JP2009035774A - Method for smoothing surface of thermal-sprayed body - Google Patents

Method for smoothing surface of thermal-sprayed body Download PDF

Info

Publication number
JP2009035774A
JP2009035774A JP2007201123A JP2007201123A JP2009035774A JP 2009035774 A JP2009035774 A JP 2009035774A JP 2007201123 A JP2007201123 A JP 2007201123A JP 2007201123 A JP2007201123 A JP 2007201123A JP 2009035774 A JP2009035774 A JP 2009035774A
Authority
JP
Japan
Prior art keywords
particles
softening
coating
experiment
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007201123A
Other languages
Japanese (ja)
Other versions
JP5005463B2 (en
Inventor
Shinya Yamauchi
新也 山内
Hiroshi Yamaguchi
浩史 山口
Hiroaki Fujimori
裕章 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Rozai KK
Original Assignee
Nippon Tokushu Rozai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Rozai KK filed Critical Nippon Tokushu Rozai KK
Priority to JP2007201123A priority Critical patent/JP5005463B2/en
Publication of JP2009035774A publication Critical patent/JP2009035774A/en
Application granted granted Critical
Publication of JP5005463B2 publication Critical patent/JP5005463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for smoothing ruggedness present on the surface of a thermal-sprayed body (coating body) formed by thermal spraying and solidification. <P>SOLUTION: Regarding the method where, in a coating boy as an existing thermal-sprayed body, the surface of the coating body having ruggedness is sprayed with a thermal-sprayed body coating material together with a gas containing oxygen, and the thermal-sprayed body coating material is melted in the surface of the coating body, so as to be melt-welded, and the surface of the coating body is coated, thus the ruggedness is smoothed, the thermal-sprayed body coating material comprises: refractory particles; metal particles; and softening particles having a softening point lower than that of the refractory particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶射体の表面の平滑化方法に関し、より詳細には、既存の溶射体(溶射によって新しく形成されたものか、以前から使用されてきたものかを問わない。)である被覆体の凹凸を有する被覆体表面に酸素を含む気体と共に溶射体被覆材料を吹き付け、溶射体被覆材料が被覆体表面において溶融することで被覆体表面に溶着し被覆体表面を覆うことにより該凹凸を平滑化する方法に関する。   The present invention relates to a method for smoothing the surface of a sprayed body, and more specifically, a covering that is an existing sprayed body (whether newly formed by spraying or one that has been used before). The thermal spray coating material is sprayed on the surface of the coated body with oxygen and a gas containing oxygen, and the thermal spray coating material is melted on the surface of the coated body to be welded to the surface of the coated body to cover the surface of the coated body, thereby smoothing the unevenness. It relates to the method of making.

溶射は、耐火性粒子と金属粒子等を含む溶射材料を酸素ガスと共に高温の補修体(例えば、コークス炉等の炉壁)に噴射し、金属粒子等が酸化される際に生じる熱により耐火性粒子の少なくとも一部を溶融させ、該溶解した耐火性粒子を該補修体の表面に付着及び固化させ該表面を覆う技術として種々の技術分野において使用されてきた(例えば、特許文献1参照)。
溶射は、上述のように補修体表面の温度を下げることなく行うことができるので、操業中に炉内温度を下げることが困難なコークス炉等の炉壁補修にとりわけ多用されてきた。
Thermal spraying is performed by spraying a thermal spray material containing refractory particles and metal particles together with oxygen gas to a high-temperature repair body (for example, a furnace wall of a coke oven), and heat generated when the metal particles are oxidized. It has been used in various technical fields as a technique for covering at least a part of particles and covering the surface by adhering and solidifying the dissolved refractory particles to the surface of the repair body (see, for example, Patent Document 1).
Since the thermal spraying can be performed without lowering the temperature of the surface of the repaired body as described above, it has been particularly frequently used for repairing a furnace wall such as a coke oven in which it is difficult to lower the furnace temperature during operation.

例えば、特許文献1は、「可燃性粉体と耐火性粉体との混合粉体を支燃性のキャリヤーガスによって着火溶融した耐火層を形成する溶射法」(発明の詳細な説明中の段落番号0001)に関するものであり、具体的には、「可燃性粉体を含む粉体を支燃性のキャリヤーガスを用いて被覆体に溶射するに当たって、ノズル先端部における逆火或いは粉体供給器内での可燃性粉体の着火を確実に防止できる手段の提供」(要約中の目的)のためになされたものであり、「可燃性粉体と耐火性粉体との混合粉体を支燃性のキャリヤーガスを用いて導管内を搬送し、吐出ノズルより施工面或いは型枠に噴射して着火・溶融した耐火層を形成する耐火物溶射のための粉体供給方法において、吐出ノズルの前位置に供給混合粉体を収納するための粉体供給器を設け、同供給器内を不活性ガスによって密封し保圧する。この粉体供給器内の密封・保圧に使用する不活性ガスは、キャリヤーガスとして使用する支燃性ガスの1/4容積比以下とし、さらに、この供給器へのキャリヤーガスの流通開始から一定期間を1/2容積比以下とすることによって、逆火或いは粉体供給器内での可燃性粉体の着火を確実に防止できる。」(要約中の構成)というものである。   For example, Patent Document 1 discloses “a thermal spraying method for forming a refractory layer in which a mixed powder of a flammable powder and a refractory powder is ignited and melted by a carrier-supporting carrier gas” (paragraph in the detailed description of the invention). No. 0001), and specifically, “in the case of spraying a powder containing a combustible powder onto a coating using a combustion-supporting carrier gas, a flashback or a powder feeder at the tip of the nozzle This was made for the purpose of “providing a means to reliably prevent ignition of flammable powder in the interior” (the purpose in the summary), and “supporting a mixed powder of flammable powder and refractory powder”. In a powder supply method for refractory material spraying, which forms a refractory layer that is ignited and melted by transporting the inside of a conduit using a flammable carrier gas and spraying it onto a work surface or a mold from the discharge nozzle. Powder supply for storing the supplied mixed powder in the front position The inert gas used for sealing and holding in the powder feeder is ¼ volume of the combustion-supporting gas used as the carrier gas. In addition, by setting the constant period from the start of the flow of the carrier gas to the supply device to 1/2 volume ratio or less, flashback or ignition of the combustible powder in the powder supply device is ensured. It can be prevented "(the composition in the summary).

このような溶射は、大まかには、溶射材料を収容するタンクを気体によって加圧して溶射材料を気体と共にタンク外へ搬送し溶射する加圧型(例えば、前述の特許文献1等参照)と、溶射材料を収容するタンクからエジェクター等のような減圧装置によって溶射材料をタンク外へ吸い出し溶射する吸引型(例えば、本出願人が出願した未公開特許出願、特願2006−59874及び特願2006−107338等)と、が知られている。   Such spraying is roughly performed by a pressurization type (for example, see the above-mentioned Patent Document 1, etc.) in which a tank containing a sprayed material is pressurized with a gas and the sprayed material is transported out of the tank together with the gas and sprayed. A suction type in which a sprayed material is sucked out of the tank by a decompression device such as an ejector from a tank containing the material (for example, unpublished patent applications filed by the present applicant, Japanese Patent Application Nos. 2006-59874 and 2006-107338). Etc.) are known.

特開平8−109461号公報(例えば、要約、発明の詳細な説明中の段落番号0001〜0002等)JP-A-8-109461 (for example, paragraph numbers 0001 to 0002 in the summary and detailed description of the invention)

このような加圧型と吸引型とを問わず、補修体の表面に固化し形成された被覆体(溶射体)の表面には、凹凸が存在する。これは上述したように、溶射においては、金属粒子等が酸化される際に生じる熱により耐火性粒子の一部は溶融しているものの、多くの耐火性粒子は溶融していない状態で存在しているため、未溶融の耐火性粒子固体と、溶融した耐火性粒子により生じる液体と、の混合物を補修体表面に吹き付け固化させることから生じるものと考えられている(即ち、耐火性粒子固体は被覆体(溶射体)中に塊(凸部分を形成しうる)として残留しやすく、溶融した耐火性粒子により生じる液体は流下しやすい。)。   Irregularities exist on the surface of the covering (sprayed body) formed by solidifying on the surface of the repair body regardless of the pressure type or the suction type. As described above, in thermal spraying, although some of the refractory particles are melted by the heat generated when the metal particles are oxidized, many of the refractory particles exist in an unmelted state. Therefore, it is considered to be caused by spraying and solidifying a mixture of unmelted refractory particle solid and liquid generated by molten refractory particles on the surface of the repair body (that is, refractory particle solid is It tends to remain as a lump (which can form a convex portion) in the coating (sprayed body), and the liquid produced by the molten refractory particles tends to flow down.)

このような被覆体(溶射体)の表面の凹凸を防止するには、全ての耐火性粒子が溶融して液状となるよう極めて高温の状態にて補修体の表面に吹き付け固化させることも考えられるが、このような高温状態の耐火性粒子の融解液を補修体の表面に吹き付けることは、(1)補修体の表面をも融解等させ該表面を傷める問題を生じ得るし、(2)このような高温を得るためには酸化熱を生じる金属粒子等(引火しやすい)の配合を増す必要があり、引火による逆火の危険性増大という重大な問題を生じうる。
以上の(1)及び(2)等に鑑み、従来から被覆体(溶射体)の表面には凹凸が存することを容認せざるを得なかった。
なお、このような被覆体(溶射体)の表面に凹凸が存することは、種々の不具合の原因となり得る。例えば、該表面が平滑な場合に比して、該表面への異物の付着や堆積等が促進されることがあった。一例を挙げれば、コークス炉を補修体として溶射する場合には、コークス炉の表面を形成する被覆体(溶射体)の表面に凹凸が存すれば、コークス炉近傍に浮遊している異物たる炭素粉(カーボン粉)が凹凸によって該表面に付着しやすくなり、このように付着した炭素粉(カーボン粉)は、それを除去する作業を要すると共に、コークス炉にて生産されたコークスをコークス炉から押し出す際の抵抗を増加(押し出すコークスと炭素粉(カーボン粉)とが当接するため抵抗が増加する。)させる問題を生じ得る。
In order to prevent such unevenness on the surface of the coated body (sprayed body), it is conceivable that the surface of the repair body is sprayed and solidified at an extremely high temperature so that all the refractory particles melt and become liquid. However, spraying such a high-temperature refractory particle melt on the surface of the repair body may cause (1) the surface of the repair body to melt and damage the surface, and (2) In order to obtain such a high temperature, it is necessary to increase the compounding of metal particles that generate oxidation heat (which tends to ignite), which may cause a serious problem of increased risk of flashback due to ignition.
In view of the above (1) and (2) and the like, it has been necessary to accept that the surface of the coated body (sprayed body) has irregularities.
It should be noted that the presence of irregularities on the surface of such a covering (sprayed body) can cause various problems. For example, compared to the case where the surface is smooth, the adhesion or deposition of foreign matter on the surface may be promoted. For example, when spraying with a coke oven as a repairing body, if there are irregularities on the surface of the coating (spraying body) that forms the surface of the coke oven, carbon that is a foreign substance floating in the vicinity of the coke oven The powder (carbon powder) easily adheres to the surface due to unevenness, and the carbon powder (carbon powder) attached in this way requires work to remove it, and the coke produced in the coke oven is removed from the coke oven. There may be a problem of increasing the resistance when extruding (the resistance increases because the extruded coke and carbon powder (carbon powder) abut).

そこで、本発明においては、溶射固化し形成された溶射体(被覆体)の表面(被覆体表面)に存する凹凸を平滑化することを目的とする。   Then, in this invention, it aims at smoothing the unevenness | corrugation which exists in the surface (coating body surface) of the thermal spraying body (coating body) formed by thermal spray solidification.

本発明者らは、溶射固化し形成された溶射体(被覆体)の表面(被覆体表面)の凹凸が前述の通り不可避であることを前提とし、生じた凹凸を平滑化する手段を鋭意研究したところ、軟化しやすい物質を含む材料を凹凸が存する表面に溶射することで該凹凸を平滑化することができることを見出し、本発明を完成するに至った。即ち、本発明は、凹凸を有する被覆体(溶射体)の凹凸を有する表面に、軟化しやすい物質を含む溶射体被覆材料を溶射することで該凹凸を減少させ平滑化するものである。   The present inventors have earnestly researched a means for smoothing the generated unevenness on the assumption that the unevenness of the surface (covering surface) of the sprayed body (covering body) formed by thermal spray solidification is inevitable as described above. As a result, it has been found that the unevenness can be smoothed by spraying a material containing a substance that is easily softened onto the surface where the unevenness exists, and the present invention has been completed. That is, according to the present invention, the unevenness is reduced and smoothed by spraying a thermal spray coating material containing a material that is easily softened on the uneven surface of the unevenness-coated body (sprayed body).

本発明の溶射体の表面の平滑化方法(以下、「本方法」という。)は、既存の溶射体である被覆体の凹凸を有する被覆体表面に酸素を含む気体と共に溶射体被覆材料を吹き付け、溶射体被覆材料が被覆体表面において溶融することで被覆体表面に溶着し被覆体表面を覆うことにより該凹凸を平滑化する方法であって、該溶射体被覆材料は、耐火性粒子と、金属粒子と、耐火性粒子の軟化点よりも低い軟化点を有する軟化性粒子と、を含むものである、方法である。   The method for smoothing the surface of the thermal spray body of the present invention (hereinafter referred to as “the present method”) sprays a thermal spray coating material together with a gas containing oxygen on the surface of the coating body having the irregularities of the coating body, which is an existing thermal spray body. The spray coating material is melted on the surface of the coating body to be welded to the surface of the coating body and to cover the surface of the coating body, thereby smoothing the unevenness, the spray coating material comprising refractory particles, A method comprising metal particles and softening particles having a softening point lower than the softening point of the refractory particles.

本方法には、次の(1)〜(5)のような態様が含まれる。
(1)軟化性粒子の軟化点が、500℃〜900℃である、上記方法。
(2)軟化性粒子が、酸化ケイ素を含有するケイ酸塩ガラスにより形成されるものである、上記方法。
(3)軟化性粒子が、球状を略なしているものである、上記方法。
(4)軟化性粒子の粒子径が0.12mm〜1.30mmである、上記方法。
(5)溶射体被覆材料中の軟化性粒子の重量割合が、3重量%〜20重量%である、上記方法。
This method includes the following aspects (1) to (5).
(1) The said method whose softening point of a softening particle | grain is 500 to 900 degreeC.
(2) The method as described above, wherein the softening particles are formed of silicate glass containing silicon oxide.
(3) The above method, wherein the softening particles are substantially spherical.
(4) The said method that the particle diameter of a softening particle | grain is 0.12 mm-1.30 mm.
(5) The said method whose weight ratio of the softening particle | grains in a thermal spray coating material is 3 to 20 weight%.

また、本発明は、本方法に用いられる溶射体被覆材料(以下、「本材料」という。)を提供する。即ち、本材料は、上記方法に用いられる前記溶射体被覆材料である。   The present invention also provides a thermal spray coating material (hereinafter referred to as “the present material”) used in the present method. That is, this material is the thermal spray coating material used in the above method.

上述したように本方法は、既存の溶射体である被覆体の凹凸を有する被覆体表面に酸素を含む気体と共に溶射体被覆材料を吹き付け、溶射体被覆材料が被覆体表面において溶融することで被覆体表面に溶着し被覆体表面を覆うことにより該凹凸を平滑化する方法であって、該溶射体被覆材料は、耐火性粒子と、金属粒子と、耐火性粒子の軟化点よりも低い軟化点を有する軟化性粒子と、を含むものである、方法である。
本方法においては、既存の溶射体である被覆体の表面(被覆体表面)が有する凹凸を平滑化する方法であり、軟化しやすい物質を含む溶射体被覆材料を酸素含有気体(酸素を含む気体)と共に被覆体表面に吹き付ける。溶射体被覆材料は、耐火性粒子と、金属粒子と、耐火性粒子の軟化点よりも低い軟化点を有する軟化性粒子と、を含んでいるので、酸素含有気体と一緒に被覆体表面に吹き付けられると、溶射体被覆材料に含まれる金属粒子が、酸素含有気体に含まれる酸素によって酸化され酸化熱を生じる(被覆体表面は、通常、稼働中のコークス炉の表面のように高温であるので、酸素含有気体に伴われた該金属粒子が被覆体表面に接触すると容易に燃焼等する。)。該酸化熱によって軟化性粒子(耐火性粒子の軟化点よりも低い軟化点を有するので、耐火性粒子よりも低温にて容易に軟化する。)が軟化することで、溶射体被覆材料が被覆体表面において溶融し溶着して被覆体表面を覆うことによって該凹凸(被覆体表面が有する凹凸)を平滑化するものである。
なお、耐火性粒子や軟化性粒子の軟化点は、JIS−R2617に従って測定した際の軟化点(温度:℃)をいう。
そして、溶射体被覆材料中の耐火性粒子としては、その化学組成が、通常、酸化ケイ素が主成分(例えば、90重量%以上)であることが多い。
また、溶射体被覆材料中の金属粒子としては、その化学組成が、通常、金属シリコンを主成分(例えば、90重量%以上)とするものが多い。このように金属シリコンを主成分とするものであれば、それが酸化された後に生じる酸化ケイ素は、耐火性粒子の主成分であるので、溶射体被覆材料が被覆体表面に溶融溶着して形成されるコート層の内部において金属粒子の酸化により生じる酸化ケイ素と耐火性粒子とがうまく融合しコート層を強固にすることができる。
As described above, in this method, the thermal spray coating material is sprayed together with the gas containing oxygen on the surface of the coating body having the unevenness of the coating body, which is an existing thermal spray body, and the thermal spray coating material is melted on the surface of the coating body. A method of smoothing the unevenness by welding to the surface of the body and covering the surface of the coated body, wherein the thermal spray coating material comprises a refractory particle, a metal particle, and a softening point lower than the softening point of the refractory particle And a softening particle.
This method is a method of smoothing the unevenness of the surface of the coating body (covering body surface) that is an existing thermal spraying body. The thermal spraying coating material containing a material that is easily softened is treated with an oxygen-containing gas (a gas containing oxygen). ) And spray on the surface of the coated body. Since the thermal spray coating material includes refractory particles, metal particles, and softening particles having a softening point lower than the softening point of the refractory particles, it is sprayed onto the surface of the coating body together with an oxygen-containing gas. The metal particles contained in the thermal spray coating material are oxidized by oxygen contained in the oxygen-containing gas to generate heat of oxidation (since the surface of the coating is usually as hot as the surface of a coke oven in operation) When the metal particles accompanying the oxygen-containing gas come into contact with the surface of the covering, they are easily burned.) Softening particles (which have a softening point lower than the softening point of the refractory particles, are easily softened at a lower temperature than the refractory particles) are softened by the heat of oxidation, so that the thermal spray coating material is coated. The unevenness (the unevenness of the covering body surface) is smoothed by melting and welding on the surface and covering the covering body surface.
In addition, the softening point of refractory particles or softening particles refers to the softening point (temperature: ° C) when measured according to JIS-R2617.
And as a refractory particle in a thermal spray coating material, the chemical composition usually has a silicon oxide as a main component (for example, 90 weight% or more) in many cases.
Moreover, as for the metal particle in a thermal spray coating material, the chemical composition usually has a metal silicon as a main component (for example, 90 weight% or more). In this way, if silicon silicon is the main component, the silicon oxide produced after it is oxidized is the main component of the refractory particles, so the thermal spray coating material is melt welded to the surface of the coating. The silicon oxide produced by the oxidation of the metal particles and the refractory particles can be well fused inside the coated layer to be hardened.

軟化性粒子の軟化点(温度ts:単位℃)は、耐火性粒子の軟化点(温度th:単位℃)よりも低ければよいが、あまり高いと溶射体被覆材料に含まれる金属粒子の酸化熱によって軟化性粒子がうまく軟化せず被覆体表面が有する凹凸をうまく平滑化できず、逆にあまり低いと溶射体被覆材料が被覆体表面に溶融溶着して形成されるコート層の耐熱性が低下するので、これらを両立する範囲とすることが好ましく、通常、好ましくは500℃以上であり、より好ましくは600℃以上であり、逆に、好ましくは900℃以下であり、より好ましくは800℃以下である(従って、好ましくは500℃〜900℃であり、より好ましくは600℃〜800℃である。)。
また、耐火性粒子の軟化点th(単位℃)から軟化性粒子の軟化点ts(単位℃)を差し引いた値(th−ts)は、あまり低いと溶融過剰となり、吹き付け圧力等にによって表面に波状の凹凸を生じ、あまり高いと吹き付け時にリバウンドロス(吹き付けた溶射体被覆材料が、被覆体表面に衝突し跳ね返ることで被覆体表面に溶着せずに脱落してしまうことをいう。以下、同じ。)が増加することによって効果が減少するので、これらを両立する範囲とすることが好ましく、通常、好ましくは500℃以上であり、より好ましくは700℃以上であり、逆に、好ましくは1000℃以下であり、より好ましくは800℃以下である。
The softening point (temperature ts: unit ° C) of the softening particles should be lower than the softening point (temperature th: unit ° C) of the refractory particles, but if it is too high, the oxidation heat of the metal particles contained in the spray coating material As a result, the softening particles do not soften well, and the unevenness of the coating surface cannot be smoothed. Conversely, if the coating temperature is too low, the heat resistance of the coating layer formed by melting and welding the thermal spray coating material to the coating surface decreases. Therefore, it is preferable to make these ranges compatible, usually, preferably 500 ° C. or higher, more preferably 600 ° C. or higher, and conversely, preferably 900 ° C. or lower, more preferably 800 ° C. or lower. (Thus, it is preferably 500 ° C. to 900 ° C., more preferably 600 ° C. to 800 ° C.).
The value (th-ts) obtained by subtracting the softening point ts (unit: ° C) of the softening particles from the softening point th (unit: ° C) of the refractory particles is too low to cause excessive melting. If wavy unevenness is generated and is too high, rebound loss occurs when sprayed (the sprayed material coating material that has been sprayed collides with the surface of the coating body and bounces back, and falls off without being welded to the surface of the coating body. )) Increases, the effect is reduced. Therefore, it is preferable to make these ranges compatible, and it is usually preferably 500 ° C. or higher, more preferably 700 ° C. or higher, and conversely, preferably 1000 ° C. It is below, More preferably, it is 800 degrees C or less.

耐火性粒子の軟化点よりも低い軟化点を有する軟化性粒子は、酸化ケイ素を含有するケイ酸塩ガラスにより形成されるようにしてもよい。既存の溶射体(被覆体)の被覆体表面は、通常、酸化ケイ素を主成分として形成されていることが多いことに加え、本方法に係る溶射体被覆材料が含有する耐火性粒子も酸化ケイ素を主成分として形成されていることが多い。このため軟化性粒子が酸化ケイ素を含有するケイ酸塩ガラスにより形成されるようにすれば、酸化ケイ素(被覆体表面や耐火性粒子の主成分であることが多い。)とケイ酸塩ガラスとの親和性により、溶射体被覆材料が被覆体表面に溶融溶着して形成されるコート層と既存の溶射体(被覆体)の被覆体表面とがうまく接合する(コート層と被覆体表面との肌別れ防止)と共に、溶射体被覆材料が被覆体表面に溶融溶着して形成されるコート層の内部において軟化性粒子から生じるケイ酸塩ガラスと耐火性粒子とがうまく融合する(コート層自身が強固になる。)。
なお、軟化性粒子を形成する「酸化ケイ素を含有するケイ酸塩ガラス」中の酸化ケイ素の含有率は、あまり低いと上記したような効果(コート層と被覆体表面との肌別れ防止、コート層自身の強固性等)がうまく奏されず、逆にあまり高いと吹き付けられた軟化性粒子がリバウンドロスするので、これらを両立する範囲とすることが好ましく、通常、好ましくは50重量%以上であり、より好ましくは55重量%以上であり、最も好ましくは60重量%以上であり、好ましくは80重量%以下である。
The softening particles having a softening point lower than the softening point of the refractory particles may be formed of a silicate glass containing silicon oxide. In addition to the fact that the surface of the existing thermal sprayed body (coating body) is usually formed mainly of silicon oxide, the refractory particles contained in the thermal spray coating material according to the present method are also silicon oxide. Often formed as a main component. For this reason, if the softening particles are formed of silicate glass containing silicon oxide, silicon oxide (often the main component of the surface of the coated body or refractory particles) and silicate glass, Because of this affinity, the coating layer formed by melt-spraying the thermal spray coating material on the surface of the coating and the coating surface of the existing thermal spray (coating) are well bonded (between the coating layer and the surface of the coating). In addition to the prevention of skin separation, the silicate glass and refractory particles generated from the softening particles fuse well within the coating layer formed by the fusion coating of the thermal spray coating material on the surface of the coating (the coating layer itself is To be strong.)
If the content of silicon oxide in the “silicate glass containing silicon oxide” forming the softening particles is too low, the above-described effects (prevention of skin separation between the coat layer and the surface of the coated body, coating) If the layer is too high, the softened particles sprayed are rebound-lossed. Therefore, it is preferable to make these both compatible, and usually preferably 50% by weight or more. More preferably 55% by weight or more, most preferably 60% by weight or more, and preferably 80% by weight or less.

軟化性粒子が、球状を略なしているものであってもよい。
軟化性粒子は小さな粒子であり、これら粒子個々の形状は特に限定されないが、球状を略なしているものであってもよい。こうすることで被覆体表面に溶射体被覆材料を吹き付けて形成されたコート層によって新しく形成されたコート面がうまく平滑になり、被覆体表面が有している凹凸をうまく平滑化することができる。
なお、ここに「球状」とは、光学顕微鏡にて軟化性粒子を観察し、観察された粒子の重心位置(観察された粒子の形状をした非常に薄くいずれの部分も均一な厚みを有し、いずれの部分も同じ密度の材質により形成された薄板の重心位置をいう。)を通過する最大寸法Dmaxと、重心位置を通過する最小寸法Dminと、を測定する。そして、各粒子それぞれについてアスペクト比R=最大寸法Dmax/最小寸法Dminを算出する。このアスペクト比Rを、無作為に選んだ100個の粒子に関して算出し、100個の粒子についてアスペクト比Rの算術平均値Ra(=アスペクト比Rの合計値/100個)を算出する。この算術平均値Raが1.0〜2.0である場合にここでは軟化性粒子が「球状」であるという。
The softening particles may be substantially spherical.
The softening particles are small particles, and the shape of each particle is not particularly limited, but may be substantially spherical. By doing so, the newly formed coating surface can be smoothed smoothly by the coating layer formed by spraying the thermal spray coating material on the coating surface, and the unevenness of the coating surface can be smoothed smoothly. .
Here, the term “spherical” means that the softening particles are observed with an optical microscope, and the center of gravity of the observed particles (the shape of the observed particles is very thin and each part has a uniform thickness. , Which means the center of gravity position of the thin plate formed of the material having the same density.) And the minimum dimension Dmin that passes the center of gravity position are measured. Then, the aspect ratio R = maximum dimension Dmax / minimum dimension Dmin is calculated for each particle. The aspect ratio R is calculated with respect to 100 randomly selected particles, and the arithmetic average value Ra of the aspect ratio R (= total value of the aspect ratio R / 100) is calculated for 100 particles. Here, when the arithmetic average value Ra is 1.0 to 2.0, the softening particles are said to be “spherical”.

軟化性粒子の粒子径が0.12mm〜1.30mmであってもよい。
軟化性粒子の粒子径は、溶射体被覆材料中において耐火性粒子と金属粒子とうまく混合される程度のものであれば特に制限はないが、あまり大きいと偏積(偏在)し、均一に混合されず、あまり小さいと吹き付け時に反応を低下させる原因となるので、これらを両立する範囲とすることが好ましく、通常、好ましくは0.12mm以上であり、より好ましくは0.20mm以上であり、逆に、好ましくは1.30mm以下であり、より好ましくは1.10mm以下である(即ち、好ましくは0.12mm以上1.30mm以下であり、より好ましくは0.20mm以上1.10mm以下である。)。
ここに軟化性粒子の粒子径は、光学顕微鏡にて軟化性粒子を観察し、任意のある一方向に平行な方向の各粒子の最大寸法Deを測定し、最大寸法Deを無作為に選んだ100個の粒子に関して測定し、100個の粒子についての最大寸法Deの算術平均値Dea(=最大寸法De100個の合計値/100個)をいう。
The particle diameter of the softening particles may be 0.12 mm to 1.30 mm.
The particle diameter of the softening particles is not particularly limited as long as the particles are well mixed with the refractory particles and the metal particles in the thermal spray coating material. If it is too small, the reaction will be reduced when sprayed. Therefore, it is preferable to make these both compatible, and usually it is preferably 0.12 mm or more, more preferably 0.20 mm or more, and vice versa. In addition, it is preferably 1.30 mm or less, more preferably 1.10 mm or less (that is, preferably 0.12 mm or more and 1.30 mm or less, more preferably 0.20 mm or more and 1.10 mm or less). ).
The particle diameter of the softening particles was determined by observing the softening particles with an optical microscope, measuring the maximum dimension De of each particle in a direction parallel to any one direction, and randomly selecting the maximum dimension De. Measured with respect to 100 particles, the arithmetic mean value Dea of the maximum dimension De for 100 particles (= total value of 100 maximum dimensions De / 100).

溶射体被覆材料(重量Wt)中の軟化性粒子(重量Ws)の重量割合(Ws/Wt)は、軟化性粒子が被覆体表面を覆うことによって被覆体表面が有する凹凸を所望程度に平滑化できればいかなるものであってもよく何ら制限されるものではないが、重量割合(Ws/Wt)があまり小さいと溶射体被覆材料が被覆体表面に溶融溶着して形成されるコート層がうまく形成されないので被覆体表面が有する凹凸をうまく平滑化できず、逆に重量割合(Ws/Wt)があまり大きいと溶射体被覆材料が被覆体表面に溶融溶着して形成されるコート層の耐熱性が低下するので、これらを両立する範囲とすることが好ましく、重量割合(Ws/Wt)を重量パーセント(100×Ws/Wt)として示せば、通常、好ましくは3重量%以上であり、より好ましくは5重量%以上であり、逆に、好ましくは20重量%以下であり、より好ましくは15重量%以下である(従って、好ましくは3重量%〜20重量%であり、より好ましくは5重量%〜15重量%である。)。
また、溶射体被覆材料(重量Wt)中の耐火性粒子(重量Wh)の重量割合(Wh/Wt)は、あまり小さいと吹き付け時に過剰溶融気味になり、吹き付け圧力等によって表面に波状の凹凸を生じ、あまり大きいと吹き付け時にリバウンドロスが増加することによって効果が減少するので、これらを両立する範囲とすることが好ましく、重量割合(Wh/Wt)を重量%として表せば(100×(Wh/Wt))、通常、好ましくは40重量%以上であり、より好ましくは60重量%以上であり、逆に、好ましくは80重量%以下であり、より好ましくは70重量%以下である(従って、好ましくは40重量%〜80重量%であり、より好ましくは60重量%〜70重量%である。)。
そして、溶射体被覆材料(重量Wt)中の金属粒子(重量Wm)の重量割合(Wm/Wt)は、あまり小さいと吹き付け時に溶融不足となり、あまり大きいと吹き付け時に反応が激しくなり危険であるので、これらを両立する範囲とすることが好ましく、重量割合(Wm/Wt)を重量%として表せば(100×(Wm/Wt))、通常、好ましくは5重量%以上であり、より好ましくは10重量%以上であり、逆に、好ましくは30重量%以下であり、より好ましくは20重量%以下である(従って、好ましくは5重量%〜30重量%であり、より好ましくは10重量%〜20重量%である。)。
なお、溶射体被覆材料は、被覆体表面を覆うことで被覆体表面が有する凹凸を所望程度に平滑化できれば、耐火性粒子、金属粒子及び軟化性粒子以外のものを含んでもよく、一例を挙げれば、陶器等に塗布される釉薬のようなものを含んでもよい(しかしながら、耐火性粒子の重量Wh、金属粒子の重量Wm及び軟化性粒子の重量Wsの合計W(=Wh+Wm+Ws)が溶射体被覆材料の重量Wtに対してなす割合(W/Wt)は、通常、好ましくは0.5以上であり、より好ましくは0.8以上である(上限は1である。))。
The weight ratio (Ws / Wt) of the softening particles (weight Ws) in the thermal spray coating material (weight Wt) is smoothed to the desired extent by covering the surface of the coating with the softening particles. Although it may be anything as long as it is possible, if the weight ratio (Ws / Wt) is too small, a coating layer formed by melt-spraying the spray coating material on the surface of the coating cannot be formed well. Therefore, the unevenness on the surface of the coating cannot be smoothly smoothed. Conversely, if the weight ratio (Ws / Wt) is too large, the heat resistance of the coating layer formed by melt-spraying the thermal spray coating material on the surface of the coating decreases. Therefore, it is preferable to make these both compatible, and if the weight ratio (Ws / Wt) is shown as weight percent (100 × Ws / Wt), it is usually preferably 3% by weight or more. Preferably, it is 5% by weight or more, and conversely, preferably 20% by weight or less, more preferably 15% by weight or less (thus preferably 3% to 20% by weight, more preferably 5% by weight). % To 15% by weight).
Further, if the weight ratio (Wh / Wt) of the refractory particles (weight Wh) in the thermal spray coating material (weight Wt) is too small, it becomes excessively melted at the time of spraying. If it is too large, the effect is reduced by increasing the rebound loss at the time of spraying. Therefore, it is preferable to make these both compatible, and if the weight ratio (Wh / Wt) is expressed as weight% (100 × (Wh / Wt)), usually preferably 40% by weight or more, more preferably 60% by weight or more, and conversely, preferably 80% by weight or less, more preferably 70% by weight or less (hence, preferably Is 40 wt% to 80 wt%, more preferably 60 wt% to 70 wt%.)
And, if the weight ratio (Wm / Wt) of the metal particles (weight Wm) in the thermal spray coating material (weight Wt) is too small, the melting will be insufficient when spraying, and if it is too large, the reaction will become intense when spraying, which is dangerous. These are preferably in a range where both are compatible, and when expressed as a weight percentage (Wm / Wt) (100 × (Wm / Wt)), it is usually preferably 5% by weight or more, more preferably 10%. Wt% or more, and conversely, preferably 30 wt% or less, more preferably 20 wt% or less (thus preferably 5 wt% to 30 wt%, more preferably 10 wt% to 20 wt%). % By weight).
The thermal spray coating material may include materials other than the refractory particles, metal particles, and softening particles, as long as the coating surface can be smoothed to a desired degree by covering the surface of the coating. For example, it may include a glaze applied to earthenware etc. (however, the total W (= Wh + Wm + Ws) of the weight Wh of the refractory particles, the weight Wm of the metal particles and the weight Ws of the softening particles is sprayed) The ratio (W / Wt) to the weight Wt of the material is usually preferably 0.5 or more, more preferably 0.8 or more (the upper limit is 1).

上記した本方法に用いる溶射体被覆材料(本材料)は、耐火性粒子と、金属粒子と、耐火性粒子の軟化点よりも低い軟化点を有する軟化性粒子と、を含んでおり、具体的には、本材料は、既存の溶射体である被覆体の表面に酸素を含む気体と共に吹き付け、該表面において溶融することで該表面に溶着し該表面を覆うための溶射体被覆材料であって、耐火性粒子と、金属粒子と、耐火性粒子の軟化点よりも低い軟化点を有する軟化性粒子と、を含むものである、溶射体被覆材料である。
かかる本材料は、本方法に関し(1)〜(5)の如く上述したのと同様に、次の(a)〜(e)のような態様が含まれる。
(a)軟化性粒子の軟化点が、500℃〜900℃である、上記本材料。
(b)軟化性粒子が、酸化ケイ素を含有するケイ酸塩ガラスにより形成されるものである、上記本材料。
(c)軟化性粒子が、球状を略なしているものである、上記本材料。
(d)軟化性粒子の粒子径が0.12mm〜1.30mmである、上記本材料。
(e)溶射体被覆材料中の軟化性粒子の重量割合が、3重量%〜20重量%である、上記本材料。
なお、(a)〜(e)についての説明は、既に説明した本方法の(1)〜(5)と重複するのでここでは省略する。
かかる本材料は、このような耐火性粒子と金属粒子と軟化性粒子とを予め混合した組成物として製造や販売されてもよいが、溶射体被覆材料(本材料)を構成する耐火性粒子及び金属粒子の混合物は、従来から用いられてきた溶射材料と同様のものであるので、耐火性粒子及び金属粒子の混合物である従来から販売等されている溶射材料に軟化性粒子を添加することで本方法の溶射体被覆材料(本材料)を製造するようにしてもよい。
The thermal spray coating material (this material) used in the above-described method includes refractory particles, metal particles, and softening particles having a softening point lower than the softening point of the refractory particles. The material is a thermal spray coating material for spraying the surface of a coating body, which is an existing thermal spray body, together with a gas containing oxygen and fusing the surface of the coating body to melt and cover the surface. A thermal spray coating material comprising fireproof particles, metal particles, and softening particles having a softening point lower than the softening point of the fireproof particles.
The present material includes the following aspects (a) to (e) in the same manner as described above (1) to (5) with respect to the present method.
(A) The said material whose softening point of a softening particle | grain is 500 to 900 degreeC.
(B) The present material, wherein the softening particles are formed of a silicate glass containing silicon oxide.
(C) The present material, wherein the softening particles are substantially spherical.
(D) The present material, wherein the softening particles have a particle size of 0.12 mm to 1.30 mm.
(E) The said material whose weight ratio of the softening particle | grains in a thermal spray coating material is 3 to 20 weight%.
In addition, since description about (a)-(e) overlaps with (1)-(5) of this method already demonstrated, it abbreviate | omits here.
Such a material may be manufactured or sold as a composition in which such refractory particles, metal particles, and softening particles are mixed in advance, and the refractory particles constituting the thermal spray coating material (this material) and Since the mixture of metal particles is the same as a conventionally used thermal spray material, it is possible to add softening particles to a thermal spray material that is a mixture of refractory particles and metal particles. You may make it manufacture the thermal spray coating material (this material) of this method.

以下、本発明を具体的に説明するために、実施例を挙げる。しかしながら、これら実施例によって、本発明は何ら制限されるものではない。   Examples are given below in order to specifically describe the present invention. However, the present invention is not limited by these examples.

(原料の準備)
本発明の溶射体被覆材料(本材料)を調製するための原料として、以下の耐火性粒子、金属粒子及び軟化性粒子を予め準備した。
・耐火性粒子:珪石レンガ(旧JIS規格に準ずるS1クラスで耐火度SK32以上でSiO含有率が95重量%以上のものを使用した。)を粉砕し、いずれの実験にも用いた。ここで用いた耐火性粒子の軟化点は1500℃(軟化点の測定方法は後で詳述する。)であった。
・金属粒子:市販の金属ケイ素粉(Si含有量98重量%、平均粒子径200μm)をいずれの実験にも用いた。
・軟化性粒子:市販のガラス粒子(SiO含有量70重量%以上、軟化点420〜1650℃、粒子径約0.1〜3.0mm程度)の球形及び非球形(破砕品)を準備し、各実験に用いた。なお、軟化点、粒子径、形状(球形、非球形)の測定や決定については後で詳述する。軟化性粒子としては、後述の図5中の実験番号134、135及び136には非球形(破砕粒)の軟化性粒子(以下、「非球形粒子」という。)を用い、これら実験番号134、135及び136と実験番号201(比較例:軟化性粒子を用いていない。)とを除き、それ以外の実験番号では球形(球形粒)の軟化性粒子(以下、「球形粒子」という。)を、それぞれ用いた。球形粒子としては、粒子径と軟化点(軟化温度)とが異なるものを複数用い、具体的には、これら粒子径と軟化点との組み合わせを(粒子径、軟化点(軟化温度))として示せば、図3の実験番号111では(0.35mm、420℃)、図3の実験番号112では(0.28mm、640℃)、図3の実験番号113では(0.40mm、770℃)、図3の実験番号114では(0.32mm、850℃)、図3の実験番号115では(2.20mm、980℃)、図3の実験番号116では(2.68mm、1050℃)、図3の実験番号117では(2.73mm、1150℃)、図3の実験番号211では(3.04mm、1650℃)、図4の実験番号121〜125では(0.40mm、770℃)、図5の実験番号131では(0.18mm、770℃)、図5の実験番号132では(0.40mm、770℃)、図5の実験番号133では(1.25mm、770℃)のものをそれぞれ準備した。一方、非球形粒子としては、粒子径と軟化点との組み合わせを(粒子径、軟化点(軟化温度))として示せば、図5の実験番号134では(1.70mm、770℃)、図5の実験番号135では(2.20mm、770℃)、図5の実験番号136では(2.50mm、770℃)のものをそれぞれ準備した。なお、前述したよう、図4の実験番号201では軟化性粒子を用いていない(添加量:0重量%)。
(Preparation of raw materials)
The following refractory particles, metal particles and softening particles were prepared in advance as raw materials for preparing the thermal spray coating material (this material) of the present invention.
- refractory grains: silica brick (. The old JIS refractoriness in S1 class pursuant to standard SK32 more of SiO 2 content was used for more than 95% by weight) was ground and used in any of the experiments. The softening point of the refractory particles used here was 1500 ° C. (a method for measuring the softening point will be described in detail later).
Metal particles: Commercially available metal silicon powder (Si content 98% by weight, average particle size 200 μm) was used in all experiments.
-Softening particles: Commercially available glass particles (SiO 2 content 70% by weight or more, softening point 420 to 1650 ° C., particle size of about 0.1 to 3.0 mm) are prepared as spherical and non-spherical (crushed products). Used for each experiment. The measurement and determination of the softening point, particle diameter, and shape (spherical or non-spherical) will be described in detail later. As the softening particles, non-spherical (crushed particles) softening particles (hereinafter referred to as “non-spherical particles”) are used as experiment numbers 134, 135, and 136 in FIG. Except for 135 and 136 and experiment number 201 (comparative example: softening particles are not used), spherical (spherical particles) softening particles (hereinafter referred to as “spherical particles”) are used in other experiment numbers. , Respectively. A plurality of spherical particles having different particle diameters and softening points (softening temperatures) are used. Specifically, a combination of these particle diameters and softening points can be indicated as (particle diameter, softening point (softening temperature)). For example, in experiment number 111 of FIG. 3 (0.35 mm, 420 ° C.), in experiment number 112 of FIG. 3 (0.28 mm, 640 ° C.), in experiment number 113 of FIG. 3 (0.40 mm, 770 ° C.), 3 (0.32 mm, 850 ° C.), experiment number 115 in FIG. 3 (2.20 mm, 980 ° C.), experiment number 116 in FIG. 3 (2.68 mm, 1050 ° C.), FIG. 5 (2.73 mm, 1150 ° C.), experiment number 211 in FIG. 3 (3.04 mm, 1650 ° C.), experiment numbers 121-125 in FIG. 4 (0.40 mm, 770 ° C.), FIG. Experiment number 131 (0.18mm, 770 ℃), in Experiment No. 132 in FIG. 5 (0.40mm, 770 ℃), was prepared in Experiment No. 133 in FIG. 5 (1.25mm, 770 ℃) ones, respectively. On the other hand, as a non-spherical particle, if the combination of the particle diameter and the softening point is shown as (particle diameter, softening point (softening temperature)), in the experiment number 134 of FIG. 5 (1.70 mm, 770 ° C.), FIG. Experiment No. 135 (2.20 mm, 770 ° C.) and Experiment No. 136 in FIG. 5 (2.50 mm, 770 ° C.) were prepared. Note that, as described above, the softening particles are not used in the experiment number 201 of FIG. 4 (addition amount: 0% by weight).

(軟化点の測定)
軟化性粒子と耐火性粒子(以下、「軟化性粒子等」という。)との軟化点(軟化温度)測定は、JIS−R2617に基づき押し棒式熱膨張測定装置を用い、昇温に伴い膨張する試験片の長さが最大になったときの温度を軟化点とした。
軟化性粒子等を用い形成した試験片を押し棒式熱膨張測定装置の電気炉内に装入し、該電気炉に通電し、該電気炉を室温から毎分約2〜3℃の速度で昇温した。この昇温により該電気炉内に配置された試験片も昇温(加熱)され、それに伴って試験片は膨張した。このときの温度(℃)を横軸にとり、試験片の膨張を試験片の寸法の伸び(mm)として縦軸にとった2軸直交座標系のグラフを図1に示した。
図1に示すように、試験片の温度(℃)上昇に伴い、最初は熱膨張によって試験片は伸びる(寸法増加、図1中の領域A)が、ある程度よりも温度が高くなると、試験片が軟化することにより試験片が収縮する(寸法減少、図1中の領域B)。この試験片の伸びが最大Emになるとき(寸法増加(図1中の領域A)から収縮(図1中の領域B)に転じるとき)の温度Tmを軟化点とした。
(Measurement of softening point)
The softening point (softening temperature) of softening particles and refractory particles (hereinafter referred to as “softening particles”) is measured by using a push rod type thermal expansion measuring device based on JIS-R2617, and expands as the temperature rises. The temperature when the length of the test piece to be maximized was defined as the softening point.
A test piece formed using softening particles or the like is placed in an electric furnace of a push rod type thermal expansion measuring device, and the electric furnace is energized. The electric furnace is moved from room temperature at a rate of about 2 to 3 ° C. per minute. The temperature rose. The test piece arranged in the electric furnace was also heated (heated) by this temperature increase, and the test piece expanded accordingly. A graph of a biaxial orthogonal coordinate system in which the temperature (° C.) at this time is taken on the horizontal axis and the expansion of the test piece is taken as the elongation (mm) of the dimension of the test piece is shown on FIG.
As shown in FIG. 1, as the temperature (° C.) of the test piece increases, the test piece initially expands due to thermal expansion (dimension increase, region A in FIG. 1), but when the temperature becomes higher than a certain level, The test piece shrinks due to softening (dimension reduction, region B in FIG. 1). The temperature Tm when the elongation of the test piece reaches the maximum Em (when the dimension increases (region A in FIG. 1) to shrink (region B in FIG. 1)) is defined as the softening point.

(軟化性粒子の粒子径測定)
軟化性粒子を光学顕微鏡により図2(a)のように観察(倍率:約200倍)し、観察された各粒子Cの任意方向(例えば、図2(a)中の矢印E方向)に関する最大寸法De(図2(a)中に幾つかDeを例示する。)を測定する。最大寸法Deを無作為に選んだ100個の粒子Cに関して測定し、これら100個の粒子Cについて最大寸法Deの算術平均Dea(=最大寸法Deの合計値/100個)を算出する。この算術平均Deaを軟化性粒子の粒子径とした。
(Measurement of softening particle size)
The softening particles are observed with an optical microscope as shown in FIG. 2A (magnification: about 200 times), and the maximum in any direction of each observed particle C (for example, the direction of arrow E in FIG. 2A). The dimension De (some examples of De are illustrated in FIG. 2A) is measured. The maximum dimension De is measured for 100 randomly selected particles C, and the arithmetic average Dea of the maximum dimension De (= total value of the maximum dimension De / 100) is calculated for these 100 particles C. This arithmetic average Dea was taken as the particle size of the softening particles.

(軟化性粒子の粒子形状観察)
軟化性粒子を光学顕微鏡により図2(a)のように観察(倍率:約200倍)し、観察された各粒子Cの重心位置G(観察された各粒子Cの形状をした非常に薄くいずれの部分も均一な厚みを有し、いずれの部分も同じ密度の材質により形成された薄板の重心位置をいう。)を通過する最大寸法Dmaxと、重心位置Gを通過する最小寸法Dminと、を測定する。そして、各粒子Cそれぞれについてアスペクト比R=最大寸法Dmax/最小寸法Dminを算出する。このアスペクト比Rを、無作為に選んだ100個の粒子Cに関して算出し、100個の粒子Cについてアスペクト比Rの算術平均Ra(=アスペクト比Rの合計値/100個)を算出する。この算術平均Raが1.0〜2.0である場合にはここでは軟化性粒子を「球形」(球形粒子)とし、算術平均Raが2.0を超える場合にはここでは軟化性粒子を「非球形」(非球形粒子)とした。
上述した球形粒子のアスペクト比Rの算術平均値Raは、1.18であり、1.0〜2.0の範囲内であった。また、非球形粒子のアスペクト比Rの算術平均値Raは、3.22であり、2.0を超えていた。
(Particle shape observation of softening particles)
The softening particles are observed with an optical microscope as shown in FIG. 2A (magnification: approximately 200 times), and the center of gravity G of each observed particle C (the shape of each observed particle C is very thin) (2) also has a uniform thickness, and each part is the center of gravity of a thin plate formed of the same density material.) And a minimum dimension Dmin that passes through the center of gravity G. taking measurement. Then, the aspect ratio R = maximum dimension Dmax / minimum dimension Dmin is calculated for each particle C. The aspect ratio R is calculated for 100 randomly selected particles C, and the arithmetic average Ra of the aspect ratio R (= total value of the aspect ratio R / 100) is calculated for 100 particles C. When the arithmetic average Ra is 1.0 to 2.0, the softening particles are “spherical” (spherical particles). When the arithmetic average Ra exceeds 2.0, the softening particles are used here. “Non-spherical” (non-spherical particles).
The arithmetic average value Ra of the aspect ratio R of the spherical particles described above was 1.18, which was in the range of 1.0 to 2.0. Further, the arithmetic average value Ra of the aspect ratio R of the non-spherical particles was 3.22 and exceeded 2.0.

(溶射体被覆材料の調合)
図3、図4及び図5にそれぞれ示すような条件で実験するために用いる溶射体被覆材料として、以下のものを調合した。なお、いずれの実験番号においても、溶射体被覆材料3kgを調合し、実験に供した。
(Preparation of thermal spray coating material)
The following materials were prepared as spray coating materials used for experiments under the conditions shown in FIGS. 3, 4 and 5 respectively. In any experiment number, 3 kg of the thermal spray coating material was prepared and used for the experiment.

図3中、実験番号111では、(0.35mm、420℃)(粒子径と軟化点との組み合わせを示す。以下、同様。)の球形粒子を10重量部と、耐火性粒子73重量部と、金属粒子17重量部と、をよく混合した。実験番号112では実験番号111にて用いた(0.35mm、420℃)の球形粒子の換わりに(0.28mm、640℃)の球形粒子を用いて同様に溶射体被覆材料を調合し、以下同様に、実験番号111にて用いた球形粒子の換わりに、実験番号113では(0.40mm、770℃)の球形粒子を用い、実験番号114では(0.32mm、850℃)の球形粒子を用い、実験番号115では(2.20mm、980℃)の球形粒子を用い、実験番号116では(2.68mm、1050℃)の球形粒子を用い、実験番号117では(2.73mm、1150℃)の球形粒子を用い、そして実験番号211では(3.04mm、1650℃)の球形粒子を用い、それぞれ溶射体被覆材料を調合した。   In FIG. 3, in experiment number 111, 10 parts by weight of spherical particles (0.35 mm, 420 ° C.) (showing a combination of particle diameter and softening point, the same applies hereinafter) and 73 parts by weight of refractory particles And 17 parts by weight of metal particles were mixed well. In Experiment No. 112, a spray coating material was similarly prepared using (0.28 mm, 640 ° C.) spherical particles instead of the (0.35 mm, 420 ° C.) spherical particles used in Experiment No. 111. Similarly, instead of the spherical particles used in Experiment No. 111, spherical particles of (0.40 mm, 770 ° C.) were used in Experiment No. 113, and spherical particles of (0.32 mm, 850 ° C.) were used in Experiment No. 114. In the experiment number 115, spherical particles of (2.20 mm, 980 ° C.) are used, in the experiment number 116, spherical particles of (2.68 mm, 1050 ° C.) are used, and in the experiment number 117 (2.73 mm, 1150 ° C.). In the experiment No. 211, spherical particles of (3.04 mm, 1650 ° C.) were used to prepare spray coating materials.

図4では、実験番号201を除く実験番号121〜125のいずれの実験も、(0.40mm、770℃)の球形粒子を用い、球形粒子(軟化性粒子)と耐火性粒子と金属粒子との配合比率を変えて実験番号111と同様に溶射体被覆材料を調合した。具体的には、溶射体被覆材料を調合するのに用いた各実験における球形粒子(軟化性粒子)の配合重量部w1と耐火性粒子の配合重量部w2と金属粒子の配合重量部w3とを〈w1、w2、w3〉にて表すと、実験番号121では〈3、80、17〉とし、実験番号122では〈10、73、17〉とし、実験番号123では〈15、68、17〉とし、実験番号124では〈20、63、17〉とし、実験番号125では〈25、58、17〉とし、実験番号201では〈0、83、17〉とし(軟化性粒子の添加なし。即ち、従来の溶射材料と同様のもの)、溶射体被覆材料を調合した。   In FIG. 4, all the experiments of Experiment Nos. 121 to 125 except for Experiment No. 201 use spherical particles of (0.40 mm, 770 ° C.), and are composed of spherical particles (softening particles), refractory particles, and metal particles. A spray coating material was prepared in the same manner as in Experiment No. 111 while changing the mixing ratio. Specifically, a blended weight part w1 of spherical particles (softening particles), a blended weight part w2 of refractory particles, and a blended weight part w3 of metal particles in each experiment used to prepare the spray coating material. Expressed as <w1, w2, w3>, the experiment number 121 is <3, 80, 17>, the experiment number 122 is <10, 73, 17>, and the experiment number 123 is <15, 68, 17>. The experiment number 124 is <20, 63, 17>, the experiment number 125 is <25, 58, 17>, and the experiment number 201 is <0, 83, 17> (no softening particles added. The same spraying material as above was prepared.

図5中、実験番号131では(0.18mm、770℃)の球形粒子を用い、実験番号132では(0.40mm、770℃)の球形粒子を用い、実験番号133では(1.25mm、770℃)の球形粒子を用い、それぞれ実験番号113と同様に溶射体被覆材料を調合した。そして、図5中、実験番号134では(1.70mm、770℃)の非球形粒子を用い、実験番号135では(2.20mm、770℃)の非球形粒子を用い、実験番号136では(2.50mm、770℃)の非球形粒子を用い、それぞれ実験番号113と同様に溶射体被覆材料を調合した。なお、図5の実験番号131〜136のいずれも、溶射体被覆材料を調合するのに軟化性粒子は10重量部と耐火性粒子は73重量部と金属粒子は17重量部とを配合した。   In FIG. 5, spherical particles of (0.18 mm, 770 ° C.) are used in Experiment No. 131, spherical particles of (0.40 mm, 770 ° C.) are used in Experimental No. 132, and (1.25 mm, 770) are used in Experiment No. 133. The thermal spray coating material was prepared in the same manner as in Experiment No. 113 using spherical particles of [° C.]. In FIG. 5, the non-spherical particle (1.70 mm, 770 ° C.) is used in the experiment number 134, the non-spherical particle (2.20 mm, 770 ° C.) is used in the experiment number 135, and (2 .50 mm, 770 ° C.), and a thermal spray coating material was prepared in the same manner as in Experiment No. 113. In addition, in any of the experiment numbers 131 to 136 in FIG. 5, 10 parts by weight of softening particles, 73 parts by weight of refractory particles and 17 parts by weight of metal particles were blended to prepare the spray coating material.

(既存の溶射体(被覆体)の形成)
溶射体(被覆体)の形成を図6を参照して説明する。まず、図6に示すよう、並型煉瓦31(旧JIS規格S1クラス)を試験炉(図示せず)中に設置し、既存の溶射材33を約40mmの厚みに溶射(吹き付け)し、既存の溶射体35(被覆体)を形成した。形成した溶射体35(被覆体)の表面37(溶射により形成された面)には、深さ3mm程度の凹凸(不図示)が全面に確認された。
(Formation of existing sprayed body (covered body))
The formation of the thermal spray body (coating body) will be described with reference to FIG. First, as shown in FIG. 6, an ordinary brick 31 (old JIS standard S1 class) is installed in a test furnace (not shown), and an existing sprayed material 33 is sprayed (sprayed) to a thickness of about 40 mm. The thermal spray body 35 (coating body) was formed. On the entire surface 37 (surface formed by thermal spraying) of the sprayed body 35 (covered body), irregularities (not shown) having a depth of about 3 mm were confirmed on the entire surface.

(溶射体被覆材料による被覆実験)
上記のようにして形成した被覆体35の表面37(溶射により形成され、数多く凹凸が存する面)に、図3〜図5に示した各実験番号に係る溶射体被覆材料39を従来の溶射装置38(一部図示)により約5mmの厚みに溶射(吹き付け)し被覆体表面37を覆った。この被覆体表面37に溶射体被覆材料39を溶射(吹き付け)して形成された層をコート層34といい、これによって新しく形成された面をコート面36という。
(Coating experiment with thermal spray coating material)
The thermal spray coating material 39 according to each experiment number shown in FIGS. 3 to 5 is applied to the surface 37 of the coating 35 formed as described above (surface formed by thermal spraying and having a large number of irregularities). The coating surface 37 was covered by spraying (spraying) to a thickness of about 5 mm by 38 (partially shown). A layer formed by spraying (spraying) the spray coating material 39 on the coating surface 37 is referred to as a coating layer 34, and a newly formed surface is referred to as a coating surface 36.

(コート面の凹凸目視検査)
コート面36に凹凸が存するかどうか目視により検査した。各実験番号について目視検査結果を、図3〜図5中の「表面状態」に記載した。
図4中の実験番号201は、前述したように軟化性粒子の添加がなく(比較例)、従来の溶射材料と同様のものを溶射体被覆材料としてコート層34を形成したので、実験番号201のコート面36は、上述の被覆体表面37に存していたような凹凸と同様の凹凸がコート面36全面に多数目視にて観察された。
(Visual inspection of coat surface irregularities)
The coated surface 36 was visually inspected for unevenness. The results of visual inspection for each experiment number are described in “Surface condition” in FIGS.
The experiment number 201 in FIG. 4 is the addition of the softening particles as described above (comparative example), and the coating layer 34 was formed using the same spraying material as the conventional spraying material. In the coating surface 36, many unevennesses similar to the unevenness existing on the surface 37 of the covering body were visually observed on the entire coating surface 36.

図3中の実験番号111のコート面36には、被覆体表面37に存していたような凹凸や実験番号201のコート面36に存していた凹凸とは異なる波形の凹凸が確認された(表面状態:「ダレによる波形凹凸」)。この波形の凹凸は、実験番号111のコート層34にダレ(コート層34が流動しやすく、溶射中に重力によって下方に垂れ下がることでかたくずれする現象)が生じることで形成された。
図3中の実験番号112〜114のコート面36は、上述の被覆体表面に存していたような凹凸がコート面36に目視にて全く認められず、ダレも生じなかった(表面状態:「凹凸無 平滑」)。
図3中の実験番号115〜117のコート面36は、上述の被覆体表面に存していたような凹凸が目視にて多少認めらたことを示しており(被覆体表面37に存していたような凹凸や実験番号201のコート面36に存していた凹凸に比して、数が少なく、そして凹凸の深さも浅い。)、この凹凸の数や深さは、軟化性粒子の軟化点が高くなるにつれて(980℃→1050℃→1150℃)、増加した。
図3中の実験番号211は、軟化性粒子の軟化点が1650℃と耐火性粒子の軟化点(1500℃)よりも高く(実験番号201と同じく比較例である。なお、実験番号201及び211を除き実施例である。)、被覆体表面37に存していたような凹凸や実験番号201のコート面36に存していた凹凸と同様の凹凸を有していた。
In the coated surface 36 of the experiment number 111 in FIG. 3, irregularities having a waveform different from the unevenness existing on the coating surface 37 and the unevenness existing on the coated surface 36 of the experiment number 201 were confirmed. (Surface condition: “waveform irregularities due to sagging”). The corrugated irregularities were formed by the occurrence of sagging in the coating layer 34 of Experiment No. 111 (a phenomenon in which the coating layer 34 is easy to flow and falls down due to dripping down due to gravity during spraying).
The coating surface 36 of the experiment numbers 112 to 114 in FIG. 3 did not have any irregularities on the coating surface 36 as observed on the surface of the above-mentioned covering, and no sagging occurred (surface state: "Smoothness without unevenness").
The coating surface 36 of the experiment numbers 115 to 117 in FIG. 3 shows that some unevenness that existed on the surface of the above-mentioned covering body was visually recognized (it exists on the covering body surface 37). The number and depth of the unevenness is small compared to the unevenness and the unevenness existing on the coating surface 36 of the experiment number 201.) The number and depth of the unevenness is the softening of the softening particles. It increased as the point increased (980 ° C. → 1050 ° C. → 1150 ° C.).
3 is a comparative example in which the softening point of the softening particles is 1650 ° C. and higher than the softening point (1500 ° C.) of the refractory particles (similar to the experiment number 201). And the same unevenness as that present on the coating surface 37 and the unevenness existing on the coat surface 36 of the experiment number 201.

図4中の実験番号121〜124のコート面36は、上述の被覆体表面に存していたような凹凸がコート面36に目視にて全く認められず、ダレも生じなかった(表面状態:「凹凸無 平滑」)。
図4中の実験番号125のコート面36は、被覆体表面37に存していたような凹凸や実験番号201のコート面36に存していた凹凸とは異なる波形の凹凸が確認された(表面状態:「ダレによる波形凹凸等有」)。この波形の凹凸は、実験番号125のコート層34にダレが生じることや、吹き付けによる圧力によってクレーター状の大きなへこみを生じることで形成された。
In the coating surface 36 of the experiment numbers 121 to 124 in FIG. 4, the unevenness as existed on the surface of the above-described covering body was not visually recognized on the coating surface 36, and no sagging occurred (surface state: "Smoothness without unevenness").
The coating surface 36 of the experiment number 125 in FIG. 4 was confirmed to have unevenness that was different from the unevenness existing on the coating surface 37 and the unevenness existing on the coating surface 36 of the experiment number 201 ( Surface condition: “Waveform irregularities due to sagging”). The corrugated irregularities were formed by sagging in the coating layer 34 of the experiment number 125, or by generating large crater-like dents by the pressure of spraying.

図5中の実験番号131〜133のコート面36は、上述の被覆体表面に存していたような凹凸がコート面36に目視にて全く認められず、ダレも生じなかった(表面状態:「凹凸無 平滑」)。
図5中の実験番号134〜136のコート面36は、上述の被覆体表面に存していたような凹凸が目視にて多少認めらたことを示しており(被覆体表面37に存していたような凹凸や実験番号201のコート面36に存していた凹凸に比して、数が少なく、そして凹凸の深さも浅い。)、この凹凸の数や深さは、軟化性粒子の粒子径が大きくなるにつれて増加した(1.70mm→2.20mm→2.50mm)。
The coating surface 36 of the experiment numbers 131 to 133 in FIG. 5 did not have any irregularities on the coating surface 36 as observed on the surface of the above-described coating body, and no sagging occurred (surface state: "Smoothness without unevenness").
Coated surfaces 36 of experiment numbers 134 to 136 in FIG. 5 indicate that some unevenness that was present on the surface of the above-described covering body was visually recognized (existing on the covering body surface 37). The number of the unevenness and the depth of the unevenness are smaller than those of the unevenness and the unevenness existing on the coating surface 36 of the experiment number 201). It increased as the diameter increased (1.70 mm → 2.20 mm → 2.50 mm).

(異物(カーボン粉)付着試験)
図7に示す工程によって、異物たる炭素粉(カーボン)がコート面36にどの程度強固に付着するかを評価した。
図6に示したように、コート層34によってコート面36が形成されたコート物41を、図7(a)に示すようにコート面36が60mm×60mmの略正方形となり、かつ厚み(コート面36に対して垂直方向の寸法)が40mmとなるよう略直方体に切削し、付着試験片43を形成した(図7中、付着試験片の作成)。
次いで、図7(b)に示すよう、付着試験片43のコート面36が水平な上面になるよう付着試験片43を配置し、両端が開放された中空のセラミック(高耐熱性材料)製の管材51(チューブ)の一端(下端)をコート面36に当接させた(該一端とコート面36とは略液密的に当接する。)。そして、図7(b)に示すよう、管材51の他端(上端)から管材51の内部にコールタール53を注入した(図7中、コールタールの注入)。
さらに、内部にコールタール53が注入された管材51がコート面36に載置された付着試験片43は、図7(c)に示すよう有底無蓋の容器61(中空の直円筒形状をしている。)の底面に、コート面36が略水平を保つよう配置された。続いて、容器61の内部にコークス粉63が充填され、焼成用試験物65が形成された。
その後、焼成用試験物65は、図7(c)に示すよう電気炉67の内部に配置され、1000℃にて3時間保たれた(焼成)。
図7(c)のようにして焼成された焼成用試験物65は電気炉67から取り出された後、管材51及び付着試験片43が一体として焼成用試験物65から取り出された。
(Foreign matter (carbon powder) adhesion test)
According to the process shown in FIG. 7, it was evaluated how strongly carbon powder (carbon) as a foreign substance adhered to the coating surface 36.
As shown in FIG. 6, the coated product 41 having the coating surface 36 formed by the coating layer 34 has a coating surface 36 of approximately 60 mm × 60 mm and a thickness (coating surface) as shown in FIG. The adhesion test piece 43 was formed by cutting into a substantially rectangular parallelepiped so that the dimension in the direction perpendicular to 36 was 40 mm (creation of the adhesion test piece in FIG. 7).
Next, as shown in FIG. 7B, the adhesion test piece 43 is arranged so that the coat surface 36 of the adhesion test piece 43 becomes a horizontal upper surface, and is made of a hollow ceramic (high heat resistant material) having both ends opened. One end (lower end) of the tube material 51 (tube) was brought into contact with the coat surface 36 (the one end and the coat surface 36 were brought into substantially liquid-tight contact). And as shown in FIG.7 (b), the coal tar 53 was inject | poured into the inside of the pipe material 51 from the other end (upper end) of the pipe material 51 (injection of coal tar in FIG. 7).
Further, an adhesion test piece 43 on which the pipe material 51 into which the coal tar 53 is injected is placed on the coating surface 36 has a bottomed and uncovered container 61 (hollow straight cylindrical shape as shown in FIG. 7C). The coating surface 36 is disposed so as to be substantially horizontal. Subsequently, the coke powder 63 was filled in the container 61 to form a test specimen 65 for firing.
Thereafter, the firing test piece 65 was placed in the electric furnace 67 as shown in FIG. 7C and kept at 1000 ° C. for 3 hours (firing).
After the firing test piece 65 fired as shown in FIG. 7C was taken out of the electric furnace 67, the tube material 51 and the adhesion test piece 43 were taken out from the firing test piece 65 as a unit.

取り出された管材51及び付着試験片43は、図7(d)に示すようコート面36が略鉛直になるよう試験台69の上面に載置された。これによって管材51が付着試験片43から自然に脱落した場合(即ち、管材51に人為的に力を加えることなく、管材51やその内部に存するコールタール53由来の物質に働く重力により、管材51が付着試験片43から脱落した場合)には、図3〜図5における「付着カーボンせん断」の欄に「付着無」と記載した。焼成用試験物65から取り出された管材51及び付着試験片43が試験台69の上面に載置されても、管材51が付着試験片43から自然に脱落しなかった場合(即ち、管材51が付着試験片43に着いたままの場合)には、図3〜図5における「付着カーボンせん断」の欄に「付着有」と記載し、さらに後述する接着強度試験を行った。接着強度試験は、図7(d)に示すよう、付着試験片43に着いている管材51の前記一端(コート面36に当接している端)近傍に鉛直下向きの力Fを加え、力Fを次第に増加させていったときに管材51が付着試験片43(コート面36)から脱落したときの力F(単位KN:キロニュートン=10N)を測定した。測定した力F(単位KN)に基づき、せん断接着強度(単位MPa)を算出した。なお、せん断接着強度Q(単位MPa)は、管材51に注入されたコールタール53とコート面36との接触面積S(単位cm)(ここでは換言すれば、コート面36に当接した管材51の前記一端側における管材51の内部断面積)によって、該測定した力F(単位KN)を除すことで計算した(Q=10×F/S)。図3〜図5における「付着カーボンせん断」の欄に「付着有」と記載したものについては、このせん断接着強度(単位MPa)も該欄中に記載した。以上説明したように、異物たる炭素粉(カーボン)がコート面36にどの程度の強固さで付着していたかは、図3〜図5における「付着カーボンせん断」の欄が「付着無」のものが最も弱かったことを示し、該欄が「付着有」のもの同士では該欄に記載されたせん断接着強度(単位MPa)が小さいほど弱かったことを示している。 The taken-out pipe material 51 and the adhesion test piece 43 were mounted on the upper surface of the test stand 69 so that the coat surface 36 became substantially vertical as shown in FIG. As a result, when the pipe material 51 naturally falls off from the adhesion test piece 43 (that is, without applying artificial force to the pipe material 51, the pipe material 51 is caused by gravity acting on the pipe material 51 or a substance derived from coal tar 53 existing therein. In the case of falling off from the adhesion test piece 43), “no adhesion” is described in the “adhesion carbon shear” column in FIGS. Even if the pipe material 51 and the adhesion test piece 43 taken out from the firing test object 65 are placed on the upper surface of the test stand 69, the pipe material 51 does not naturally fall off from the adhesion test piece 43 (that is, the pipe material 51 is When the adhesion test piece 43 is still attached), “adhesion present” is described in the “adhesion carbon shear” column in FIGS. 3 to 5, and an adhesion strength test described later was performed. In the adhesive strength test, as shown in FIG. 7D, a vertically downward force F is applied to the vicinity of the one end (the end in contact with the coat surface 36) of the tube material 51 attached to the adhesion test piece 43, and the force F The force F (unit KN: kilonewton = 10 3 N) when the pipe material 51 dropped out of the adhesion test piece 43 (coat surface 36) was measured. Based on the measured force F (unit KN), the shear bond strength (unit MPa) was calculated. The shear bonding strength Q (unit MPa) is the contact area S (unit cm 2 ) between the coal tar 53 injected into the pipe material 51 and the coat surface 36 (in other words, the pipe material in contact with the coat surface 36). This was calculated by dividing the measured force F (unit KN) by the internal cross-sectional area of the pipe material 51 on the one end side of 51 (Q = 10 × F / S). 3 to 5, in the column “attached carbon shear” described as “attached”, this shear adhesive strength (unit MPa) is also described in the column. As described above, how hard the carbon powder (carbon), which is a foreign substance, is attached to the coated surface 36 is determined by the “attached carbon shear” column in FIGS. Is the weakest, and in the case where the column is “attached”, the smaller the shear bond strength (unit MPa) described in the column is, the weaker it is.

以上説明したように、図3〜図5中、実験番号111〜117、実験番号121〜125、実験番号131〜136のそれぞれに係る実験は、既存の溶射体35である被覆体の凹凸を有する被覆体表面37に酸素を含む気体(ここではほぼ純粋な酸素ガス)と共に溶射体被覆材料39を吹き付け、溶射体被覆材料39が被覆体表面37において溶融することで被覆体表面37に溶着し被覆体表面37を覆うことにより該凹凸を平滑化する方法であって、該溶射体被覆材料39は、耐火性粒子と、金属粒子と、耐火性粒子の軟化点(1500℃)よりも低い軟化点(ここでは420℃〜1150℃)を有する軟化性粒子と、を含むものである、方法である(なお、実験番号111〜117、実験番号121〜125、実験番号131〜136においては、いずれも溶射体被覆材料39は、耐火性粒子と金属粒子と軟化性粒子とからなり、これら耐火性粒子、金属粒子及び軟化性粒子以外の成分は含んでいない。)。
ここでは図3〜図5中、実験番号112〜114、実験番号121〜125、実験番号131〜136においては、軟化性粒子の軟化点が、500℃〜900℃である。例えば、図3中、実験番号112〜114は、軟化性粒子の軟化点が500℃〜900℃の範囲外である実験番号111、115〜117に比し、被覆体表面37に存していたような凹凸がコート面36に全く認められず、ダレも生じなかったことに加え、異物たる炭素粉(カーボン)のコート面36への付着もない(付着無)。
As described above, the experiments according to each of the experiment numbers 111 to 117, the experiment numbers 121 to 125, and the experiment numbers 131 to 136 in FIGS. 3 to 5 have the unevenness of the covering that is the existing sprayed body 35. The thermal spray coating material 39 is sprayed on the coating body surface 37 together with a gas containing oxygen (here, almost pure oxygen gas), and the thermal spray coating material 39 is melted on the coating body surface 37 so as to be welded and coated on the coating body surface 37. A method of smoothing the unevenness by covering a body surface 37, wherein the thermal spray coating material 39 comprises a refractory particle, a metal particle, and a softening point lower than the softening point (1500 ° C.) of the refractory particle. (Here, 420 ° C. to 1150 ° C.) and softening particles having a method (In addition, in Experiment Nos. 111 to 117, Experiment Nos. 121 to 125, and Experiment Nos. 131 to 136) Information, either spray-coated material 39 is composed of a refractory particles and the metal particles and the softening particles, these refractory particles, components other than the metal particles and the softening particles do not include.).
Here, in FIGS. 3 to 5, in the experiment numbers 112 to 114, the experiment numbers 121 to 125, and the experiment numbers 131 to 136, the softening point of the softening particles is 500 ° C. to 900 ° C. For example, in FIG. 3, the experiment numbers 112 to 114 existed on the covering surface 37 as compared with the experiment numbers 111 and 115 to 117 in which the softening point of the softening particles is outside the range of 500 ° C. to 900 ° C. Such irregularities were not recognized at all on the coated surface 36, and no sagging occurred, and there was no adhesion of carbon powder (carbon) as a foreign substance to the coated surface 36 (no adhesion).

そして、図3〜図5中、実験番号111〜117、実験番号121〜125、実験番号131〜136のそれぞれに係る実験は、軟化性粒子が、酸化ケイ素を70重量%以上含有するケイ酸塩ガラスにより形成されるものである。
図3〜図5中、実験番号111〜117、実験番号121〜125、実験番号131〜133の実験においては、軟化性粒子のアスペクト比Rの算術平均値Raは上述した通り1.0〜2.0の範囲内であり、軟化性粒子が球状を略なしていた。例えば、図5中、実験番号131〜133では算術平均値Raは1.0〜2.0の範囲内であり軟化性粒子が球状であったが、図5中、実験番号134〜136では算術平均値Raは前述の如く2.0を超えるものであり軟化性粒子が非球状であったが、実験番号131〜133は実験番号134〜136と比べるとコート面36の状態もよく、異物たる炭素粉(カーボン)のコート面36への付着もない(付着無)。
加えて、図3〜図5中、実験番号111〜114、実験番号121〜125、実験番号131〜133は、軟化性粒子の粒子径が0.12mm〜1.30mmであり、この範囲外の粒径を有する実験番号115〜117、実験番号134〜136のものに比し、コート面36の状態もよく、異物たる炭素粉(カーボン)のコート面36への付着も少ないことが明らかになった。
また、図3〜図5中、実験番号111〜117、実験番号121〜124、実験番号131〜136の実験においては、溶射体被覆材料中の軟化性粒子の重量割合(図3〜図5中、軟化性粒子の添加量(重量%))が、3重量%〜20重量%である。例えば、図4中、実験番号121〜124は、実験番号125(軟化性粒子の添加量:25重量%)に比し、コート面36の状態もよく、異物たる炭素粉(カーボン)のコート面36への付着もない(付着無)。
3 to 5, the experiments according to each of the experiment numbers 111 to 117, the experiment numbers 121 to 125, and the experiment numbers 131 to 136 are silicates in which the softening particles contain 70% by weight or more of silicon oxide. It is formed of glass.
3 to 5, in the experiments of Experiment Nos. 111 to 117, Experiment Nos. 121 to 125, and Experiment Nos. 131 to 133, the arithmetic average value Ra of the aspect ratio R of the softening particles is 1.0 to 2 as described above. 0.0 and the softening particles were almost spherical. For example, in experiment numbers 131 to 133 in FIG. 5, the arithmetic average value Ra is in the range of 1.0 to 2.0 and the softening particles are spherical, but in FIG. 5, the experiment numbers 134 to 136 are arithmetic. As described above, the average value Ra exceeds 2.0, and the softening particles were non-spherical. However, the experiment numbers 131 to 133 had a better condition on the coated surface 36 than the experiment numbers 134 to 136, and were foreign matter. There is no adhesion of carbon powder (carbon) to the coating surface 36 (no adhesion).
In addition, in FIG. 3 to FIG. 5, the experiment numbers 111 to 114, the experiment numbers 121 to 125, and the experiment numbers 131 to 133 have softening particle diameters of 0.12 mm to 1.30 mm, and are outside this range. It is clear that the coated surface 36 is in a good state and the carbon powder (carbon) as a foreign substance is less adhered to the coated surface 36 than those of the experimental numbers 115 to 117 and the experimental numbers 134 to 136 having particle sizes. It was.
3 to 5, in the experiments of Experiment Nos. 111 to 117, Experiment Nos. 121 to 124, and Experiment Nos. 131 to 136, the weight ratio of the softening particles in the thermal spray coating material (in FIGS. 3 to 5). The addition amount (wt%) of the softening particles is 3 wt% to 20 wt%. For example, in FIG. 4, the experiment numbers 121 to 124 are better than the experiment number 125 (addition amount of softening particles: 25% by weight) and the state of the coated surface 36 is good, and the coated surface of carbon powder (carbon) as a foreign substance No adhesion to 36 (no adhesion).

押し棒式熱膨張測定装置を用いて軟化点を決定する方法を示すグラフである。It is a graph which shows the method of determining a softening point using a push rod type | formula thermal expansion measuring apparatus. 軟化性粒子を光学顕微鏡によって観察したところを示す模式図である。It is a schematic diagram which shows the place which observed the softening particle | grains with the optical microscope. 実験条件を示す図である。It is a figure which shows experimental conditions. 実験条件を示す図である。It is a figure which shows experimental conditions. 実験条件を示す図である。It is a figure which shows experimental conditions. 被覆体の表面に、図3〜図5に示した実験番号の溶射体被覆材料を溶射(吹き付け)する実験操作を示す模式図である。It is a schematic diagram which shows experiment operation which sprays (sprays) the thermal spray coating material of the experiment number shown in FIGS. 3-5 on the surface of a coating body. 異物たる炭素粉(カーボン)がコート面にどの程度強固に付着するかを評価する実験操作を示す模式図である。It is a schematic diagram which shows experimental operation which evaluates how much carbon powder (carbon) which is a foreign material adheres to a coat surface.

符号の説明Explanation of symbols

31 並型煉瓦
33 溶射材
34 コート層
35 溶射体(被覆体)
36 コート面
37 表面
38 溶射装置
39 溶射体被覆材料
41 コート物
43 付着試験片
51 管材
53 コールタール
61 容器
63 コークス粉
65 焼成用試験物
67 電気炉
69 試験台
31 Standard Brick 33 Thermal Spray Material 34 Coat Layer 35 Thermal Spray (Coating)
36 Coated surface 37 Surface 38 Thermal spraying device 39 Thermal spray coating material 41 Coated material 43 Adhesion test piece 51 Pipe material 53 Coal tar 61 Container 63 Coke powder 65 Test sample for firing 67 Electric furnace 69 Test stand

Claims (7)

既存の溶射体である被覆体の凹凸を有する被覆体表面に酸素を含む気体と共に溶射体被覆材料を吹き付け、溶射体被覆材料が被覆体表面において溶融することで被覆体表面に溶着し被覆体表面を覆うことにより該凹凸を平滑化する方法であって、
該溶射体被覆材料は、耐火性粒子と、金属粒子と、耐火性粒子の軟化点よりも低い軟化点を有する軟化性粒子と、を含むものである、方法。
The sprayed coating material is sprayed on the surface of the coated body having the unevenness of the coated body, which is an existing sprayed body, together with a gas containing oxygen, and the sprayed coating material is melted on the surface of the coated body to be welded to the coated body surface. A method of smoothing the unevenness by covering
The thermal spray coating material comprises refractory particles, metal particles, and softening particles having a softening point lower than the softening point of the refractory particles.
軟化性粒子の軟化点が、500℃〜900℃である、請求項1に記載の方法。     The method of Claim 1 that the softening point of a softening particle | grain is 500 to 900 degreeC. 軟化性粒子が、酸化ケイ素を含有するケイ酸塩ガラスにより形成されるものである、請求項1又は2に記載の方法。     The method according to claim 1 or 2, wherein the softening particles are formed by a silicate glass containing silicon oxide. 軟化性粒子が、球状を略なしているものである、請求項1乃至3のいずれか1に記載の方法。     The method according to any one of claims 1 to 3, wherein the softening particles are substantially spherical. 軟化性粒子の粒子径が0.12mm〜1.30mmである、請求項1乃至4のいずれか1に記載の方法。     The method according to any one of claims 1 to 4, wherein the softening particles have a particle diameter of 0.12 mm to 1.30 mm. 溶射体被覆材料中の軟化性粒子の重量割合が、3重量%〜20重量%である、請求項1乃至5のいずれか1に記載の方法。     The method according to any one of claims 1 to 5, wherein a weight ratio of the softening particles in the thermal spray coating material is 3% by weight to 20% by weight. 請求項1乃至6のいずれか1に記載の方法に用いられる前記溶射体被覆材料。     The said thermal spray coating material used for the method of any one of Claim 1 thru | or 6.
JP2007201123A 2007-08-01 2007-08-01 Method for smoothing the surface of thermal spray Active JP5005463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201123A JP5005463B2 (en) 2007-08-01 2007-08-01 Method for smoothing the surface of thermal spray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201123A JP5005463B2 (en) 2007-08-01 2007-08-01 Method for smoothing the surface of thermal spray

Publications (2)

Publication Number Publication Date
JP2009035774A true JP2009035774A (en) 2009-02-19
JP5005463B2 JP5005463B2 (en) 2012-08-22

Family

ID=40437946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201123A Active JP5005463B2 (en) 2007-08-01 2007-08-01 Method for smoothing the surface of thermal spray

Country Status (1)

Country Link
JP (1) JP5005463B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164867A (en) * 1984-09-04 1986-04-03 Showa Denko Kk Glass reinforced thermal spraying material
JPS63262453A (en) * 1987-04-18 1988-10-28 Inax Corp Ceramic-glass particle for thermal spraying and its production
JPS63303049A (en) * 1987-06-04 1988-12-09 Shinagawa Refract Co Ltd Fiber-reinforced vitreous thermal spraying material
JPS6415354A (en) * 1987-07-08 1989-01-19 Shinagawa Refractories Co Miceous material for thermal spraying
JPH02282457A (en) * 1989-04-21 1990-11-20 Nkk Corp Glass thermal spraying method
JPH03180457A (en) * 1989-12-08 1991-08-06 Nakashima:Kk Formation of glass film
JPH08176782A (en) * 1994-12-27 1996-07-09 Kawasaki Steel Corp Roll for transporting high-temperature steel products
JPH09217163A (en) * 1996-02-14 1997-08-19 Tocalo Co Ltd Glassy thermal spray material coated member having self-repairing operation and production thereof
JPH09286671A (en) * 1996-04-25 1997-11-04 Sumitomo Metal Ind Ltd Repairing material for kiln
JP2001192802A (en) * 2000-01-05 2001-07-17 Kawasaki Heavy Ind Ltd Corrosion resistant composite thermal spray material, thermally sprayed coating using the same material and member having thermally sprayed coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164867A (en) * 1984-09-04 1986-04-03 Showa Denko Kk Glass reinforced thermal spraying material
JPS63262453A (en) * 1987-04-18 1988-10-28 Inax Corp Ceramic-glass particle for thermal spraying and its production
JPS63303049A (en) * 1987-06-04 1988-12-09 Shinagawa Refract Co Ltd Fiber-reinforced vitreous thermal spraying material
JPS6415354A (en) * 1987-07-08 1989-01-19 Shinagawa Refractories Co Miceous material for thermal spraying
JPH02282457A (en) * 1989-04-21 1990-11-20 Nkk Corp Glass thermal spraying method
JPH03180457A (en) * 1989-12-08 1991-08-06 Nakashima:Kk Formation of glass film
JPH08176782A (en) * 1994-12-27 1996-07-09 Kawasaki Steel Corp Roll for transporting high-temperature steel products
JPH09217163A (en) * 1996-02-14 1997-08-19 Tocalo Co Ltd Glassy thermal spray material coated member having self-repairing operation and production thereof
JPH09286671A (en) * 1996-04-25 1997-11-04 Sumitomo Metal Ind Ltd Repairing material for kiln
JP2001192802A (en) * 2000-01-05 2001-07-17 Kawasaki Heavy Ind Ltd Corrosion resistant composite thermal spray material, thermally sprayed coating using the same material and member having thermally sprayed coating

Also Published As

Publication number Publication date
JP5005463B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
FR2649096A1 (en) METHOD FOR FORMING POROUS REFRACTORY MASS AND MATERIAL COMPOSITION THEREFOR
AU780443B2 (en) Thermally insulating material having excellent durability and method for production thereof, and use thereof and method for execution thereof
KR930002669B1 (en) Lightweight tundish refractory compositons
FR2652807A1 (en) CERAMIC WELDING METHOD AND LANCE INTENDED FOR THE IMPLEMENTATION OF SUCH A METHOD.
WO1994020435A1 (en) Heat-insulating refractory material
JP5005463B2 (en) Method for smoothing the surface of thermal spray
JP2010137279A (en) Method of forming coating layer on tundish
TW201835001A (en) Mortar composition, mortar, and mortar manufacturing method
JP6372539B2 (en) Thermal insulation coating material for continuous casting nozzle
EP0495327B1 (en) Process and composition for repairing of refractories by in-situ soldering
JP5357869B2 (en) Dry blend for treating refractory substrates and methods of use thereof
KR101762679B1 (en) The manufacturing method of ceramic-coated steel sheet
MXPA03002826A (en) Process for providing a surface with a fire-proof and/or wear resistant lining.
KR101012221B1 (en) Method of injecting an aggregate into a small gap formed in the bottom portion of a blast furnace and aggregate used therefor
JP5346150B2 (en) How to repair fireproof walls
TW213894B (en)
JP3911716B2 (en) Thermal spraying repair layer of furnace wall and repair method
JP4144638B2 (en) Furnace wall repair method
JP5861847B2 (en) An upper nozzle of a continuous casting apparatus and an intrusion suppression method using the same.
JPS63160761A (en) Nozzle for continuous casting
JPS60149883A (en) Manufacture of spray execution body incorporating refractoryfiber
JPH0580526B2 (en)
JP2020060322A (en) Covering material for preventing molten metal adhesion-for preventing temperature elevation, and heat insulation member
JP2002195760A (en) Furnace wall brick repair structure and method therefor
JP2002069524A (en) Method for hot-repairing refractory in converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5005463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250