JP2009037764A - Ion beam drawing acceleration method and device - Google Patents

Ion beam drawing acceleration method and device Download PDF

Info

Publication number
JP2009037764A
JP2009037764A JP2007198996A JP2007198996A JP2009037764A JP 2009037764 A JP2009037764 A JP 2009037764A JP 2007198996 A JP2007198996 A JP 2007198996A JP 2007198996 A JP2007198996 A JP 2007198996A JP 2009037764 A JP2009037764 A JP 2009037764A
Authority
JP
Japan
Prior art keywords
acceleration
electrode
ion beam
linear accelerator
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007198996A
Other languages
Japanese (ja)
Other versions
JP4771230B2 (en
Inventor
Keiji Kashiwagi
啓次 柏木
Masahiro Okamura
昌宏 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2007198996A priority Critical patent/JP4771230B2/en
Publication of JP2009037764A publication Critical patent/JP2009037764A/en
Application granted granted Critical
Publication of JP4771230B2 publication Critical patent/JP4771230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion beam drawing acceleration method and a device with diffusion (loss) due to space charge effects alleviated, while ion beams drawn out of ion sources enter an acceleration/focusing region by a beam acceleration electrode. <P>SOLUTION: The ion source 3 has a plasma generating target 3d installed inside a vessel-like high-voltage terminal 3b arranged in an insulated state inside a vacuum vessel 3a of a grounding potential coupled with a vessel 4a of a linear accelerator 4, and a cylindrical electrode 3f for transporting the plasma inside the high-voltage terminal 3b generated from the plasma generating target 3d up to a beam accelerating/focusing space 4b of the linear accelerator 4 arranged at the high-voltage terminal 3b, so that a tip position of the cylindrical electrode 3f is to conform to a position of an open end of a beam accelerating electrode 4c forming the ion beam accelerating/focusing space 4b of the linear accelerator 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、イオン源プラズマからイオンビームを引き出して線形加速器に入射して加速するイオンビーム引出加速方法及び装置に関する。   The present invention relates to an ion beam extraction acceleration method and apparatus for extracting and accelerating an ion beam from an ion source plasma and entering a linear accelerator.

イオンビームを加速器で加速する際には、通常、イオン源のプラズマからイオンビームを引き出して線形加速器まで輸送した後に該線形加速器に入射して加速する方法が採られている。   When accelerating an ion beam with an accelerator, a method is generally employed in which the ion beam is extracted from the plasma of the ion source, transported to the linear accelerator, and then incident on the linear accelerator for acceleration.

しかしながら、このようなイオンビーム引出加速方法では、レーザーイオン源等をイオン源に用いた場合に得られる高強度イオンビームでは、空間電荷効果が低強度イオンビームの場合よりも大きいために、イオンビームが線形加速器内部のビーム加速電極に到達する前に拡散して損失してしまうという問題があった。   However, in such an ion beam extraction acceleration method, the high-intensity ion beam obtained when a laser ion source or the like is used as the ion source has a larger space charge effect than the low-intensity ion beam. Has a problem that it diffuses and loses before reaching the beam accelerating electrode inside the linear accelerator.

このような空間電荷効果による拡散(損失)を軽減するために、線形加速器の直前でイオンビームを引き出す方法が提案されている。   In order to reduce the diffusion (loss) due to the space charge effect, a method of extracting an ion beam immediately before the linear accelerator has been proposed.

特開2002−329600号公報JP 2002-329600 A

しかしながら、線形加速器の直前でイオンビームを引き出す方法でも、線形加速器に入射されたイオンビームは、線形加速器内部においてビーム加速電極に到達するまでに空間電荷効果によって拡散し、ビーム加速電極による加速可能領域から外れる粒子が多くなり、結果的に多大なビーム損失を引き起こすことが問題となっている。   However, even in the method of extracting the ion beam immediately before the linear accelerator, the ion beam incident on the linear accelerator is diffused by the space charge effect before reaching the beam accelerating electrode inside the linear accelerator, and can be accelerated by the beam accelerating electrode. As a result, there is a problem that a large number of particles are removed from the surface, resulting in a large beam loss.

本発明の目的は、イオン源のプラズマから引き出したイオンビームがビーム加速電極による加速・集束空間領域に入射するまでの間に空間電荷効果によって拡散して損失する問題を改善することにある。   An object of the present invention is to improve the problem that an ion beam extracted from plasma of an ion source is diffused and lost by a space charge effect before entering an acceleration / focusing space region by a beam acceleration electrode.

本発明のイオンビーム引出加速方法は、イオン源の内部で発生させたプラズマからイオンビームを引き出して線形加速器に入射し、線形加速器内に入射されたイオンビームを該線形加速器のビーム加速電極が生成する加速電場によって加速するイオンビーム引出加速方法において、
接地電位の真空容器内に絶縁状態に設置した容器状の高電圧ターミナルから筒状電極を外側に伸ばし、その先端を前記ビーム加速電極の開口端の位置に一致、または開口内に進入するように設置することにより、前記高電圧ターミナル内に設置したプラズマ発生ターゲットにレーザー光を照射することによって発生したプラズマを前記ビーム加速電極の開口端または開口内までプラズマ状態を保ったまま導き、前記ビーム加速電極が生成するビーム加速・集束空間内に直接イオンビームを引き出すことを特徴とするものであり、
イオンビーム引出加速装置は、内部で発生させたプラズマからイオンビームを引き出すイオン源と、前記イオン源のプラズマから引き出されたイオンビームを加速・集束するための加速・集束電場を生成するビーム加速電極を有する線形加速器とを備えたイオンビーム引出加速装置において、
前記イオン源は、接地電位の真空容器内に絶縁状態に設置した容器状の高電圧ターミナル内にプラズマ発生ターゲットを設置し、前記プラズマ発生ターゲットから発生した前記高電圧ターミナル内のプラズマを前記線形加速器のビーム加速電極まで導く筒状電極を前記高電圧ターミナルに設けて、前記筒状電極の先端位置が前記線形加速器のイオンビーム加速・集束空間を形成するビーム加速電極の開口端の位置に一致または開口内に進入するように設置したことを特徴とするものである。
According to the ion beam extraction acceleration method of the present invention, an ion beam is extracted from a plasma generated inside an ion source and is incident on a linear accelerator, and an ion beam incident on the linear accelerator is generated by a beam acceleration electrode of the linear accelerator. In an ion beam extraction acceleration method accelerated by an accelerating electric field,
A cylindrical electrode is extended outward from a container-like high-voltage terminal placed in an insulated state in a grounded vacuum vessel so that its tip coincides with the opening end of the beam acceleration electrode or enters the opening. By installing, the plasma generation target installed in the high voltage terminal is guided to the plasma generated by irradiating the laser beam to the opening end or the opening of the beam acceleration electrode while maintaining the plasma state, the beam acceleration It is characterized by extracting the ion beam directly into the beam acceleration / focusing space generated by the electrode,
An ion beam extraction accelerator includes an ion source that extracts an ion beam from plasma generated inside, and a beam acceleration electrode that generates an acceleration / focusing electric field for accelerating / focusing the ion beam extracted from the plasma of the ion source. An ion beam extraction accelerator comprising a linear accelerator having
The ion source includes a plasma generation target installed in a container-like high voltage terminal installed in an insulated state in a vacuum container at a ground potential, and the linear accelerator accelerates the plasma in the high voltage terminal generated from the plasma generation target. A cylindrical electrode leading to the beam accelerating electrode is provided at the high voltage terminal, and the tip position of the cylindrical electrode coincides with the position of the opening end of the beam accelerating electrode forming the ion beam accelerating / focusing space of the linear accelerator, or It is characterized by being installed so as to enter into the opening.

本発明は、イオン源で生成したプラズマを筒状電極によって線形加速器内のビーム加速電極の入射側開口端までプラズマ状態を保ったまま輸送することから、従来のようにイオンビームを引き出してから加速電極に到達するまでの領域で該イオンビームが空間電荷効果により発散するという問題がなく、イオンビーム損失の問題を改善することができる。   In the present invention, the plasma generated by the ion source is transported while maintaining the plasma state to the incident side opening end of the beam acceleration electrode in the linear accelerator by the cylindrical electrode. There is no problem that the ion beam diverges due to the space charge effect in the region up to the electrode, and the problem of ion beam loss can be improved.

従って、従来よりも高い効率でイオンビームを線形加速器に入射することができ、従来よりも高強度のイオンビーム加速を実現することができる。   Therefore, the ion beam can be incident on the linear accelerator with higher efficiency than before, and ion beam acceleration with higher intensity than before can be realized.

また、イオン源は、接地電位の真空容器内に絶縁支持により設置した高電圧ターミナル内でプラズマを発生させ、このプラズマを筒状電極によって線形加速器内に導くように構成しているので、イオン源の周囲を電気的に保護する防護柵などが不要となることから、装置を小型に構成することができる。   In addition, the ion source is configured to generate plasma in a high voltage terminal installed in an insulating support in a vacuum container at ground potential, and to guide this plasma into a linear accelerator by a cylindrical electrode. Since a protective fence or the like that electrically protects the surroundings is not required, the apparatus can be made compact.

本発明のイオンビーム引出加速方法は、イオン源の内部で発生させたプラズマからイオンビームを引き出して線形加速器に入射し、線形加速器内に入射されたイオンビームを該線形加速器のビーム加速電極が生成する加速電場によって加速するイオンビーム引出加速方法において、
接地電位の真空容器内に絶縁状態に設置した容器状の高電圧ターミナルから筒状電極を外側に伸ばし、その先端を前記ビーム加速電極の開口端の位置に一致、または開口内に進入するように設置することにより、前記高電圧ターミナル内に設置したプラズマ発生ターゲットにレーザー光を照射することによって発生したプラズマを前記ビーム加速電極の開口端または開口内までプラズマ状態を保ったまま導き、前記ビーム加速電極が生成するビーム加速・集束空間内に直接イオンビームを引き出すように行い、
また、イオンビーム引出加速装置は、内部で発生させたプラズマからイオンビームを引き出すイオン源と、前記イオン源のプラズマから引き出されたイオンビームを加速・集束するための加速・集束電場を生成するビーム加速電極を有する線形加速器とを備えたイオンビーム引出加速装置において、
前記イオン源は、接地電位の真空容器内に絶縁状態に設置した容器状の高電圧ターミナル内にプラズマ発生ターゲットを設置し、前記プラズマ発生ターゲットから発生した前記高電圧ターミナル内のプラズマを前記線形加速器のビーム加速電極まで導く筒状電極を前記高電圧ターミナルに設けて、前記筒状電極の先端位置が前記線形加速器のイオンビーム加速・集束空間を形成するビーム加速電極の開口端の位置に一致または開口内に進入するように設置した構成とする。
According to the ion beam extraction acceleration method of the present invention, an ion beam is extracted from a plasma generated inside an ion source and is incident on a linear accelerator, and an ion beam incident on the linear accelerator is generated by a beam acceleration electrode of the linear accelerator. In an ion beam extraction acceleration method accelerated by an accelerating electric field,
A cylindrical electrode is extended outward from a container-like high-voltage terminal placed in an insulated state in a grounded vacuum vessel so that its tip coincides with the opening end of the beam acceleration electrode or enters the opening. By installing, the plasma generation target installed in the high voltage terminal is guided to the plasma generated by irradiating the laser beam to the opening end or the opening of the beam acceleration electrode while maintaining the plasma state, the beam acceleration The ion beam is extracted directly into the beam acceleration / focusing space generated by the electrode,
The ion beam extraction accelerator includes an ion source that extracts an ion beam from plasma generated inside, and a beam that generates an acceleration / focusing electric field for accelerating / focusing the ion beam extracted from the plasma of the ion source. In an ion beam extraction accelerator device including a linear accelerator having an acceleration electrode,
The ion source includes a plasma generation target installed in a container-like high voltage terminal installed in an insulated state in a vacuum container at a ground potential, and the linear accelerator accelerates the plasma in the high voltage terminal generated from the plasma generation target. A cylindrical electrode leading to the beam accelerating electrode is provided at the high voltage terminal, and the tip position of the cylindrical electrode coincides with the position of the opening end of the beam accelerating electrode forming the ion beam accelerating / focusing space of the linear accelerator, or It is set as the structure installed so that it may enter into opening.

本発明は、イオン源で発生したプラズマをプラズマ状態を保ったままビーム加速電極まで輸送する筒状電極を設置することにより、通常は加速器外で行うプラズマからのイオンビーム引き出しを線形加速器内のビーム加速電極先端及びその内部で行い、イオンビームを引き出した直後にビーム加速電極が生成する集束電場によって集束させて高効率のビーム入射を行うことにより、数十ミリアンペア以上の高強度のイオンビーム生成を実現するものである。   In the present invention, by installing a cylindrical electrode that transports plasma generated in an ion source to a beam acceleration electrode while maintaining the plasma state, ion beam extraction from plasma that is normally performed outside the accelerator is performed in a beam in a linear accelerator. A high-efficiency ion beam of several tens of milliamps or more is generated by focusing at a focused electric field generated by the beam accelerating electrode immediately after extracting the ion beam and performing high-efficiency beam injection immediately after the ion beam is extracted. It is realized.

この実施例1におけるイオンビーム引出加速装置は、図1に示すように、レーザー発生装置1、反射鏡2a,2b、レーザーイオン源3およびRFQ線形加速器(もしくはドリフトチューブ型線形加速器)4によって構成される。   As shown in FIG. 1, the ion beam extraction accelerator according to the first embodiment includes a laser generator 1, reflecting mirrors 2a and 2b, a laser ion source 3, and an RFQ linear accelerator (or a drift tube linear accelerator) 4. The

レーザーイオン源3は、その内部を真空状態とすることができるように構成した接地電位の真空容器3a内に、碍子によって前記真空容器3aに対して絶縁状態に容器状の高電圧ターミナル3bを設置し、この高電圧ターミナル3b内にレーザー集光反射鏡3cとプラズマ発生ターゲット3dを設置している。前記高電圧ターミナル3bは、外部の高電圧電源(図示省略)によって昇圧する。前記レーザー集光反射鏡3cは、中心にプラズマの通過を許容する穴を形成した反射鏡支持部材3eによって支持する。また、前記真空容器3aは該真空容器3a内にレーザー光5を入射可能にする気密状態のレーザー光入射窓3a1を備え、高電圧ターミナル3bは前記真空容器3aのレーザー光入射窓3a1から入射したレーザー光5を前記レーザー集光反射鏡3cまで到達させるための通過穴3b1を備える。   The laser ion source 3 has a container-like high-voltage terminal 3b installed in an insulated state with respect to the vacuum vessel 3a by an insulator in a vacuum vessel 3a having a ground potential configured so that the inside thereof can be in a vacuum state. The laser condensing / reflecting mirror 3c and the plasma generation target 3d are installed in the high voltage terminal 3b. The high voltage terminal 3b is boosted by an external high voltage power supply (not shown). The laser condensing / reflecting mirror 3c is supported by a reflecting mirror support member 3e having a hole in the center that allows passage of plasma. The vacuum vessel 3a includes an airtight laser beam incident window 3a1 that allows the laser beam 5 to enter the vacuum vessel 3a, and the high voltage terminal 3b is incident from the laser beam incident window 3a1 of the vacuum vessel 3a. A passage hole 3b1 for allowing the laser beam 5 to reach the laser condensing / reflecting mirror 3c is provided.

また、このレーザーイオン源3は、前記プラズマ発生ターゲット3dから発生して前記反射鏡支持部材3eの穴を通過してきたプラズマをプラズマ状態を保ったままの状態で前記線形加速器4のビーム加速電極4cの位置まで輸送するための円筒形の筒状電極3fを真空容器3aの外側まで突出するように備える。   Further, the laser ion source 3 is configured such that the plasma generated from the plasma generation target 3d and passing through the hole of the reflector support member 3e remains in the plasma state while the plasma acceleration electrode 4c of the linear accelerator 4 is maintained. A cylindrical cylindrical electrode 3f for transporting to the position of is provided so as to protrude to the outside of the vacuum vessel 3a.

このレーザーイオン源3は、その真空容器3aにおける筒状電極3fの突出側をRFQ線形加速器4の容器4aにおけるビーム入射部に直に結合するようにして設置し、前記筒状電極3fの先端が前記RFQ線形加速器4の容器4a内に挿入されるように構成する。   This laser ion source 3 is installed so that the protruding side of the cylindrical electrode 3f in the vacuum vessel 3a is directly coupled to the beam incident part in the vessel 4a of the RFQ linear accelerator 4, and the tip of the cylindrical electrode 3f is The RFQ linear accelerator 4 is configured to be inserted into the container 4a.

前記RFQ線形加速器4は、その内部にイオンビーム加速・集束空間4bを形成するビーム加速電極4cを備える。イオンビーム加速・集束空間4bのイオンビーム入射側を形成するビーム加速電極4cの開口端部4c1は、図3に拡大して示すように、開口端に向って前記イオンビーム加速・集束空間4bの開口径を順次拡大するように形成しており、前記筒状電極3fの先端位置が前記イオンビーム加速・集束空間4bを形成する前記ビーム加速電極4cの開口端の位置に一致し、または開口内に進入するように構成する。   The RFQ linear accelerator 4 includes a beam acceleration electrode 4c that forms an ion beam acceleration / focusing space 4b therein. The opening end 4c1 of the beam accelerating electrode 4c that forms the ion beam incident side of the ion beam accelerating / focusing space 4b is enlarged toward the opening end of the ion beam accelerating / focusing space 4b as shown in FIG. The opening diameter of the cylindrical electrode 3f is formed so as to sequentially increase, and the position of the tip of the cylindrical electrode 3f coincides with the position of the opening end of the beam accelerating electrode 4c forming the ion beam accelerating / focusing space 4b. Configure to enter.

前記筒状電極3fは、その内径を大きくすることが望ましいが、この筒状電極3fの外径は、RFQ線形加速器4におけるビーム加速電極4cに接近することになるので該ビーム加速電極4cとの間に放電が起こらない程度の寸法に制限することが必要である。例えば、筒状電極3fの電圧を60kV、ビーム加速電極4c間の電圧を120kVとすると、筒状電極3fの先端位置をビーム加速電極4cの開口端位置に一致させる形態では、筒状電極3fの外径を8mmに制限して、内径を6mmとして実施することができる。   Although it is desirable that the cylindrical electrode 3f has a larger inner diameter, the outer diameter of the cylindrical electrode 3f approaches the beam acceleration electrode 4c in the RFQ linear accelerator 4; It is necessary to limit the dimensions to such an extent that no electric discharge occurs between them. For example, when the voltage of the cylindrical electrode 3f is 60 kV and the voltage between the beam accelerating electrodes 4c is 120 kV, the tip position of the cylindrical electrode 3f matches the opening end position of the beam accelerating electrode 4c. The outer diameter can be limited to 8 mm and the inner diameter can be 6 mm.

このように構成したイオンビーム引出加速装置は、レーザー発生装置1によって発生したレーザー光5を平面反射鏡2a,2bで反射させてレーザーイオン源3の内部に入射する。レーザーイオン源3に入射したレーザー光5は、レーザー集光反射鏡3cによってプラズマ発生ターゲット3d上に集光する。   The ion beam extraction accelerating device configured as described above causes the laser beam 5 generated by the laser generator 1 to be reflected by the plane reflecting mirrors 2 a and 2 b and enter the laser ion source 3. The laser beam 5 incident on the laser ion source 3 is focused on the plasma generation target 3d by the laser focusing / reflecting mirror 3c.

プラズマ発生ターゲット3dは、集光されたレーザー光5により表面が加熱されてプラズマを発生する。プラズマ発生ターゲット3dから発生するプラズマは、発生場所から全体としてターゲット垂直方向に重心速度をもって膨張し、反射鏡支持部材3eに形成された穴を通過して筒状電極3fの先端まで到達する。プラズマ発生部から筒状電極3fの先端までは同電位であることからプラズマ状態が保たれており、空間電荷効果によるイオンの拡散は起こらない。筒状電極3fの先端には高電圧ターミナル3bに印加した電圧に基づいた電場が存在することからプラズマからビーム加速・集束空間4b内にイオンビームが引き出される。   The surface of the plasma generation target 3d is heated by the focused laser beam 5 to generate plasma. The plasma generated from the plasma generation target 3d expands with a center-of-gravity velocity in the target vertical direction as a whole from the generation location, passes through the hole formed in the reflecting mirror support member 3e, and reaches the tip of the cylindrical electrode 3f. The plasma state is maintained from the plasma generating part to the tip of the cylindrical electrode 3f because the potential is the same, and ion diffusion due to the space charge effect does not occur. Since an electric field based on the voltage applied to the high voltage terminal 3b exists at the tip of the cylindrical electrode 3f, an ion beam is extracted from the plasma into the beam acceleration / focusing space 4b.

筒状電極3fの先端はRFQ線形加速器4のビーム加速電極4cの端と同じ位置にあることから、図4に示すように、筒状電極3fの先端から引き出されてRFQ線形加速器4のイオンビーム加速・集束空間4b内に入射されるイオンビーム6は、直ちにビーム加速電極4cによるビーム集束・加速電場の力を受けて集束・加速されることになる。   Since the tip of the cylindrical electrode 3f is at the same position as the end of the beam acceleration electrode 4c of the RFQ linear accelerator 4, the ion beam of the RFQ linear accelerator 4 is drawn out from the tip of the cylindrical electrode 3f as shown in FIG. The ion beam 6 incident on the acceleration / focusing space 4b is immediately focused and accelerated by receiving the force of the beam focusing / acceleration electric field by the beam acceleration electrode 4c.

したがって、レーザーイオン源3で発生させたプラズマがRFQ線形加速器4のビーム加速電極4cまでプラズマ状態のまま輸送されるため、空間電荷効果による拡散はなく、また、イオンビームは引き出された直後にイオンビーム加速・集束空間4bによって集束力をうけるため、従来に比べて高効率なビーム入射が実現する。   Therefore, since the plasma generated by the laser ion source 3 is transported in the plasma state to the beam acceleration electrode 4c of the RFQ linear accelerator 4, there is no diffusion due to the space charge effect, and the ion beam is ionized immediately after being extracted. Since the focusing force is received by the beam accelerating / focusing space 4b, the beam can be incident more efficiently than before.

因みに、図5に示すように、線形加速器4に対する筒状電極3fの進入の程度が容器4aの内側と一致する程度であると、図6に示すように、筒状電極3fの先端から容器4a内に入射するイオンビーム6は、ビーム加速電極4cによって形成されるイオンビーム加速・集束空間4bに到達するまでの間に空間電荷効果によって拡散して損失することから、ビーム加速電極4cによるイオンビーム加速・集束空間4bに入射して集束・加速される量が大幅に減少してしまうことになる。   Incidentally, as shown in FIG. 5, if the degree of penetration of the cylindrical electrode 3 f with respect to the linear accelerator 4 is the same level as the inside of the container 4 a, the container 4 a starts from the tip of the cylindrical electrode 3 f as shown in FIG. 6. The ion beam 6 incident on the inside diffuses and is lost due to the space charge effect before reaching the ion beam acceleration / focusing space 4b formed by the beam acceleration electrode 4c. The amount of light that is incident on the acceleration / focusing space 4b and is focused / accelerated is greatly reduced.

前述したように、線形加速器4におけるビーム加速電極4c間の電圧を120kV、筒状電極3fの外径を8mm、内径を6mmとし、プラズマ発生ターゲット3dにアルミニウムを使用し、線形加速器4に対する前記筒状電極3fの進入の程度を容器4aの内側と一致(突出量が0mm)させた構成、容器4aの内側から5mm突出させた構成、容器4aの内側から10mm突出させてビーム加速電極4cの端と一致する位置まで進入させた構成の3種類の装置について、前記筒状電極3fに印加する電圧を変えて線形加速器4から出力する総ての価数を含む全ビームのピーク電流値を計測した実験では、図7に示すように、筒状電極3fに印加する引出電圧を増加させると線形加速器4から出力する全ビームの電流値が増加し、60kVにおいて各実験装置で最大値となった。ここで、各実験装置における全ビームの電流値は、筒状電極3fの進入量が多いほど大きく、容器4aの内側から10mm突出させてビーム加速電極4cの端と一致する位置まで進入させた構成の装置において最も大きく(従来の突出量0mmの構成に対して約20%増加)なっており、この本発明の有用性を示している。   As described above, the voltage between the beam acceleration electrodes 4c in the linear accelerator 4 is 120 kV, the outer diameter of the cylindrical electrode 3f is 8 mm, the inner diameter is 6 mm, aluminum is used for the plasma generation target 3d, and the cylinder with respect to the linear accelerator 4 is used. A configuration in which the degree of intrusion of the electrode 3f coincides with the inside of the container 4a (projection amount is 0 mm), a configuration in which it protrudes 5 mm from the inside of the container 4a, and an end of the beam accelerating electrode 4c that protrudes 10 mm from the inside of the container 4a For the three types of devices that are configured to approach the same position, the peak current values of all beams including all valences output from the linear accelerator 4 were measured by changing the voltage applied to the cylindrical electrode 3f. In the experiment, as shown in FIG. 7, when the extraction voltage applied to the cylindrical electrode 3f is increased, the current values of all the beams output from the linear accelerator 4 are increased to 60 kV. Was the maximum value at Oite each experimental unit. Here, the current value of all beams in each experimental apparatus increases as the amount of penetration of the cylindrical electrode 3f increases, and is configured to project 10 mm from the inside of the container 4a to a position coincident with the end of the beam acceleration electrode 4c. This device is the largest (increase of about 20% with respect to the conventional structure having a protrusion amount of 0 mm), which shows the usefulness of the present invention.

また、この実施例におけるレーザーイオン源3は、RFQ線形加速器4の容器4aに結合した接地電位の真空容器3a内に絶縁支持により設置した高電圧ターミナル3b内でプラズマを発生させ、このプラズマを高電圧ターミナル3bと同電位の筒状電極3fによってRFQ線形加速器4内のイオンビーム加速・集束空間4bまで導いてイオンビームを入射するように構成しているので、レーザーイオン源3の周囲を電気的に保護する防護柵などが不要となることから、装置を小型に構成することができる。   In addition, the laser ion source 3 in this embodiment generates plasma in a high voltage terminal 3b installed by insulating support in a vacuum container 3a of ground potential coupled to the container 4a of the RFQ linear accelerator 4, and this plasma is Since the cylindrical electrode 3f having the same potential as that of the voltage terminal 3b is guided to the ion beam acceleration / focusing space 4b in the RFQ linear accelerator 4, the ion beam is incident thereon. Since a protective fence or the like for protection is not required, the apparatus can be configured in a small size.

本発明のイオンビーム引出加速方法及び装置は、イオンビーム癌治療装置、イオン注入装置、材料表面改質装置、物理実験用加速器等に適用することができる。   The ion beam extraction acceleration method and apparatus of the present invention can be applied to an ion beam cancer treatment apparatus, an ion implantation apparatus, a material surface modification apparatus, a physical experiment accelerator, and the like.

本発明の実施例1を示すイオンビーム引出加速装置の外観図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the ion beam extraction accelerator which shows Example 1 of this invention. 実施例1におけるレーザーイオン源とRFQ線形加速器の縦断側面図である。It is a vertical side view of the laser ion source and RFQ linear accelerator in Example 1. 実施例1におけるレーザーイオン源とRFQ線形加速器の結合部分を拡大して示す縦断側面図である。It is a vertical side view which expands and shows the coupling | bond part of the laser ion source and RFQ linear accelerator in Example 1. FIG. 実施例1におけるレーザーイオン源とRFQ線形加速器の結合部分におけるイオンビームの移動状態を示す模式図である。It is a schematic diagram which shows the movement state of the ion beam in the coupling | bond part of the laser ion source and RFQ linear accelerator in Example 1. FIG. 従来装置におけるレーザーイオン源とRFQ線形加速器の結合部分を拡大して示す縦断側面図である。It is a vertical side view which expands and shows the coupling | bond part of the laser ion source and RFQ linear accelerator in a conventional apparatus. 従来装置におけるレーザーイオン源とRFQ線形加速器の結合部分におけるイオンビームの移動状態を示す模式図である。It is a schematic diagram which shows the movement state of the ion beam in the coupling | bond part of the laser ion source and RFQ linear accelerator in a conventional apparatus. RFQ線形加速器に対する筒状電極の進入の程度と線形加速器から出力する全ビームのピーク電流値の関係を示す特性図である。It is a characteristic view which shows the relationship between the grade of the approach of a cylindrical electrode with respect to a RFQ linear accelerator, and the peak current value of all the beams output from a linear accelerator.

符号の説明Explanation of symbols

1…レーザー発生装置、3…レーザーイオン源、3a…真空容器、3b…高電圧ターミナル、3c…レーザー集光反射鏡、3d…プラズマ発生ターゲット、3f…筒状電極、4…RFQ線形加速器、4a…容器、4b…イオンビーム加速・集束空間、4c…ビーム加速電極、4c1…開口端部、5…レーザー光、6…イオンビーム。   DESCRIPTION OF SYMBOLS 1 ... Laser generator, 3 ... Laser ion source, 3a ... Vacuum container, 3b ... High voltage terminal, 3c ... Laser focusing reflector, 3d ... Plasma generating target, 3f ... Cylindrical electrode, 4 ... RFQ linear accelerator, 4a ... container, 4b ... ion beam acceleration / focusing space, 4c ... beam acceleration electrode, 4c1 ... opening end, 5 ... laser beam, 6 ... ion beam.

Claims (2)

イオン源の内部で発生させたプラズマからイオンビームを引き出して線形加速器に入射し、線形加速器内に入射されたイオンビームを該線形加速器のビーム加速電極が生成する加速電場によって加速するイオンビーム引出加速方法において、
接地電位の真空容器内に絶縁状態に設置した容器状の高電圧ターミナルから筒状電極を外側に伸ばし、その先端を前記ビーム加速電極の開口端の位置に一致、または開口内に進入するように設置することにより、前記高電圧ターミナル内に設置したプラズマ発生ターゲットにレーザー光を照射することによって発生したプラズマを前記ビーム加速電極の開口端または開口内までプラズマ状態を保ったまま導き、前記ビーム加速電極が生成するビーム加速・集束空間内に直接イオンビームを引き出すことを特徴とするイオンビーム引出加速方法。
Ion beam extraction acceleration in which an ion beam is extracted from a plasma generated inside an ion source and incident on a linear accelerator, and the ion beam incident in the linear accelerator is accelerated by an acceleration electric field generated by a beam acceleration electrode of the linear accelerator. In the method
A cylindrical electrode is extended outward from a container-like high-voltage terminal placed in an insulated state in a grounded vacuum vessel so that its tip coincides with the opening end of the beam acceleration electrode or enters the opening. By installing, the plasma generation target installed in the high voltage terminal is guided to the plasma generated by irradiating the laser beam to the opening end or the opening of the beam acceleration electrode while maintaining the plasma state, the beam acceleration An ion beam extraction acceleration method, wherein an ion beam is extracted directly into a beam acceleration / focusing space generated by an electrode.
内部で発生させたプラズマからイオンビームを引き出すイオン源と、前記イオン源のプラズマから引き出されたイオンビームを加速・集束するための加速・集束電場を生成するビーム加速電極を有する線形加速器とを備えたイオンビーム引出加速装置において、
前記イオン源は、接地電位の真空容器内に絶縁状態に設置した容器状の高電圧ターミナル内にプラズマ発生ターゲットを設置し、前記プラズマ発生ターゲットから発生した前記高電圧ターミナル内のプラズマを前記線形加速器のビーム加速電極まで導く筒状電極を前記高電圧ターミナルに設けて、前記筒状電極の先端位置が前記線形加速器のイオンビーム加速・集束空間を形成するビーム加速電極の開口端の位置に一致または開口内に進入するように設置したことを特徴とするイオンビーム引出加速装置。
An ion source for extracting an ion beam from plasma generated inside, and a linear accelerator having a beam acceleration electrode for generating an acceleration / focusing electric field for accelerating / focusing the ion beam extracted from the plasma of the ion source In the ion beam extraction accelerator,
The ion source includes a plasma generation target installed in a container-like high voltage terminal installed in an insulated state in a vacuum container at a ground potential, and the linear accelerator accelerates the plasma in the high voltage terminal generated from the plasma generation target. A cylindrical electrode leading to the beam accelerating electrode is provided at the high voltage terminal, and the tip position of the cylindrical electrode coincides with the position of the opening end of the beam accelerating electrode forming the ion beam accelerating / focusing space of the linear accelerator, or An ion beam extraction acceleration device characterized by being installed so as to enter into an opening.
JP2007198996A 2007-07-31 2007-07-31 Ion beam extraction acceleration method and apparatus Expired - Fee Related JP4771230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198996A JP4771230B2 (en) 2007-07-31 2007-07-31 Ion beam extraction acceleration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198996A JP4771230B2 (en) 2007-07-31 2007-07-31 Ion beam extraction acceleration method and apparatus

Publications (2)

Publication Number Publication Date
JP2009037764A true JP2009037764A (en) 2009-02-19
JP4771230B2 JP4771230B2 (en) 2011-09-14

Family

ID=40439508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198996A Expired - Fee Related JP4771230B2 (en) 2007-07-31 2007-07-31 Ion beam extraction acceleration method and apparatus

Country Status (1)

Country Link
JP (1) JP4771230B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057107A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Laser ion source
WO2013031777A1 (en) * 2011-08-30 2013-03-07 株式会社東芝 Ion source
KR101291449B1 (en) 2011-12-30 2013-07-30 한국원자력연구원 Electron accelerating gas target device
DE102013203803A1 (en) 2012-03-08 2013-09-12 Kabushiki Kaisha Toshiba Ion source. Heavy particle beam irradiation apparatus, ion source driving method and heavy particle beam irradiation method
JP2013182685A (en) * 2012-02-29 2013-09-12 Toshiba Corp Laser ion source
DE102014001653A1 (en) 2013-02-21 2014-08-21 Kabushiki Kaisha Toshiba Laser ion source and heavy particle beam therapy device
US9355809B2 (en) 2012-03-05 2016-05-31 Kabushiki Kaisha Toshiba Ion source
JP2016162692A (en) * 2015-03-04 2016-09-05 株式会社東芝 Laser ion source, injector and particle beam therapy system
US9859086B2 (en) 2012-03-02 2018-01-02 Kabushiki Kaisha Toshiba Ion source
JP2019102162A (en) * 2017-11-29 2019-06-24 株式会社東芝 High voltage potential plasma generation device and ion source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333698A (en) * 1993-05-21 1994-12-02 Kobe Steel Ltd High frequency quadrupole accelerating device
JP2000146914A (en) * 1998-11-09 2000-05-26 Jeol Ltd Frit laser ion source
JP2002329600A (en) * 2001-05-02 2002-11-15 Inst Of Physical & Chemical Res Ion accelerating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333698A (en) * 1993-05-21 1994-12-02 Kobe Steel Ltd High frequency quadrupole accelerating device
JP2000146914A (en) * 1998-11-09 2000-05-26 Jeol Ltd Frit laser ion source
JP2002329600A (en) * 2001-05-02 2002-11-15 Inst Of Physical & Chemical Res Ion accelerating device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742362B2 (en) 2010-10-29 2014-06-03 Kabushiki Kaisha Toshiba Laser ion source
JP2012099273A (en) * 2010-10-29 2012-05-24 Toshiba Corp Laser ion source
DE112011103599B4 (en) 2010-10-29 2021-08-05 Kabushiki Kaisha Toshiba Laser ion source
WO2012057107A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Laser ion source
DE112011103599T5 (en) 2010-10-29 2013-09-05 Kabushiki Kaisha Toshiba Laser ion source
CN103858202A (en) * 2011-08-30 2014-06-11 株式会社东芝 Ion source
US9111713B2 (en) 2011-08-30 2015-08-18 Kabushiki Kaisha Toshiba Ion source including a filter electrode
WO2013031777A1 (en) * 2011-08-30 2013-03-07 株式会社東芝 Ion source
KR101291449B1 (en) 2011-12-30 2013-07-30 한국원자력연구원 Electron accelerating gas target device
JP2013182685A (en) * 2012-02-29 2013-09-12 Toshiba Corp Laser ion source
US9251991B2 (en) 2012-02-29 2016-02-02 Kabushiki Kaisha Toshiba Laser ion source
US9859086B2 (en) 2012-03-02 2018-01-02 Kabushiki Kaisha Toshiba Ion source
US9355809B2 (en) 2012-03-05 2016-05-31 Kabushiki Kaisha Toshiba Ion source
DE102013203803A1 (en) 2012-03-08 2013-09-12 Kabushiki Kaisha Toshiba Ion source. Heavy particle beam irradiation apparatus, ion source driving method and heavy particle beam irradiation method
DE102013203803B4 (en) 2012-03-08 2022-09-29 Kabushiki Kaisha Toshiba Ion source, heavy particle beam irradiation device, ion beam propulsion method and heavy particle beam irradiation method
US9087678B2 (en) 2012-03-08 2015-07-21 Kabushiki Kaisha Toshiba Ion source, heavy particle beam irradiation apparatus, ion source driving method, and heavy particle beam irradiation method
US8933415B2 (en) 2013-02-21 2015-01-13 Kabushiki Kaisha Toshiba Laser ion source and heavy particle beam therapy equipment
DE102014001653A1 (en) 2013-02-21 2014-08-21 Kabushiki Kaisha Toshiba Laser ion source and heavy particle beam therapy device
DE102014001653B4 (en) 2013-02-21 2023-05-25 Kabushiki Kaisha Toshiba Laser ion source and heavy particle beam therapy device
JP2016162692A (en) * 2015-03-04 2016-09-05 株式会社東芝 Laser ion source, injector and particle beam therapy system
JP2019102162A (en) * 2017-11-29 2019-06-24 株式会社東芝 High voltage potential plasma generation device and ion source

Also Published As

Publication number Publication date
JP4771230B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4771230B2 (en) Ion beam extraction acceleration method and apparatus
US9153405B2 (en) Ion source device and ion beam generating method
JP6717990B2 (en) Ionizer and mass spectrometer having the same
KR890012360A (en) Method and apparatus for controlling charge of ion implantation surface
TW497159B (en) System and method for removing contaminant particles relative to an ion beam
US7550741B2 (en) Inertial electrostatic confinement fusion
KR101439208B1 (en) X-ray tube structure
JP4371215B2 (en) Charged particle beam transport apparatus and linear accelerator system provided with the same
US6744225B2 (en) Ion accelerator
CN104411084B (en) Plasma cascade lasing ion accelerator
US9773636B2 (en) Apparatus and method for generating high current negative hydrogen ion beam
JP2003059699A (en) Ion accelerator
EP3401927A1 (en) Electron beam irradiation device and electron beam irradiation method
CN210093637U (en) Ion accelerator
JP2002329600A (en) Ion accelerating device
JP2018536978A (en) Target assembly for X-ray emission device and X-ray emission device
CN113316833A (en) Electron gun, X-ray generating apparatus, and X-ray imaging apparatus
RU2191441C2 (en) Device and method for generating multiple-charge ion beams
CN208891097U (en) The ion source generating device of big intensity ion
JP4034304B2 (en) X-ray generator having an emitter formed on a semiconductor structure
WO2023281539A8 (en) Multi purpose compact apparatus for the generation of high-flux of neutrons, particularly for intraoperative radiotherapy
JP2020198265A (en) Ion implanter, ion source
JPH02112140A (en) Low speed ion gun
KR101386804B1 (en) High current and midium energy ion implanter with greatly improved energy
JPH03274644A (en) Ion processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees