JP2009036550A - Manufacturing method of soil reference material - Google Patents

Manufacturing method of soil reference material Download PDF

Info

Publication number
JP2009036550A
JP2009036550A JP2007199175A JP2007199175A JP2009036550A JP 2009036550 A JP2009036550 A JP 2009036550A JP 2007199175 A JP2007199175 A JP 2007199175A JP 2007199175 A JP2007199175 A JP 2007199175A JP 2009036550 A JP2009036550 A JP 2009036550A
Authority
JP
Japan
Prior art keywords
soil
analysis
concentration
standard
soil standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007199175A
Other languages
Japanese (ja)
Inventor
Noboru Yoshihara
登 吉原
Aki Hamamoto
亜希 濱本
Kazuhiko Katsumi
和彦 勝見
Masaru Furusaki
勝 古崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO TECHNOS KK
Original Assignee
KANKYO TECHNOS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO TECHNOS KK filed Critical KANKYO TECHNOS KK
Priority to JP2007199175A priority Critical patent/JP2009036550A/en
Publication of JP2009036550A publication Critical patent/JP2009036550A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N2001/2893Preparing calibration standards

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a soil standard substance used in a soil test, the precision management in analysis or the adjustment of a measuring device, the development of an analyzing method, and the like, capable of manufacturing a base material, wherein an analyzing target element with an extremely high concentration of about several ten% is supported homogeneously on a carrier material, without being restricted by the solubility of a reagent, capable of arbitrarily preparing the soil standard substance, with a low concentration of 10 ppm or lower or a high concentration of 1,000 ppm or higher on the basis of the base material and markedly in flexibility and productivity. <P>SOLUTION: The manufacturing method of the soil standard substance has a mixing process for mixing one or a plurality of kinds of reagents, containing the analysis target element with the carrier material to obtain a mixture; a heating process for heating the mixture to 100-1,400°C and a heat-treated substance is obtained; and a base material preparing process for grinding the heat-treated substance to prepare the base material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、土壌の試験・分析における精度管理や測定機器の調整、分析法の開発等に用いられる土壌標準物質の製造方法に関するものである。   The present invention relates to a method for producing a soil standard used for accuracy control in soil testing and analysis, adjustment of measuring equipment, development of analytical methods, and the like.

近年、新たに施行された「土壌汚染対策法」に伴い、土壌中の有害元素を迅速に分析することが求められている。土壌の汚染度合いは、環境省告示で定められた公定分析法、即ち溶出試験を行い、その試験値と「土壌汚染対策法」で定められた基準値とを比較して判断している。
ここで、溶出試験は以下のような方法で行われる。まず、採取した土壌を風乾し、土塊や団粒を粗砕した後、2mm以下に篩い分けしたものを四分法などによって縮分し代表試料とする。カドミウム,水銀,セレン,鉛,砒素,六価クロムを分析する場合は、代表試料より6gを秤取り、1M塩酸(六価クロムの場合は弱アルカリ溶液)200mLを入れたポリ容器に入れた後、振幅巾:4〜5cm、振幅(振とう)数:200回/分で2時間振とうする。振とう後、静置もしくは遠心分離し、次いで0.45μmのメンブランフィルターで吸引ろ過する。得られたろ液に、必要に応じて硝酸等を加えて加熱酸分解処理した後、原子吸光光度計やICP発光光度計などの測定装置を使用して、ろ液中に含まれる有害元素の濃度を求めるものである。
即ち、一定の条件下で溶媒(1M塩酸又は弱アルカリ溶液)に溶出した有害元素の量を測る条件分析であり、「土壌汚染対策法」で決められた基準値は、この溶出試験による数値である。
In recent years, with the newly enforced “Soil Contamination Countermeasures Law”, it is required to quickly analyze harmful elements in soil. The degree of soil contamination is judged by performing an official analysis method defined by the Ministry of the Environment notification, that is, an elution test, and comparing the test value with the reference value defined by the “Soil Contamination Countermeasures Law”.
Here, the dissolution test is performed by the following method. First, the collected soil is air-dried, and clots and aggregates are coarsely crushed, and then sieved to 2 mm or less and reduced to a representative sample by a quadrant method or the like. When analyzing cadmium, mercury, selenium, lead, arsenic, and hexavalent chromium, weigh 6 g from the representative sample and place it in a plastic container containing 200 mL of 1M hydrochloric acid (weak alkaline solution in the case of hexavalent chromium). , Amplitude width: 4-5 cm, Amplitude (shaking) number: Shaking at 200 times / min for 2 hours. After shaking, the solution is left standing or centrifuged, and then suction filtered through a 0.45 μm membrane filter. After adding the nitric acid etc. to the obtained filtrate and heat-decomposing it as necessary, the concentration of harmful elements contained in the filtrate using a measuring device such as an atomic absorption photometer or ICP emission photometer Is what you want.
In other words, it is a condition analysis that measures the amount of harmful elements eluted in a solvent (1M hydrochloric acid or weak alkaline solution) under certain conditions. The reference value determined by the “Soil Contamination Countermeasures Law” is a numerical value based on this dissolution test. is there.

このような土壌の試験・分析における精度管理や測定機器の調整等に用いられる土壌標準物質としては、(特許文献1)に「分析目的元素を含む試薬類の溶液を土壌に浸漬させ、これを減圧処理し、次いで1〜3.5kg/cm、90〜150℃で加圧・加熱した後、上澄み液を廃棄し、沈降物を乾燥・粉砕・混合して作製する土壌標準物質の作製方法」が開示されている。
(特許文献1)に開示された発明によれば、任意の溶出試験値及び含有量試験値が得られる土壌標準物質を作製することができ、本発明は、環境分析分野の溶出及び含有量試験の技術の進歩に大きく貢献するものであった。
As a soil standard substance used for accuracy control in such soil test / analysis and adjustment of measuring instruments, (Patent Document 1) “Solution of reagents containing analysis target elements in soil, A method for preparing a soil standard material that is prepared by subjecting to a reduced pressure treatment and then pressurizing and heating at 1 to 3.5 kg / cm 2 and 90 to 150 ° C., then discarding the supernatant and drying, crushing and mixing the sediment. Is disclosed.
According to the invention disclosed in (Patent Document 1), it is possible to prepare a soil standard material from which an arbitrary dissolution test value and content test value can be obtained, and the present invention is a dissolution and content test in the field of environmental analysis. It greatly contributed to the advancement of technology.

近年、土壌汚染現場において直ちに結果の分かるオンサイト分析法、とりわけ蛍光X線分析法により土壌の試験・分析を行うことが強く求められている。その理由として、溶出試験では、採取した土壌の分析室への運搬、試料の前処理、溶出試験の実施、試験結果の報告まで、これら一連の作業に1〜2週間を要するという問題を有していたからである。また、溶出試験による溶出値だけでなく、土壌中に含有している全ての量(全量)も規制する動きがみられるからである。
蛍光X線分析法は、溶出試験とは異なり、土壌に含まれる有害元素の全量を分析する全量分析法である。従って、蛍光X線分析法による全量分析値は溶出試験による試験値と同等かそれより高くなるため、蛍光X線分析による分析値が「土壌汚染対策法」で定められた基準値を下回っていれば、溶出試験における溶出量は当然それ以下と判定でき、溶出試験による精査は不要と判断できる。また、蛍光X線分析法はいわゆる非破壊分析法であり、土壌標準物質で事前に作成した検量線があれば多元素を同時にかつ迅速に分析できるため、現場におけるスクリニングの迅速化を図ることができ、以後の確認分析や調査にかかるコストの低減並びに納期の短縮に繋がり、かつより綿密な調査を行うことへも繋がるものである。
特開平11−190685号公報
In recent years, it has been strongly demanded that soil be tested and analyzed by an on-site analysis method, in particular, a fluorescent X-ray analysis method, in which the results can be immediately understood at the site of soil contamination. The reason for this is that in the dissolution test, it takes 1-2 weeks for these series of operations to transport the collected soil to the laboratory, pre-process the sample, perform the dissolution test, and report the test results. Because it was. Moreover, not only the elution value by a dissolution test but the movement which regulates all the quantity (total quantity) contained in soil is seen.
Unlike the dissolution test, the fluorescent X-ray analysis method is a total amount analysis method that analyzes the total amount of harmful elements contained in soil. Therefore, since the total analysis value by the fluorescent X-ray analysis method is equal to or higher than the test value by the dissolution test, the analysis value by the fluorescent X-ray analysis should be lower than the standard value set by the “Soil Contamination Countermeasures Law”. For example, the amount of dissolution in the dissolution test can naturally be determined to be less than that, and it can be determined that detailed examination by the dissolution test is unnecessary. In addition, X-ray fluorescence analysis is a so-called non-destructive analysis method. If there is a calibration curve prepared in advance with a soil standard, multiple elements can be analyzed simultaneously and quickly, so that on-site screening can be accelerated. As a result, the cost for the subsequent confirmation analysis and investigation is reduced and the delivery time is shortened, and further investigation is conducted.
Japanese Patent Laid-Open No. 11-190685

しかしながら上記従来の技術で作製された土壌標準物質を蛍光X線分析に適用するには、以下のような課題を有していた。
(1)蛍光X線分析法では、測定装置から得られる信号値(以下、強度と称する。)と分析目的元素の濃度を関係付けた検量線を事前に作成しておかないと、未知サンプルの濃度を求めることができない。この検量線は、濃度既知の分析目的元素を含有する土壌標準物質を用いて作成することができる。しかし、(特許文献1)に開示された発明は、分析目的元素を含む試薬を溶液化し土壌に含浸させる方法のため、試薬の溶解度に限度があり、量産できるものとしては50ppm程度以下の低濃度の分析目的元素を含有するものであった。目的分析元素の含有量が50ppm程度では、蛍光X線分析における強度が不十分なため、蛍光X線分析法で使用できる検量線を作成することはできなかった。
(2)分析目的元素を含む試薬の溶液に土壌を長時間(例えば2〜数週間)浸漬させることにより、蛍光X線分析法でも使用可能な100〜800ppm程度の分析目的元素を含有する土壌標準物質を製造することは可能ではある。しかし、土壌の溶液への浸漬時間が著しく長く生産性に欠けるため、試験的には製造可能であるものの、量産技術として適用できないという課題を有していた。
(3)また、(特許文献1)に開示された発明では、溶液化が困難な元素の標準物質は作製することが困難であった。また、難溶性の化合物は酸を用いて溶解して、これを土壌に含浸させることがあるが、土壌が酸性化するため標準物質としては不適当であり、中和するとしてもその処理が煩雑化するという問題があった。また、化合物によっては加水分解する場合があり、均質性が低下するという問題があった。
However, in order to apply the soil standard prepared by the above-described conventional technique to fluorescent X-ray analysis, the following problems have been encountered.
(1) In the fluorescent X-ray analysis method, if a calibration curve that associates the signal value (hereinafter referred to as intensity) obtained from the measuring device with the concentration of the element to be analyzed must be prepared in advance, The concentration cannot be determined. This calibration curve can be created using a soil standard containing an analytical element of known concentration. However, since the invention disclosed in (Patent Document 1) is a method in which a reagent containing an analysis target element is made into a solution and impregnated in soil, the solubility of the reagent is limited, and a low concentration of about 50 ppm or less is possible for mass production. It contained the element for analysis. When the content of the target analytical element was about 50 ppm, the intensity in the fluorescent X-ray analysis was insufficient, so that a calibration curve that could be used in the fluorescent X-ray analysis method could not be created.
(2) A soil standard containing about 100 to 800 ppm of an analysis target element that can be used in fluorescent X-ray analysis by immersing the soil in a reagent solution containing the analysis target element for a long time (for example, 2 to several weeks). It is possible to produce a substance. However, since the immersion time in the soil solution is remarkably long and lacks productivity, it can be produced on a trial basis but cannot be applied as a mass production technique.
(3) In the invention disclosed in (Patent Document 1), it is difficult to produce a standard material of an element that is difficult to be made into a solution. Also, sparingly soluble compounds may be dissolved using acid and impregnated in the soil, but the soil is acidified and is therefore unsuitable as a standard substance, and even if neutralized, the treatment is complicated. There was a problem of becoming. In addition, some compounds may be hydrolyzed, resulting in a problem that homogeneity is lowered.

また、以上のように蛍光X線分析用の土壌標準物質が量産された例がないため、蛍光X線分析法による従来の土壌の分析においては、以下のような課題を有していた。
(1)予め純物質により元素の蛍光X線強度を求め、そのデータを基に組成(含有元素とその量)に合った理論X線強度を求め、測定試料(土壌)の蛍光X線強度から、計算によって元素の含有量を推定する方法(ファンダメンタルパラメータ法。以下、FP法という。)がある。しかし、測定試料(土壌)の組成が判らなければ、FP法を利用した計算値は正確性を欠くという課題を有していた。特に、土壌汚染対策法で対象となる元素の含有量は微量なため誤差が大きくなるので、土壌分析ではFP法は殆ど利用できないという課題を有していた。
(2)土壌汚染対策法で対象となる微量有害元素については検量線法が現実的であるが、上述のように100〜1000ppm程度の分析目的元素を含有する土壌標準物質が量産されていないため、土壌と組成の異なる鉄鋼分析用標準物質等で代用して検量線を作成し、分析値の確認・補正を行うことがあった。しかしながら、鉄鋼分析用標準物質は土壌と組成が異なるため、作成された検量線の信頼性は保証できなかった。また、鉄鋼分析用標準物質等の代用物質を分析現場毎に選択して検量線を作成して分析を行っているため、分析の平準化や分析精度の確保、分析装置の精度管理を行うことはできなかった。
In addition, since there has been no example of mass production of soil standard materials for fluorescent X-ray analysis as described above, conventional soil analysis by fluorescent X-ray analysis has the following problems.
(1) Obtain the fluorescent X-ray intensity of an element from a pure substance in advance, obtain the theoretical X-ray intensity suitable for the composition (containing element and its amount) based on the data, and use the fluorescent X-ray intensity of the measurement sample (soil). There is a method of estimating the element content by calculation (fundamental parameter method, hereinafter referred to as FP method). However, if the composition of the measurement sample (soil) is not known, the calculated value using the FP method has a problem of lacking accuracy. In particular, since the amount of the element which is a target in the soil contamination countermeasure method is very small, the error becomes large, and thus there is a problem that the FP method can hardly be used in soil analysis.
(2) The calibration curve method is realistic for trace harmful elements that are targeted by the Soil Contamination Countermeasures Law, but as mentioned above, soil standard substances containing about 100 to 1000 ppm of the target element for analysis have not been mass-produced. In some cases, a calibration curve was created by substituting a standard material for steel analysis having a composition different from that of the soil, and the analysis value was confirmed / corrected. However, since the reference material for steel analysis has a composition different from that of the soil, the reliability of the prepared calibration curve could not be guaranteed. In addition, since the analysis is performed by selecting a substitute material such as a standard material for steel analysis for each analysis site and creating a calibration curve, analysis leveling, ensuring analysis accuracy, and managing the accuracy of the analyzer I couldn't.

本発明は上記従来の課題を解決するもので、試薬の溶解度に制約を受けることがないため、数十%程度の極めて高濃度の分析目的元素を担持材に均質に担持させた基材を製造することができ、基材を基に10ppm以下の低濃度や1000ppm以上の高濃度の土壌標準物質を任意に作製することができ、自在性と生産性に著しく優れる土壌標準物質の製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and does not limit the solubility of the reagent, and thus manufactures a base material in which a very high concentration of an analysis target element of about several tens of percent is uniformly supported on a support material. Providing a method for producing a soil standard material that can arbitrarily produce a soil standard material with a low concentration of 10 ppm or less or a high concentration of 1000 ppm or more based on the base material, and is extremely excellent in flexibility and productivity. The purpose is to do.

上記従来の課題を解決するために本発明の土壌標準物質の製造方法は、以下の構成を有している。   In order to solve the above conventional problems, the method for producing a soil standard substance of the present invention has the following configuration.

本発明の請求項1に記載の土壌標準物質の製造方法は、分析目的元素を含む試薬の1種若しくは複数種を担持材と混合し混合物を得る混合工程と、前記混合物を100〜1400℃に加熱して加熱処理物を得る加熱工程と、前記加熱処理物を粉砕して基材を調製する基材調製工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)分析目的元素を含む試薬を担持材と混合する混合工程を備えているので、低濃度から高濃度までの所定濃度の分析目的元素を担持材と混合することができる。次に、混合物を100〜1400℃に加熱処理する加熱工程を備えているので、分析目的元素の吸着や拡散、蒸発凝縮等が起こるため、分析目的元素を固定化させることができる。次に、加熱処理物を粉砕して基材を調製する基材調製工程を備えているので、基材における分析目的元素の均質化を図ることができ、分析目的元素のばらつきを相対標準偏差(RSD)で20%以下に抑えることができ均質性に優れる。
(2)試薬を溶液化させる必要がないため、試薬の溶解度に制約を受けることがなく、高濃度の分析目的元素を含有する土壌標準物質を製造することができる。
The method for producing a soil standard substance according to claim 1 of the present invention includes a mixing step of mixing one or more kinds of reagents containing an analysis target element with a support material to obtain a mixture, and the mixture at 100 to 1400 ° C. It has the structure provided with the heating process which heats and obtains a heat-processed material, and the base material preparation process which grind | pulverizes the said heat-processed material and prepares a base material.
With this configuration, the following effects can be obtained.
(1) Since the mixing step of mixing the reagent containing the analysis target element with the support material is provided, it is possible to mix the analysis target element having a predetermined concentration from a low concentration to a high concentration with the support material. Next, since the heating step of heat-treating the mixture at 100 to 1400 ° C. is provided, the analysis target element can be immobilized because adsorption, diffusion, evaporation condensation, and the like of the analysis target element occur. Next, since the substrate preparation step of preparing the substrate by pulverizing the heat-treated product is provided, the analysis target element in the substrate can be homogenized, and the variation of the analysis target element is represented by the relative standard deviation ( RSD) can be suppressed to 20% or less and excellent in homogeneity.
(2) Since it is not necessary to make a reagent into solution, the solubility of the reagent is not restricted, and a soil standard material containing a high concentration of analysis target element can be produced.

ここで、分析目的元素としては、常温常圧で固体又は液体の単体又は化合物を構成する元素であれば、特に限定せずに用いることができる。例えば、土壌汚染に係るPb,Cd,Cr,As,Se,Hg等の元素や、Cu,Zn,Ni,Mn,V,B,Sb,Ti,Be,Ca,P,Al,Mg,Co,Fe,Mo等の元素、希土類元素等の一種若しくは複数種を用いることができる。   Here, the element for analysis can be used without particular limitation as long as it is an element constituting a solid or liquid simple substance or compound at room temperature and normal pressure. For example, elements such as Pb, Cd, Cr, As, Se, and Hg related to soil contamination, Cu, Zn, Ni, Mn, V, B, Sb, Ti, Be, Ca, P, Al, Mg, Co, One or more of elements such as Fe and Mo, rare earth elements, and the like can be used.

試薬としては、固体、液体いずれの性状の試薬も用いることができる。また、分析目的元素の単体、酸化物,塩化物,硫化物,塩類等、種々の化合物を用いることができる。なお、塩化物,硫化物等を用いる場合には、加熱工程において換気に留意する必要がある。   As the reagent, a solid or liquid reagent can be used. In addition, various compounds such as simple elements of analysis target elements, oxides, chlorides, sulfides, and salts can be used. When using chloride, sulfide, etc., it is necessary to pay attention to ventilation in the heating process.

担持材としては、褐色森林土,真砂土,黒ボク土,グライ土,粘土質土壌等の種々の土壌、粘土等を用いることができる。なかでも、粘土質土壌や粘土が好適に用いられる。粘土質土壌や粘土の可塑性により分析目的元素が担持材に付着し強固に担持されるため、分析目的元素を均質に分散できるからである。   As the support material, various soils such as brown forest soil, pure sand soil, black-boiled soil, glai soil, clayey soil, clay, and the like can be used. Of these, clayey soil and clay are preferably used. This is because the analysis target element adheres to the support material and is firmly supported by the plasticity of clayey soil and clay, so that the analysis target element can be uniformly dispersed.

粘土は、岩石中の鉱物が分解・破壊されてできた微細粒子の集合体であり、主に粘土鉱物の微細粒子からなるものである。粘土質土壌は、粘土鉱物の微細粒子を含有した土壌である。
粘土鉱物としては、カオリナイト,デッカイト等のカオリナイト系、メタハロイサイト,ハロイサイト等のハロイサイト系、クリソタイル,アンチゴライト等の蛇紋石系、セリサイト,海緑石等の加水雲母系、モンモリロナイト,バイデライト等のモンモリロナイト系、緑泥石,マグネシウム緑泥石等の緑泥石系、パイロフィライト、タルク、バーミキュライト等のアルミノケイ酸塩鉱物が用いられる。
なお、粘土としては、陶磁器原料としても用いられる木節粘土,蛙目粘土等の可塑性粘土、カオリン、セリサイト、陶石、ろう石クレー、ベントナイト等が好適に用いられる。可塑性が高いからである。
Clay is an aggregate of fine particles formed by the decomposition and destruction of minerals in rocks, and is mainly composed of fine particles of clay minerals. Clay soil is soil containing fine particles of clay mineral.
Examples of clay minerals include kaolinites such as kaolinite and decaitite, halloysites such as metahalloysite and halloysite, serpentine such as chrysotile and antigolite, hydromica such as sericite and sea chlorite, montmorillonite and beidellite. Montmorillonites such as chlorite, chlorite such as chlorite and magnesium chlorite, and aluminosilicate minerals such as pyrophyllite, talc and vermiculite are used.
In addition, as clay, plastic clays such as Kibushi clay and Sasame clay, which are also used as ceramic raw materials, kaolin, sericite, porcelain stone, wax stone clay, bentonite and the like are preferably used. This is because the plasticity is high.

混合工程において固体の試薬と担持材とを混合する場合は、乳鉢やボールミル,ジェットミル等の粉砕機を用いて試薬や担持材を粉砕し、同程度の粒度に合わせておくのが好ましい。篩やサイクロン等を用いて分級することもできる。いずれも試薬と担持材を均一に混合するためである。
なお、混合工程の前に、担持材は複数回化学分析を行い、担持材に予め含まれる分析目的元素の含有量を確定しておく。試薬の添加量を算出するときの根拠にするためである。
When mixing a solid reagent and a supporting material in the mixing step, it is preferable to pulverize the reagent or the supporting material using a pulverizer such as a mortar, a ball mill, or a jet mill so as to have the same particle size. Classification can also be performed using a sieve or a cyclone. In either case, the reagent and the support material are mixed uniformly.
Prior to the mixing step, the support material is subjected to chemical analysis a plurality of times to determine the content of the analysis target element contained in advance in the support material. This is to provide a basis for calculating the addition amount of the reagent.

加熱工程における加熱温度は、分析目的元素の沸点等に応じて100〜1400℃の範囲で適宜決定することができる。加熱温度が100℃より低くなると、分析目的元素の担持材への吸着や拡散、蒸発凝縮等が起こり難くなり、また水分を含んでいる場合は乾燥が不十分になるため好ましくない。加熱温度が1400℃より高くなると、分析目的元素の種類にもよるが、加熱中に蒸発し易くなり含有量にばらつきが生じ、また加熱処理物が焼結して収縮し、基材調製工程において粉砕が困難になるため好ましくない。   The heating temperature in the heating step can be appropriately determined in the range of 100 to 1400 ° C. according to the boiling point of the analysis target element. When the heating temperature is lower than 100 ° C., adsorption, diffusion, evaporation condensation and the like of the analysis target element on the support material are difficult to occur, and when it contains moisture, drying is insufficient, which is not preferable. When the heating temperature is higher than 1400 ° C., depending on the type of element to be analyzed, it tends to evaporate during heating, causing variations in the content, and the heat-treated product sinters and shrinks. Since crushing becomes difficult, it is not preferable.

基材調製工程において加熱処理物を粉砕するのは、乳鉢やボールミル、ジェットミル等の粉砕機を用いることができる。篩やサイクロン等を用いて分級することもできる。
基材は、特に250μm以下に粉砕されたものが好適に用いられる。均質性を高めるとともに、分析目的に応じてプレス成形によりペレット状に成形することがあるが、その成形性を高めるためである。
基材は複数回化学分析を行い、分析目的元素の含有量を確定しておく。
A pulverizer such as a mortar, a ball mill, or a jet mill can be used to pulverize the heat-treated product in the substrate preparation step. Classification can also be performed using a sieve or a cyclone.
In particular, the substrate is preferably used after being pulverized to 250 μm or less. This is to increase the homogeneity and to improve the moldability, although it may be formed into a pellet by press molding depending on the purpose of analysis.
The base material is subjected to chemical analysis a plurality of times to determine the content of the analysis target element.

土壌標準物質には、基材の他、フミン,フミン酸,フルボ酸等の有機物を含有させることができる。分析の対象となる土壌には、腐植質等の有機物が多量に含まれていることがあるからである。   The soil standard substance can contain organic substances such as humic acid, humic acid and fulvic acid in addition to the base material. This is because the soil to be analyzed may contain a large amount of organic matter such as humus.

本発明の請求項2に記載の発明は、請求項1に記載の土壌標準物質の製造方法であって、前記混合工程において水を加えて混練し、前記加熱工程において、混練された前記混合物を加熱する構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)混合工程において水を加えて混練するので、混合物を練土状にして練り易くして均質性を高めることができる。また、試薬が水溶性を示す場合は分散性を高め、これによっても混合の均質性を高めることができる。また、担持材に粘土質土壌や粘土を用いた場合は、水を加えて混練すると高い可塑性を示すため、より均質に混練することができ、さらに加熱工程において強固に分析目的元素を担持させることができる。
Invention of Claim 2 of this invention is a manufacturing method of the soil standard substance of Claim 1, Comprising: Water is added and kneaded in the said mixing process, The said kneaded mixture is added in the said heating process. It has a configuration for heating.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since water is added and kneaded in the mixing step, the mixture can be made into a kneaded state to facilitate kneading, thereby improving homogeneity. Moreover, when a reagent shows water solubility, dispersibility can be improved and this can also improve the homogeneity of mixing. In addition, when clay-like soil or clay is used as the support material, high plasticity is exhibited when water is added and kneaded, so that it can be kneaded more uniformly, and the analysis target element can be firmly supported in the heating process. Can do.

ここで、混合工程において水を加えて混練するのは、担持材と試薬を混合した後に水を加えて混練する方法、担持材に水を加えて混練した後に試薬を加えてさらに混練する方法等、種々の方法を採用することができる。試薬の量が多く練り難い場合等は、デキストリン,CMC等の可塑剤を加えることもできる。   Here, in the mixing step, water is added and kneaded because the support material and the reagent are mixed and then water is added and kneaded, the water is added to the support material and kneaded, and then the reagent is added and further kneaded, etc. Various methods can be employed. When the amount of the reagent is large and difficult to knead, a plasticizer such as dextrin and CMC can be added.

本発明の請求項3に記載の発明は、請求項1又は2に記載の土壌標準物質の製造方法であって、ベース土壌に前記基材の所定量を混合し分散させる分散工程を備えた構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)分析目的元素を担持材に担持させた基材をベース土壌に混合し分散させる分散工程を備えているので、基材とベース土壌の混合割合を任意に変えるだけで、分析目的元素の含有量を低濃度から高濃度まで任意に変えた土壌標準物質を自在に製造でき自在性に優れる。
Invention of Claim 3 of this invention is a manufacturing method of the soil standard substance of Claim 1 or 2, Comprising: The structure provided with the dispersion | distribution process which mixes and disperse | distributes the predetermined amount of the said base material to base soil. have.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since there is a dispersion step of mixing and dispersing the base material on which the analysis target element is supported on the support material, the analysis target element of the analysis target element can be changed by simply changing the mixing ratio of the base material and the base soil. Soil standard substances whose contents are arbitrarily changed from a low concentration to a high concentration can be produced freely and excellent in flexibility.

ここで、ベース土壌としては、褐色森林土,真砂土,黒ボク土,グライ土等の種々の土壌を用いることができる。
基材とベース土壌の混合割合は、土壌標準物質における目的分析元素の濃度の設定値に応じて、適宜設定することができる。
Here, as the base soil, various soils such as brown forest soil, pure sand soil, black-boiled soil, and clay soil can be used.
The mixing ratio of the base material and the base soil can be appropriately set according to the set value of the concentration of the target analysis element in the soil standard material.

分散工程において基材とベース土壌とを混合する場合は、乳鉢やボールミル,ジェットミル等の粉砕機を用いてベース土壌を粉砕し、基材と同程度の粒度に合わせておくのが好ましい。篩やサイクロン等を用いて分級することもできる。いずれもベース土壌と基材を均一に混合するためである。
なお、分散工程の前に、ベース土壌は複数回化学分析を行い、ベース土壌に予め含まれる分析目的元素の含有量を確定しておく。基材とベース土壌の混合量を算出するときの根拠にするためである。
分散工程においては、容器回転型混合機、機械的撹拌型,気流撹拌型等の容器固定型混合機を用いて基材とベース土壌とを混合し分散させることができる。
When the base material and the base soil are mixed in the dispersion step, it is preferable to pulverize the base soil using a pulverizer such as a mortar, a ball mill, or a jet mill so as to have the same particle size as the base material. Classification can also be performed using a sieve or a cyclone. In either case, the base soil and the base material are mixed uniformly.
Prior to the dispersion step, the base soil is subjected to chemical analysis a plurality of times to determine the content of the analysis target element contained in the base soil in advance. This is for the basis of calculating the amount of mixture of the base material and the base soil.
In the dispersion step, the base material and the base soil can be mixed and dispersed using a container-fixed mixer such as a container rotating mixer, a mechanical stirring type, or an airflow stirring type.

本発明の請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の土壌標準物質の製造方法であって、前記混合工程において、前記混合物に対して前記分析目的元素が0.01〜60wt%の含有率になるように前記試薬を前記担持材と混合する構成を有している。
この構成により、請求項1乃至3の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)分析目的元素の含有率が0.01〜60wt%になるように試薬を担持材と混合するので、従来は量産が困難であった1000ppm程度以上の高濃度の分析目的元素を含有する土壌標準物質も生産性良く製造できる。
Invention of Claim 4 of this invention is a manufacturing method of the soil standard substance of any one of Claim 1 thru | or 3, Comprising: In the said mixing process, the said analysis objective element is said with respect to the said mixture. The reagent is mixed with the carrier so that the content is 0.01 to 60 wt%.
According to this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) Since the reagent is mixed with the support material so that the content of the analysis target element is 0.01 to 60 wt%, it contains a high concentration of the analysis target element of about 1000 ppm or more, which has been difficult to produce in the past. Soil standards can also be produced with good productivity.

ここで、混合物に対する分析目的元素の含有率としては、0.01〜60wt%、好ましくは0.1〜60wt%が好適である。分析目的元素の含有率が0.1wt%より低下するにつれ、担持材の含有量が多いため、担持材の組成が分析の対象となる土壌の組成と異なる場合には、土壌の分析精度がやや低下する傾向がみられる。特に0.01wt%より少なくなると、この傾向が著しくなるため好ましくない。また、分析目的元素の含有率が60wt%より多くなると、担持材の含有量が少ないため、担持材に担持されずに単独で分析目的元素が存在することがあり均一分散性に欠けるため好ましくない。
なお、混合工程において水を加えて混練する場合には、混合物の質量は、水を加えて混練する前の乾燥した担持材の質量と試薬中の分析目的元素の質量を合計したものである。
Here, the content of the element to be analyzed with respect to the mixture is 0.01 to 60 wt%, preferably 0.1 to 60 wt%. As the content of the target element for analysis decreases from 0.1 wt%, the content of the support material increases, so that if the composition of the support material is different from the composition of the soil to be analyzed, the analysis accuracy of the soil is slightly higher. There is a tendency to decrease. In particular, if the amount is less than 0.01 wt%, this tendency becomes remarkable, which is not preferable. Further, when the content of the analysis target element is more than 60 wt%, the content of the support material is small, and therefore, the analysis target element may be present alone without being supported on the support material, so that it is not preferable because it lacks uniform dispersibility. .
When water is added and kneaded in the mixing step, the mass of the mixture is the sum of the mass of the dried support material before adding water and kneading and the mass of the analysis target element in the reagent.

以上のように、本発明の土壌標準物質の製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)低濃度から高濃度までの所定濃度の分析目的元素を担持材と混合することができ、また分析目的元素の吸着や拡散、蒸発凝縮等が起こり分析目的元素を固定化させることができ、さらに基材における分析目的元素の均質化を図ることができ、分析目的元素のばらつきを相対標準偏差(RSD)で20%以下に抑えた均質性に優れた土壌標準物質の製造方法を提供できる。
(2)試薬を溶液化させる必要がないため、試薬の溶解度に制約を受けることがなく、高濃度の分析目的元素を含有する土壌標準物質を製造できる土壌標準物質の製造方法を提供できる。
As described above, according to the method for producing a soil standard material of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Analytical elements with a predetermined concentration from low to high concentrations can be mixed with the support material, and the analytical elements can be immobilized by adsorption, diffusion, evaporation condensation, etc. Furthermore, it is possible to homogenize the analysis target element in the base material, and to provide a method for producing a soil standard material with excellent homogeneity, in which the variation of the analysis target element is suppressed to 20% or less in relative standard deviation (RSD). .
(2) Since it is not necessary to make a reagent into solution, there is no restriction on the solubility of the reagent, and a method for producing a soil standard material that can produce a soil standard material containing a high concentration of analysis target element can be provided.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)混合工程において水を加えて混練するので、混合物を練土状にして練り易くして均質性を高めることができる土壌標準物質の製造方法を提供できる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Since water is added and kneaded in the mixing step, it is possible to provide a method for producing a soil standard material that can improve the homogeneity by making the mixture into a dough-like shape and making it easy to knead.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)分析目的元素を担持材に担持させた基材をベース土壌に混合し分散させる分散工程を備えているので、基材とベース土壌の混合割合を任意に変えるだけで、分析目的元素の含有量を低濃度から高濃度まで任意に変えた土壌標準物質を自在に得ることができ自在性に優れた土壌標準物質の製造方法を提供できる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Since there is a dispersion step of mixing and dispersing the base material on which the analysis target element is supported on the support material, the analysis target element of the analysis target element can be changed by simply changing the mixing ratio of the base material and the base soil. A soil standard material whose content is arbitrarily changed from a low concentration to a high concentration can be freely obtained, and a method for producing a soil standard material having excellent flexibility can be provided.

請求項4に記載の発明によれば、請求項1乃至3の内いずれか1の効果に加え、
(1)従来は量産が困難であった1000ppm程度以上の高濃度の分析目的元素を含有する土壌標準物質も生産性良く製造できる土壌標準物質の製造方法を提供できる。製造された土壌標準物質は、土壌の試験・分析における蛍光X線分析法の標準物質として最適なだけでなく、原子吸光光度法やICP発光分光光度法等を用いた湿式化学分析法の標準物質としても適しており応用性に著しく優れる。さらに本発明の土壌標準物質を用いることで、蛍光X線分析法の平準化や分析精度の確保、分析装置の精度管理を行うことができる。
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3,
(1) It is possible to provide a method for producing a soil standard material that can produce a soil standard material containing a high concentration of an analysis target element of about 1000 ppm or more, which has been difficult to produce in the past, with high productivity. The manufactured soil standard substance is not only optimal as a standard substance for fluorescent X-ray analysis in soil testing and analysis, but also a standard substance for wet chemical analysis methods using atomic absorption spectrophotometry, ICP emission spectrophotometry, etc. And is extremely excellent in applicability. Furthermore, by using the soil standard substance of the present invention, leveling of the fluorescent X-ray analysis method, ensuring of analysis accuracy, and accuracy management of the analyzer can be performed.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
Crを分析目的元素とした6水準濃度の土壌標準物質を13kgずつ製造した。なお、6水準濃度における1水準目は、分析目的元素を添加せずベース土壌に含まれる元素の濃度とし、2〜6水準目の目標値はそれぞれ、150,250,500,750,1500(mg/kg)とした。
まず、混合工程において、三酸化クロム試薬(CrO)(和光純薬製)384gの粉砕物と、担持材としての木節粘土384gの粉砕物を混合し混合物を得た。混合物に水を少しずつ加えながら混ぜて練土状にして、捏ねるように練り合わせた。
練り合わせた混合物の水分がほぼ無くなるまで乾燥させた後、塊状のまま電気炉に入れて1000℃で120分間加熱処理した(加熱工程)。放冷後、加熱処理物を取り出し破砕した後、粉砕し篩い分けして106μm以下を十分混合し、Cr元素を担持した基材を得た(基材調製工程)。基材中のCr濃度を化学分析して、29wt%の値を得た。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
13 kg of soil standard substances with 6 levels of concentration using Cr as an element for analysis were produced. The first level in the 6th level concentration is the concentration of the element contained in the base soil without adding the analysis target element, and the target values in the 2nd to 6th levels are 150, 250, 500, 750, 1500 (mg, respectively). / Kg).
First, in the mixing step, pulverized product of 384 g of chromium trioxide reagent (CrO 3 ) (manufactured by Wako Pure Chemical Industries) and pulverized product of 384 g of Kibushi clay as a support material were mixed to obtain a mixture. While adding water little by little to the mixture, the mixture was mixed into a clay and kneaded.
After drying until the moisture of the kneaded mixture almost disappeared, it was put in an electric furnace in a lump shape and heat-treated at 1000 ° C. for 120 minutes (heating step). After allowing to cool, the heat-treated product was taken out and crushed, and then crushed and sieved to sufficiently mix 106 μm or less to obtain a base material supporting Cr element (base material preparation step). The Cr concentration in the substrate was chemically analyzed to obtain a value of 29 wt%.

ベース土壌は、褐色森林土を採取し、乾燥・粉砕・篩い分けして十分混合し、106μm以下をとった。ベース土壌中のCr全含有量を化学分析で求めたところ、100mg/kgであった。   As the base soil, brown forest soil was collected, dried, pulverized, sieved, and mixed well, and the size was 106 μm or less. The total Cr content in the base soil was determined by chemical analysis and found to be 100 mg / kg.

次に、目標とする150,250,500,750,1500(mg/kg)の2〜6水準濃度の土壌標準物質を製造するため、基材を秤量し、2.18g、6.54g、17.4g、28.3g、61.0gずつ取り分けた。分散工程において容器回転型混合機を用いて、これらの基材の各々と所定量のベース土壌とを十分混合し、2〜6水準濃度の各13kgの土壌標準物質を得た。ベース土壌(基材を混合しない)を1水準目の土壌標準物質とした。
これらの土壌標準物質から1水準あたり10個ずつサンプリングし、化学分析を行ってCr濃度と土壌標準物質の均質性を調べた。また、1〜6水準濃度の土壌標準物質の化学分析で求めた濃度と、蛍光X線分析の強度との関係を調べた。
表1に6水準の土壌標準物質の化学分析によるCrの定量分析値と相対標準偏差(RSD)を示した。表1において、相対標準偏差(RSD)以外の単位は、全てmg/kgである。
また、図1は化学分析で求めた土壌標準物質のCr濃度と蛍光X線分析の強度との関係を示す図である。
Next, in order to produce soil standard substances of 2 to 6 levels of target 150, 250, 500, 750, 1500 (mg / kg), the base material is weighed, and 2.18 g, 6.54 g, 17 .4 g, 28.3 g, and 61.0 g each. In the dispersion step, each of these base materials and a predetermined amount of base soil were sufficiently mixed using a container rotating mixer to obtain 13 kg of soil standard substances having a concentration of 2 to 6 levels. Base soil (without mixing the base material) was used as the first level soil standard.
Ten samples of each soil standard were sampled per level, and chemical analysis was performed to examine the Cr concentration and the homogeneity of the soil standard. Moreover, the relationship between the density | concentration calculated | required by the chemical analysis of the soil standard substance of 1-6 level density | concentration, and the intensity | strength of a fluorescent X ray analysis was investigated.
Table 1 shows the quantitative analysis value and relative standard deviation (RSD) of Cr by chemical analysis of six levels of soil standard substances. In Table 1, all units other than relative standard deviation (RSD) are mg / kg.
FIG. 1 is a graph showing the relationship between the Cr concentration of the soil standard substance obtained by chemical analysis and the intensity of fluorescent X-ray analysis.

Figure 2009036550
Figure 2009036550

表1から、2〜6水準濃度の土壌標準物質の相対標準偏差(RSD)はいずれも2%以下であり、十分に均質であることがわかった。また、図1から、化学分析で求めたCr濃度と蛍光X線分析の強度は、相関性が著しく高く直線上にプロットできることが確認された。
以上のことから、本実施例の土壌標準物質の均質性はいずれも十分であり、また蛍光X線分析における検量線を作成する標準物質として用いることができることも確認できた。
From Table 1, it was found that the relative standard deviation (RSD) of soil standard substances having 2 to 6 levels of concentration was 2% or less and was sufficiently homogeneous. Further, from FIG. 1, it was confirmed that the Cr concentration obtained by chemical analysis and the intensity of the fluorescent X-ray analysis are remarkably highly correlated and can be plotted on a straight line.
From the above, it was confirmed that the homogeneity of the soil standard material of this example is sufficient and can be used as a standard material for preparing a calibration curve in fluorescent X-ray analysis.

(実施例2)
Cdを分析目的元素とした6水準濃度の土壌標準物質を13kgずつ製造した。なお、6水準濃度における1水準目は、分析目的元素を添加せずベース土壌に含まれる元素の濃度とし、2〜6水準目の目標値はそれぞれ、75,150,300,600,1200(mg/kg)とした。
混合工程において、酸化カドミウム(CdO)(和光純薬製)228gの粉砕物と、担持材としての黒ボク土228gの粉砕物を混合し混合物を得た。混合物に水を少しずつ加えながら混ぜて練土状にして、捏ねるように練り合わせた。
練り合わせた混合物の水分がほぼ無くなるまで乾燥させた後、塊状のまま電気炉に入れて1000℃で60分間加熱処理した(加熱工程)。放冷後、加熱処理物を取り出し破砕した後、粉砕し篩い分けして106μm以下を十分混合し、Cd元素を担持した基材を得た(基材調製工程)。基材中のCd濃度を化学分析して、46wt%の値を得た。
ベース土壌は実施例1と同様のものを用いた。ベース土壌中のCd全含有量を化学分析で求めたところ、0.48mg/kgであった。
次に、目標とする75,150,300,600,1200(mg/kg)の2〜6水準濃度の土壌標準物質を製造するため、基材を秤量し、2.10、4.22g、8.45g、16.9g、33.8gずつ取り分けた。分散工程において容器回転型混合機を用いて、これらの基材の各々と所定量のベース土壌とを十分混合し、2〜6水準濃度の各13kgの土壌標準物質を得た。ベース土壌(基材を混合しない)を1水準目の土壌標準物質とした。
これらの土壌標準物質から1水準あたり10個ずつサンプリングし、化学分析を行ってCd濃度と土壌標準物質の均質性を調べた。また、1〜6水準濃度の土壌標準物質の化学分析で求めた濃度と、蛍光X線分析の強度との関係を調べた。
表2に6水準の土壌標準物質の化学分析によるCdの定量分析値と相対標準偏差(RSD)を示した。表2において、相対標準偏差(RSD)以外の単位は、全てmg/kgである。
また、図2は化学分析で求めた土壌標準物質のCd濃度と蛍光X線分析の強度との関係を示す図である。
(Example 2)
13 kg of soil standard substances with 6 levels of concentration using Cd as the analysis target element were produced. The first level in the 6th level concentration is the concentration of the element contained in the base soil without adding the analysis target element, and the target values in the 2nd to 6th levels are 75, 150, 300, 600, 1200 (mg, respectively). / Kg).
In the mixing step, pulverized product of 228 g of cadmium oxide (CdO) (manufactured by Wako Pure Chemical Industries, Ltd.) and pulverized product of 228 g of black clay as a support material were mixed to obtain a mixture. While adding water little by little to the mixture, the mixture was mixed into a clay and kneaded.
After drying until the moisture of the kneaded mixture almost disappeared, it was put in an electric furnace in a lump shape and heat-treated at 1000 ° C. for 60 minutes (heating step). After allowing to cool, the heat-treated product was taken out and crushed, and then pulverized and sieved to sufficiently mix 106 μm or less to obtain a substrate supporting Cd element (substrate preparation step). The Cd concentration in the substrate was chemically analyzed to obtain a value of 46 wt%.
The same base soil as in Example 1 was used. The total Cd content in the base soil was determined by chemical analysis and found to be 0.48 mg / kg.
Next, in order to produce 2 to 6 level soil standard substances of 75, 150, 300, 600, and 1200 (mg / kg), the base material is weighed, 2.10, 4.22 g, 8 .45 g, 16.9 g, and 33.8 g each. In the dispersion step, each of these base materials and a predetermined amount of base soil were sufficiently mixed using a container rotating mixer to obtain 13 kg of soil standard substances having a concentration of 2 to 6 levels. Base soil (without mixing the base material) was used as the first level soil standard.
Ten samples were sampled per level from these soil standard substances, and chemical analysis was performed to examine the Cd concentration and the homogeneity of the soil standard substance. Moreover, the relationship between the density | concentration calculated | required by the chemical analysis of the soil standard substance of 1-6 level density | concentration, and the intensity | strength of a fluorescent X ray analysis was investigated.
Table 2 shows the quantitative analysis value and relative standard deviation (RSD) of Cd by chemical analysis of six levels of soil standard substances. In Table 2, the units other than the relative standard deviation (RSD) are all mg / kg.
FIG. 2 is a graph showing the relationship between the Cd concentration of the soil standard substance obtained by chemical analysis and the intensity of fluorescent X-ray analysis.

Figure 2009036550
Figure 2009036550

表2から、2〜6水準濃度の土壌標準物質の相対標準偏差(RSD)はいずれも約1%以下であり、十分に均質であることがわかった。また、図2から、化学分析で求めたCd濃度と蛍光X線分析の強度は、相関性が著しく高く直線上にプロットできることが確認された。
以上のことから、本実施例の土壌標準物質の均質性はいずれも十分であり、また蛍光X線分析における検量線を作成する標準物質として用いることができることも確認できた。
From Table 2, it was found that the relative standard deviation (RSD) of soil standard substances having 2 to 6 levels of concentration was about 1% or less and was sufficiently homogeneous. In addition, it was confirmed from FIG. 2 that the Cd concentration obtained by chemical analysis and the intensity of fluorescent X-ray analysis are remarkably correlated and can be plotted on a straight line.
From the above, it was confirmed that the homogeneity of the soil standard material of this example is sufficient and can be used as a standard material for preparing a calibration curve in fluorescent X-ray analysis.

(実施例3)
Pbを分析目的元素とした6水準濃度の土壌標準物質を13kgずつ製造した。なお、6水準濃度における1水準目は、分析目的元素を添加せずベース土壌に含まれる元素の濃度とし、2〜6水準目の目標値はそれぞれ、75,150,300,600,1200(mg/kg)とした。
混合工程において、一酸化鉛(PbO)(和光純薬製)216gの粉砕物と、担持材としての粘土質土壌216gの粉砕物を混合し混合物を得た。混合物に水を少しずつ加えながら混ぜて練土状にして、捏ねるように練り合わせた。
練り合わせた混合物の水分がほぼ無くなるまで乾燥させた後、塊状のまま電気炉に入れて700℃で60分間加熱処理した(加熱工程)。放冷後、加熱処理物を取り出し破砕した後、粉砕し篩い分けして106μm以下を十分混合し、Pb元素を担持した基材を得た(基材調製工程)。基材中のPb濃度を化学分析して、42wt%の値を得た。
ベース土壌は実施例1と同様のものを用いた。ベース土壌中のPb全含有量を化学分析で求めたところ、25mg/kgであった。
次に、目標とする75,150,300,600,1200(mg/kg)の2〜6水準濃度の土壌標準物質を製造するため、基材を秤量し、1.55g、3.87g、8.51g、17.8g、36.4gずつ取り分けた。分散工程において容器回転型混合機を用いて、これらの基材の各々と所定量のベース土壌とを十分混合し、2〜6水準濃度の各13kgの土壌標準物質を得た。ベース土壌(基材を混合しない)を1水準目の土壌標準物質とした。
これらの土壌標準物質から1水準あたり10個ずつサンプリングし、化学分析を行ってPb濃度と土壌標準物質の均質性を調べた。また、1〜6水準濃度の土壌標準物質の化学分析で求めた濃度と、蛍光X線分析の強度との関係を調べた。
表3に6水準の土壌標準物質の化学分析によるPbの定量分析値と相対標準偏差(RSD)を示した。表3において、相対標準偏差(RSD)以外の単位は、全てmg/kgである。
また、図3は化学分析で求めた土壌標準物質のPb濃度と蛍光X線分析の強度との関係を示す図である。
(Example 3)
13 kg of 6-level soil standard substances having Pb as an analysis target element were produced. The first level in the 6th level concentration is the concentration of the element contained in the base soil without adding the analysis target element, and the target values in the 2nd to 6th levels are 75, 150, 300, 600, 1200 (mg, respectively). / Kg).
In the mixing step, 216 g of pulverized product of lead monoxide (PbO) (manufactured by Wako Pure Chemical Industries) and 216 g of pulverized product of clayey soil as a support material were mixed to obtain a mixture. While adding water little by little to the mixture, the mixture was mixed into a clay and kneaded.
After drying the kneaded mixture until there was almost no moisture, it was put into an electric furnace in a lump shape and heat-treated at 700 ° C. for 60 minutes (heating step). After allowing to cool, the heat-treated product was taken out and crushed, and then pulverized and sieved to sufficiently mix 106 μm or less to obtain a substrate carrying Pb element (substrate preparation step). Chemical analysis of the Pb concentration in the substrate gave a value of 42 wt%.
The same base soil as in Example 1 was used. The total Pb content in the base soil was determined by chemical analysis and found to be 25 mg / kg.
Next, in order to produce the target soil standard substances of 2 to 6 levels of 75, 150, 300, 600, and 1200 (mg / kg), the base material is weighed, 1.55 g, 3.87 g, 8 .51 g, 17.8 g, and 36.4 g each. In the dispersion step, each of these base materials and a predetermined amount of base soil were sufficiently mixed using a container rotating mixer to obtain 13 kg of soil standard substances having a concentration of 2 to 6 levels. Base soil (without mixing the base material) was used as the first level soil standard.
Ten samples were sampled per level from these soil standards, and chemical analysis was performed to examine the Pb concentration and the homogeneity of the soil standards. Moreover, the relationship between the density | concentration calculated | required by the chemical analysis of the soil standard substance of 1-6 level density | concentration, and the intensity | strength of a fluorescent X ray analysis was investigated.
Table 3 shows the quantitative analysis value and relative standard deviation (RSD) of Pb by chemical analysis of six levels of soil standard substances. In Table 3, all units other than relative standard deviation (RSD) are mg / kg.
FIG. 3 is a graph showing the relationship between the Pb concentration of the soil standard substance obtained by chemical analysis and the intensity of fluorescent X-ray analysis.

Figure 2009036550
Figure 2009036550

表3から、2〜6水準濃度の土壌標準物質の相対標準偏差(RSD)はいずれも2%以下であり、十分に均質であることがわかった。また、図3から、化学分析で求めたPb濃度と蛍光X線分析の強度は、相関性が著しく高く直線上にプロットできることが確認された。
以上のことから、本実施例の土壌標準物質の均質性はいずれも十分であり、また蛍光X線分析における検量線を作成する標準物質として用いることができることも確認できた。
From Table 3, it was found that the relative standard deviation (RSD) of soil standard substances having 2 to 6 levels of concentration was 2% or less and was sufficiently homogeneous. In addition, it was confirmed from FIG. 3 that the Pb concentration obtained by chemical analysis and the intensity of fluorescent X-ray analysis are highly correlated and can be plotted on a straight line.
From the above, it was confirmed that the homogeneity of the soil standard material of this example is sufficient and can be used as a standard material for preparing a calibration curve in fluorescent X-ray analysis.

(実施例4)
Asを分析目的元素とした6水準濃度の土壌標準物質を13kgずつ製造した。なお、6水準濃度における1水準目は、分析目的元素を添加せずベース土壌に含まれる元素の濃度とし、2〜6水準目の目標値はそれぞれ、75,150,300,600,1200(mg/kg)とした。
混合工程において、三酸化二ヒ素(As)(和光純薬製)264gの粉砕物と、担持材としての蛙目粘土264gの粉砕物を混合し混合物を得た。混合物に水を少しずつ加えながら混ぜて練土状にして、捏ねるように練り合わせた。
練り合わせた混合物の水分がほぼ無くなるまで乾燥させた後、塊状のまま電気炉に入れて300℃で60分間加熱処理した(加熱工程)。放冷後、加熱処理物を取り出し破砕した後、粉砕し篩い分けして106μm以下を十分混合し、As元素を担持した基材を得た(基材調製工程)。基材中のAs濃度を化学分析して、18wt%の値を得た。
ベース土壌は実施例1と同様のものを用いた。ベース土壌中のAs全含有量を化学分析で求めたところ、18mg/kgであった。
次に、目標とする75,150,300,600,1200(mg/kg)の2〜6水準濃度の土壌標準物質を製造するため、基材を秤量し、3.92g、9.08g、19.4g、40.0g、81.3gずつ取り分けた。分散工程において容器回転型混合機を用いて、これらの基材の各々と所定量のベース土壌とを十分混合し、2〜6水準濃度の各13kgの土壌標準物質を得た。ベース土壌(基材を混合しない)を1水準目の土壌標準物質とした。
これらの土壌標準物質から1水準あたり10個ずつサンプリングし、化学分析を行ってAs濃度と土壌標準物質の均質性を調べた。また、1〜6水準濃度の土壌標準物質の化学分析で求めた濃度と、蛍光X線分析の強度との関係を調べた。
表4に6水準の土壌標準物質の化学分析によるAsの定量分析値と相対標準偏差(RSD)を示した。表4において、相対標準偏差(RSD)以外の単位は、全てmg/kgである。
また、図4は化学分析で求めた土壌標準物質のAs濃度と蛍光X線分析の強度との関係を示す図である。
Example 4
13 kg of soil standard substances having 6 levels of concentration using As as an analysis target element were produced. The first level in the 6th level concentration is the concentration of the element contained in the base soil without adding the analysis target element, and the target values in the 2nd to 6th levels are 75, 150, 300, 600, 1200 (mg, respectively). / Kg).
In the mixing step, 264 g of pulverized product of arsenic trioxide (As 2 O 3 ) (manufactured by Wako Pure Chemical Industries, Ltd.) and pulverized product of 264 g of glazed clay as a support material were mixed to obtain a mixture. While adding water little by little to the mixture, the mixture was mixed into a clay and kneaded.
After drying until the moisture of the kneaded mixture almost disappeared, it was put into an electric furnace in a lump shape and heat-treated at 300 ° C. for 60 minutes (heating step). After allowing to cool, the heat-treated product was taken out and crushed, and then pulverized and sieved to sufficiently mix 106 μm or less to obtain a substrate carrying As element (substrate preparation step). The As concentration in the substrate was chemically analyzed to obtain a value of 18 wt%.
The same base soil as in Example 1 was used. When the total content of As in the base soil was determined by chemical analysis, it was 18 mg / kg.
Next, in order to produce 2 to 6 level soil standard substances of 75, 150, 300, 600, and 1200 (mg / kg) as targets, the substrate was weighed and 3.92 g, 9.08 g, 19 .4 g, 40.0 g, and 81.3 g each. In the dispersion step, each of these base materials and a predetermined amount of base soil were sufficiently mixed using a container rotating mixer to obtain 13 kg of soil standard substances having a concentration of 2 to 6 levels. Base soil (without mixing the base material) was used as the first level soil standard.
Ten samples of each soil standard were sampled per level, and chemical analysis was performed to examine the As concentration and the homogeneity of the soil standard. Moreover, the relationship between the density | concentration calculated | required by the chemical analysis of the soil standard substance of 1-6 level density | concentration, and the intensity | strength of a fluorescent X ray analysis was investigated.
Table 4 shows the quantitative analysis value and relative standard deviation (RSD) of As by chemical analysis of six levels of soil standard substances. In Table 4, all units other than relative standard deviation (RSD) are mg / kg.
FIG. 4 is a diagram showing the relationship between the As concentration of the soil standard substance obtained by chemical analysis and the intensity of fluorescent X-ray analysis.

Figure 2009036550
Figure 2009036550

表4から、2〜6水準濃度の土壌標準物質の相対標準偏差(RSD)はいずれも約2%以下であり、十分に均質であることがわかった。また、図4から、化学分析で求めたAs濃度と蛍光X線分析の強度は、相関性が著しく高く直線上にプロットできることが確認された。
以上のことから、本実施例の土壌標準物質の均質性はいずれも十分であり、また蛍光X線分析における検量線を作成する標準物質として用いることができることも確認できた。
From Table 4, it was found that the relative standard deviation (RSD) of soil standard substances having 2 to 6 levels of concentration was about 2% or less and was sufficiently homogeneous. In addition, it was confirmed from FIG. 4 that the As concentration obtained by chemical analysis and the intensity of fluorescent X-ray analysis have a very high correlation and can be plotted on a straight line.
From the above, it was confirmed that the homogeneity of the soil standard material of this example is sufficient and can be used as a standard material for preparing a calibration curve in fluorescent X-ray analysis.

(実施例5)
Seを分析目的元素とした6水準濃度の土壌標準物質を13kgずつ製造した。なお、6水準濃度における1水準目は、分析目的元素を添加せずベース土壌に含まれる元素の濃度とし、2〜6水準目の目標値はそれぞれ、75,150,300,600,1200(mg/kg)とした。
混合工程において、亜セレン酸ナトリウム(NaSeO)(和光純薬製)237gの粉砕物と、担持材としての木節粘土237gの粉砕物を混合し混合物を得た。混合物に水を少しずつ加えながら混ぜて練土状にして、捏ねるように練り合わせた。
練り合わせた混合物の水分がほぼ無くなるまで乾燥させた後、塊状のまま電気炉に入れて200℃で60分間加熱処理した(加熱工程)。放冷後、加熱処理物を取り出し破砕した後、粉砕し篩い分けして106μm以下を十分混合し、Se元素を担持した基材を得た(基材調製工程)。基材中のSe濃度を化学分析して、20wt%の値を得た。
ベース土壌は実施例1と同様のものを用いた。ベース土壌中のSe全含有量を化学分析で求めたところ、0.4mg/kgであった。
次に、目標とする75,150,300,600,1200(mg/kg)の2〜6水準濃度の土壌標準物質を製造するため、基材を秤量し、4.64g、9.31g、18.6g、37.3g、74.6gずつ取り分けた。分散工程において容器回転型混合機を用いて、これらの基材の各々と所定量のベース土壌とを十分混合し、2〜6水準濃度の各13kgの土壌標準物質を得た。ベース土壌(基材を混合しない)を1水準目の土壌標準物質とした。
これらの土壌標準物質から1水準あたり10個ずつサンプリングし、化学分析を行ってSe濃度と土壌標準物質の均質性を調べた。また、1〜6水準濃度の土壌標準物質の化学分析で求めた濃度と、蛍光X線分析の強度との関係を調べた。
表5に6水準の土壌標準物質の化学分析によるSeの定量分析値と相対標準偏差(RSD)を示した。表5において、相対標準偏差(RSD)以外の単位は、全てmg/kgである。
また、図5は化学分析で求めた土壌標準物質のSe濃度と蛍光X線分析の強度との関係を示す図である。
(Example 5)
13 kg of soil standard substances with 6 levels of concentration using Se as an analysis target element were produced. The first level in the 6th level concentration is the concentration of the element contained in the base soil without adding the analysis target element, and the target values in the 2nd to 6th levels are 75, 150, 300, 600, 1200 (mg, respectively). / Kg).
In the mixing step, 237 g of pulverized product of sodium selenite (Na 2 SeO 3 ) (manufactured by Wako Pure Chemical Industries) and pulverized product of 237 g of Kibushi clay as a support material were mixed to obtain a mixture. While adding water little by little to the mixture, the mixture was mixed into a clay and kneaded.
After drying until the moisture of the kneaded mixture almost disappeared, it was put in an electric furnace in a lump shape and heat-treated at 200 ° C. for 60 minutes (heating step). After allowing to cool, the heat-treated product was taken out and crushed, and then pulverized and sieved to sufficiently mix 106 μm or less to obtain a substrate carrying Se element (substrate preparation step). The Se concentration in the substrate was chemically analyzed to obtain a value of 20 wt%.
The same base soil as in Example 1 was used. The total content of Se in the base soil was determined by chemical analysis and found to be 0.4 mg / kg.
Next, in order to produce 2-6 levels of soil standard substances of 75, 150, 300, 600, 1200 (mg / kg) as targets, the base material is weighed, and 4.64 g, 9.31 g, 18 .6 g, 37.3 g, and 74.6 g each. In the dispersion step, each of these base materials and a predetermined amount of base soil were sufficiently mixed using a container rotating mixer to obtain 13 kg of soil standard substances having a concentration of 2 to 6 levels. Base soil (without mixing the base material) was used as the first level soil standard.
Ten samples of each soil standard were sampled per level, and chemical analysis was performed to examine the Se concentration and the homogeneity of the soil standard. Moreover, the relationship between the density | concentration calculated | required by the chemical analysis of the soil standard substance of 1-6 level density | concentration, and the intensity | strength of a fluorescent X ray analysis was investigated.
Table 5 shows the quantitative analysis values and relative standard deviation (RSD) of Se by chemical analysis of six levels of soil standard substances. In Table 5, all the units other than relative standard deviation (RSD) are mg / kg.
FIG. 5 is a diagram showing the relationship between the Se concentration of the soil standard substance obtained by chemical analysis and the intensity of fluorescent X-ray analysis.

Figure 2009036550
Figure 2009036550

表5から、2〜6水準濃度の土壌標準物質の相対標準偏差(RSD)はいずれも2%以下であり、十分に均質であることがわかった。また、図5から、化学分析で求めたSe濃度と蛍光X線分析の強度は、相関性が著しく高く直線上にプロットできることが確認された。
以上のことから、本実施例の土壌標準物質の均質性はいずれも十分であり、また蛍光X線分析における検量線を作成する標準物質として用いることができることも確認できた。
From Table 5, it was found that the relative standard deviation (RSD) of soil standard substances having 2 to 6 levels of concentration was 2% or less and was sufficiently homogeneous. Further, from FIG. 5, it was confirmed that the Se concentration obtained by the chemical analysis and the intensity of the fluorescent X-ray analysis have a very high correlation and can be plotted on a straight line.
From the above, it was confirmed that the homogeneity of the soil standard material of this example is sufficient and can be used as a standard material for preparing a calibration curve in fluorescent X-ray analysis.

(実施例6)
Hgを分析目的元素とした6水準濃度の土壌標準物質を13kgずつ製造した。なお、6水準濃度における1水準目は、分析目的元素を添加せずベース土壌に含まれる元素の濃度とし、2〜6水準目の目標値はそれぞれ、7.5,15,30,60,120(mg/kg)とした。
混合工程において、硝酸第二水銀(Hg(NO・nHO)(和光純薬製)21.3gと、担持材としての木節粘土240gの粉砕物を混合し混合物を得た。混合物に水を少しずつ加えながら混ぜて練土状にして、捏ねるように練り合わせた。
練り合わせた混合物の水分がほぼ無くなるまで乾燥させた後、塊状のまま電気炉に入れて150℃で60分間加熱処理した(加熱工程)。放冷後、加熱処理物を取り出し破砕した後、粉砕し篩い分けして106μm以下を十分混合し、Hg元素を担持した基材を得た(基材調製工程)。基材中のHg濃度を化学分析して、4wt%の値を得た。
ベース土壌は実施例1と同様のものを用いた。ベース土壌中のHg全含有量を化学分析で求めたところ、0.07mg/kgであった。
次に、目標とする7.5,15,30,60,120(mg/kg)の2〜6水準濃度の土壌標準物質を製造するため、基材を秤量し、2.27g、4.57g、9.16g、18.3g、36.7gずつ取り分けた。分散工程において容器回転型混合機を用いて、これらの基材の各々と所定量のベース土壌とを十分混合し、2〜6水準濃度の各13kgの土壌標準物質を得た。ベース土壌(基材を混合しない)を1水準目の土壌標準物質とした。
これらの土壌標準物質から1水準あたり10個ずつサンプリングし、化学分析を行ってHg濃度と土壌標準物質の均質性を調べた。また、1〜6水準濃度の土壌標準物質の化学分析で求めた濃度と、蛍光X線分析の強度との関係を調べた。
表6に6水準の土壌標準物質の化学分析によるHgの定量分析値と相対標準偏差(RSD)を示した。表6において、相対標準偏差(RSD)以外の単位は、全てmg/kgである。
また、図6は化学分析で求めた土壌標準物質のHg濃度と蛍光X線分析の強度との関係を示す図である。
(Example 6)
13 kg each of 6-level soil standard substances having Hg as an analysis target element was produced. The first level in the 6th level concentration is the concentration of the element contained in the base soil without adding the analysis target element, and the target values in the 2nd to 6th levels are 7.5, 15, 30, 60, 120, respectively. (Mg / kg).
In the mixing step, 21.3 g of mercuric nitrate (Hg (NO 3 ) 2 .nH 2 O) (manufactured by Wako Pure Chemical Industries) and pulverized material of 240 g of kibushi clay as a support material were mixed to obtain a mixture. While adding water little by little to the mixture, the mixture was mixed into a clay and kneaded.
After drying until the moisture of the kneaded mixture almost disappeared, it was put in an electric furnace in a lump shape and heat-treated at 150 ° C. for 60 minutes (heating step). After allowing to cool, the heat-treated product was taken out and crushed, and then pulverized and sieved to sufficiently mix 106 μm or less to obtain a base material supporting Hg element (base material preparation step). Chemical analysis of the Hg concentration in the substrate gave a value of 4 wt%.
The same base soil as in Example 1 was used. The total content of Hg in the base soil was determined by chemical analysis and found to be 0.07 mg / kg.
Next, the base material is weighed in order to produce a soil standard substance having a target concentration of 7.5, 15, 30, 60, 120 (mg / kg) of 2 to 6 levels, 2.27 g, 4.57 g. 9.16 g, 18.3 g, and 36.7 g. In the dispersion step, each of these base materials and a predetermined amount of base soil were sufficiently mixed using a container rotating mixer to obtain 13 kg of soil standard substances having a concentration of 2 to 6 levels. Base soil (without mixing the base material) was used as the first level soil standard.
Ten samples of each soil standard were sampled per level, and chemical analysis was performed to examine the Hg concentration and the homogeneity of the soil standard. Moreover, the relationship between the density | concentration calculated | required by the chemical analysis of the soil standard substance of 1-6 level density | concentration, and the intensity | strength of a fluorescent X ray analysis was investigated.
Table 6 shows the quantitative analysis values and relative standard deviation (RSD) of Hg by chemical analysis of six levels of soil standard substances. In Table 6, the units other than the relative standard deviation (RSD) are all mg / kg.
FIG. 6 is a graph showing the relationship between the Hg concentration of the soil standard substance obtained by chemical analysis and the intensity of fluorescent X-ray analysis.

Figure 2009036550
Figure 2009036550

表6から、2〜6水準濃度の土壌標準物質の相対標準偏差(RSD)はいずれも約3%以下であり、十分に均質であることがわかった。また、図6から、化学分析で求めたHg濃度と蛍光X線分析の強度は、相関性が著しく高く直線上にプロットできることが確認された。
以上のことから、本実施例の土壌標準物質の均質性はいずれも十分であり、また蛍光X線分析における検量線を作成する標準物質として用いることができることも確認できた。
From Table 6, it was found that the relative standard deviation (RSD) of soil standard substances having 2 to 6 level concentrations was about 3% or less, and was sufficiently homogeneous. Further, from FIG. 6, it was confirmed that the Hg concentration obtained by chemical analysis and the intensity of fluorescent X-ray analysis have extremely high correlation and can be plotted on a straight line.
From the above, it was confirmed that the homogeneity of the soil standard material of this example is sufficient and can be used as a standard material for preparing a calibration curve in fluorescent X-ray analysis.

本発明は、土壌の試験・分析における精度管理や測定機器の調整、分析法の開発等に用いられる土壌標準物質の製造方法に関し、試薬の溶解度に制約を受けることがないため、数十%程度の極めて高濃度の分析目的元素を担持材に均質に担持させた基材を製造することができ、基材を基に10ppm以下の低濃度や1000ppm以上の高濃度の土壌標準物質を任意に作製することができ、自在性と生産性に著しく優れる土壌標準物質の製造方法を提供できる。これにより、蛍光X線分析の検量線用の標準物質として、また湿式化学分析法等の種々の分析法の標準物質としても用いることができ応用性に優れ、さらにこれまで行うことができなかった蛍光X線分析法の平準化や分析精度の確保、精度管理のできる土壌標準物質を製造できる極めて有用なものである。   The present invention relates to a method for producing a soil standard used for accuracy control, adjustment of measuring instruments, development of analytical methods, etc. in soil testing and analysis, and is not limited by the solubility of reagents, and is about several tens of percent. A base material in which a very high concentration analysis target element is uniformly supported on a support material can be manufactured, and a soil standard substance having a low concentration of 10 ppm or less or a high concentration of 1000 ppm or more can be arbitrarily produced based on the base material. Therefore, it is possible to provide a method for producing a soil standard material that is remarkably excellent in flexibility and productivity. As a result, it can be used as a standard substance for a calibration curve for fluorescent X-ray analysis, and as a standard substance for various analytical methods such as wet chemical analysis methods, etc. It is an extremely useful material that can produce a soil standard material that can be leveled in X-ray fluorescence analysis, ensured analysis accuracy, and can be controlled.

化学分析で求めた土壌標準物質のCr濃度と蛍光X線分析の強度との関係を示す図The figure which shows the relationship between the Cr concentration of the soil standard substance obtained by chemical analysis and the intensity of fluorescent X-ray analysis 化学分析で求めた土壌標準物質のCd濃度と蛍光X線分析の強度との関係を示す図The figure which shows the relationship between the Cd density | concentration of the soil standard substance calculated | required by the chemical analysis, and the intensity | strength of a fluorescent X ray analysis 化学分析で求めた土壌標準物質のPb濃度と蛍光X線分析の強度との関係を示す図The figure which shows the relationship between the Pb density | concentration of the soil standard substance calculated | required by the chemical analysis, and the intensity | strength of a fluorescent X ray analysis 化学分析で求めた土壌標準物質のAs濃度と蛍光X線分析の強度との関係を示す図The figure which shows the relation between As concentration of soil standard substance which is obtained with chemical analysis and intensity of fluorescent X-ray analysis 化学分析で求めた土壌標準物質のSe濃度と蛍光X線分析の強度との関係を示す図The figure which shows the relationship between the Se concentration of the soil standard substance and the intensity of the fluorescent X-ray analysis obtained by chemical analysis 化学分析で求めた土壌標準物質のHg濃度と蛍光X線分析の強度との関係を示す図The figure which shows the relationship between the Hg density | concentration of the soil standard substance calculated | required by the chemical analysis, and the intensity | strength of a fluorescent X ray analysis

Claims (4)

分析目的元素を含む試薬の1種若しくは複数種を担持材と混合し混合物を得る混合工程と、前記混合物を100〜1400℃に加熱して加熱処理物を得る加熱工程と、前記加熱処理物を粉砕して基材を調製する基材調製工程と、を備えていることを特徴とする土壌標準物質の製造方法。   A mixing step of mixing one or more types of reagents containing an analysis target element with a support material to obtain a mixture, a heating step of heating the mixture to 100 to 1400 ° C. to obtain a heat-treated product, and the heat-treated product: A method for producing a soil standard substance, comprising: a base material preparation step of preparing a base material by pulverization. 前記混合工程において水を加えて混練し、前記加熱工程において、混練された前記混合物を加熱することを特徴とする請求項1に記載の土壌標準物質の製造方法。   The method for producing a soil standard material according to claim 1, wherein water is added and kneaded in the mixing step, and the kneaded mixture is heated in the heating step. ベース土壌に前記基材の所定量を混合し分散させる分散工程を備えていることを特徴とする請求項1又は2に記載の土壌標準物質の製造方法。   The method for producing a soil standard substance according to claim 1 or 2, further comprising a dispersion step of mixing and dispersing a predetermined amount of the base material in a base soil. 前記混合工程において、前記混合物に対して前記分析目的元素が0.01〜60wt%の含有率になるように前記試薬を前記担持材と混合することを特徴とする請求項1乃至3の内いずれか1に記載の土壌標準物質の製造方法。   4. The method according to claim 1, wherein in the mixing step, the reagent is mixed with the support material so that the content of the analysis target element is 0.01 to 60 wt% with respect to the mixture. A method for producing the soil standard substance according to claim 1.
JP2007199175A 2007-07-31 2007-07-31 Manufacturing method of soil reference material Pending JP2009036550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007199175A JP2009036550A (en) 2007-07-31 2007-07-31 Manufacturing method of soil reference material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199175A JP2009036550A (en) 2007-07-31 2007-07-31 Manufacturing method of soil reference material

Publications (1)

Publication Number Publication Date
JP2009036550A true JP2009036550A (en) 2009-02-19

Family

ID=40438610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199175A Pending JP2009036550A (en) 2007-07-31 2007-07-31 Manufacturing method of soil reference material

Country Status (1)

Country Link
JP (1) JP2009036550A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140496A1 (en) * 2009-06-03 2010-12-09 住友電気工業株式会社 Method for producing standard sample for use in quantitative determination of red phosphorus in resin
JP2011203271A (en) * 2011-06-17 2011-10-13 Sumitomo Electric Ind Ltd Method for producing standard sample for quantitative determination of red phosphorus in resin
KR101143426B1 (en) 2010-01-13 2012-07-11 연세대학교 산학협력단 Preparation method of reference materials for mercury analysis
CN102818801A (en) * 2011-06-08 2012-12-12 同济大学 Method for determining ATP
CN103454132A (en) * 2013-09-11 2013-12-18 淄博出入境检验检疫局综合技术服务中心 Preparation method for cadmium-containing ceramic glaze standard sample
JP2017044541A (en) * 2015-08-25 2017-03-02 中国電力株式会社 Method for analyzing trace element in coal standard sample and coal
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
CN107677755A (en) * 2017-11-14 2018-02-09 王传忠 A kind of ambient soil detection means with crushing function
FR3074296A1 (en) * 2017-11-28 2019-05-31 Nge EXCAVE EARTH ANALYSIS AND TREATMENT METHOD
CN110389056A (en) * 2018-04-18 2019-10-29 中国石油化工股份有限公司 A kind of production method of oil-contaminated soil sample
CN110736800A (en) * 2019-11-07 2020-01-31 济南海关技术中心 pentachlorophenol standard sample in soil and preparation method thereof
CN113281117A (en) * 2021-05-11 2021-08-20 中国空间技术研究院 Preparation method of synthetic surface
CN113884349A (en) * 2021-08-27 2022-01-04 坛墨质检科技股份有限公司 Preparation method of standard substance for soil environment detection
CN114047246A (en) * 2021-11-17 2022-02-15 中国科学院地球化学研究所 Rock or mineral standard substance for realizing matrix matching and preparation and application thereof
KR20230037819A (en) * 2021-09-10 2023-03-17 한국표준과학연구원 Standard materials incuding contaminants and manufacturing methods thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249768A (en) * 1993-02-26 1994-09-09 Fuji Electric Co Ltd Preparation of sample for fluorescent x-ray analysis
JPH11190685A (en) * 1997-12-26 1999-07-13 Kankyo Technos Kk Artificially prepared reference sample for fusion/ content amount test

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249768A (en) * 1993-02-26 1994-09-09 Fuji Electric Co Ltd Preparation of sample for fluorescent x-ray analysis
JPH11190685A (en) * 1997-12-26 1999-07-13 Kankyo Technos Kk Artificially prepared reference sample for fusion/ content amount test

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439509A4 (en) * 2009-06-03 2017-12-27 Sumitomo Electric Industries, Ltd. Method for producing standard sample for use in quantitative determination of red phosphorus in resin
JP2010281632A (en) * 2009-06-03 2010-12-16 Sumitomo Electric Ind Ltd Method of manufacturing standard specimen for determining red phosphorus in resin
CN102119327A (en) * 2009-06-03 2011-07-06 住友电气工业株式会社 Method for producing standard sample for use in quantitative determination of red phosphorus in resin
US8012757B2 (en) 2009-06-03 2011-09-06 Sumitomo Electric Industries, Ltd. Method for producing standard sample for use in quantitative determination of red phosphorus in resin
WO2010140496A1 (en) * 2009-06-03 2010-12-09 住友電気工業株式会社 Method for producing standard sample for use in quantitative determination of red phosphorus in resin
KR101143426B1 (en) 2010-01-13 2012-07-11 연세대학교 산학협력단 Preparation method of reference materials for mercury analysis
CN102818801A (en) * 2011-06-08 2012-12-12 同济大学 Method for determining ATP
JP2011203271A (en) * 2011-06-17 2011-10-13 Sumitomo Electric Ind Ltd Method for producing standard sample for quantitative determination of red phosphorus in resin
CN103454132A (en) * 2013-09-11 2013-12-18 淄博出入境检验检疫局综合技术服务中心 Preparation method for cadmium-containing ceramic glaze standard sample
CN103454132B (en) * 2013-09-11 2015-08-26 淄博出入境检验检疫局综合技术服务中心 A kind of preparation method containing cadmium ceramic glaze standard sample
JP2017044541A (en) * 2015-08-25 2017-03-02 中国電力株式会社 Method for analyzing trace element in coal standard sample and coal
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
CN107677755A (en) * 2017-11-14 2018-02-09 王传忠 A kind of ambient soil detection means with crushing function
FR3074296A1 (en) * 2017-11-28 2019-05-31 Nge EXCAVE EARTH ANALYSIS AND TREATMENT METHOD
CN110389056A (en) * 2018-04-18 2019-10-29 中国石油化工股份有限公司 A kind of production method of oil-contaminated soil sample
CN110736800A (en) * 2019-11-07 2020-01-31 济南海关技术中心 pentachlorophenol standard sample in soil and preparation method thereof
CN113281117A (en) * 2021-05-11 2021-08-20 中国空间技术研究院 Preparation method of synthetic surface
CN113884349A (en) * 2021-08-27 2022-01-04 坛墨质检科技股份有限公司 Preparation method of standard substance for soil environment detection
KR20230037819A (en) * 2021-09-10 2023-03-17 한국표준과학연구원 Standard materials incuding contaminants and manufacturing methods thereof
KR102643792B1 (en) * 2021-09-10 2024-03-07 한국표준과학연구원 Standard materials incuding contaminants and manufacturing methods thereof
CN114047246A (en) * 2021-11-17 2022-02-15 中国科学院地球化学研究所 Rock or mineral standard substance for realizing matrix matching and preparation and application thereof

Similar Documents

Publication Publication Date Title
JP2009036550A (en) Manufacturing method of soil reference material
Rao et al. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials
Moon et al. Immobilization of lead in contaminated firing range soil using biochar
Sanchez‐Maranon et al. Quantifying the effects of aggregation, particle size and components on the colour of Mediterranean soils
CN106365479A (en) Cement hexavalent chromium compounded reducing agent and preparation method thereof
Chavali et al. Characterization of expansive soils treated with lignosulfonate
Bosch‐Serra et al. Aggregate strength in calcareous soil fertilized with pig slurries
Upadhyay et al. Evaluation of polyurethane foam, polypropylene, quartz fiber, and cellulose substrates for multi-element analysis of atmospheric particulate matter by ICP-MS
CN108593692B (en) Leather standard sample for quantitative screening of high-concern substances of European Union REACH regulation by X fluorescence spectrometry and preparation method thereof
Ananthanarayanan et al. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste
CN110369488A (en) A kind of preparation and application for the medicament that the stabilisation for mercury contaminated soil is repaired
Niaz et al. Organic amendments and gypsum reduce dispersion and increase aggregation of two sodic Vertisols
JP6566202B2 (en) Coal standard sample and trace element analysis method in coal
Gupta et al. Raman imaging for measuring homogeneity of dry binary blend: Combining microscopy with spectroscopy for technologists
Pakieła et al. A novel procedure of powdered samples immobilization and multi-point calibration of LA ICP MS
Gao et al. Microstructure evolution of chalcopyrite agglomerates during leaching–A synchrotron-based X-ray CT approach combined with a data-constrained modelling (DCM)
Ion et al. Multi-Analytical Characterization of Corvins’ Castle—Deserted Tower. Construction Materials and Conservation Tests
AU2017396650B2 (en) Method for producing coal ash, coal ash, and cement composition
CN110608981A (en) Method for measuring mercury sulfide nanoparticles in plants
Merry et al. Mid infrared spectroscopy for rapid and cheap analysis of soils.
US7765883B1 (en) Dry blending aid
Dhara et al. Universal EDXRF method for multi-elemental determinations using fused bead specimens
Saini et al. Enhancing load bearing capacity of alkaline soil with agricultural and industrial waste by the stabilization process
CN106092693B (en) A kind of preparation method of gold loaded carbon gold analytical standard substance
Suriadi et al. Structural stability of sodic soils in sugarcane production as influenced by gypsum and molasses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508