JP2009036663A - Noncontact torque sensor - Google Patents

Noncontact torque sensor Download PDF

Info

Publication number
JP2009036663A
JP2009036663A JP2007201869A JP2007201869A JP2009036663A JP 2009036663 A JP2009036663 A JP 2009036663A JP 2007201869 A JP2007201869 A JP 2007201869A JP 2007201869 A JP2007201869 A JP 2007201869A JP 2009036663 A JP2009036663 A JP 2009036663A
Authority
JP
Japan
Prior art keywords
shaft
magnetic flux
torque
degrees
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007201869A
Other languages
Japanese (ja)
Inventor
Kazuaki Tabata
田畑和明
Haruhide Kyo
東英 巨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007201869A priority Critical patent/JP2009036663A/en
Publication of JP2009036663A publication Critical patent/JP2009036663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact torque sensor which can be divided and fitted onto a shaft. <P>SOLUTION: A torque is measured by magnetic flux-detecting elements where an exciting coil and a detection coil are wound around an amorphous lamina. The magnetic flux-detecting elements are fixed on a dividable external cylinder 2 (illustrated) in a direction of about 45° and a direction of about -45° to a center axis of a shaft 1 to be measured. The dividable external cylinder is placed near a surface of a steel shaft to be measured, then change of magnetic permeability caused by the torque of the steel shaft is measured by the magnetic flux-detecting elements, and the torque is calculated and displayed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

大型トラックの事故が頻発するなか、ドライバーの安全意識の高揚や安全技能の向上が課題となっており、タイヤと大型トラックの整備強化への取組みが要請されている。そのため、トラックの各締付け部等のトルクを厳密に検査する必要が、今現在、小型かつ感度がよい非接触トルクセンサがない。   Amid the frequent occurrence of large truck accidents, raising the safety awareness of drivers and improving safety skills are issues, and efforts to strengthen maintenance of tires and heavy trucks are required. Therefore, it is necessary to strictly inspect the torque of each tightening portion of the truck, and there is currently no small-sized and highly sensitive non-contact torque sensor.

自動車用センサには、エンジン制御システム用センサ,シャシー制御システム用センサ,安全・快適制御システム用センサなどがあり、年間の市場規模は、約1,500〜1,600億円となっている。車1台当たりの採用個数増を背景に今後も自動車用センサの市場は拡大する。自動車の運転にはトルクセンサが使用されているが、軽いかつ柔軟な運転制御を実現するために非接触トルクセンサが期待されている。   Automotive sensors include engine control system sensors, chassis control system sensors, and safety / comfort control system sensors, and the annual market scale is about 1500 to 160 billion yen. In the future, the market for automotive sensors will expand against the backdrop of an increase in the number of vehicles used per vehicle. Torque sensors are used for driving automobiles, but non-contact torque sensors are expected to realize light and flexible driving control.

各種の回転機械におけるシャフトに負荷するトルクなどを測定するために、非接触トルクセンサがあれば、摩擦係数の影響を回避することができ、高精度・高速の回転制御が可能になる。   If a non-contact torque sensor is used to measure the torque applied to the shaft in various rotating machines, the influence of the friction coefficient can be avoided, and high-precision and high-speed rotation control is possible.

本発明は、磁歪特性を有する締付け工具、タイヤレンチまたは回転軸に加わるトルクを検出コイルのインダクタンス変化に基づいて検出する非接触トルクセンサに関するものである。   The present invention relates to a non-contact torque sensor that detects torque applied to a tightening tool having a magnetostrictive characteristic, a tire wrench, or a rotating shaft based on a change in inductance of a detection coil.

特許出願2001−211302は、磁歪式トルクセンサである。このような従来の磁歪式トルクセンサは軸の外周に磁気異方性部を形成すると共に、この磁気異方性部を取り囲むように配置されたコイルを備えている。この方式は軸に加工を必要とするため、厳密な意味で非接触とは言えない。Patent application 2001-211302 is a magnetostrictive torque sensor. Such a conventional magnetostrictive torque sensor is provided with a magnetic anisotropy portion on the outer periphery of the shaft and a coil disposed so as to surround the magnetic anisotropy portion. Since this method requires machining on the shaft, it cannot be said to be non-contact in a strict sense.

特許公開2007−114088は、検出コイルは、前記中心軸線に対して+45°傾斜する第1コイルと、前記中心軸線に対して−45°傾斜する第2コイルとを有すものであるがこの方式では軸表面全体の透磁率を測定するためコイルが大きくなり、余分の励磁電流を必要とする。In Japanese Patent Application Publication No. 2007-114088, the detection coil has a first coil inclined by + 45 ° with respect to the central axis and a second coil inclined by −45 ° with respect to the central axis. Then, in order to measure the magnetic permeability of the entire shaft surface, the coil becomes large and an extra excitation current is required.

動力の伝達軸などに加わるトルクの測定を必要とされることが多い、特許文献のようにシャフトへの加工では実際の軸トルクの正確な測定とはいえない。文字通りに非接触でトルクを測りたいという要望は多い、本発明の課題は完全に非接触でトルクを測ることである。   In many cases, it is necessary to measure the torque applied to the power transmission shaft and the like. However, as in the patent document, it cannot be said that the actual shaft torque is accurately measured by machining the shaft. There is a great demand for measuring torque literally in a non-contact manner, and an object of the present invention is to measure the torque completely in a non-contact manner.

また特許文献2のような方法は非接触であると言えるが、機構が先に存在する部分ではトルク測定のために後からコイルを巻くことは困難である。そのため、測定対象の軸を含めて構成される全体の機構が既に、先に完成されたものではトルク測定はできない。   Moreover, although it can be said that the method like patent document 2 is non-contact, it is difficult to wind a coil later for a torque measurement in the part in which a mechanism exists previously. Therefore, torque cannot be measured if the entire mechanism including the measurement target shaft has already been completed.

前期の課題を解決するため、特許文献1のように軸に取り付けられた磁歪材によらず、鋼製軸そのものにおこる磁歪の逆効果を測定するため、測定される鋼製軸の表面近傍の外筒部に図1、3のような当該磁束検出素子を置き、当該磁束検出素子と測定される鋼製軸表面の間に磁路を形成し磁路内の磁束変化を測定することによりトルクの測定を行うことによって完全に非接触のトルク測定を行う。しかしながら特許文献1、2のように軸に外側に巻かれるコイルは分割が不可能であるため、磁束検出手段としてアモルファスの薄板(0.1mm程度)に励磁および検出コイルが巻かれた当該磁束検出素子を図4のように、半分に分割された、外筒に取り付けた構造とし、分割された状態で被検軸を包むように取り付けられ、ねじなどにより合わされる。外筒と軸が触らないように、軸の外側の不動部分に固定される。このような容易に組み立てられる構造とした外筒容器もしくはクリップのアーム内側または表面に固定された当該磁束検出素子により軸のトルクを測るようにした。   In order to solve the problems in the previous period, the magnetostrictive material attached to the shaft as in Patent Document 1 is used to measure the reverse effect of magnetostriction that occurs on the steel shaft itself. Torque by placing the magnetic flux detection element as shown in FIGS. 1 and 3 on the outer cylinder, forming a magnetic path between the magnetic flux detection element and the steel shaft surface to be measured, and measuring the magnetic flux change in the magnetic path Completely non-contact torque measurement by measuring However, as in Patent Documents 1 and 2, the coil wound outwardly on the shaft cannot be divided, so that the magnetic flux detection means in which the excitation and detection coils are wound around an amorphous thin plate (about 0.1 mm) as magnetic flux detection means. As shown in FIG. 4, the element is divided into halves and attached to an outer cylinder. The element is attached so as to wrap the test shaft in a divided state, and is fitted with screws or the like. It is fixed to the stationary part outside the shaft so that the outer cylinder and the shaft do not touch. The torque of the shaft is measured by the magnetic flux detecting element fixed to the inner side or the surface of the arm of the outer cylinder container or clip having such an easily assembled structure.

鋼製の軸の表面近傍に置かれる透磁率測定手段としての当該磁束を検出素子の構造例を図2に示す。これによりシャフトとアモルファス板の磁路を形成させ、磁路内の磁束の変化を検出し、シャフト表面のトルクによる透磁率の変化を検出する。図2に構造示す。6はアモルファスの薄板、7は検出コイル、8は励磁コイルである。このような検出素子を2個、図1に示すように、シャフトの軸に対しひとつの検出素子の長手方向を約45°傾け、もうひとつの検出素子(図2では紙面の向こう側)を約−45斜めに、軸の外側に空隙を隔て非接触で配置される外筒の表面若しくは裏面に接着などで固定している。また磁束検出素子は複数でもよく、図3にしめすように、約45度の方向の当該磁束検出素子と約−45度傾けた磁束検出素子の数を同数だけ配置しても良い。このとき約45度の向きの検出コイをすべて直列結合し、同様にマイナス45度の向きの当該磁束検出素子もこの方向の素子の検するコイルもすべて直列結合する。図5、19のように向きのちがう方向のそれぞれの直列結合された、合成インダクタンスをL1、L2とすれば、L1とL2の差からシャフトのトルクが求められる。その場合、差をとることによりL1、L2において同様に変化する磁気的なコモンモードのノイズを低減できる。また軸の偏心による各素子の出力の差も直列結合することにより平均化することができ、軸の偏心の効果も低減できる。   FIG. 2 shows a structural example of the magnetic flux detecting element as a magnetic permeability measuring means placed near the surface of the steel shaft. Thus, a magnetic path between the shaft and the amorphous plate is formed, a change in magnetic flux in the magnetic path is detected, and a change in permeability due to the torque on the shaft surface is detected. The structure is shown in FIG. 6 is an amorphous thin plate, 7 is a detection coil, and 8 is an exciting coil. Two such detection elements, as shown in FIG. 1, are inclined by about 45 ° in the longitudinal direction of one detection element with respect to the shaft axis, and the other detection element (the other side in FIG. 2) is about It is fixed by bonding or the like to the front or back surface of the outer cylinder that is arranged in a non-contact manner with an air gap outside the shaft at an angle of −45. Further, a plurality of magnetic flux detection elements may be provided, and as shown in FIG. 3, the same number of magnetic flux detection elements in the direction of about 45 degrees and magnetic flux detection elements inclined by about −45 degrees may be arranged. At this time, all the detection coils having a direction of about 45 degrees are coupled in series. Similarly, the magnetic flux detection element having a direction of minus 45 degrees and all the coils detected by the elements in this direction are also coupled in series. As shown in FIGS. 5 and 19, if the combined inductances of the differently connected directions in series are L1 and L2, the torque of the shaft is obtained from the difference between L1 and L2. In that case, by taking the difference, it is possible to reduce magnetic common mode noise that similarly changes in L1 and L2. Further, the difference in output of each element due to the eccentricity of the shaft can be averaged by serial coupling, and the effect of the eccentricity of the shaft can be reduced.

特許文献1のような従来の磁歪材を埋め込んだ磁歪式トルクセンサなどの磁歪式トルクセンサは厳密な意味で非接触といえないが、当該センサは軸の外部の外筒に磁束検出素子を配置しているので、完全に非接触のトルクセンサである。また、磁束検出素子は分割可能な外筒もしくはクリーップアームに取り付けられているので、既に完成された機械の軸などトルクを測りたいところに、当該センサを簡単にとりつけて測定でき、分割して挿入可能な当該センサは既に完成された機械での実機における伝達効率の改善試験など広範なトルク測定が期待できる。   A conventional magnetostrictive torque sensor such as a magnetostrictive torque sensor embedded with a magnetostrictive material as in Patent Document 1 cannot be said to be non-contact in a strict sense, but the sensor has a magnetic flux detecting element arranged on an outer cylinder outside the shaft. Therefore, it is a completely non-contact torque sensor. In addition, since the magnetic flux detection element is attached to an outer cylinder or creep arm that can be divided, the sensor can be easily mounted and measured, and can be inserted in parts where you want to measure torque, such as the shaft of a machine that has already been completed. Such a sensor can be expected to perform a wide range of torque measurements such as an improvement test of transmission efficiency in an actual machine that has already been completed.

図1に当該センサの実施例を示す。1は測定する鋼製の対象軸であり、外筒2は測定される軸の外部に一定の間隔をおいて、軸と該当の中心軸が一致するように機械などの不動部分に固定される。外筒の両側面には互いに向きが対称なるように、ひとつの当該磁束検出素子を長手方向が軸の中心軸に対して約45度の方向とし、もうひとつの当該磁束検出素子は約−45度の方向に固定している。当該磁束検出素子は測定される鋼製軸の表面近傍に配置され、素子下の鋼製軸の表面とギャップを隔てて磁路を形成する。したがって距離などの条件を一致させたとき、磁路を形成する鋼製軸の表面の透磁率がトルクにより、軸の磁気異方性にもとづく磁歪の逆効果によって変化し、その透磁率の最大変化の方向は、45度の方向と、−45度に分解される。したがって45度方向の磁束密度と、−45度の磁束密度の差を測定すれば、トルクによる透磁率変化を求めることができる。磁束を測定するため図2のような磁束検出素子を用いる。6は10×3×0.1mm程度の長方形状をしたアモルファスの薄板であり、その回りに検出コイル7、と励磁コイル8が巻いてある。図5のようなセンサ回路構成とし、励磁コイルには発振器から、交流電流が流される。そのとき、励磁コイルとはトランス結合されており、励磁電圧が出力される。アモルファスは外筒に固定されているので、出力電圧は素子下の鋼製軸表面の透磁率などの変化に依存する。軸と当該磁束検出素子の距離条件を同じにすれば、その変化はトルクによる軸の磁歪の逆効果による。また磁束検出素子の断面や形状を同じにすることで、検出コイルのインダクタンスの差は磁束密度といえ、磁歪の逆効果によっておこる透磁率変化のための、磁束密度を測定する。21により差動増幅された出力をAD変換しマイコン22に取り込まれた電圧から、トルクを算出し、表示器23にとる値を表示し、外部装置へもトルクデータを転送する。   FIG. 1 shows an embodiment of the sensor. Reference numeral 1 denotes a steel target shaft to be measured, and the outer cylinder 2 is fixed to a stationary part such as a machine so that the shaft and the corresponding central axis coincide with each other at a constant interval outside the shaft to be measured. . One of the magnetic flux detection elements has a longitudinal direction of about 45 degrees with respect to the central axis of the axis so that the directions are symmetrical with each other on both side surfaces of the outer cylinder, and the other magnetic flux detection element has about −45. It is fixed in the direction of the degree. The magnetic flux detection element is arranged near the surface of the steel shaft to be measured, and forms a magnetic path with a gap from the surface of the steel shaft under the element. Therefore, when conditions such as distance are matched, the permeability of the surface of the steel shaft that forms the magnetic path changes due to the torque and the inverse effect of magnetostriction based on the magnetic anisotropy of the shaft, and the maximum change in the permeability Are decomposed into 45 degrees and -45 degrees. Therefore, if the difference between the magnetic flux density in the 45 degree direction and the magnetic flux density in the -45 degree direction is measured, the change in permeability due to the torque can be obtained. In order to measure the magnetic flux, a magnetic flux detecting element as shown in FIG. 2 is used. Reference numeral 6 denotes an amorphous thin plate having a rectangular shape of about 10 × 3 × 0.1 mm, around which a detection coil 7 and an excitation coil 8 are wound. The sensor circuit is configured as shown in FIG. 5, and an alternating current is passed through the exciting coil from the oscillator. At that time, the excitation coil is transformer-coupled and an excitation voltage is output. Since amorphous is fixed to the outer cylinder, the output voltage depends on changes in the magnetic permeability of the steel shaft surface under the element. If the distance condition between the shaft and the magnetic flux detection element is the same, the change is due to the inverse effect of the magnetostriction of the shaft due to torque. Further, by making the cross-section and shape of the magnetic flux detection elements the same, the difference in inductance of the detection coils can be regarded as the magnetic flux density, and the magnetic flux density is measured for the permeability change caused by the inverse effect of magnetostriction. Torque is calculated from the voltage that has been differentially amplified by the A / D converter 21 and taken into the microcomputer 22, the value taken on the display 23 is displayed, and the torque data is also transferred to an external device.

実施例1の磁束検出素子は軸中心軸に対し45の向きと−45度に配置されたものであるが、図3のように、複数の当該磁束検出素子を配置してもよい。図3、9は軸の外側に置かれる外筒、10は外筒に長手方向きが約45度のとなるように配置された当該磁束検出素子であり、11は−45度に配置されたものである。10および、11は同数だけ外筒に配置され、励磁コイルは図5、17のように並列接続され、検出コイルはそれぞれの向きの側を直列接続される、それらの合成インダクタンスを18と19とした。直列接続することによって偏心などによる素子と軸表面間の距離のバラつきを平均化するためである。また各素子は断面積などの形状寸法、励磁および検出コイル巻数などすべてをほとんど同じにしてある。   The magnetic flux detection elements of the first embodiment are arranged at 45 degrees and −45 degrees with respect to the axial center axis, but a plurality of magnetic flux detection elements may be arranged as shown in FIG. 3 and 9 are outer cylinders placed on the outer side of the shaft, 10 is the magnetic flux detecting element arranged on the outer cylinder so that the longitudinal direction is about 45 degrees, and 11 is arranged at -45 degrees. Is. 10 and 11 are arranged in the same number in the outer cylinder, the excitation coils are connected in parallel as shown in FIGS. 5 and 17, and the detection coils are connected in series on their respective sides. did. This is to average the variation in the distance between the element and the shaft surface due to eccentricity by connecting them in series. Each element has almost the same shape, such as a cross-sectional area, excitation, and number of turns of the detection coil.

当該センサのコイルは軸の周りに巻かず、磁束検出素子の回りに巻いてあるので図3のようにセンサの磁束検出手段は外筒部分ごと分割した構造が可能である。12は外筒を半分に割った形状の外筒である。13は半分に分けられた外筒を合わせるためのプレート部分であり、14はボルト穴、15が当該磁束検出素子である。半分に分割された外筒には磁束検出素子は軸の中心軸に対し、向きを−45度方向に取り付けられた、もう一つの分割された外筒と対をなし、プレートにあけられたボルト穴14で、ボルトを通し、合わせられる。したがって従来のトルク測定では軸をはずす必要があったが分割可能な非接触トルクセンサは、分割して軸の周囲に挿入後、組み立てることができる。磁束検出素子は外筒でも、洗濯バサミのようなクリップの腕に配置することで、機器を分解せず簡便にトルクを測ることができる。   Since the coil of the sensor is not wound around the axis but around the magnetic flux detection element, the magnetic flux detection means of the sensor can have a structure in which the outer cylinder portion is divided as shown in FIG. Reference numeral 12 denotes an outer cylinder having a shape obtained by dividing the outer cylinder in half. Reference numeral 13 denotes a plate portion for fitting the outer cylinders divided in half, 14 is a bolt hole, and 15 is the magnetic flux detecting element. In the outer cylinder divided in half, the magnetic flux detecting element is paired with another divided outer cylinder that is mounted in the direction of -45 degrees with respect to the central axis of the shaft, and is a bolt opened in the plate At hole 14, the bolt is threaded and aligned. Therefore, in the conventional torque measurement, the shaft needs to be removed, but the non-contact torque sensor that can be divided can be assembled after being divided and inserted around the shaft. Even if the magnetic flux detection element is an outer cylinder, the torque can be easily measured without disassembling the device by arranging it on the arm of a clip such as a clothespin.

鋼製シャフヘの当該磁束検出素子の取り付け例Mounting example of the magnetic flux detection element on a steel shaft 磁束検出素子Magnetic flux detection element 複数個の磁束検出素子の取り付け例図Installation example of multiple magnetic flux detection elements 分割可能な構造例Examples of structures that can be divided 実施回路例Implementation circuit example

符号の説明Explanation of symbols

1 鋼製シャフト
2 外筒
3 アモルファス薄板
4 検出コイル
5 励磁コイル
6 アモルファス薄板
7 検出コイル
8 励磁コイル
9 外筒
10 45度方向の磁束検出素子
11 −45方向の磁束検出素子
12 外筒
13 結合板
14 止め穴
15 磁束検出素子
16 発振回路
17 励磁コイル
18 検出コイル合成インダクタ(45度方向)
19 検出コイル合成インダクタ(―45度方向)
20 差動増幅器
21 マイコン
22 表示器
DESCRIPTION OF SYMBOLS 1 Steel shaft 2 Outer cylinder 3 Amorphous thin plate 4 Detection coil 5 Excitation coil 6 Amorphous thin plate 7 Detection coil 8 Excitation coil 9 Outer cylinder 10 Magnetic flux detection element of 45 degree direction 11 -45 direction magnetic flux detection element 12 Outer cylinder 13 Bonding plate 14 Stop hole 15 Magnetic flux detection element 16 Oscillation circuit 17 Excitation coil 18 Detection coil combined inductor (45 degree direction)
19 Detection coil composite inductor (-45 degrees direction)
20 Differential amplifier 21 Microcomputer 22 Display

Claims (4)

当該センサの検出素子は図1のように、厚さ0.1mm程度のアモルファスの薄板をほぼ長方形状にし、その上に励磁コイルと検出コイルとを巻いてあるものであり、以下当該検出素子という。トルクを検出しようとする図2、23のような鋼製の軸に対して、鋼製のシャフトの軸と空隙を隔て非接触に配置される外筒の表面もしくは裏面に、当該検出素子の長手方向がシャフトの中心軸とのなす角を、ひとつは約45度となるように取り付けられ、もうひとつの当該検出素子の取り付け角が約−45度の方向に取り付けられた外筒部の当該磁束検出素子により、シャフト表面近傍の磁束変化から鋼製シャフトのトルクを測る、非接触トルクセンサ。   As shown in FIG. 1, the detection element of the sensor is an amorphous thin plate having a thickness of about 0.1 mm, which is formed into a substantially rectangular shape, and an excitation coil and a detection coil are wound thereon. For the steel shaft as shown in FIGS. 2 and 23 to detect the torque, the length of the detection element is placed on the front or back surface of the outer cylinder arranged in a non-contact manner with a gap between the shaft of the steel shaft and a gap. The magnetic flux of the outer cylinder portion that is attached so that one of the angles formed with the central axis of the shaft is about 45 degrees and the other attachment angle of the detection element is about -45 degrees. A non-contact torque sensor that measures the torque of a steel shaft from the change in magnetic flux near the shaft surface using a detection element. 当該検出素子の数は複数でもよく、外筒の表面もしくは裏面に約45度の方向に取り付けられる当該検出素子の数と、約−45度の方向に取り付けられる当該検出素子の数とを同数とする請求項1の非接触トルクセンサ。   The number of the detection elements may be plural, and the number of the detection elements attached to the front or back surface of the outer cylinder in the direction of about 45 degrees is the same as the number of the detection elements attached in the direction of about -45 degrees. The non-contact torque sensor according to claim 1. 外筒部の当該検出素子のうち45度方向のものをすべて直列に接続し、また−45度の方向の検出コイルもすべて直列に接続された請求項2のトルクセンサ。   3. The torque sensor according to claim 2, wherein all of the detection elements of the outer tube portion in the 45 degree direction are connected in series, and all the detection coils in the -45 degree direction are also connected in series. 取り付け45度にした当該検出素子と−45度にした当該検出素子を同数だけ分割可能な外筒容器やクリップの腕の内側に固定され、鋼製軸の表面近傍に分割して挿入し、組み立てられる請求項目1から3の非接触トルクセンサ。   The detection element set to 45 degrees and the detection element set to -45 degrees are fixed to the inner side of the arm of the outer cylinder container or the clip that can be divided by the same number, and divided and inserted in the vicinity of the surface of the steel shaft for assembly. The non-contact torque sensor according to any one of claims 1 to 3.
JP2007201869A 2007-08-02 2007-08-02 Noncontact torque sensor Pending JP2009036663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201869A JP2009036663A (en) 2007-08-02 2007-08-02 Noncontact torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201869A JP2009036663A (en) 2007-08-02 2007-08-02 Noncontact torque sensor

Publications (1)

Publication Number Publication Date
JP2009036663A true JP2009036663A (en) 2009-02-19

Family

ID=40438710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201869A Pending JP2009036663A (en) 2007-08-02 2007-08-02 Noncontact torque sensor

Country Status (1)

Country Link
JP (1) JP2009036663A (en)

Similar Documents

Publication Publication Date Title
US9816880B2 (en) Device having a measuring apparatus for measuring forces and/or loads
KR102030555B1 (en) Magnetic torque sensor for transmission converter drive plate
EP0285259B1 (en) Magnetostrictive torque sensor
US20160176475A1 (en) Wheel hub transmission unit for a drive wheel of a vehicle, drive wheel, and vehicle having an auxiliary drive
US20130181702A1 (en) Active mechanical force and axial load sensor
US20200088594A1 (en) Dual-band magnetoelastic torque sensor
KR102015824B1 (en) Magnetic torque sensing device
JP2016176928A (en) Redundant torque sensor and multiple band array
Todoroki et al. Wireless strain monitoring using electrical capacitance change of tire: part I—with oscillating circuit
JPS6333634A (en) Torque detector
JP2000283862A (en) Torque detecting device
US10663363B2 (en) System and method for measuring torque on a rotating component
US9994082B2 (en) Tire monitoring based on inductive sensing
US7024946B2 (en) Assembly for measuring movement of and a torque applied to a shaft
JP2009036663A (en) Noncontact torque sensor
JP2004069462A (en) Method of detecting abnormality of tire and method of detecting abnormal rolling of wheel
JP6692691B2 (en) Measuring device
JP5395618B2 (en) Method for estimating force acting on tire, and assembly of tire and tire wheel used therefor
US6863614B2 (en) Shunted collarless torsion shaft for electronic power-assisted steering systems
JP2008149803A (en) Method and device for sensing tire failure, and tire for sensing failure inside tire
JP5363934B2 (en) Method for estimating force acting on tire, and assembly of tire and tire wheel used therefor
US20160363495A1 (en) Load and torque sensing devices
JP2006266686A (en) Bearing with sensor for wheel
JP2514205B2 (en) Magnetostrictive torque sensor
KR100962928B1 (en) Steering torque sensor