage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

請求項に係る発明は、高圧タービンと中圧タービンとが一体に設けられていて中圧タービンに再熱蒸気が供給される再熱式蒸気タービンに関するものである。   The present invention relates to a reheat-type steam turbine in which a high-pressure turbine and an intermediate-pressure turbine are integrally provided and reheat steam is supplied to the intermediate-pressure turbine.

図5(a)・(b)に、高圧タービンと中圧タービンとが一体に設けられた従来の再熱式蒸気タービン1’を示す。ロータ2が車室3内に配置されていて、図示右方に高圧タービン4が構成され、図示左方に中圧タービン5が構成されている。高圧タービン部分の車室4Cと中圧タービン部分の車室5Cとは一連に形成されており、高圧タービン車室4Cには主蒸気の流入管4Aと排気管4Bとが設けられ、中圧タービン車室5Cには、高圧タービン車室4Bを出たのち再熱されて供給される再熱蒸気の流入管5Aとその排気管5Bが設けられている。図5(b)に示す中圧タービン車室5Cの構造から明らかなように、再熱蒸気は、流入管5Aから直接に中圧タービン車室5Cの内側へ流入する。   5 (a) and 5 (b) show a conventional reheat steam turbine 1 'in which a high-pressure turbine and an intermediate-pressure turbine are integrally provided. The rotor 2 is disposed in the passenger compartment 3, a high-pressure turbine 4 is configured on the right side in the figure, and an intermediate-pressure turbine 5 is configured on the left side in the figure. A casing 4C of the high-pressure turbine portion and a casing 5C of the intermediate-pressure turbine portion are formed in series. The high-pressure turbine casing 4C is provided with an inflow pipe 4A and an exhaust pipe 4B for main steam. The casing 5C is provided with an inflow pipe 5A for reheated steam that is supplied after being reheated after leaving the high-pressure turbine casing 4B, and an exhaust pipe 5B. As is clear from the structure of the intermediate pressure turbine casing 5C shown in FIG. 5B, the reheat steam flows directly into the intermediate pressure turbine casing 5C from the inflow pipe 5A.

なお、再熱式蒸気タービンは一般に、蒸気タービンであるがゆえに長期間安定して運転することができ、信頼性が高いうえ運転補修費が少なくてすむという利点を有するほか、再熱式であるために熱効率が高く燃費が改善されるという利点をも有している。   The reheat steam turbine is generally a steam turbine, so that it can operate stably for a long period of time, has the advantages of high reliability and low operation repair costs, and is a reheat type. Therefore, it has an advantage that the thermal efficiency is high and the fuel consumption is improved.

図5と同様の構造をもつ高中圧一体型の再熱式蒸気タービンについては、下記の特許文献1・2等に記載されている。
特開平11−93607号公報 特開2001−82107号公報
A high-medium pressure integrated reheat steam turbine having the same structure as that shown in FIG. 5 is described in Patent Documents 1 and 2 below.
Japanese Patent Laid-Open No. 11-93607 JP 2001-82107 A

再熱式蒸気タービンでは、中圧タービンに供給する再熱蒸気の温度が、負荷の変動等に応じて変動するのが一般的である。再熱蒸気の温度が変動すると、中圧タービンにおいて車室の温度が変動し、車室が熱変形を引き起こす。蒸気タービンにおいては、蒸気の漏洩を防ぐため、ロータの各部に対し隙間をきわめて小さくしてラビリンスパッキンが配置されているため、車室が熱変形をするとラビリンスパッキンがロータに接触し、それに起因して振動が生じたり蒸気漏れが起きたりする等の不具合が発生しがちである。   In the reheat steam turbine, the temperature of the reheat steam supplied to the intermediate pressure turbine generally varies according to a load variation or the like. When the temperature of the reheat steam fluctuates, the temperature of the passenger compartment fluctuates in the intermediate pressure turbine, causing the passenger compartment to undergo thermal deformation. In a steam turbine, the labyrinth packing is arranged with a very small gap for each part of the rotor to prevent steam leakage. This tends to cause problems such as vibration and steam leakage.

そのため、再熱蒸気の温度が変動する場合にも車室の温度変動ないし熱変形が小さいことが望まれるが、図5の例(および特許文献1)のように流入管から再熱蒸気が中圧タービン車室の内側へ直接流入する場合には、当該車室が再熱蒸気の影響を受けて大きく温度変動を引き起こしやすい。なお、特許文献2にも車室の熱変形が採り上げられているが、当該文献2は、再熱蒸気の温度変動に起因する課題を解決するものではない。   Therefore, even when the temperature of the reheat steam fluctuates, it is desirable that the temperature fluctuation or thermal deformation of the passenger compartment is small. However, as in the example of FIG. When flowing directly into the inside of the pressure turbine casing, the casing is likely to cause a large temperature fluctuation due to the influence of reheat steam. In addition, although the thermal deformation of a vehicle compartment is taken up also in patent document 2, the said literature 2 does not solve the problem resulting from the temperature fluctuation of reheated steam.

請求項に係る発明は、再熱蒸気の温度変動にともなう車室の熱変形を小さくし、もってラビリンスパッキンとロータとの接触を防止できる好ましい再熱式蒸気タービンを提供しようとするものである。   The invention according to the claims is to provide a preferable reheat steam turbine capable of reducing the thermal deformation of the passenger compartment accompanying the temperature fluctuation of the reheat steam and thereby preventing the contact between the labyrinth packing and the rotor.

請求項に係る発明は、一連に形成された車室内の同一軸心線上に高圧タービンと中圧タービンとが配置され中圧タービンに再熱蒸気が供給される再熱式蒸気タービンにおいて、中圧タービンに供給される再熱蒸気を、少なくとも1段のノズルを経由(したがって1段の回転羽根をも経由)したうえで車室(中圧タービンの車室)の内壁と接触するようにしたことを特徴とする。
蒸気タービンにおける各段のノズルや回転羽根を蒸気が経由すると、そのたびに蒸気の温度や圧力は低下する。そのため、再熱蒸気を、上記のとおり少なくとも1段のノズルを経由したうえで車室の内壁と接触するようにするなら、再熱蒸気に温度変動が生じる場合にも、車室の内壁と接触するときのその蒸気については温度変動幅が小さなものとなり、車室の温度変動、したがって車室の熱変形を小さくすることが可能になる。
高圧タービンと中圧タービンとを一連に有する長尺の車室は、比較的小さな温度変動によっても大きな熱変形を引き起こしやすいため、上記によって車室の熱変形が抑制されるとその効果はきわめて大きい。また、そうした効果によってタービンが円滑に運転されると、再熱式蒸気タービンによる前述した利点が最大限にもたらされることになる。
The invention according to the claim relates to a reheat-type steam turbine in which a high-pressure turbine and an intermediate-pressure turbine are arranged on the same axial center line in a series of vehicle interiors, and reheat steam is supplied to the intermediate-pressure turbine. The reheat steam supplied to the turbine is made to come into contact with the inner wall of the passenger compartment (the intermediate pressure turbine compartment) after passing through at least one stage nozzle (and therefore also through one stage rotary blade). It is characterized by.
Each time steam passes through the nozzles and rotary blades of each stage in the steam turbine, the temperature and pressure of the steam decrease. For this reason, if the reheated steam is brought into contact with the inner wall of the passenger compartment after passing through at least one stage nozzle as described above, even if the temperature fluctuation occurs in the reheated steam, it is in contact with the inner wall of the passenger compartment. When the steam is used, the temperature fluctuation range is small, and the temperature fluctuation of the passenger compartment, and hence the thermal deformation of the passenger compartment, can be reduced.
A long casing having a series of high-pressure turbines and medium-pressure turbines is likely to cause large thermal deformation even with relatively small temperature fluctuations. Therefore, if the thermal deformation of the casing is suppressed by the above, the effect is extremely large. . Also, if the turbine operates smoothly due to such effects, the above-described advantages of the reheat steam turbine are maximized.

中圧タービンへの再熱蒸気の流入管に、仕切り壁および第1段ノズルを介して車室(中圧タービンの車室)から隔てられた独立蒸気室を形成することとするのがよい。たとえば図1(b)のように、仕切り壁6aと第1段ノズル7aとを設けて独立蒸気室6を形成するのである。
このように独立蒸気室を設けると、上記したように、中圧タービンに供給される再熱蒸気を少なくとも1段のノズルを経由したうえで車室の内壁と接触させることになる。そうすると、上述のとおり、再熱蒸気に温度変動が生じる場合にも、車室の温度変動および車室の熱変形を小さくすることが可能になる。
It is preferable to form an independent steam chamber separated from the vehicle compartment (chamber of the intermediate pressure turbine) through the partition wall and the first stage nozzle in the inflow pipe of the reheat steam to the intermediate pressure turbine. For example, as shown in FIG. 1B, the partition wall 6a and the first stage nozzle 7a are provided to form the independent steam chamber 6.
When the independent steam chamber is provided in this way, as described above, the reheated steam supplied to the intermediate pressure turbine is brought into contact with the inner wall of the vehicle compartment through the nozzle of at least one stage. Then, as described above, even when the temperature variation occurs in the reheat steam, the temperature variation of the passenger compartment and the thermal deformation of the passenger compartment can be reduced.

上記車室の両端部付近(タービンの軸心線に沿った両端部付近)と中ほどの部分とに、特定方向への車室の変位を拘束する車室保持手段(たとえば、車室の長手方向への変位を許容するとともに車室の幅方向への変位を拘束する、図3に示すキー8aのような保持手段)を設けるとさらに好ましい。
再熱蒸気に温度変動が生じる場合等には、車室は多少でも温度変動をして熱変形を生じることとなるが、このように車室保持手段を設けるなら、車室の熱変形はとくに効果的に抑制され、ラビリンスパッキンがロータに接触する等の不都合が回避される。
車室保持手段は、従来、車室の両端部付近に設けられることはあったが中ほどの部分に設けられることはなかった。しかし、再熱蒸気が供給されるのは、中圧タービンの入口であって車室の中ほどの部分であるため、再熱蒸気の温度変動にともなう車室の変形はその中ほどの部分で発生しやすい。したがって、車室の両端部付近とともに中ほどの部分にも車室保持手段を設けることは、車室の変形を抑制してラビリンスパッキンとロータとの接触等を回避するうえで、きわめて効果的なのである。
A vehicle compartment holding means that restrains the displacement of the vehicle compartment in a specific direction (for example, the length of the vehicle compartment) near both ends of the vehicle compartment (near both ends along the axis of the turbine axis) and the middle part. It is further preferable to provide a holding means such as the key 8a shown in FIG. 3 that allows displacement in the direction and restrains displacement in the width direction of the passenger compartment.
When temperature fluctuations occur in the reheated steam, the passenger compartment will fluctuate even slightly, resulting in thermal deformation. It is effectively suppressed and inconveniences such as the labyrinth packing coming into contact with the rotor are avoided.
Conventionally, the vehicle compartment holding means has been provided in the vicinity of both ends of the vehicle compartment, but has not been provided in the middle portion. However, since the reheat steam is supplied to the intermediate pressure turbine at the middle part of the compartment, the deformation of the compartment due to the temperature change of the reheat steam is in the middle part. Likely to happen. Therefore, providing the vehicle compartment holding means in the middle part as well as near both ends of the vehicle compartment is extremely effective in preventing deformation of the vehicle compartment and avoiding contact between the labyrinth packing and the rotor. is there.

高圧タービンに供給される主蒸気の流入管を、車室の軸心を含む鉛直な平面に関して対称な経路を有するものにするのも好ましい。図3に示す流入管4Aは、そのようにした流入管の一例である。
主蒸気の流入管は、従来、車室の左右いずれかの方向から、つまり車室の軸心を含む鉛直な平面に関して対称でない一方の側のみから、車室に主蒸気を供給するものであった。しかし、主蒸気も再熱蒸気と同等程度以上の高温度のものであるため、いずれか一方のみから車室に供給されると、車室の温度は左右(上記の平面をはさんだ両側)で不均等になりやすく、それによって車室の熱変形が大きくなることも考えられる。
主蒸気の流入管を上記のとおり対称な経路を有するものにすると、車室の温度が上記とは違って左右均等になり、したがって熱変形が効果的に抑制されることとなる。
なお、同じ理由で、再熱蒸気の流入管も、車室の軸心を含む鉛直な平面に関して対称な経路を有するものにするのが好ましい。
It is also preferable that the main steam inlet pipe supplied to the high-pressure turbine has a path symmetrical with respect to a vertical plane including the axis of the passenger compartment. An inflow pipe 4A shown in FIG. 3 is an example of such an inflow pipe.
Conventionally, the main steam inlet pipe supplies main steam to the passenger compartment from either the left or right direction of the passenger compartment, that is, from only one side that is not symmetric with respect to the vertical plane including the axial center of the passenger compartment. It was. However, since the main steam is also at a temperature higher than or equal to that of reheated steam, the temperature of the passenger compartment will be on the left and right (both sides across the plane above) if only one of them is supplied to the passenger compartment. It can be considered that the thermal deformation of the passenger compartment is increased due to the unevenness.
If the main steam inflow pipe has a symmetrical path as described above, the temperature of the passenger compartment becomes equal to the left and right, unlike the above, and therefore thermal deformation is effectively suppressed.
For the same reason, it is preferable that the reheat steam inflow pipe has a symmetrical path with respect to a vertical plane including the axis of the passenger compartment.

上記車室が、ボルトを用いて上下の部分を接合することにより構成されている場合、少なくとも中圧タービンにおいては、当該ボルトと車室のボルト穴との間に熱伝導促進材(熱伝導率の高い固体や粉粒体または液体。たとえば銅板や銅粉)を入れるのが好ましい。
中圧タービンにおいては上述のように再熱蒸気の温度変動に基づいて車室の温度変動が生じるが、その温度変動が急激であって、上記のような接合用のボルトの温度変動が車室の温度変動から相当程度以上に遅れるときは、熱膨張量の差に起因してボルトによる車室の接合が緩くなることがあり得る。
その点、このようにボルトと車室のボルト穴との間に熱伝導促進材を入れておけば、ボルトの温度変動が車室の温度変動から大きく遅れることが避けられ、したがってボルトによる車室の接合が緩くなることが防止される。
When the casing is configured by joining upper and lower portions using bolts, at least in a medium-pressure turbine, a heat conduction promoting material (thermal conductivity) is provided between the bolt and the bolt hole of the casing. High solids, granules or liquids (for example, copper plates or copper powders) are preferably added.
In the intermediate pressure turbine, as described above, the temperature fluctuation of the passenger compartment occurs based on the temperature fluctuation of the reheated steam. However, the temperature fluctuation is abrupt, and the temperature fluctuation of the joining bolt as described above is When the temperature is delayed by a considerable amount or more from the temperature fluctuation, the joining of the passenger compartment by the bolt may be loosened due to the difference in thermal expansion amount.
In this respect, if a heat conduction promoting material is inserted between the bolt and the bolt hole in the passenger compartment, the temperature fluctuation of the bolt is prevented from being greatly delayed from the temperature fluctuation of the passenger compartment. Is prevented from loosening.

発明による再熱式蒸気タービンをLNG(液化天然ガス)運搬船に搭載することとし、中圧タービンへの再熱蒸気および高圧タービンへの主蒸気を発生するためのボイラを、上記運搬船におけるLNGタンク内の蒸発ガスを主な燃料とするものとするなら、燃費に関してとくに有利である。
LNG運搬船におけるLNGタンクは、断熱構造が採用されていてLNGを十分低温度に保つものの、内部ではわずかずつLNGが蒸発するため、その蒸発ガス(ボイルオフガス)を抜き出す必要がある。抜き出した蒸発ガスは大気中に放出することもできるが、それを燃料として利用すると、運搬船の燃費について大いに有利である。この蒸発ガスは、ディーゼルエンジン等の燃料にする場合には安定した燃焼を維持するのが難しい一方、ボイラの燃料とすることは容易であり、出力調整等のために重油と混焼させることも可能である。そこで、再熱式蒸気タービンをLNG運搬船に搭載する場合には、LNGタンク内の蒸発ガスを主な燃料とするボイラによって主蒸気および再熱蒸気を発生させることとすれば、ボイラにおける燃焼を安定的なものとしながら、航行に必要な燃費を効果的に改善することが可能になる。
The reheat steam turbine according to the invention is mounted on an LNG (Liquefied Natural Gas) carrier ship, and a boiler for generating reheat steam to the intermediate pressure turbine and main steam to the high pressure turbine is installed in the LNG tank of the carrier ship. If the evaporative gas is the main fuel, it is particularly advantageous in terms of fuel consumption.
The LNG tank in the LNG carrier has a heat insulating structure and keeps the LNG at a sufficiently low temperature. However, since the LNG evaporates little by little inside, it is necessary to extract the evaporated gas (boil-off gas). The extracted evaporative gas can be released into the atmosphere, but if it is used as a fuel, it is highly advantageous in terms of fuel consumption of the carrier ship. This evaporative gas is difficult to maintain stable combustion when used as a fuel for diesel engines, etc., while it is easy to use as fuel for boilers and can be co-fired with heavy oil for output adjustment etc. It is. Therefore, when the reheat steam turbine is mounted on an LNG carrier, if the main steam and reheat steam are generated by the boiler using the evaporated gas in the LNG tank as the main fuel, the combustion in the boiler is stabilized. This makes it possible to effectively improve the fuel efficiency required for navigation.

請求項に係る発明は、中圧タービンに供給される再熱蒸気を、少なくとも1段のノズルを経由したうえで車室の内壁と接触させるもので、これによれば、再熱蒸気に温度変動が生じる場合にも、車室の温度変動および車室の熱変形を小さくすることができる。またそれには、中圧タービンへの再熱蒸気の流入管に、仕切り壁および第1段ノズルを介して車室から隔てられた独立蒸気室を形成することとするのがよい。   The invention according to the claims is such that the reheat steam supplied to the intermediate pressure turbine is brought into contact with the inner wall of the passenger compartment through the nozzle of at least one stage. Even when this occurs, temperature fluctuations in the passenger compartment and thermal deformation of the passenger compartment can be reduced. For this purpose, it is preferable to form an independent steam chamber separated from the vehicle compartment via a partition wall and a first stage nozzle in the inflow pipe of the reheated steam to the intermediate pressure turbine.

車室の両端部付近と中ほどの部分とに、特定方向への車室の変位を拘束する車室保持手段を設けるなら、車室の熱変形はさらに効果的に抑制される。
また、高圧タービンに供給される主蒸気の流入管を、車室の軸心を含む鉛直な平面に関して対称な経路を有するものにすると、車室の温度分布が対称的になり、その熱変形がさらに効果的に抑制される。
If vehicle compartment holding means for restricting the displacement of the vehicle compartment in a specific direction is provided near both ends and in the middle of the vehicle compartment, thermal deformation of the vehicle compartment is further effectively suppressed.
If the main steam inflow pipe supplied to the high-pressure turbine has a symmetrical path with respect to a vertical plane including the axis of the passenger compartment, the temperature distribution of the passenger compartment becomes symmetric and the thermal deformation is reduced. Further effectively suppressed.

車室の上下部分を接合するためのボルトと車室のボルト穴との間に熱伝導促進材を入れるなら、当該ボルトによる車室の接合が緩くなることが防止される。
発明の再熱式蒸気タービンをLNG運搬船に搭載し、そのLNGタンク内の蒸発ガスを主な燃料とするボイラにて同タービン用の蒸気を発生させるなら、航行用の燃費に関してとくに有利である。
If a heat conduction promoting material is inserted between the bolt for joining the upper and lower parts of the passenger compartment and the bolt hole of the passenger compartment, the joint of the passenger compartment by the bolt is prevented from becoming loose.
If the reheat steam turbine of the invention is mounted on an LNG carrier and the steam for the turbine is generated in a boiler that uses the evaporated gas in the LNG tank as the main fuel, it is particularly advantageous with respect to the fuel consumption for navigation.

発明の実施に関する一形態を図1〜図4に示す。図1(a)は再熱式蒸気タービン1を示す全体的な縦断面図で、同(b)は同(a)におけるb部詳細図である。図2は図1(b)におけるII−II断面図であり、図3(a)は図1(a)におけるIII部詳細図、図3(b)・(c)は、同(a)に示す部分の正面図および底面図である。また図4は、蒸気タービン1とともにLNG運搬船における燃料および蒸気等の流れを示す系統図である。   One form regarding implementation of invention is shown in FIGS. FIG. 1A is an overall longitudinal sectional view showing a reheat-type steam turbine 1, and FIG. 1B is a detailed view of a portion b in FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1B, FIG. 3A is a detailed view of a portion III in FIG. 1A, and FIGS. 3B and 3C are the same as FIG. It is the front view and bottom view of the part to show. FIG. 4 is a system diagram showing the flow of fuel, steam and the like in the LNG carrier together with the steam turbine 1.

図1(a)に示すとおり、再熱式蒸気タービン1では、ロータ2を内部に配置した車室3における同一軸心線上に高圧タービン4と中圧タービン5とが配置されている。車室3には、高圧タービン車室4Cと中圧タービン車室5Cとが一連に形成されており、高圧タービン車室4Cには主蒸気の流入管4Aと排気管4Bとが設けられ、中圧タービン車室5Cには、高圧タービン車室4Bを出たのち再熱されて供給される再熱蒸気の流入管5Aが長手方向の中ほど上部に形成されるとともに、その排気管5Bが、高圧タービン4から離れた側の端部の下方に形成されている。   As shown in FIG. 1A, in the reheat steam turbine 1, a high-pressure turbine 4 and an intermediate-pressure turbine 5 are arranged on the same axis line in a casing 3 in which a rotor 2 is arranged. The casing 3 is formed with a series of a high-pressure turbine casing 4C and an intermediate-pressure turbine casing 5C. The high-pressure turbine casing 4C is provided with a main steam inlet pipe 4A and an exhaust pipe 4B. In the pressure turbine casing 5C, an inflow pipe 5A for reheat steam that is supplied after being reheated after leaving the high pressure turbine casing 4B is formed at the upper part in the middle in the longitudinal direction, and the exhaust pipe 5B is It is formed below the end portion on the side away from the high-pressure turbine 4.

車室3は台板8上に取り付けられており、ロータ2は、その車室3内に軸受2A・2Bを介して回転可能に支持されている。すなわち、まずロータ2は、高圧タービン4の先にある図示右方の端部においてはラジアル荷重とスラスト荷重とを受ける推力軸受2Aによって支持され、中圧タービン5の先にある図示左方の端部では、ラジアル荷重のみを受ける平軸受2Bにより支持された状態で、車室3内に配置されている。そして車室3は、上記した推力軸受2Aの外側付近における1カ所では、軸心方向の変位と左右方向(車室の軸心を含む鉛直な平面をはさんだ左右の方向)への変位を拘束するとともに上下(鉛直)方向への変位を許容するキーおよびキー溝(図示省略)を介して台板8に取り付けられ、上記の平軸受2Bの外側付近における1カ所では、上記した左右方向への変位を拘束するとともに軸心方向等への変位を許容するようにキーおよびキー溝(図示省略)を介して台板8に取り付けられている。   The casing 3 is mounted on a base plate 8, and the rotor 2 is rotatably supported in the casing 3 via bearings 2A and 2B. That is, first, the rotor 2 is supported by a thrust bearing 2A that receives a radial load and a thrust load at the right end in the drawing at the tip of the high-pressure turbine 4, and the left end in the drawing at the tip of the intermediate pressure turbine 5. The portion is disposed in the passenger compartment 3 while being supported by a plain bearing 2B that receives only a radial load. The casing 3 restrains displacement in the axial direction and in the left and right direction (left and right direction across a vertical plane including the axis of the casing) at one location near the outside of the thrust bearing 2A. And is attached to the base plate 8 via a key and a key groove (not shown) that allow displacement in the vertical (vertical) direction, and at one location near the outside of the flat bearing 2B, It is attached to the base plate 8 via a key and a key groove (not shown) so as to constrain the displacement and allow displacement in the axial direction or the like.

図示の再熱式蒸気タービン1においては、流入管5Aより中圧タービン5に供給される再熱蒸気の温度が、タービン負荷の変動に応じて370℃〜540℃程度の範囲で短時間内に変動する。このタービン1においても、前述のようにロータ2の各部に対しきわめて接近した位置にラビリンスパッキン(図示省略)が配置されているため、再熱蒸気の温度変動による車室の変形はできるだけ小さくすることが望まれる。そのような観点から、車室3の熱変形を最小限に抑えるべく、この再熱式蒸気タービン1では新たに以下の構成を採用している。   In the illustrated reheat-type steam turbine 1, the temperature of the reheat steam supplied from the inflow pipe 5A to the intermediate pressure turbine 5 is within a short time within a range of about 370 ° C. to 540 ° C. according to the fluctuation of the turbine load. fluctuate. Also in this turbine 1, since the labyrinth packing (not shown) is arranged at a position very close to each part of the rotor 2 as described above, the deformation of the passenger compartment due to the temperature variation of the reheat steam should be made as small as possible. Is desired. From such a viewpoint, in order to minimize the thermal deformation of the passenger compartment 3, the reheat steam turbine 1 newly adopts the following configuration.

まず、流入管5Aから中圧タービン車室5Cにかけての部分を、図1(b)および図2のように構成している。すなわち、再熱蒸気の流入管5Aのうち中圧タービン車室5Cに至る直前の部分に、仕切り壁6aおよび第1段ノズル7aによって車室5Cと分離された独立蒸気室6を設けている。ただし図2のように、車室3は上下の各部分をフランジ3Caで接合することにより一体にしていることから、独立蒸気室6は車室3の上半部にのみ形成した。車室3の下半部には、流入管5Aおよび独立蒸気室6は通じておらず第1段ノズル7aも存在しない。
上記の構成により、流入管5Aから車室5Cに供給される再熱蒸気は、第1段ノズル7aとそれに隣接する回転羽根7bを経由したのちに、中圧タービン車室5Cに流入してその内壁と接触することになる。第1段ノズル7aとその回転羽根7bとを経由すれば再熱蒸気の温度と圧力は相当程度低下するため、これによって、車室5Cに接触する再熱蒸気の温度変動は、流入管5Aや独立蒸気室6の内部での再熱蒸気の温度変動よりも相当に小幅なものとなる。こうして再熱蒸気の温度変動が小さくなれば、車室5Cに生じる温度変化も小さくなり、したがって車室5Cの熱変形が抑制される。なお、図1(b)において符号7c・7dのそれぞれは、中圧タービン車室5Cに取り付けられた第2段のノズルおよびそれに隣接する回転羽根である。
First, the portion from the inflow pipe 5A to the intermediate pressure turbine casing 5C is configured as shown in FIG. 1 (b) and FIG. That is, the independent steam chamber 6 separated from the vehicle compartment 5C by the partition wall 6a and the first stage nozzle 7a is provided in the portion immediately before reaching the intermediate pressure turbine vehicle compartment 5C in the reheat steam inflow pipe 5A. However, as shown in FIG. 2, the independent compartment 3 is formed only in the upper half of the compartment 3 because the compartment 3 is integrated by joining the upper and lower portions with flanges 3Ca. In the lower half of the vehicle compartment 3, the inflow pipe 5 </ b> A and the independent steam chamber 6 are not communicated and the first stage nozzle 7 a does not exist.
With the above configuration, the reheat steam supplied from the inflow pipe 5A to the casing 5C flows into the intermediate pressure turbine casing 5C after passing through the first stage nozzle 7a and the rotary blade 7b adjacent thereto. It will come into contact with the inner wall. Since the temperature and pressure of the reheat steam are considerably reduced if the first stage nozzle 7a and the rotary blade 7b are passed through, the temperature fluctuation of the reheat steam contacting the vehicle compartment 5C is caused by the inflow pipe 5A or the like. This is considerably smaller than the temperature variation of the reheated steam inside the independent steam chamber 6. If the temperature fluctuation of the reheat steam is reduced in this way, the temperature change generated in the passenger compartment 5C is also reduced, and therefore, the thermal deformation of the passenger compartment 5C is suppressed. In addition, in FIG.1 (b), each of code | symbols 7c * 7d is the 2nd stage nozzle attached to the intermediate pressure turbine casing 5C, and the rotary blade adjacent to it.

再熱式蒸気タービン1における車室3と台板8との間には、上記のとおり両端部付近の2カ所にキーおよびキー溝が配置されているが、このたび新たに、車室3の長手方向中ほどの部分に、図3(a)〜(c)のとおりキー8aおよびキー溝5Caを含む車室保持手段を追加した。図示の例では、車室3のうち高圧タービン車室4Cにおける主蒸気の流入管4Aに続く一部(長期の出力調整のために開閉するノズル弁)4Aaにブラケットを介してキー溝5Caを設ける一方、台板8と一体につながる一部にキー8aを設けている。キー8aとキー溝5Caとは、車室3の軸心線と平行に延びたもので、車室3が軸心線方向に変位することを許容するとともに、左右方向(図3(c)における上下の方向)に変位することは許容しない。この車室保持手段を設けた車室3の長手方向中ほどの部分は、流入管4Aを経て主蒸気が流入するとともに流入管5Aを経て再熱蒸気が流入する箇所に近いため、同手段によって車室3の左右方向への変位を拘束するなら、ロータ2とラビリンスパッキンとの接触等を効果的に防止することができる。   Between the casing 3 and the base plate 8 in the reheat-type steam turbine 1, keys and key grooves are arranged at two locations near both ends as described above. A vehicle compartment holding means including a key 8a and a key groove 5Ca is added to the middle portion in the longitudinal direction as shown in FIGS. In the illustrated example, a key groove 5Ca is provided on a part (a nozzle valve that opens and closes for long-term output adjustment) 4Aa of the casing 3 following the main steam inflow pipe 4A in the high-pressure turbine casing 4C through a bracket. On the other hand, a key 8a is provided in a part connected to the base plate 8 integrally. The key 8a and the key groove 5Ca extend in parallel with the axial center line of the casing 3 and allow the casing 3 to be displaced in the axial direction, and in the left-right direction (FIG. 3C). Displacement in the vertical direction) is not allowed. The middle part in the longitudinal direction of the vehicle compartment 3 provided with the vehicle compartment holding means is close to the place where the main steam flows in through the inflow pipe 4A and the reheated steam flows in through the inflow pipe 5A. If the displacement of the vehicle compartment 3 in the left-right direction is constrained, contact between the rotor 2 and the labyrinth packing can be effectively prevented.

またこの例では、同じ図3に示すように、高圧タービン4への主蒸気の流入管4Aを、左右対称の形状にして車室3の下部に形成している。つまり、車室3の軸心を含む鉛直な平面に関して対称な経路を有するものとして流入管4Aを形成したのである。主蒸気の温度は560℃程度と高温になるため、このように対称なものとすることにより、車室3の熱変形を最小限に抑えることができる。   Further, in this example, as shown in FIG. 3, the main steam inflow pipe 4 </ b> A to the high-pressure turbine 4 is formed in the lower part of the passenger compartment 3 in a symmetrical shape. That is, the inflow pipe 4 </ b> A is formed as having a symmetrical path with respect to a vertical plane including the axis of the passenger compartment 3. Since the temperature of the main steam is as high as about 560 ° C., it is possible to minimize the thermal deformation of the passenger compartment 3 by making it symmetrical in this way.

ところで、先に図2によって説明したように、車室3は、上半部および下半部をフランジ3Caで接合することにより一体化したものである。つまりフランジ3Caは、複数箇所に設けた挿通孔3Cb内にボルト3Ccを通し、ナットで締め付けることによって接合する。再熱蒸気の温度変動にともなって車室3とともにフランジ3Caの温度が下降したとき、ボルト3Ccの温度が高いままだと、ボルト3Cc等による上記の接合が緩くなることが考えられる。そこでこのタービン1では、挿通孔3Cbとボルト3Ccとの間に銅板(熱伝導促進材)を詰め込み、フランジ3Caとボルト3Ccとの間で熱が速やかに移動するようにした。ボルト3Ccと銅板とが接触し、銅板とフランジ3Ca(の挿通孔3Cbの内面)との間も接触するようにするのがよい。こうしたことにより、フランジ3Caとボルト3Ccとの間で温度差の拡大することが防止され、上記の接合が緩むことが避けられる。   By the way, as previously described with reference to FIG. 2, the passenger compartment 3 is integrated by joining the upper half and the lower half with a flange 3Ca. That is, the flange 3Ca is joined by passing the bolt 3Cc through the insertion holes 3Cb provided at a plurality of locations and tightening with the nuts. When the temperature of the flange 3Ca is lowered together with the passenger compartment 3 along with the temperature fluctuation of the reheat steam, it is considered that the above-described joining by the bolt 3Cc or the like becomes loose if the temperature of the bolt 3Cc remains high. Therefore, in this turbine 1, a copper plate (heat conduction promoting material) is packed between the insertion hole 3Cb and the bolt 3Cc so that the heat moves quickly between the flange 3Ca and the bolt 3Cc. The bolt 3Cc and the copper plate are in contact with each other, and the copper plate and the flange 3Ca (the inner surface of the insertion hole 3Cb) are preferably in contact with each other. As a result, the temperature difference between the flange 3Ca and the bolt 3Cc is prevented from increasing, and the above-described joining is avoided.

図4は、以上のような再熱式蒸気タービン1を搭載したLNG運搬船における燃料および蒸気等の流れを例示する系統図である。再熱式蒸気タービン1には2基のボイラ12a・12bから蒸気を供給することとし、まずは、供給経路14を通して主蒸気を高圧タービン4へ送る。高圧タービン4を回転させた主蒸気は、回収経路15にてボイラ12a・12bへ戻し、再加熱をしたうえ再熱蒸気として供給経路16(太い線で表したもの。前述のとおり再熱蒸気の温度変動が大きい)より中圧タービン5へ供給する。中圧タービン5を回転させたその蒸気は、経路17により導いて低圧タービン20を回転させ、復水器21で水に戻したうえ、ポンプ22によって経路23から再びボイラ12a・12bへ送る。その一方、上記した高圧・中圧のタービン4・5を含む再熱式蒸気タービン1と、別に配置した低圧タービン20との各出力は、減速機26を介して船尾の推進プロペラ27および発電機28への駆動力とする。   FIG. 4 is a system diagram illustrating the flow of fuel, steam, and the like in the LNG carrier equipped with the reheat steam turbine 1 as described above. Steam is supplied from the two boilers 12 a and 12 b to the reheat steam turbine 1, and first, main steam is sent to the high-pressure turbine 4 through the supply path 14. The main steam that has rotated the high-pressure turbine 4 is returned to the boilers 12a and 12b through the recovery path 15, reheated, and supplied as reheated steam (represented by a thick line. As described above, the reheated steam The medium pressure turbine 5 is supplied with a larger temperature fluctuation. The steam that has rotated the intermediate-pressure turbine 5 is guided by the path 17 to rotate the low-pressure turbine 20, returned to water by the condenser 21, and sent again from the path 23 to the boilers 12 a and 12 b by the pump 22. On the other hand, the outputs of the reheat steam turbine 1 including the high-pressure / medium-pressure turbines 4 and 5 described above and the low-pressure turbine 20 arranged separately are transmitted via a speed reducer 26 to a stern propeller 27 and a generator. It is set as the driving force to 28.

ボイラ12a・12bの燃料としては、同運搬船が搭載するLNGタンク10内でのボイルオフガス(自然気化ガス)を主として使用している。当該ボイルオフガスを、低圧コンプレッサー11により加圧(および加熱)したうえボイラ12a・12bに送るのである。ボイラ12a・12bには重油の供給経路13をも接続しており、ボイルオフガスのみでは不足の場合等に、当該経路13から重油を供給しボイルオフガスと混焼させることとしている。   As fuel for the boilers 12a and 12b, boil-off gas (natural vaporization gas) in the LNG tank 10 mounted on the carrier is mainly used. The boil-off gas is pressurized (and heated) by the low-pressure compressor 11 and then sent to the boilers 12a and 12b. A heavy oil supply path 13 is also connected to the boilers 12a and 12b. When only the boil-off gas is insufficient, heavy oil is supplied from the path 13 and mixed with the boil-off gas.

下記の表1に、従来型の非再熱式蒸気タービン(Conventional Plant)と上記した再熱式蒸気タービン(Kawasaki Reheat Plant)とについての比較を示す。すなわち表1では、17万7000m3のタンク容量を有するLNG運搬船において、推進源として非再熱式の蒸気タービンを用いる場合と上記形式の再熱式蒸気タービン1を使用する場合とで、ボイラの仕様や燃費を比較している。燃料消費量は184ton/dayから160ton/dayに減少し、13%以上の燃費改善がもたらされることが分かる。
Table 1 below shows a comparison between a conventional non-reheat steam turbine (Conventional Plant) and the above-described reheat steam turbine (Kawasaki Reheat Plant). That is, in Table 1, in an LNG carrier having a tank capacity of 177,000 m 3 , the case of using a non-reheat steam turbine as the propulsion source and the case of using the reheat steam turbine 1 of the above type are shown. The specifications and fuel consumption are compared. It can be seen that the fuel consumption is reduced from 184 ton / day to 160 ton / day, resulting in a fuel efficiency improvement of 13% or more.

発明の実施態様である再熱式蒸気タービン1を示すもので、図1(a)はタービン1の全体的な縦断面図、同(b)は同(a)におけるb部詳細図である。1 shows a reheat steam turbine 1 according to an embodiment of the invention, in which FIG. 1 (a) is an overall longitudinal sectional view of the turbine 1, and FIG. 1 (b) is a detailed view of part b in FIG. 1 (a). 図1(b)におけるII−II断面図である。It is II-II sectional drawing in FIG.1 (b). 図3(a)は図1(a)におけるIII部詳細図である。また、図3(b)・(c)は、同(a)に示す部分の正面図および底面図である。FIG. 3A is a detailed view of part III in FIG. 3 (b) and 3 (c) are a front view and a bottom view of the portion shown in FIG. 3 (a). 蒸気タービン1とともに、LNG運搬船における燃料および蒸気等の流れを示す系統図である。It is a systematic diagram which shows the flow of fuel, steam, etc. in an LNG carrier ship with the steam turbine 1. FIG. 図5(a)は、高・中圧のタービンが一体に設けられた従来の再熱式蒸気タービン1’を示す全体縦断面図で、同(b)は同(a)におけるb部詳細図である。FIG. 5 (a) is an overall longitudinal sectional view showing a conventional reheat steam turbine 1 ′ integrally provided with a high / medium pressure turbine, and FIG. 5 (b) is a detailed view of a portion b in FIG. 5 (a). It is.

符号の説明Explanation of symbols

1 再熱式蒸気タービン
2 ロータ
3 車室
4 高圧タービン
4A 主蒸気の流入管
4C 高圧タービン車室
5 中圧タービン
5A 再熱蒸気の流入管
5C 中圧タービン車室
5Ca キー溝(車室保持手段)
6 独立蒸気室
6a 仕切り壁
7a 第1段ノズル
8 台板
8a キー(車室保持手段)
10 LNGタンク
12a・12b ボイラ
DESCRIPTION OF SYMBOLS 1 Reheat type steam turbine 2 Rotor 3 Casing 4 High pressure turbine 4A Main steam inflow pipe 4C High pressure turbine casing 5 Medium pressure turbine 5A Reheat steam inflow pipe 5C Medium pressure turbine casing 5Ca Key groove (chamber holding means )
6 Independent steam chamber 6a Partition wall 7a First stage nozzle 8 Base plate 8a Key (vehicle compartment holding means)
10 LNG tank 12a / 12b boiler

Claims (6)

一連に形成された車室内の同一軸心線上に高圧タービンと中圧タービンとが配置され、中圧タービンに再熱蒸気が供給される再熱式蒸気タービンであって、
中圧タービンに供給される再熱蒸気が、少なくとも1段のノズルを経由したうえで車室の内壁と接触するよう構成されていることを特徴とする再熱式蒸気タービン。
A reheat-type steam turbine in which a high-pressure turbine and an intermediate-pressure turbine are arranged on the same axial center line in a series of vehicle interiors, and reheat steam is supplied to the intermediate-pressure turbine,
A reheat-type steam turbine is configured such that reheat steam supplied to an intermediate-pressure turbine is in contact with an inner wall of a passenger compartment through at least one stage of nozzles.
中圧タービンへの再熱蒸気の流入管に、仕切り壁および第1段ノズルを介して車室から隔てられた独立蒸気室が形成されていることを特徴とする請求項1に記載した再熱式蒸気タービン。   2. The reheat according to claim 1, wherein an independent steam chamber separated from the vehicle compartment is formed in the inflow pipe of the reheat steam to the intermediate pressure turbine through the partition wall and the first stage nozzle. Steam turbine. 上記車室の両端部付近と中ほどの部分とに、特定方向への車室の変位を拘束する車室保持手段が設けられていることを特徴とする請求項1または2に記載した再熱式蒸気タービン。   The reheat according to claim 1 or 2, wherein a compartment holding means for restraining the displacement of the compartment in a specific direction is provided in the vicinity of both end portions and the middle portion of the compartment. Steam turbine. 高圧タービンに供給される主蒸気の流入管が、車室の軸心を含む鉛直な平面に関して対称に形成された経路を有するものであることを特徴とする請求項1〜3のいずれかに記載した再熱式蒸気タービン。   The inflow pipe of the main steam supplied to the high-pressure turbine has a path formed symmetrically with respect to a vertical plane including the axial center of the passenger compartment. Reheat steam turbine. 上記車室が、ボルトを用いて上下の部分を接合することにより構成されていて、少なくとも中圧タービンにおいては、当該ボルトと車室のボルト穴との間に熱伝導促進材が入れられていることを特徴とする請求項1〜4のいずれかに記載した再熱式蒸気タービン。   The casing is configured by joining upper and lower portions using bolts, and at least in the intermediate-pressure turbine, a heat conduction promoting material is inserted between the bolt and the bolt hole of the casing. The reheat-type steam turbine according to any one of claims 1 to 4, wherein LNG運搬船に搭載されていて、
中圧タービンへの再熱蒸気および高圧タービンへの主蒸気を発生するためのボイラが、上記運搬船におけるLNGタンク内の蒸発ガスを主な燃料とするものであることを特徴とする請求項1〜5のいずれかに記載した再熱式蒸気タービン。
On the LNG carrier,
The boiler for generating the reheat steam to the medium pressure turbine and the main steam to the high pressure turbine is mainly composed of evaporated gas in the LNG tank in the carrier ship. The reheat steam turbine described in any one of 5 above.
JP2007204776A 2007-08-06 2007-08-06 Reheat steam turbine Active JP4674225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204776A JP4674225B2 (en) 2007-08-06 2007-08-06 Reheat steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204776A JP4674225B2 (en) 2007-08-06 2007-08-06 Reheat steam turbine

Publications (2)

Publication Number Publication Date
JP2009041377A true JP2009041377A (en) 2009-02-26
JP4674225B2 JP4674225B2 (en) 2011-04-20

Family

ID=40442390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204776A Active JP4674225B2 (en) 2007-08-06 2007-08-06 Reheat steam turbine

Country Status (1)

Country Link
JP (1) JP4674225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132380A (en) * 2010-12-22 2012-07-12 Mitsubishi Heavy Ind Ltd Marine low pressure turbine casing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833703U (en) * 1981-08-31 1983-03-04 株式会社日立製作所 Base plate fixing structure
JPS58135304A (en) * 1982-02-08 1983-08-11 Toshiba Corp Steam turbine
JPS58180707A (en) * 1982-04-16 1983-10-22 Nippon Kokan Kk <Nkk> Effective utilization system of heat in lng ship
JPS60169605A (en) * 1984-02-14 1985-09-03 Hitachi Ltd Steam turbine plant
JPS6314090U (en) * 1986-07-14 1988-01-29
JPH11350911A (en) * 1998-06-04 1999-12-21 Mitsubishi Heavy Ind Ltd Flexible inlet pipe for high-to medium-pressure steam turbine
JP2000356110A (en) * 1999-06-15 2000-12-26 Mitsubishi Heavy Ind Ltd Steam inlet/outlet pressure loss reduction structure of steam turbine
JP2006104951A (en) * 2004-09-30 2006-04-20 Toshiba Corp Steam turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833703U (en) * 1981-08-31 1983-03-04 株式会社日立製作所 Base plate fixing structure
JPS58135304A (en) * 1982-02-08 1983-08-11 Toshiba Corp Steam turbine
JPS58180707A (en) * 1982-04-16 1983-10-22 Nippon Kokan Kk <Nkk> Effective utilization system of heat in lng ship
JPS60169605A (en) * 1984-02-14 1985-09-03 Hitachi Ltd Steam turbine plant
JPS6314090U (en) * 1986-07-14 1988-01-29
JPH11350911A (en) * 1998-06-04 1999-12-21 Mitsubishi Heavy Ind Ltd Flexible inlet pipe for high-to medium-pressure steam turbine
JP2000356110A (en) * 1999-06-15 2000-12-26 Mitsubishi Heavy Ind Ltd Steam inlet/outlet pressure loss reduction structure of steam turbine
JP2006104951A (en) * 2004-09-30 2006-04-20 Toshiba Corp Steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132380A (en) * 2010-12-22 2012-07-12 Mitsubishi Heavy Ind Ltd Marine low pressure turbine casing

Also Published As

Publication number Publication date
JP4674225B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4489756B2 (en) Energy conversion system, energy transfer system, and method of controlling heat transfer
US8664785B2 (en) Power recovery system using a rankine power cycle incorporating a two-phase liquid-vapor expander with electric generator
CA2666325C (en) Thermodynamic cycles with thermal diluent
EP2541021B1 (en) System for fuel gas moisturization and heating
US7637109B2 (en) Power generation system including a gas generator combined with a liquified natural gas supply
KR102572399B1 (en) Floating equipment and manufacturing method of floating equipment
US20110113786A1 (en) Combined cycle power plant with integrated organic rankine cycle device
US9341085B2 (en) Power recovery system using a rankine power cycle incorporating a two-phase liquid-vapor expander with electric generator
EP3578767B1 (en) Heat cycle facility
US20140318134A1 (en) Backup fuel supply for a gas turbine
KR102220071B1 (en) Boiler system
JP2009057966A (en) Method and device for cooling steam turbine constituent element
EP3458688B1 (en) Cogenerative organic rankine cycle system
JP4674225B2 (en) Reheat steam turbine
JP6552834B2 (en) Turbine equipment
JP2007333336A (en) Energy supply system, energy supply method, and method for remodeling energy supply system
KR20150103429A (en) Steam turbine power generation modulation and arrangement structure of the same in mobile type floating storage power generation plant
US8479488B2 (en) Oxyfuel gas turbine system and method
Valamin et al. The cogeneration steam turbine of the T-40/50-8.8 type for the combined cycle power plant PGU-115
JP4859981B2 (en) Gas turbine equipment and its remodeling method
MosayebNezhad et al. Thermodynamic Performance Assessment of a Combined Micro Humid Air Turbine and Organic Rankine Cycle System for Maritime Application
Dinger Efficiency of Propulsive Machinery and Late Developments in Naval Engineering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

R150 Certificate of patent or registration of utility model

Ref document number: 4674225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250