JP2009040083A - Body inclination angle diagnosing device and body inclination angle diagnosing method - Google Patents

Body inclination angle diagnosing device and body inclination angle diagnosing method Download PDF

Info

Publication number
JP2009040083A
JP2009040083A JP2007204123A JP2007204123A JP2009040083A JP 2009040083 A JP2009040083 A JP 2009040083A JP 2007204123 A JP2007204123 A JP 2007204123A JP 2007204123 A JP2007204123 A JP 2007204123A JP 2009040083 A JP2009040083 A JP 2009040083A
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
centrifugal acceleration
acceleration
excess centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007204123A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ogawa
義博 小川
Kanji Maki
寛司 牧
Shunichi Usui
俊一 臼井
Yuki Kunimatsu
祐樹 國松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Central Japan Railway Co
Original Assignee
Kayaba Industry Co Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd, Central Japan Railway Co filed Critical Kayaba Industry Co Ltd
Priority to JP2007204123A priority Critical patent/JP2009040083A/en
Publication of JP2009040083A publication Critical patent/JP2009040083A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a body inclination angle diagnosing device for detecting an abnormality of an inclination angle of a body of a rolling stock, and a body inclination angle diagnosing method. <P>SOLUTION: This diagnosing device is provided with a detection means 2 for detecting acceleration αF in the horizontal direction acting on the body B of the rolling stock T for the direction of the advance of the rolling stock, a theoretical over-centrifugal acceleration computing means 3 for obtaining theoretical over-centrifugal acceleration αL in the horizontal direction acting on the body B for the direction of the advance of the rolling stock during steady curve section traveling based on information about a track, a speed V of the rolling stock, and the inclination angle θ of the body, and an abnormality detection means 4 for detecting the abnormality of the inclination angle θ for a bogie W of the body B based on the acceleration αF detected by the detection means 2 during steady curve section traveling and the theoretical over-centrifugal acceleration αL obtained by the theoretical over-centrifugal acceleration computing means 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄道車両の車体の傾斜角度の異常を検出する車体傾斜角度診断装置および車体傾斜角度診断方法に関する。   The present invention relates to a vehicle body tilt angle diagnostic apparatus and a vehicle body tilt angle diagnostic method for detecting an abnormality in the tilt angle of a vehicle body of a railway vehicle.

鉄道車両の曲線区間走行時には、車体に速度に応じて高速走行の妨げとなる超過遠心加速度が作用する。この超過遠心加速度を緩和するために、鉄道車両が走行する曲線軌道には、曲線の内側と外側のレールに高低差であるカントを設けて、曲線区間走行時における超過遠心加速度を低減している。   When the railway vehicle travels in a curved section, excessive centrifugal acceleration that impedes high-speed traveling acts on the vehicle body according to the speed. In order to mitigate this excess centrifugal acceleration, the curve track on which the railway vehicle travels is provided with a cant that is a difference in height on the inner and outer rails of the curve to reduce the excess centrifugal acceleration during traveling in the curved section. .

しかし、鉄道車両の更なる高速化に伴い、カントを設けるのみでは超過遠心加速度の低減が不十分となるため、車体を台車に対して曲線内側に傾斜させて超過遠心加速度をさらに低減する、いわゆる車体傾斜機構付きの鉄道車両の提案がなされるに至っている(たとえば、特許文献1参照)。
特開特開2004−82964号公報
However, as the speed of railway vehicles is further increased, the reduction of excess centrifugal acceleration becomes insufficient simply by providing a cant, so the vehicle body is tilted to the inside of the curve with respect to the carriage to further reduce excess centrifugal acceleration. A proposal of a railway vehicle with a vehicle body tilt mechanism has been made (for example, see Patent Document 1).
JP-A-2004-82964

上述した車体傾斜が可能な鉄道車両では、車体を傾斜させることによって超過遠心加速度を低減せしめて、曲線区間をより高速にて走行可能であるが、実際に車体の傾斜角度が狙った角度となっているか否かについて検証することができない。   The above-mentioned railway vehicle capable of tilting the vehicle can reduce the excess centrifugal acceleration by tilting the vehicle body and can travel at a higher speed in the curved section, but the actual tilt angle of the vehicle body is the target angle. It is not possible to verify whether or not

つまり、従来の装置では、車体を傾斜させる装置のハードウェアおよびソフトウェアのいずれに障害があっても、これを確実に検出することができない。   In other words, the conventional apparatus cannot reliably detect any failure in either the hardware or software of the apparatus that tilts the vehicle body.

そこで、本発明は上記不具合を改善するために創案されたものであって、その目的とするところは、鉄道車両の車体傾斜角度の異常を検出することが可能な車体傾斜角度診断装置および車体傾斜角度診断方法を提供する事である。   Accordingly, the present invention was devised to improve the above-described problems, and the object of the present invention is to provide a vehicle body tilt angle diagnostic apparatus and a vehicle body tilt capable of detecting an abnormality in the vehicle body tilt angle of a railway vehicle. It is to provide an angle diagnosis method.

上記した目的を達成するため、本発明の課題解決手段における車体傾斜角度診断装置は、鉄道車両の車体に作用する車両進行方向に対し横方向の加速度を検出する検知手段と、軌道情報、鉄道車両の速度および車体傾斜角度に基づいて定常曲線区間走行時における車体に作用する車両進行方向に対し横方向の理論超過遠心加速度を求める理論超過遠心加速度演算手段と、上記定常曲線区間走行時に検知手段で検知した加速度と理論超過遠心加速度演算手段で求めた理論超過遠心加速度とに基づいて車体の台車に対する傾斜角度の異常を検出する異常検出手段とを備えた。 In order to achieve the above-described object, a vehicle body tilt angle diagnosis apparatus according to the problem solving means of the present invention includes a detection means for detecting lateral acceleration with respect to a vehicle traveling direction acting on a vehicle body of a railway vehicle, track information, and railway vehicle. A theoretical excess centrifugal acceleration calculating means for calculating a theoretical excess centrifugal acceleration transverse to the vehicle traveling direction acting on the vehicle body during traveling in the steady curve section based on the speed of the vehicle and the vehicle body tilt angle; And an abnormality detecting means for detecting an abnormality of the tilt angle of the vehicle body relative to the carriage based on the detected acceleration and the theoretical excess centrifugal acceleration obtained by the theoretical excess centrifugal acceleration calculating means.

また、本発明の課題解決手段における車体傾斜角度診断方法は、鉄道車両の定常曲線区間走行時に車体に作用する車両進行方向に対し横方向の加速度を検知するステップと、軌道情報、鉄道車両の速度および車体傾斜角度に基づいて求めた定常曲線区間走行時における理論超過遠心加速度を求めるステップと、加速度と理論超過遠心加速度とに基づいて車体の台車に対する傾斜角度の異常を検出するステップとを備えた。   The vehicle body tilt angle diagnosis method according to the means for solving problems of the present invention includes a step of detecting an acceleration in a lateral direction with respect to a vehicle traveling direction acting on a vehicle body when the railway vehicle travels in a steady curve section, track information, and speed of the rail vehicle. And a step of obtaining a theoretical excess centrifugal acceleration during traveling in a steady curve section obtained based on the vehicle body inclination angle, and a step of detecting an abnormality in the inclination angle of the vehicle body with respect to the carriage based on the acceleration and the theoretical excess centrifugal acceleration. .

この車体傾斜角度診断装置および車体傾斜角度診断方法によれば、鉄道車両の車体傾斜角度の異常を検出することが可能である。そして、このように、車体傾斜角度診断装置および車体傾斜角度診断方法では、車体の傾斜角度の異常を検出することができるので、車両の運転者や運行管理者に対し、定常曲線区間のみならず緩和曲線区間を含む曲線区間の走行について警告を与えることが可能であるとともに、車体傾斜装置のメンテナンスの要否についての判断材料を与えることができる。   According to the vehicle body tilt angle diagnostic apparatus and the vehicle body tilt angle diagnostic method, it is possible to detect an abnormality in the vehicle body tilt angle of a railway vehicle. As described above, the vehicle body inclination angle diagnosis apparatus and the vehicle body inclination angle diagnosis method can detect an abnormality in the vehicle body inclination angle, so that not only the steady curve section but also the vehicle driver and the operation manager can be detected. It is possible to give a warning about the travel of the curve section including the relaxation curve section, and to give a judgment material about the necessity of maintenance of the vehicle body tilting device.

また、車両が複数の定常曲線区間を含む走行区間を走行した結果、定常曲線区間における軌道に狂いが生じていると判断することが可能な判断材料をも車両の運転者や運行管理者に対して提供することが可能である。   In addition, the vehicle driver and the operation manager can also provide judgment materials that can be used to determine that the trajectory in the steady curve section is out of order as a result of the vehicle traveling in a traveling section including a plurality of steady curve sections. Can be provided.

以下、図に示した実施の形態に基づき、本発明を説明する。図1は、一実施の形態における車体傾斜角度診断装置のシステムにおける一例を示す図である。図2は、一実施の形態における車体傾斜角度診断装置を搭載した鉄道車両の平面図である。図3は、鉄道車両が走行する軌道の一部を示した図である。図4は、走行地点に軌道情報を関連付けたマップの一例である。図5は、車両が定常曲線区間を走行する際の超過遠心加速度を説明する図である。図6は、一実施の形態における車体傾斜角度診断装置の処理手順の一例を示すフローチャートである。   The present invention will be described below based on the embodiments shown in the drawings. FIG. 1 is a diagram illustrating an example of a system of a vehicle body tilt angle diagnosis apparatus according to an embodiment. FIG. 2 is a plan view of a railway vehicle on which the vehicle body tilt angle diagnostic apparatus according to one embodiment is mounted. FIG. 3 is a diagram showing a part of a track on which a rail vehicle travels. FIG. 4 is an example of a map in which track information is associated with travel points. FIG. 5 is a diagram illustrating excess centrifugal acceleration when the vehicle travels in a steady curve section. FIG. 6 is a flowchart illustrating an example of a processing procedure of the vehicle body tilt angle diagnosis apparatus according to the embodiment.

一実施の形態における車体傾斜角度診断装置1は、図1および図2に示すように、基本的には、鉄道車両の車体に作用する車両進行方向に対し横方向の加速度を検出する検知手段たる加速度センサ2と、鉄道車両の定常曲線区間走行中の鉄道車両の走行地点における軌道情報、鉄道車両の速度および車体傾斜角度に基づいて車体に作用する理論超過遠心加速度を求める理論超過遠心加速度演算手段たる理論超過遠心加速度演算部3と、定常曲線区間走行中に加速度センサ2で検知した横方向の加速度と理論超過遠心加速度演算部3で求めた理論超過遠心加速度に基づいて車体の台車に対する傾斜角度の異常を検出する異常検出手段たる異常検出部4とを備えて構成されている。   As shown in FIGS. 1 and 2, the vehicle body tilt angle diagnostic apparatus 1 according to an embodiment is basically a detection means that detects acceleration in a lateral direction with respect to the vehicle traveling direction that acts on the vehicle body of a railway vehicle. The theoretical excess centrifugal acceleration calculation means for obtaining the theoretical excess centrifugal acceleration acting on the vehicle body based on the acceleration sensor 2 and the track information at the traveling point of the railway vehicle during the steady curve section of the railway vehicle, the speed of the railway vehicle, and the vehicle body inclination angle The tilt angle of the vehicle body relative to the cart based on the lateral acceleration detected by the acceleration sensor 2 during traveling in the steady curve section and the theoretical excess centrifugal acceleration obtained by the theoretical excess centrifugal acceleration calculation unit 3 And an abnormality detecting unit 4 as an abnormality detecting means for detecting the abnormality.

なお、この車体傾斜角度診断装置1が搭載される鉄道車両は、車体Bと台車Wと、車体Bと台車Wとの間の左右に介装されるエアバネAとを備え、左右のエアバネAに個別にエアを供給あるいは排出することによって曲線区間走行時に車体Bを台車Wに対して曲線内側に向けて傾斜させることが可能なようになっている。なお、台車Wは、台車Wと車軸Rとの間に介装されるバネSによって弾性支持されている。   The railway vehicle on which the vehicle body tilt angle diagnostic apparatus 1 is mounted includes a vehicle body B and a carriage W, and air springs A interposed between the vehicle body B and the carriage W, and the left and right air springs A By individually supplying or discharging air, the vehicle body B can be inclined toward the inside of the curve with respect to the carriage W when traveling in a curved section. The carriage W is elastically supported by a spring S interposed between the carriage W and the axle R.

そして、車体傾斜角度診断装置1は、ハードウェア資源として、加速度センサ2が出力するアナログ電圧でなる横方向の加速度信号をデジタル信号に変換する図外のA/D変換器と、加速度センサ2が鉄道車両の定常曲線区間走行時に出力した加速度を処理して車体傾斜角度の異常を検出することができるようにCPU(Central Prossesing Unit)等の演算処理装置と、上記演算処理装置に記憶領域を提供するRAM(Random Access Memory)等の主記憶装置部と、上記車体傾斜角度の異常検出を行うための処理に使用されるプログラム等が格納されるROM(Read Only Memory)やHD(Hard Disk)等の副記憶装置とを備えており、CPUで上記各種処理を実行することで理論超過遠心加速度演算部3、異常検出部4が実現されるようになっている。   The vehicle body tilt angle diagnostic apparatus 1 includes, as hardware resources, an A / D converter (not shown) that converts a lateral acceleration signal that is an analog voltage output from the acceleration sensor 2 into a digital signal, and an acceleration sensor 2. An arithmetic processing unit such as a CPU (Central Processing Unit) and a storage area are provided for the arithmetic processing unit so as to detect an abnormality in the vehicle body tilt angle by processing the acceleration output during traveling in a steady curve section of the railway vehicle. A main memory device such as a RAM (Random Access Memory), a ROM (Read Only Memory), a HD (Hard Disk), etc. in which a program and the like used for processing for detecting an abnormality in the vehicle body tilt angle are stored. A secondary storage device, and the CPU executes the above various processes. Theory excess centrifugal acceleration calculation unit 3, the abnormality detection unit 4 is adapted to be implemented by the.

なお、本実施の形態の場合、上記した車体Bに作用する横方向の加速度を検出する加速度センサ2は、車体Bの前後の台車W付近に一つずつ設置され、車体Bの床面に沿う横方向の加速度を検知可能な加速度センサとされればよいが、それ以外に、上下方向および前後方向の加速度を検知することが可能な加速度センサとされてもよく、この加速度センサ2で検知した横方向の加速度は、異常検出部4に入力される。   In the case of the present embodiment, the acceleration sensors 2 for detecting the lateral acceleration acting on the vehicle body B described above are installed one by one near the carriage W before and after the vehicle body B, and follow the floor surface of the vehicle body B. An acceleration sensor capable of detecting lateral acceleration may be used, but in addition, an acceleration sensor capable of detecting vertical and longitudinal accelerations may be used. The lateral acceleration is input to the abnormality detection unit 4.

他方、理論超過遠心加速度演算部3は、走行地点に軌道情報を関連付けたマップを有しており、鉄道車両の走行地点や速度を監視し記録する図外の車両モニタから制御対象である車体傾斜角度診断装置1が搭載される車両Tの走行位置を得て、上記マップを参照して軌道情報から車両Tがどのような定常曲線区間を走行中であるかを認識する。なお、走行地点を得るには、車両モニタから得る以外に、たとえば、GPS(Global Positioning System)装置や他の手段を用いるようにしてもよく、また、車両Tの速度についても速度センサを別途設けて速度センサで検知するようにしてもよい。   On the other hand, the theoretical excess centrifugal acceleration calculation unit 3 has a map in which track information is associated with a travel point, and the vehicle body tilt that is a control target from a vehicle monitor (not shown) that monitors and records the travel point and speed of the railway vehicle. The travel position of the vehicle T on which the angle diagnosis apparatus 1 is mounted is obtained, and the steady curve section in which the vehicle T is traveling is recognized from the track information with reference to the map. In addition to obtaining from the vehicle monitor, for example, a GPS (Global Positioning System) device or other means may be used to obtain the travel point, and a speed sensor is separately provided for the speed of the vehicle T. It may be detected by a speed sensor.

走行地点に関連付けられる軌道情報は、具体的には、区間の種別、すなわち、定常曲線区間と他の区間の別、定常曲線区間における旋回方向、定常曲線区間における軌道の曲率、定常曲線区間におけるカント量(曲線の外側のレールと内側のレールの高低差)が含まれる。   Specifically, the track information associated with the travel point includes the type of section, that is, the distinction between the steady curve section and other sections, the turning direction in the steady curve section, the curvature of the track in the steady curve section, and the cant in the steady curve section. Amount (height difference between the outer rail and the inner rail) is included.

なお、図3に示すように、定常曲線区間の他の区間とされる区間には、定常曲線区間の前後に配置される緩和曲線入口区間、緩和曲線出口区間と、直線区間があり、緩和曲線区間は、直線区間と曲率半径が変化しない定常曲線区間との間の移行をなめらかにするために設けられる曲線区間で、定常曲線区間の前後に設けられ、本書では、便宜上、定常曲線区間の前の緩和曲線区間を緩和曲線入口区間と呼び、定常曲線区間の後の緩和曲線区間を緩和曲線出口区間と呼ぶ。   In addition, as shown in FIG. 3, there are a relaxation curve entrance section, a relaxation curve exit section, and a straight section that are arranged before and after the steady curve section as sections other than the steady curve section. The section is a curve section provided to smooth the transition between the straight section and the steady curve section where the radius of curvature does not change, and is provided before and after the steady curve section. These relaxation curve sections are called relaxation curve entrance sections, and the relaxation curve sections after the steady curve sections are called relaxation curve exit sections.

詳しくは、緩和曲線入口区間は、曲率半径、カント、スラックが異なる直線区間と定常曲線区間との間に位置して、曲率半径、カント、スラックを連続的に変化させて、直線区間と定常曲線区間とを滑らかに接続している。つまり、曲率半径を例にとれば、上記緩和曲線入口区間の曲率半径は、最初は無限大であるが車両Tの進行に伴い定常曲線区間に近付くにつれて定常曲線区間の曲率半径に近付き、定常曲線区間との境で定常曲線区間のそれを一致するようになっている。また、緩和曲線出口区間は、緩和曲線入口区間とは反対に、その曲率半径は、最初は定常曲線区間の曲率半径と一致しているが、車両Tの進行に伴い徐々に大きくなって、直線区間との境で無限大となるようになっている。   Specifically, the relaxation curve entrance section is located between a straight section and a steady curve section with different curvature radii, cant and slack, and the curvature radius, cant and slack are continuously changed to change the straight section and the steady curve. The section is connected smoothly. In other words, taking the radius of curvature as an example, the radius of curvature of the entrance section of the relaxation curve is initially infinite, but as the vehicle T progresses, the radius of curvature of the steady curve section approaches the steady curve section. It coincides with that of the steady curve section at the boundary with the section. In contrast to the relaxation curve exit section, the radius of curvature of the relaxation curve exit section initially matches the curvature radius of the steady curve section, but gradually increases as the vehicle T advances, It becomes infinite at the boundary with the section.

戻って、上記マップは、図4に示すように、走行地点における定常曲線区間否かの別、定常曲線区間の旋回方向、定常曲線区間の曲率半径、定常曲線区間におけるカント量、定常曲線区間における軌間(レール間間隔)および曲線係数が関連付けされる形で予め作成されて上述の副記憶装置に格納され、適宜に理論超過遠心加速度演算部3が参照可能なようになっている。なお、曲線係数は、車体Bおよび台車Wが車軸に弾性的に支持されており、カント付きの曲線区間走行時にエアバネAおよびバネSが撓むので車体Bが遠心力によって曲線外側へ傾くことからこれを考慮するために、用いられる係数であり、定常超過遠心加速度を演算する際に、車体Bが傾く分を考慮して補正するものである。曲線係数は、通常、1.0〜1.3程度の値である。   Returning to the map, as shown in FIG. 4, whether or not the steady curve section at the traveling point is determined, the turning direction of the steady curve section, the radius of curvature of the steady curve section, the cant amount in the steady curve section, the steady curve section The distance between the rails (inter-rail distance) and the curve coefficient are created in advance in association with each other and stored in the above-mentioned secondary storage device so that the theoretical excess centrifugal acceleration calculation unit 3 can be referred to as appropriate. It should be noted that the curve coefficient is that the vehicle body B and the carriage W are elastically supported on the axle, and the air spring A and the spring S bend when traveling in a curved section with a cant, so that the vehicle body B is inclined outward by the centrifugal force. In order to take this into consideration, it is a coefficient used, and is corrected in consideration of the inclination of the vehicle body B when calculating the steady excess centrifugal acceleration. The curve coefficient is usually a value of about 1.0 to 1.3.

そして、理論超過遠心加速度演算部3は、当該車両Tの速度Vおよび車体傾斜角度θ、および、上述の走行位置における軌道情報から車体Bに作用する横方向の理論超過遠心加速度αLを演算する。なお、車体傾斜角度θについては、別途、図外の車体傾斜を司る車体傾斜装置からの情報を得るようにしている。   Then, the theoretical excess centrifugal acceleration calculation unit 3 calculates the lateral theoretical excess centrifugal acceleration αL acting on the vehicle body B from the speed V and the vehicle body inclination angle θ of the vehicle T and the trajectory information at the travel position described above. As for the vehicle body inclination angle θ, information is separately obtained from the vehicle body inclination device that controls the vehicle body inclination outside the figure.

具体的には、理論超過遠心加速度演算部3は、まず、走行地点とマップを参照して、車両Tが定常曲線区間を走行中であるか否かを判断し、車両Tが定常曲線区間を走行中である場合、理論超過遠心加速度演算部3は、定常曲線区間を走行する場合における定常超過遠心加速度α1を演算し、この定常超過遠心加速度α1を理論超過遠心加速度αLとする。   Specifically, the theoretical excess centrifugal acceleration calculation unit 3 first refers to the travel point and the map to determine whether or not the vehicle T is traveling in the steady curve section, and the vehicle T determines the steady curve section. When traveling, the theoretical excess centrifugal acceleration calculating unit 3 calculates the steady excess centrifugal acceleration α1 when traveling in the steady curve section, and sets the steady excess centrifugal acceleration α1 as the theoretical excess centrifugal acceleration αL.

ここで、車両Tが一定の速度で直線区間から緩和曲線入口区間、定常曲線区間、緩和曲線出口区間を経て直線区間を走行する際、車体Bに作用する理論超過遠心加速度αLである超過遠心加速度は、在来線の軌道に良く見られるように緩和曲線区間で走行距離に比例して増減する場合と、新幹線の軌道に良く見られるように緩和曲線区間で走行距離に対してサインカーブを描くように変化するサイン半波長逓減曲線を用いる場合があるが、緩和曲線区間がいずれのパターンを採用しているかによらず、車両Tが一定の速度で上記した全区間を走行する際には、定常曲線区間においては、理論超過遠心加速度αLが定常超過遠心加速度α1に一致することになる。   Here, when the vehicle T travels through the straight section from the straight section through the relaxation curve entrance section, the steady curve section, and the relaxation curve exit section at a constant speed, the excess centrifugal acceleration that is the theoretical excess centrifugal acceleration αL acting on the vehicle body B Draws a sine curve with respect to the travel distance in the relaxation curve section, as is often seen in the curve of the Shinkansen, as well as when increasing or decreasing in proportion to the travel distance in the relaxation curve section as often seen in the conventional track In some cases, a sine half-wavelength declining curve that changes in this way is used, but regardless of which pattern the relaxation curve section employs, when the vehicle T travels at all speeds described above at a constant speed, In the steady curve section, the theoretical excess centrifugal acceleration αL coincides with the steady excess centrifugal acceleration α1.

そして、定常超過遠心加速度α1を演算するには、車両Tの速度V、旋回方向、カント量C、定常曲線区間の曲率半径R、軌間(レール間間隔)G、曲線係数β、さらに、車両Tが車体Bを台車Wに対して曲線内側に積極的に傾斜させるときの車体Bの台車Wに対する車体傾斜角度θを用いて演算する。   In order to calculate the steady excess centrifugal acceleration α1, the speed V of the vehicle T, the turning direction, the cant amount C, the radius of curvature R of the steady curve section, the gap (interrail interval) G, the curve coefficient β, and the vehicle T Is calculated using the vehicle body inclination angle θ of the vehicle body B with respect to the carriage W when the vehicle body B is actively inclined to the inside of the curve with respect to the carriage W.

具体的には、レール設置面の水平面に対する傾斜角をφ、車体Bに作用する遠心加速度をγ、重力加速度をgとすると、図5に示すように、定常超過遠心加速度α1は、α1=γ・cosφ−g・sinφ−g・sinθとなるが、一般には車体傾斜角度がレール設置面に対して小さいため傾斜角φも小さく、上記式は近似的に、α1=γ−g・sinφ−g・θとしてもよい。さらに、この近似式に対し車体Bの弾性支持による傾斜(曲線係数β)を考慮すると、α1=γ−g・sinφ・β−g・θ(式1)となる。   Specifically, if the inclination angle of the rail installation surface with respect to the horizontal plane is φ, the centrifugal acceleration acting on the vehicle body B is γ, and the gravitational acceleration is g, the steady excess centrifugal acceleration α1 is α1 = γ as shown in FIG. · Cosφ-g · sinφ-g · sinθ, but since the vehicle body inclination angle is generally small with respect to the rail installation surface, the inclination angle φ is also small. The above equation is approximately α1 = γ-g · sinφ-g -It is good also as (theta). Further, when the inclination (curve coefficient β) due to the elastic support of the vehicle body B is taken into consideration for this approximate expression, α1 = γ−g · sinφ · β−g · θ (Expression 1).

上記した実際に得られる情報を上記(式1)に当てはめて、旋回方向を加味すると、α1=D・(V/R−g・C/G・β−g・θ)となり、上記情報から車体傾斜機構付車両における定常超過遠心加速度α1を演算する事ができる。 Applying the information actually obtained to the above (formula 1) and taking the turning direction into consideration, α1 = D · (V 2 / R−g · C / G · β−g · θ). The steady excess centrifugal acceleration α1 in a vehicle with a vehicle body tilt mechanism can be calculated.

このように、理論超過遠心加速度演算部3は、定常超過遠心加速度α1を求めて、これを理論超過遠心加速度αLとし、この理論超過遠心加速度αLは車両Tが一つの定常曲線区間を走行する際に順次演算される。すなわち、演算周期毎に理論超過遠心加速度αLが演算されて、理論超過遠心加速度αLは車両Tが一つの定常曲線区間を走行する際に多数得られることになる。   As described above, the theoretical excess centrifugal acceleration calculation unit 3 obtains the steady excess centrifugal acceleration α1 and sets it as the theoretical excess centrifugal acceleration αL. The theoretical excess centrifugal acceleration αL is obtained when the vehicle T travels in one steady curve section. Are sequentially calculated. That is, the theoretical excess centrifugal acceleration αL is calculated for each calculation cycle, and many theoretical excess centrifugal accelerations αL are obtained when the vehicle T travels in one steady curve section.

つづいて、異常検出部4は、上述の車両Tが一つの定常曲線区間を走行する際に理論超過遠心加速度演算部3が演算した理論超過遠心加速度αLと、車両Tが同一定常曲線区間を走行している際に加速度センサ2が検出した横方向の加速度αFとを取り込んで処理し、車体の傾斜角度の異常を検出する。   Subsequently, the abnormality detection unit 4 causes the theoretical excess centrifugal acceleration αL calculated by the theoretical excess centrifugal acceleration calculation unit 3 when the vehicle T travels in one steady curve section, and the vehicle T travels in the same steady curve section. In this case, the lateral acceleration αF detected by the acceleration sensor 2 is captured and processed to detect an abnormality in the tilt angle of the vehicle body.

ここで、理論超過遠心加速度αLは、車両Tが定常曲線区間のある地点を走行する際に理論的に車体Bに作用する横方向の加速度であるので、同地点走行時における加速度センサ2が検出した横方向の加速度αFから外乱による振動的な振動成分を取り除いた定常成分は、理論的には、理論超過遠心加速度αLに一致することになる。   Here, the theoretical excess centrifugal acceleration αL is a lateral acceleration that theoretically acts on the vehicle body B when the vehicle T travels at a point having a steady curve section, and thus is detected by the acceleration sensor 2 when traveling at the same point. The steady component obtained by removing the vibration component due to the disturbance from the lateral acceleration αF theoretically coincides with the theoretical excess centrifugal acceleration αL.

したがって、定常曲線区間の同一地点における上記加速度αFの定常成分と理論超過遠心加速度αLとの乖離が大きい場合に、これをもって車体の傾斜角度に異常があると判断することができる。具体的には、定常曲線区間の同一地点における上記加速度αFの定常成分と理論超過遠心加速度αLの偏差εが上限閾値Hと下限閾値Lを越える場合、つまり、上限閾値Hから下限閾値Lの範囲内にない場合に、車体Tの傾斜角度に異常があると判断することができ、さらに、精度を向上のために、一つの定常曲線区間走行において加速度αFの定常成分と理論超過遠心加速度αLの偏差εが上限閾値Hと下限閾値Lを越える頻度が大きい場合に車体Tの傾斜角度に異常があると判断するとしてもよい。   Therefore, when the deviation between the steady component of the acceleration αF and the theoretical excess centrifugal acceleration αL at the same point in the steady curve section is large, it can be determined that there is an abnormality in the tilt angle of the vehicle body. Specifically, when the deviation ε between the steady component of the acceleration αF and the theoretical excess centrifugal acceleration αL at the same point in the steady curve section exceeds the upper threshold H and the lower threshold L, that is, the range from the upper threshold H to the lower threshold L If it is not within the range, it can be determined that there is an abnormality in the tilt angle of the vehicle body T, and in order to improve accuracy, the steady component of the acceleration αF and the theoretical excess centrifugal acceleration αL in one steady curve section run. When the frequency of deviation ε exceeding the upper threshold H and the lower threshold L is large, it may be determined that the inclination angle of the vehicle body T is abnormal.

なお、具体的には、上限閾値Hは、車体傾斜が行われなかった場合の理論超過遠心加速度の値とし、下限閾値Lは、車体傾斜装置で狙った角度から+1度程度開きがある場合の理論超過遠心加速度の値に設定しておけばよい。また、加速度αFから振動成分を除去して定常成分のみを抽出するには、振動的な高周波成分をカットするローパスフィルタ処理すればよい。   Specifically, the upper limit threshold value H is the value of the theoretical excess centrifugal acceleration when the vehicle body tilt is not performed, and the lower limit threshold value L is when there is an opening of about +1 degree from the angle aimed by the vehicle body tilting device. It should be set to the value of theoretical excess centrifugal acceleration. Further, in order to remove the vibration component from the acceleration αF and extract only the steady component, a low-pass filter process for cutting the vibrational high-frequency component may be performed.

さらに、本実施の形態では、更なる異常検出精度の向上のため、横方向の加速度αFから定常成分を抽出して、この加速度αFの定常部分を移動平均処理して移動平均値αFmeanを演算し、他方、車両Tが一つの定常曲線区間を走行した時に順次演算される理論超過遠心加速度αLを移動平均処理して、車両Tが一つの定常曲線区間を走行した際の理論超過遠心加速度αLの移動平均値αLmeanを演算し、これら移動平均値αFmeanと移動平均値αLmeanの偏差εmeanを求め、この偏差εmeanが上記した上限および下限の閾値H,Lを超える場合に、これを車体の傾斜角度の異常として検出する。 Further, in the present embodiment, in order to further improve the abnormality detection accuracy, a steady component is extracted from the lateral acceleration αF, and the moving average value αF mean is calculated by moving average processing the steady portion of the acceleration αF. On the other hand, the theoretical excess centrifugal acceleration αL sequentially calculated when the vehicle T travels in one steady curve section is subjected to a moving average process, and the theoretical excess centrifugal acceleration αL when the vehicle T travels in one steady curve section. mobile calculates the average value .alpha.L mean, a deviation epsilon mean of the moving average value .alpha.F mean moving average value .alpha.L mean, deviation epsilon limit mean is above and lower threshold H, if more than L, and the this Is detected as an abnormality in the tilt angle of the vehicle body.

ここで、車両Tは実際には一定の速度で定常曲線区間を走行しているとはかぎらず、また、加速度センサ2で検知した加速度αFから定常成分のみだけを確実に抽出することができない場合もあり、車両Tが一つの定常曲線区間を走行した際の加速度αFの定常部分の移動平均値αFmeanと理論超過遠心加速度αLの移動平均値αLmeanとの偏差εmeanが上限および下限の閾値H,Lを超えることで車体の傾斜角度に異常があると判断する方が、より正確に異常を検出することができる。 Here, the vehicle T is not always traveling in the steady curve section at a constant speed, and only the steady component cannot be reliably extracted from the acceleration αF detected by the acceleration sensor 2. The deviation ε mean between the moving average value αF mean of the steady portion of the acceleration αF and the moving average value αL mean of the theoretical excess centrifugal acceleration αL when the vehicle T travels in one steady curve section is the upper and lower thresholds. If it is determined that there is an abnormality in the tilt angle of the vehicle body by exceeding H and L, the abnormality can be detected more accurately.

すなわち、移動平均値αFmeanと移動平均値αLmeanの偏差εmeanを基準とすることで、ノイズや外乱の影響によって加速度αFの定常成分と理論超過遠心加速度αLの偏差εが上限閾値Hと下限閾値Lを突発的に越えてもこれを異常と判断することがなく、速度変化の影響による判断の変動を回避でき、さらに、定常曲線区間走行時に慢性的に加速度αFの定常成分と理論超過遠心加速度αLの偏差εが上限閾値Hと下限閾値Lを越えている場合を異常と判断することになるので、異常検出の判断ミスを回避でき正確かつ確実に車体の傾斜角度の異常を検出することができる。 That is, by using the deviation ε mean of the moving average value αF mean and the moving average value αL mean as a reference, the deviation ε of the steady component of the acceleration αF and the theoretical excess centrifugal acceleration αL due to the influence of noise and disturbance is set to the upper limit threshold H and the lower limit. Even if the threshold value L is suddenly exceeded, it is not determined to be abnormal, and fluctuations in the determination due to the influence of the speed change can be avoided. If the deviation ε of the acceleration αL exceeds the upper limit threshold value H and the lower limit threshold value L, it is determined that there is an abnormality. Therefore, it is possible to avoid an abnormality detection determination error and accurately and reliably detect an abnormality in the tilt angle of the vehicle body. Can do.

このように、車体傾斜角度診断装置1は、車体の傾斜角度の異常を検出することができるので、車両Tの運転者や運行管理者に対し、定常曲線区間のみならず緩和曲線区間を含む曲線区間の走行について警告を与えることが可能であるとともに、車体傾斜装置のメンテナンスの要否についての判断材料を与えることができる。   Thus, since the vehicle body inclination angle diagnostic apparatus 1 can detect an abnormality in the inclination angle of the vehicle body, a curve including not only a steady curve section but also a relaxation curve section for the driver and the operation manager of the vehicle T. It is possible to give a warning about the traveling in the section and to give a judgment material about the necessity of maintenance of the vehicle body tilting device.

また、車両Tが複数の定常曲線区間を含む走行区間を走行した後や、複数回にわたり同一区間を走行した結果、ある定常曲線区間においてのみ異常を検出する場合には、当該定常曲線区間における軌道に狂いが生じていると判断することも可能である。具体的には、たとえば、異常検出箇所および異常検出数と走行区間内の定常曲線区間数とを一つのデータとして副記憶装置等に記憶させておき、走行に応じて蓄積されたデータから異常の頻度や異常多発箇所を解析するようにすればよい。   In addition, when an abnormality is detected only in a certain steady curve section after the vehicle T travels in a traveling section including a plurality of steady curve sections or as a result of traveling in the same section a plurality of times, the trajectory in the steady curve section It is also possible to judge that there is a mess. Specifically, for example, the abnormality detection location and the number of abnormality detection and the number of steady curve sections in the travel section are stored as one data in the secondary storage device or the like, and the abnormality is detected from the data accumulated according to the travel. What is necessary is just to analyze a frequency and the location where abnormalities occur frequently.

そして、理論超過遠心加速度演算部3、異常検出部4の各部は、CPUが上記した各演算処理を行うためアプリケーションプログラムを実行することで実現され、以下、理論超過遠心加速度演算部3、異常検出部4の各部の処理における処理を図6に示した処理手順の一例に即して説明する。   The theoretical excess centrifugal acceleration calculation unit 3 and the abnormality detection unit 4 are realized by the application program being executed by the CPU to perform the above-described calculation processes. Processing in the processing of each unit of the unit 4 will be described with reference to an example of the processing procedure shown in FIG.

ステップF1では、車体傾斜角度診断装置1は、車体傾斜角度診断装置1は、上述のマップを参照し走行地点から、現在車両Tが定常曲線区間を走行しているか否かを認識し、定常曲線区間を走行中である場合にはステップF2に移行し、そうでない場合には処理を終了する。   In step F1, the vehicle body tilt angle diagnosis apparatus 1 recognizes whether or not the vehicle T is currently traveling in the steady curve section from the travel point with reference to the above-described map, and the steady curve. If the vehicle is traveling in the section, the process proceeds to step F2, and if not, the process ends.

つづいて、ステップF2では、車両モニタからインプットされる車両の走行地点および車両Tの速度Vと車体傾斜装置からインプットされる車体傾斜角度θを読み込み、さらに、加速度センサ2が検出した横方向の加速度αFを読み込む。   Subsequently, in step F2, the vehicle travel point and the vehicle speed V input from the vehicle monitor and the vehicle body tilt angle θ input from the vehicle body tilting device are read, and the lateral acceleration detected by the acceleration sensor 2 is read. Read αF.

そして、ステップF3では、車体傾斜角度診断装置1は、加速度αFの定常成分を抽出し、ステップF4では、理論超過遠心加速度αLを演算して、ステップF5に移行して、現在車両Tが定常曲線区間を走行しているか否かを判断し、定常曲線区間を走行中である場合にはステップF2に移行して、順次理論超過遠心加速度αLを演算する。そうでない場合にはステップF6へ移行する。   In step F3, the vehicle body tilt angle diagnosis apparatus 1 extracts a steady component of the acceleration αF. In step F4, the theoretical excess centrifugal acceleration αL is calculated, and the process proceeds to step F5. It is determined whether or not the vehicle is traveling in the section. If the vehicle is traveling in the steady curve section, the process proceeds to step F2, and the theoretical excess centrifugal acceleration αL is sequentially calculated. Otherwise, the process proceeds to step F6.

引き続き、ステップF6では、車体傾斜角度診断装置1は、上記ステップの処理で得られた複数の加速度αFの定常成分と理論超過遠心加速度αLを移動平均処理して移動平均値αFmeanと移動平均値αLmeanを演算する。 Subsequently, in step F6, the vehicle body tilt angle diagnosis apparatus 1 performs a moving average process on the steady components of the plurality of accelerations αF and the theoretical excess centrifugal acceleration αL obtained by the processing in the above step, thereby moving average value αF mean and moving average value. αL mean is calculated.

ステップF7では、車体傾斜角度診断装置1は、移動平均値αFmeanから移動平均値αLmeanを除算して偏差εmeanを求める。 In step F7, the body tilt angle diagnostic apparatus 1, a deviation epsilon mean by dividing the moving average .alpha.L mean from the moving average value .alpha.F mean.

続き、ステップF8では、車体傾斜角度診断装置1は、この偏差εmeanが上記した上限閾値Hから下限閾値Lの範囲内にあるか否かを判断し、偏差εmeanが上記した上限閾値Hから下限閾値Lの範囲内にある場合には、車体傾斜角度は正常であると判断し(ステップF9)、対して偏差εmeanが上記した上限閾値Hから下限閾値Lの範囲内にない場合にはこれを車体の傾斜角度の異常と判断する(ステップF10)。 Following, in step F8, the vehicle body tilt angle diagnostic apparatus 1, the upper threshold H for the deviation epsilon mean it is determined whether or not within the range between the lower limit threshold value L from the upper limit threshold H as described above, the deviation epsilon mean is above When it is within the range of the lower threshold L, it is determined that the vehicle body inclination angle is normal (step F9). On the other hand, when the deviation ε mean is not within the range of the upper threshold H to the lower threshold L described above. This is determined as an abnormality in the tilt angle of the vehicle body (step F10).

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。   This is the end of the description of the embodiment of the present invention, but the scope of the present invention is of course not limited to the details shown or described.

一実施の形態における車体傾斜角度診断装置のシステムにおける一例を示す図である。It is a figure which shows an example in the system of the vehicle body inclination angle diagnostic apparatus in one embodiment. 一実施の形態における車体傾斜角度診断装置を搭載した鉄道車両の平面図である。1 is a plan view of a railway vehicle equipped with a vehicle body tilt angle diagnostic apparatus according to an embodiment. 鉄道車両が走行する軌道の一部を示した図である。It is the figure which showed a part of track which a rail vehicle drive | works. 走行地点に軌道情報を関連付けたマップの一例である。It is an example of the map which linked | related track information with the travel point. 車両が定常曲線区間を走行する際の超過遠心加速度を説明する図である。It is a figure explaining the excessive centrifugal acceleration at the time of a vehicle drive | working a steady curve area. 一実施の形態における車体傾斜角度診断装置の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the vehicle body tilt angle diagnostic apparatus in one embodiment.

符号の説明Explanation of symbols

1 車体傾斜角度診断装置
2 検知手段たる加速度センサ
3 理論超過遠心加速度演算手段たる理論超過遠心加速度演算部
4 異常検出手段たる異常検出部
A エアバネ
B 車体
R 車軸
S バネ
T 車両
W 台車
DESCRIPTION OF SYMBOLS 1 Body tilt angle diagnostic apparatus 2 Acceleration sensor 3 as detection means Theoretical excess centrifugal acceleration calculation section 4 as theoretical excess centrifugal acceleration calculation means 4 Abnormality detection section A as abnormality detection means Air spring B Vehicle body R Axle S Spring T Vehicle W Carriage

Claims (6)

鉄道車両の車体に作用する車両進行方向に対し横方向の加速度を検出する検知手段と、軌道情報、鉄道車両の速度および車体傾斜角度に基づいて定常曲線区間走行時における車体に作用する車両進行方向に対し横方向の理論超過遠心加速度を求める理論超過遠心加速度演算手段と、上記定常曲線区間走行時に検知手段で検知した加速度と理論超過遠心加速度演算手段で求めた理論超過遠心加速度とに基づいて車体の台車に対する傾斜角度の異常を検出する異常検出手段とを備えた車体傾斜角度診断装置。 Detecting means for detecting acceleration in a direction transverse to the vehicle traveling direction acting on the vehicle body of the railway vehicle, and the vehicle traveling direction acting on the vehicle body during steady curve section traveling based on the track information, the speed of the railway vehicle, and the vehicle body tilt angle Based on the theoretical excess centrifugal acceleration calculating means for obtaining the theoretical excess centrifugal acceleration in the transverse direction, the acceleration detected by the detecting means during traveling in the steady curve section and the theoretical excess centrifugal acceleration calculated by the theoretical excess centrifugal acceleration calculating means A vehicle body inclination angle diagnostic apparatus comprising abnormality detection means for detecting an abnormality in inclination angle with respect to the cart. 異常検出手段は、検知手段で検知した加速度の定常成分の移動平均と理論超過遠心加速度演算手段で求めた理論超過遠心加速度の移動平均との偏差を演算し、当該偏差が閾値を超えると傾斜角度の異常として検出することを特徴とする請求項1に記載の車体傾斜角度診断装置。 The abnormality detection means calculates the deviation between the moving average of the steady component of the acceleration detected by the detection means and the moving average of the theoretical excess centrifugal acceleration calculated by the theoretical excess centrifugal acceleration calculation means, and if the deviation exceeds a threshold value, the inclination angle The vehicle body tilt angle diagnostic apparatus according to claim 1, wherein the abnormality is detected as an abnormality. 理論超過遠心加速度演算手段は、鉄道車両の定常曲線区間の走行地点における軌道情報に基づいて理論超過遠心加速度を求めることを特徴とする請求項1または2に記載の車体傾斜角度診断装置。 3. The vehicle body tilt angle diagnostic device according to claim 1, wherein the theoretical excess centrifugal acceleration calculating means obtains the theoretical excess centrifugal acceleration based on track information at a travel point in a steady curve section of the railway vehicle. 鉄道車両の定常曲線区間走行時に車体に作用する車両進行方向に対し横方向の加速度を検知するステップと、軌道情報、鉄道車両の速度および車体傾斜角度に基づいて求めた定常曲線区間走行時における車体に作用する車両進行方向に対し横方向の理論超過遠心加速度を求めるステップと、加速度と理論超過遠心加速度とに基づいて車体の台車に対する傾斜角度の異常を検出するステップとを備えてなる車体傾斜角度診断方法。 A step of detecting acceleration in a direction transverse to the vehicle traveling direction acting on the vehicle body during traveling in a steady curve section of the railway vehicle, and a vehicle body in traveling in the steady curve section obtained based on the track information, the speed of the railway vehicle, and the vehicle body inclination angle. A vehicle body tilt angle comprising: obtaining a theoretical excess centrifugal acceleration transverse to the vehicle traveling direction acting on the vehicle; and detecting an abnormality in a tilt angle of the vehicle body with respect to the carriage based on the acceleration and the theoretical excess centrifugal acceleration. Diagnosis method. 車体の台車に対する傾斜角度の異常を検出するステップでは、検知手段で検知した加速度の定常成分の移動平均と理論超過遠心加速度演算手段で求めた理論超過遠心加速度の移動平均との偏差を演算し、当該偏差が閾値を超えると傾斜角度の異常として検出することを特徴とする請求項4に記載の車体傾斜角度診断方法。 In the step of detecting an abnormality in the inclination angle of the vehicle body relative to the carriage, the deviation between the moving average of the steady component of the acceleration detected by the detecting means and the moving average of the theoretical excess centrifugal acceleration calculated by the theoretical excess centrifugal acceleration calculating means is calculated, 5. The vehicle body inclination angle diagnosis method according to claim 4, wherein when the deviation exceeds a threshold value, the abnormality of the inclination angle is detected. 理論超過遠心加速度を求めるステップでは、鉄道車両の定常曲線区間の走行地点における軌道情報に基づいて理論超過遠心加速度を求めることを特徴とする請求項4または5に記載の車体傾斜角度診断方法。 6. The vehicle body tilt angle diagnosis method according to claim 4, wherein in the step of obtaining the theoretical excess centrifugal acceleration, the theoretical excess centrifugal acceleration is obtained based on track information at a travel point in a steady curve section of the railway vehicle.
JP2007204123A 2007-08-06 2007-08-06 Body inclination angle diagnosing device and body inclination angle diagnosing method Pending JP2009040083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204123A JP2009040083A (en) 2007-08-06 2007-08-06 Body inclination angle diagnosing device and body inclination angle diagnosing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204123A JP2009040083A (en) 2007-08-06 2007-08-06 Body inclination angle diagnosing device and body inclination angle diagnosing method

Publications (1)

Publication Number Publication Date
JP2009040083A true JP2009040083A (en) 2009-02-26

Family

ID=40441340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204123A Pending JP2009040083A (en) 2007-08-06 2007-08-06 Body inclination angle diagnosing device and body inclination angle diagnosing method

Country Status (1)

Country Link
JP (1) JP2009040083A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082763B1 (en) 2011-04-28 2011-11-10 (주)엠케이 A control system and method for tilting rail vehicle
WO2012026103A1 (en) * 2010-08-25 2012-03-01 住友金属工業株式会社 System and method for estimating acceleration of vibration component in railcar
JP2021129329A (en) * 2020-02-10 2021-09-02 日鉄テックスエンジ株式会社 Diagnostic device, system, control method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276891A (en) * 1990-03-27 1991-12-09 Iseki & Co Ltd Body attitude controller for moving farm machinery
JP2000203424A (en) * 1999-01-18 2000-07-25 Nippon Sharyo Seizo Kaisha Ltd Method for renewing track shape data
JP2004009895A (en) * 2002-06-06 2004-01-15 Sumitomo Metal Ind Ltd Fail detecting device of vehicle body inclination control and railway vehicle
JP2004182000A (en) * 2002-11-29 2004-07-02 Sumitomo Metal Ind Ltd Fail safe method of car body inclination control, device, railroad vehicle and curve determining method used for this method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276891A (en) * 1990-03-27 1991-12-09 Iseki & Co Ltd Body attitude controller for moving farm machinery
JP2000203424A (en) * 1999-01-18 2000-07-25 Nippon Sharyo Seizo Kaisha Ltd Method for renewing track shape data
JP2004009895A (en) * 2002-06-06 2004-01-15 Sumitomo Metal Ind Ltd Fail detecting device of vehicle body inclination control and railway vehicle
JP2004182000A (en) * 2002-11-29 2004-07-02 Sumitomo Metal Ind Ltd Fail safe method of car body inclination control, device, railroad vehicle and curve determining method used for this method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026103A1 (en) * 2010-08-25 2012-03-01 住友金属工業株式会社 System and method for estimating acceleration of vibration component in railcar
JPWO2012026103A1 (en) * 2010-08-25 2013-10-28 新日鐵住金株式会社 Railway vehicle vibration component acceleration estimation apparatus and vibration component acceleration estimation method
JP5522259B2 (en) * 2010-08-25 2014-06-18 新日鐵住金株式会社 Railway vehicle vibration component acceleration estimation apparatus and vibration component acceleration estimation method
US9162688B2 (en) 2010-08-25 2015-10-20 Nippon Steel & Sumitomo Metal Corporation Vibrational component acceleration estimation device and vibrational component acceleration estimation method for railway vehicle
KR101082763B1 (en) 2011-04-28 2011-11-10 (주)엠케이 A control system and method for tilting rail vehicle
JP2021129329A (en) * 2020-02-10 2021-09-02 日鉄テックスエンジ株式会社 Diagnostic device, system, control method, and program
JP7397704B2 (en) 2020-02-10 2023-12-13 日鉄テックスエンジ株式会社 Diagnostic equipment, systems, control methods and programs

Similar Documents

Publication Publication Date Title
JP6610557B2 (en) Flange wear measurement method for railway vehicle wheels
CN107966307B (en) Train operation safety on-line monitoring method based on vibration acceleration
JP5525404B2 (en) Railway vehicle state monitoring device, state monitoring method, and rail vehicle
KR101449354B1 (en) System and method for estimating acceleration of vibration component in railcar
EP2374686B1 (en) Method of detecting warning sign of derailment
JP6128594B2 (en) Derailment sign detection system, control device, derailment sign detection method, and derailment sign detection program
JP4388532B2 (en) Railway vehicle abnormality detection device
CN110249095B (en) Method for non-contact detection of track geometry
KR101590712B1 (en) Rail car and track monitoring system using running record and the method
JP2006341659A (en) Abnormality detecting method of railroad vehicle
JP2009040083A (en) Body inclination angle diagnosing device and body inclination angle diagnosing method
US11203353B2 (en) Steering control system, steering system, car, steering control method and recording medium
JP2009040081A (en) Vibration component acceleration estimation device and vibration component acceleration estimation method
JP6444215B2 (en) Air spring abnormality detection system, railway vehicle, and air spring abnormality detection method
JP7089063B2 (en) Position detector and method
JP2006056318A (en) Control device for stabilization of vehicle
JP5190864B2 (en) Railway vehicle vibration control device
KR101082764B1 (en) A control system and method for pre-tilting rail vehicle
JP6454251B2 (en) Derailment state detection device and derailment state detection method
KR102028394B1 (en) Method and apparatus for preventing lane departure of vehicle
JP4442699B2 (en) Fail detection device for vehicle body tilt control in railway vehicle and railway vehicle
JP5869426B2 (en) Railway vehicle derailment detection method and apparatus, railcar carriage, railcar
JP2019156387A (en) Steering control system, steering system, vehicle, steering control method, and program
KR101082763B1 (en) A control system and method for tilting rail vehicle
JP7430622B2 (en) Wear diagnosis system and method for wheel flanges of railway vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828