JP2009035531A - Method for producing hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative, hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative - Google Patents

Method for producing hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative, hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative Download PDF

Info

Publication number
JP2009035531A
JP2009035531A JP2008145672A JP2008145672A JP2009035531A JP 2009035531 A JP2009035531 A JP 2009035531A JP 2008145672 A JP2008145672 A JP 2008145672A JP 2008145672 A JP2008145672 A JP 2008145672A JP 2009035531 A JP2009035531 A JP 2009035531A
Authority
JP
Japan
Prior art keywords
group
aryl
sulfino
hydrazide
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145672A
Other languages
Japanese (ja)
Inventor
Shinji Tanimori
紳治 谷森
Yuka Ozaki
由佳 尾崎
Yasukazu Iesaki
泰和 家崎
Mitsumune Kirihata
光統 切畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2008145672A priority Critical patent/JP2009035531A/en
Publication of JP2009035531A publication Critical patent/JP2009035531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Quinoline Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a new hydrazide compound or a 1-substituted-1,2-dihydroindazol-3-one derivative, and a hydrazide compound and a 1-substituted-1,2-dihydroindazol-3-one derivative. <P>SOLUTION: The method for producing a 1-substituted-1,2-dihydroindazol-3-one derivative comprises (1) producing a hydrazide compound from a 2-haloaryl acid chloride from hydrazine and (2) subjecting the hydrazide compound to an intramolecular coupling. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規なヒドラジド体および1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の製造方法、並びにヒドラジド体および1−置換−1,2−ジヒドロインダゾール−3−オン誘導体に関する。   The present invention relates to a novel hydrazide compound and a method for producing a 1-substituted-1,2-dihydroindazol-3-one derivative, and a hydrazide compound and a 1-substituted-1,2-dihydroindazol-3-one derivative.

下記化学式に示す、1−置換−1,2−ジヒドロインダゾール−3−オンは、1−インダノンの2位および3位がそれぞれ−NH、−NR(Rは、アルキル基、アリール基などの種々の置換基を意味する。)で置換された二環性ヘテロ環化合物である。

Figure 2009035531
1-Substituted-1,2-dihydroindazol-3-one represented by the following chemical formula is such that 2-position and 3-position of 1-indanone are each —NH, —NR (where R is an alkyl group, aryl group, etc. Is a bicyclic heterocyclic compound substituted with a substituent.
Figure 2009035531

1,2−ジヒドロインダゾール−3−オン誘導体は、医薬品の母核としての利用が期待されている。このため、近年多くの研究がなされている。   The 1,2-dihydroindazol-3-one derivative is expected to be used as a mother nucleus of a pharmaceutical product. For this reason, many studies have been made in recent years.

例えば、下記化学式に示す1,2−ジヒドロインダゾール−3−オンとその誘導体は、酵素5−LPO(5−lipoxygenase)の強い阻害剤となることが知られている。

Figure 2009035531
For example, 1,2-dihydroindazol-3-one and its derivatives represented by the following chemical formula are known to be strong inhibitors of the enzyme 5-LPO (5-lipoxygenase).
Figure 2009035531

この1,2−ジヒドロインダゾール−3−オンとその誘導体が5−LPOを阻害することで、生体内ロイコトリエンの合成が阻害される。このため、1,2−ジヒドロインダゾール−3−オンとその誘導体は、生体内ロイコトリエンの合成と深く関係する、関節リウマチ、ぜんそく、炎症性大腸炎などの新しい治療薬となる可能性がある。1,2−ジヒドロインダゾール−3−オン誘導体の中では、下記化学式に示す2位置換体である化合物が最も強い活性を示す。このように、1,2−ジヒドロインダゾール−3−オンとその誘導体において置換基を変えることで、異なる作用を有する。

Figure 2009035531

This 1,2-dihydroindazol-3-one and its derivatives inhibit 5-LPO, thereby inhibiting in vivo synthesis of leukotrienes. Therefore, 1,2-dihydroindazol-3-one and its derivatives may be new therapeutic agents such as rheumatoid arthritis, asthma and inflammatory colitis that are closely related to the synthesis of leukotriene in vivo. Among the 1,2-dihydroindazol-3-one derivatives, compounds that are 2-position substituted compounds represented by the following chemical formula show the strongest activity. Thus, by changing the substituent in 1,2-dihydroindazol-3-one and its derivatives, it has a different action.
Figure 2009035531

1,2−ジヒドロインダゾール−3−オン誘導体は、例えば以下のように合成することができる。   The 1,2-dihydroindazol-3-one derivative can be synthesized, for example, as follows.

下記反応式に示すように、アクリル酸エチルエステルと1,5−ジメチル−3−オキソ−2−フェニル−2,3−ジヒドロ−1H−ピラゾール−4−カルボアルデヒドとをロビンソン環化反応させて合成する例が知られている(例えば、非特許文献1参照)。

Figure 2009035531
As shown in the following reaction formula, synthesis is carried out by Robinson cyclization reaction between acrylic acid ethyl ester and 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbaldehyde. An example is known (for example, see Non-Patent Document 1).
Figure 2009035531

また、下記反応式に示すように、5−置換−2−ヨード安息香酸の2位のヨウ素をヒドラジンによって5−置換2−ヒドラジノ安息香酸とし、脱水縮合して、インダゾール−3−オン誘導体にする方法が知られている(例えば、特許文献1参照)。

Figure 2009035531
In addition, as shown in the following reaction formula, iodine at the 2-position of 5-substituted-2-iodobenzoic acid is converted to 5-substituted 2-hydrazinobenzoic acid with hydrazine and dehydrated to form an indazol-3-one derivative. A method is known (see, for example, Patent Document 1).
Figure 2009035531

また、下記反応式に示すように、4−ブロモアニリンの存在下で、アンスラニル酸メチルのアミノ分解を行い、2−メチルアミノ安息香酸メチルエステルとし、次に酸化的環化反応を行って、インダゾール−3−オン誘導体を得る方法が知られている(例えば、非特許文献2参照)。

Figure 2009035531

ロイ エイ.(Roy,A.)、他2名、ジャーナル オブ ザ ケミカル ソサイティ(Journal of the Chemical Society)、英国、ロイヤル ソサイエティ オブ ケミストリー(Royal Society of Chemistry)、1999年、第20巻、p.3001−3004 アルカイツ, シー.(Arkaitz,C.)、他3名、ジャーナル オブ オーガニック ケミストリー(Journal of Organic Chemistry)、米国、アメリカン ケミカル ソサイティ(American Chemical Society)、2006年、第71巻、p.3501−3505 国際公開第200/5121096号パンフレット In addition, as shown in the following reaction formula, methyl anthranilate is subjected to aminolysis in the presence of 4-bromoaniline to give 2-methylaminobenzoic acid methyl ester, and then an oxidative cyclization reaction is performed to produce indazole. A method for obtaining a -3-one derivative is known (for example, see Non-Patent Document 2).
Figure 2009035531

Roy A. (Roy, A.), two others, Journal of the Chemical Society, UK, Royal Society of Chemistry, 1999, Vol. 20, p. 3001-3004 Archaite, Sea. (Arkaitz, C.), three others, Journal of Organic Chemistry, USA, American Chemical Society, 2006, Vol. 71, p. 3501-3505 International Publication No. 200/51221096 Pamphlet

しかし、上記非特許文献1〜3に記載の方法では、(1)多工程を要する、(2)また、製造工程を、高温や低温にする必要があるものがあり、温度制御が必要である、(3)誘導体を合成する目的に適さないものもある、などの問題がある。   However, in the methods described in Non-Patent Documents 1 to 3, there are (1) a number of processes required, (2) some manufacturing processes need to be at a high temperature or a low temperature, and temperature control is required. (3) Some of them are not suitable for the purpose of synthesizing derivatives.

すなわち、本発明は、上記問題に鑑みなされたものであり、その目的は、比較的温和な条件で簡便に、1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を合成する方法、およびこれを用いた新規誘導体を提供することにある。   That is, the present invention has been made in view of the above problems, and its object is to easily synthesize 1-substituted-1,2-dihydroindazol-3-one derivatives under relatively mild conditions, and It is to provide a novel derivative using this.

また、本発明の別の目的は、1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の反応原料である、ヒドラジド体の製造方法、およびこれを用いた新規なヒドラジド体を提供することにある。   Another object of the present invention is to provide a method for producing a hydrazide, which is a reaction raw material for a 1-substituted-1,2-dihydroindazol-3-one derivative, and a novel hydrazide using the same. It is in.

すなわち、本発明は、以下のとおりである。   That is, the present invention is as follows.

本発明のヒドラジド体は、
下記一般式(I)で表される2−ハロアリール酸(誘導体)酸塩化物と、

Figure 2009035531

(式中、Aは酸性官能基を、Hrは、ハロゲンを、R〜Rは水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。)
下記一般式(II)で表されるヒドラジンと、
Figure 2009035531

(式中、Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
を、反応させて、下記一般式(III)で表されるヒドラジド体を製造する。
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。) The hydrazide of the present invention is
2-haloaryl acid (derivative) acid chloride represented by the following general formula (I);
Figure 2009035531

(In the formula, A represents an acidic functional group, Hr represents a halogen, R 1 to R 4 represent a hydrogen atom, an optionally substituted alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, an aryl group, a heterocyclic group, an acyl group, a cyano group, a carboxyl group, an oxycarbonyl group, .R 1 to mean a carbamoyl group, an amino group, a sulfino group, a halogen And R 2 , R 2 and R 3 , R 3 and R 4 may be bonded to each other to form a ring.)
Hydrazine represented by the following general formula (II):
Figure 2009035531

(Wherein R is an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, which may have a substituent or a branch, An aryl group, a heterocyclic group, an acyl group, a sulfino group, and an oxycarbonyl group are shown.)
To produce a hydrazide represented by the following general formula (III).
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)

本発明の1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の製造方法は、
下記一般式(III)で表されるヒドラジド体を触媒存在下で分子内カップリングさせ、

Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
下記一般式(IV)で表される1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を製造する。
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。) The method for producing the 1-substituted-1,2-dihydroindazol-3-one derivative of the present invention comprises:
The hydrazide represented by the following general formula (III) is intramolecularly coupled in the presence of a catalyst,
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)
A 1-substituted-1,2-dihydroindazol-3-one derivative represented by the following general formula (IV) is produced.
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)

本発明のヒドラジド体は、下記一般式(III)で表される。

Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。) The hydrazide form of the present invention is represented by the following general formula (III).
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)

本発明の1−置換−1,2−ジヒドロインダゾール−3−オン誘導体は下記一般式(IV)で表される。

Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。) The 1-substituted-1,2-dihydroindazol-3-one derivative of the present invention is represented by the following general formula (IV).
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)

本発明の方法を用いれば、比較的温和な条件で簡便に、ヒドラジド体および1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を合成することができ、これらを用いた新規誘導体を提供することができる。   By using the method of the present invention, a hydrazide compound and a 1-substituted-1,2-dihydroindazol-3-one derivative can be easily synthesized under relatively mild conditions, and a novel derivative using the same is provided. can do.

以下に、本発明を詳細に説明する。本発明では、(1)2−ハロアリール酸塩化物と、ヒドラジンとから、ヒドラジド体を製造し、(2)ヒドラジド体を分子内カップリングして、1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を製造する。   The present invention is described in detail below. In the present invention, (1) a hydrazide is produced from 2-haloaryl acid chloride and hydrazine, and (2) the hydrazide is coupled intramolecularly to give 1-substituted-1,2-dihydroindazole-3. -To produce an on derivative.

[ヒドラジド体]
本発明のヒドラジド体は、2−ハロアリール酸塩化物とヒドラジンとを反応させて、製造する。
[Hydrazide]
The hydrazide form of the present invention is produced by reacting 2-haloaryl acid chloride with hydrazine.

(2−ハロアリール酸塩化物)
2−ハロアリール酸塩化物は、例えば、2−ハロアリール酸に、塩化チオニルを反応させて製造する。

Figure 2009035531
(2-haloaryl acid chloride)
The 2-haloaryl acid chloride is produced, for example, by reacting 2-haloaryl acid with thionyl chloride.
Figure 2009035531

式中、Aは酸性官能基を、Hrは、ハロゲンを、R〜Rは水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。 In the formula, A represents an acidic functional group, Hr represents a halogen, R 1 to R 4 represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, which may be substituted. Group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen. R 1 and R 2 , R 2 and R 3 , R 3 and R 4 may be bonded to each other to form a ring.

Aである酸性官能基としては、例えばカルボニル基(−CO−)、スルフィノ基(−SO−)などの2価の酸性官能基が挙げられる。 The acidic functional group is A, such as a carbonyl group (-CO-), a sulfino group (-SO 2 -) include divalent acidic functional groups, such as.

Hrであるハロゲンとしては、ヨード、臭素、塩素が挙げられ、より好ましくはヨード、臭素である。上記の方法では、2−ハロアリール酸を塩化チオニルで処理して、塩化物にするので、ハロゲンとして塩素を用いる場合には、反応温度を高め(例えば、70℃)にするなど、最適な反応条件を選択する必要がある。また、ヨードを用いると、同一条件では収率は向上する。一方、同一条件では臭素はヨードより収率は悪い。しかし、臭素はヨードに比べ安価なので、製造コストを低下させることができる。   Examples of the halogen that is Hr include iodo, bromine, and chlorine, and iodo and bromine are more preferable. In the above method, the 2-haloaryl acid is treated with thionyl chloride to form a chloride. Therefore, when chlorine is used as the halogen, the optimal reaction conditions such as increasing the reaction temperature (for example, 70 ° C.) It is necessary to select. In addition, when iodine is used, the yield is improved under the same conditions. On the other hand, under the same conditions, bromine has a lower yield than iodine. However, since bromine is cheaper than iodine, the production cost can be reduced.

〜Rは水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。 R 1 to R 4 are hydrogen atoms, optionally substituted alkyl groups, cycloalkyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, alkoxy groups, alkylthio groups, aryl ether groups, aryl thioether groups, aryl groups, It means a heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, and halogen.

〜Rを構成するアルキル基としては、炭素数が1〜20の、より好ましくは1以上6以下の飽和脂肪族炭化水素基が挙げられる。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基などのアルキル基、さらに好ましくは、メチル基、エチル基、n−プロピル基、n−ブチル基、tert−ブチル基が例示される。また、これらのアルキル基は、置換基を有していてもよい。置換基としては、特に制限はなく、例えばアルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などが挙げられる。 Examples of the alkyl group constituting R 1 to R 4 include saturated aliphatic hydrocarbon groups having 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms. Specifically, alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, and n-hexyl group. More preferably, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and a tert-butyl group are exemplified. Moreover, these alkyl groups may have a substituent. The substituent is not particularly limited, and examples thereof include an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, and an amino group.

〜Rを構成するシクロアルキル基としては、炭素数が3〜20の飽和脂環式炭化水素基が挙げられる。具体的には、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどのシクロアルキル基が例示される。これらのシクロアルキル基においても、上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 Examples of the cycloalkyl group constituting R 1 to R 4 include saturated alicyclic hydrocarbon groups having 3 to 20 carbon atoms. Specific examples include cycloalkyl groups such as cyclopropyl, cyclohexyl, norbornyl, and adamantyl. These cycloalkyl groups may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, and an amino group, similarly to the above alkyl group.

〜Rを構成するアルケニル基としては、炭素数が2〜20の不飽和脂肪族炭化水素基が挙げられる。具体的には、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基が例示される。上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 Examples of the alkenyl group constituting R 1 to R 4 include unsaturated aliphatic hydrocarbon groups having 2 to 20 carbon atoms. Specific examples include unsaturated aliphatic hydrocarbon groups containing a double bond such as a vinyl group, an allyl group, or a butadienyl group. Similarly to the alkyl group, it may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, or an amino group.

〜Rを構成するシクロアルケニル基としては、炭素数が2〜20の二重結合を含む不飽和脂環式炭化水素基が挙げられる。具体的には、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などが例示される。上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 The cycloalkenyl group constituting R 1 to R 4, carbon atoms include unsaturated alicyclic hydrocarbon group containing a double bond having 2 to 20. Specific examples include a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexenyl group. Similarly to the alkyl group, it may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, or an amino group.

〜Rを構成するアルキニル基としては、炭素数が2〜20の三重結合を含む不飽和脂肪族炭化水素基が挙げられる。具体的には、エチニル基などが例示される。上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 The alkynyl group constituting R 1 to R 4, carbon atoms include unsaturated aliphatic hydrocarbon group containing a triple bond having 2 to 20. Specifically, an ethynyl group is exemplified. Similarly to the alkyl group, it may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, or an amino group.

〜Rを構成するアルコキシ基としては、炭素数が1〜20のエーテル結合を介した脂肪族炭化水素基が挙げられる。具体的には、メトキシ基などが例示される。脂肪族炭化水素基は、上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 Examples of the alkoxy group constituting R 1 to R 4 include an aliphatic hydrocarbon group having an ether bond having 1 to 20 carbon atoms. Specifically, a methoxy group etc. are illustrated. The aliphatic hydrocarbon group may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, and an amino group, similarly to the above alkyl group.

〜Rを構成するアルキルチオ基としては、上記アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 The alkylthio group constituting R 1 to R 4, in which the oxygen atom of the ether bond of the alkoxy group is substituted with a sulfur atom. Similarly to the alkyl group, it may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, or an amino group.

〜Rを構成するアリール基としては、炭素数が6〜40の芳香族炭化水素基が挙げられる。具体的には、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などが例示される。上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 Examples of the aryl group constituting R 1 to R 4 include aromatic hydrocarbon groups having 6 to 40 carbon atoms. Specific examples include a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group. Similarly to the alkyl group, it may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, or an amino group.

〜Rを構成するアリールエーテル基としては、炭素数が6〜40のエーテル結合を介した芳香族炭化水素基が挙げられる。具体的には、フェノキシ基などが例示される。上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 Examples of the aryl ether group constituting R 1 to R 4 include an aromatic hydrocarbon group having an ether bond having 6 to 40 carbon atoms. Specifically, a phenoxy group and the like are exemplified. Similarly to the alkyl group, it may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, or an amino group.

〜Rを構成するアリールチオエーテル基としては、上記アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 The aryl thioether group constituting R 1 to R 4, in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom. Similarly to the alkyl group, it may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, or an amino group.

〜Rを構成する複素環基としては、炭素数が3〜20であり、炭素以外の原子を環内に有する脂肪族環または芳香族環からなる基が挙げられる。具体的には、ピラン環、ピペリジン環、環状アミド、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基からなる基が例示される。これらの複素環基においても、上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 Examples of the heterocyclic group constituting R 1 to R 4 include an aliphatic ring or an aromatic ring having 3 to 20 carbon atoms and having atoms other than carbon in the ring. Specific examples include a group consisting of a pyran ring, a piperidine ring, a cyclic amide, a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, and a quinolinyl group. These heterocyclic groups may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, and an amino group, similarly to the above alkyl group.

〜Rを構成するアシル基としては、水素、炭素数が1〜20の炭化水素などとカルボニル基が結合した基をいう。具体的には、アセチル基、ベンゾイル基からなる基が例示される。これらのアシル基においても、上記アルキル基と同様に、アルキル基、アリール基、ヘテロアリール基、ハロゲン、ニトロ基、スルフィノ基、アミノ基などの置換基を有していてもよい。 The acyl group constituting R 1 to R 4 refers to a group in which a carbonyl group is bonded to hydrogen, a hydrocarbon having 1 to 20 carbon atoms, or the like. Specifically, groups composed of an acetyl group and a benzoyl group are exemplified. These acyl groups may have a substituent such as an alkyl group, an aryl group, a heteroaryl group, a halogen, a nitro group, a sulfino group, and an amino group, similarly to the above alkyl group.

〜Rを構成するオキシカルボニル基には、炭素数が1〜20の炭化水素などが結合していてもよい。例えば、t−ブチル−オキシカルボニル基などである。 A hydrocarbon having 1 to 20 carbon atoms may be bonded to the oxycarbonyl group constituting R 1 to R 4 . For example, t-butyl-oxycarbonyl group and the like.

シアノ基、カルボキシル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲン(フッ素、塩素、臭素、ヨウ素)などもR〜Rを構成することができる。
[ヒドラジド体の合成]
A cyano group, a carboxyl group, a carbamoyl group, an amino group, a sulfino group, a halogen (fluorine, chlorine, bromine, iodine) and the like can also constitute R 1 to R 4 .
[Synthesis of hydrazide]

2−ハロアリール酸塩化物と反応させるのは、ヒドラジンである。ヒドラジンとは、下記一般式(II)で表すようにNH−NHの水素原子を有機基Rで置換した化合物のことをいう。

Figure 2009035531
It is hydrazine that is reacted with the 2-haloaryl acid chloride. Hydrazine refers to a compound in which the hydrogen atom of NH 2 —NH 2 is substituted with an organic group R as represented by the following general formula (II).
Figure 2009035531

式中、Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。これらの基は、上記R〜Rを構成する基と同じである。スルフィノ基としては、例えば上記のようなアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが結合したものが挙げられる。 In the formula, R is an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, an aryl, which may have a substituent or a branch. A group, a heterocyclic group, an acyl group, a sulfino group and an oxycarbonyl group; These groups are the same as the groups constituting the above R 1 to R 4 . Examples of the sulfino group include those in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group or the like as described above is bonded.

ヒドラジンは、単独で用いてもよく、ヒドラジン・塩酸塩のように塩を形成したものを用いてもよい。   Hydrazine may be used alone, or a hydrazine that forms a salt such as hydrazine hydrochloride may be used.

ヒドラジド体は、下記反応式に示すように、2−ハロアリール酸(誘導体)酸塩化物とヒドラジンまたはヒドラジン塩を溶媒と共に、室温で、所定時間反応させて、合成する。反応時間は、1時間〜6時間程度である。式中、R〜R、A、Rは、上記と同様である。

Figure 2009035531
As shown in the following reaction formula, the hydrazide is synthesized by reacting 2-haloaryl acid (derivative) acid chloride with hydrazine or hydrazine salt together with a solvent at room temperature for a predetermined time. The reaction time is about 1 to 6 hours. In the formula, R 1 to R 4 , A, and R are the same as described above.
Figure 2009035531

使用する溶媒は、公知の有機溶媒が使用できる。例えば、無水テトラヒドロフラン(THF)、ジクロロメタン(DCM)、ジメチルスルホキシド(DMSO)、アセトニトリル、ジクロロエタンなどが挙げられる。これらの溶媒には、水素化ナトリウム溶液などを加えて使用してもよい。反応に用いるヒドラジンまたはヒドラジン塩に応じて、使用する有機溶媒、水素化ナトリウム溶液の使用などを適宜変更できる。使用できるアルカリとしては、水素化ナトリウムのほか、水酸化カリウム、水酸化リチウム、トリエチルアミン、ピリジンが挙げられる。   A known organic solvent can be used as the solvent to be used. For example, anhydrous tetrahydrofuran (THF), dichloromethane (DCM), dimethyl sulfoxide (DMSO), acetonitrile, dichloroethane and the like can be mentioned. These solvents may be used by adding a sodium hydride solution or the like. Depending on the hydrazine or hydrazine salt used in the reaction, the use of an organic solvent, a sodium hydride solution, and the like can be appropriately changed. Examples of the alkali that can be used include sodium hydride, potassium hydroxide, lithium hydroxide, triethylamine, and pyridine.

本発明の方法により、例えば、2−ヨード安息香酸 N’−フェニル−ヒドラジド、2−ヨード安息香酸 N’−tert−ブチル−ヒドラジド、2−ヨード安息香酸 N’−(4−ニトロフェニル)−ヒドラジド、2−ヨード安息香酸 N’−ナフタレン−1−イル−ヒドラジド、2−ヨード安息香酸 N’−シクロヘキシル−ヒドラジド、2−ヨード安息香酸 N’−(2−メトキシ−フェニル)−ヒドラジド、2−ヨード安息香酸 N’−キノリン−2−イル−ヒドラジド、2−ヨード安息香酸 N’’−(2,4,6−トリクロロフェニル)−ヒドラジドなどの新規なヒドラジド体が製造できる。使用する2−ハロアリール酸、ヒドラジンを替えることで、新規なヒドラジド体を製造することができる。   According to the method of the present invention, for example, 2-iodobenzoic acid N′-phenyl-hydrazide, 2-iodobenzoic acid N′-tert-butyl-hydrazide, 2-iodobenzoic acid N ′-(4-nitrophenyl) -hydrazide 2-iodobenzoic acid N′-naphthalen-1-yl-hydrazide, 2-iodobenzoic acid N′-cyclohexyl-hydrazide, 2-iodobenzoic acid N ′-(2-methoxy-phenyl) -hydrazide, 2-iodo Novel hydrazides such as benzoic acid N′-quinolin-2-yl-hydrazide and 2-iodobenzoic acid N ″-(2,4,6-trichlorophenyl) -hydrazide can be produced. A novel hydrazide can be produced by changing the 2-haloaryl acid and hydrazine to be used.

(ヒドラジド体の別の製造方法)
本発明のヒドラジド体は、2−ハロ安息香酸とヒドラジンとを、脱水縮合剤を用いて直接反応させても得ることができる。この方法によると、Rに置換基を有する場合など、使用する2−ハロ安息香酸が置換基を有する場合は、高効率でヒドラジド体を製造することができる。また、2−ハロ安息香酸の塩化物を作る必要がないので、反応工程を短縮できる。
(Another production method of hydrazide)
The hydrazide compound of the present invention can also be obtained by directly reacting 2-halobenzoic acid and hydrazine using a dehydration condensing agent. According to this method, when 2-halobenzoic acid to be used has a substituent such as when R 3 has a substituent, a hydrazide can be produced with high efficiency. Further, since there is no need to make a chloride of 2-halobenzoic acid, the reaction process can be shortened.

脱水縮合剤としては、公知の脱水縮合剤を利用することができる。例えば、ジシクロヘキシルカルボジイミド(DCC)や、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)、1−ヒドロキシベンゾトリアゾール(HOBt)、ジフェニルリン酸アジド(DPPA)などである。   As the dehydrating condensing agent, a known dehydrating condensing agent can be used. For example, dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), 1-hydroxybenzotriazole (HOBt), diphenyl phosphate azide (DPPA), and the like.

[1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の合成]
下記反応式に示すように、上記得られたヒドラジド体は、触媒を用いて分子内環化させ、1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を合成する。式中、R〜R、A、Rは、上記と同様である。

Figure 2009035531
[Synthesis of 1-Substituted-1,2-Dihydroindazol-3-one Derivative]
As shown in the following reaction formula, the obtained hydrazide is cyclized intramolecularly using a catalyst to synthesize a 1-substituted-1,2-dihydroindazol-3-one derivative. In the formula, R 1 to R 4 , A, and R are the same as described above.
Figure 2009035531

(触媒)
本発明では触媒として、銅触媒を用いる。銅触媒は、公知の銅触媒を用いることができ、銅(0価)、銅(1価)、銅(2価)のいずれの状態のものであってもよい。例えば、ヨウ化第1銅、臭化第1銅のように、ハロゲン化しているものを用いてもよい。
(catalyst)
In the present invention, a copper catalyst is used as the catalyst. A well-known copper catalyst can be used for a copper catalyst, and the thing of any state of copper (zero valence), copper (monovalent), and copper (divalent) may be sufficient as it. For example, a halogenated material such as cuprous iodide or cuprous bromide may be used.

また、銅触媒と共に、アミノ酸を併用してもよい。アミノ酸を併用することにより、得られる1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の収率を高くし、副生物の生成が少なくすることができる。   Moreover, you may use an amino acid together with a copper catalyst. By using an amino acid in combination, the yield of the resulting 1-substituted-1,2-dihydroindazol-3-one derivative can be increased and the production of by-products can be reduced.

使用できるアミノ酸としては、特に制限はなく、公知のアミノ酸が使用できる。具体的には、中性アミノ酸、酸性アミノ酸、塩基性アミノ酸のいずれでもよい。好ましいアミノ酸は、中性アミノ酸である。中性アミノ酸としては、例えばL−プロリンが例示できるが、これに限定されるものではない。また、複数のアミノ酸を使用してもよい。   There is no restriction | limiting in particular as an amino acid which can be used, A well-known amino acid can be used. Specifically, any of neutral amino acids, acidic amino acids, and basic amino acids may be used. Preferred amino acids are neutral amino acids. Examples of neutral amino acids include L-proline, but are not limited thereto. A plurality of amino acids may be used.

使用する触媒量は、基質に対し、銅触媒は1〜10モル%、アミノ酸は10〜30モル%である。特に、銅触媒とアミノ酸との併用触媒を用いる場合には、ヨウ化銅が1〜5モル%と少なくとも、1−置換−1,2−ジヒドロインダゾール−3−オン誘導体が合成できる。   The amount of catalyst used is 1 to 10 mol% for the copper catalyst and 10 to 30 mol% for the amino acid with respect to the substrate. In particular, when a combined catalyst of a copper catalyst and an amino acid is used, 1 to 5 mol% of copper iodide and at least a 1-substituted-1,2-dihydroindazol-3-one derivative can be synthesized.

(反応温度)
反応は、室温〜80℃程度まで加温して行うことができる。本発明では、室温で反応を行っても、加温して反応を行っても、同程度の収率が得られる。したがって、反応条件が穏やかな室温で反応を行うのが好ましい。
(Reaction temperature)
The reaction can be performed by heating to room temperature to about 80 ° C. In the present invention, a similar yield can be obtained whether the reaction is performed at room temperature or the reaction is performed by heating. Therefore, the reaction is preferably performed at room temperature where the reaction conditions are mild.

(1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の製造)
本発明のインドール化合物は、例えば以下のようにして製造される。
(Production of 1-substituted-1,2-dihydroindazol-3-one derivatives)
The indole compound of the present invention is produced, for example, as follows.

反応容器に、アルカリを入れ、ジメチルスルホキシド(DMSO)などの有機溶媒を添加する。   An alkali is put into a reaction vessel, and an organic solvent such as dimethyl sulfoxide (DMSO) is added.

アルカリを入れるのは、生成するヨウ化水素等の酸性物質をトラップ(中和)するためである。使用できるアルカリとしては、水素化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、リン酸カリウム、トリエチルアミン、テトラメチルグアニジン、ジアザビシクロウンデセン(DBU)等が挙げられる。   The reason why the alkali is added is to trap (neutralize) acidic substances such as hydrogen iodide to be generated. Examples of the alkali that can be used include sodium hydride, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, cesium carbonate, potassium phosphate, triethylamine, tetramethylguanidine, diazabicycloundecene (DBU) and the like.

使用できる有機溶媒としては、DMSOに限られず、テトラヒドロフラン(THF)、ジクロロメタン、アセトニトリル、ジクロロエタンなどの公知の有機溶媒が挙げられる。この製造過程では、有機溶媒は、無水化する必要はなく、貯蔵容器から取り出した含水溶媒をそのまま使用できる。   The organic solvent that can be used is not limited to DMSO, and includes known organic solvents such as tetrahydrofuran (THF), dichloromethane, acetonitrile, dichloroethane, and the like. In this production process, the organic solvent does not need to be dehydrated, and the hydrous solvent taken out from the storage container can be used as it is.

それぞれ所定量のヒドラジン体、触媒(銅触媒、アミノ酸)、アルカリ、有機溶媒を反応容器に入れ、反応容器に窒素気流下で室温〜加温しながらで攪拌しながら反応させる。反応の完了は、酸ヒドラジンの消失を確認することにより行う。反応混合液に、蒸留水を加えて、反応を停止させる。この液を酢酸エチルなどの有機溶媒を用いて抽出し、有機層を得る。有機層は、蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムなどの乾燥剤を用いて乾燥させる。得られた有機層は、溶媒を減圧留去して、所望の1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を得る。あるいは、シリカゲル分取薄層クロマトグラフィー、カラムクロマトグラフィーにより目的物を分取する。展開溶媒の種類、混合比などは、得られる1−置換−1,2−ジヒドロインダゾール−3−オン誘導体により異なる。また、クロマトグラフの回数は、1回に限らず、複数回行ってもよい。   Predetermined amounts of hydrazine, catalyst (copper catalyst, amino acid), alkali, and organic solvent are placed in a reaction vessel, and the reaction vessel is allowed to react with stirring under a nitrogen stream at room temperature to warming. Completion of the reaction is performed by confirming the disappearance of acid hydrazine. Distilled water is added to the reaction mixture to stop the reaction. This liquid is extracted using an organic solvent such as ethyl acetate to obtain an organic layer. The organic layer is washed with distilled water and saturated saline and dried using a desiccant such as anhydrous magnesium sulfate. The obtained organic layer is distilled under reduced pressure to obtain the desired 1-substituted-1,2-dihydroindazol-3-one derivative. Alternatively, the target product is collected by silica gel preparative thin layer chromatography or column chromatography. The kind of developing solvent, the mixing ratio, and the like vary depending on the 1-substituted-1,2-dihydroindazol-3-one derivative obtained. Further, the number of chromatographs is not limited to one, and may be performed a plurality of times.

本発明の製造方法を用いると、1−フェニル−1,2−ジヒドロインダゾール3−オンのような公知の1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を穏やかな条件で、収率よく製造できる。また、1−tert−ブチル−1,2−ジヒドロインダゾール3−オン、1−(4−ニトロフェニル)−1,2−ジヒドロインダゾール3−オン、1−ナフタレン−1−イル−1,2−ジヒドロインダゾール3−オン、1−シクロヘキシル−1,2−ジヒドロインダゾール3−オン、1−(2−メトキシフェニル)−1,2−ジヒドロインダゾール3−オン、1−キノリン−2−イル−1,2−ジヒドロインダゾール3−オンなどの新規な1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を穏やかな条件で、収率よく製造できる。   Using the production method of the present invention, a known 1-substituted-1,2-dihydroindazol-3-one derivative such as 1-phenyl-1,2-dihydroindazol-3-one can be obtained under mild conditions in a yield. Can be manufactured well. Also, 1-tert-butyl-1,2-dihydroindazol-3-one, 1- (4-nitrophenyl) -1,2-dihydroindazol-3-one, 1-naphthalen-1-yl-1,2-dihydro Indazol-3-one, 1-cyclohexyl-1,2-dihydroindazol-3-one, 1- (2-methoxyphenyl) -1,2-dihydroindazol-3-one, 1-quinolin-2-yl-1,2- A novel 1-substituted-1,2-dihydroindazol-3-one derivative such as dihydroindazol-3-one can be produced in good yield under mild conditions.

このように、本発明の製造方法を用いると、種々の1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を合成することができる。また得られた1−置換−1,2−ジヒドロインダゾール−3−オン誘導体を原料とすると、種々のさらに進んだ化合物を得ることができる。   Thus, various 1-substituted-1,2-dihydroindazol-3-one derivatives can be synthesized using the production method of the present invention. Further, when the obtained 1-substituted-1,2-dihydroindazol-3-one derivative is used as a raw material, various further advanced compounds can be obtained.

以下、実施例により本発明を説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this Example.

化合物の分析及び分離精製には以下の測定装置を用いて行った。   The analysis and separation / purification of the compounds were performed using the following measuring apparatus.

赤外線吸収(IR)スペクトル:JASCO FT/IR−460 plus(吸収波長は、cm−1で示した。) Infrared absorption (IR) spectrum: JASCO FT / IR-460 plus (absorption wavelength is shown in cm −1 ).

核磁気共鳴(NMR)スペクトル:日本電子 JMTC−400/54/SS 400MHz (文中のケミカルシフトはδ値で示した。)   Nuclear magnetic resonance (NMR) spectrum: JEOL JMTC-400 / 54 / SS 400 MHz (chemical shifts in the text are indicated by δ values)

融点測定装置:BUCHI Melting point B−545   Melting point measuring device: BUCHI Melting point B-545

FAB−MS:高分解能マススペクトル−高速原子衝撃(High resolution mass spectrometer−Fast Atom Bombardment(HRMS−FAB):JEOL JMS−700 spectrometer と記載する。)   FAB-MS: High resolution mass spectrum-Fast atom bombardment (HRMS-FAB): JEOL JMS-700 spectrometer.

HRMS(ESI):高分解能マススペクトロメトリー(High resolution mass spectrometry)(エレクトロスプレーイオン化(Electrospray ionization)):日立ナノフロンティアL   HRMS (ESI): High resolution mass spectrometry (Electrospray ionization): Hitachi Nano Frontier L

カラムクロマトグラフィー用シリカゲル:BW−200(富士シリシア製)   Silica gel for column chromatography: BW-200 (Fuji Silysia)

薄層クロマトグラフィー(TLC):MACHEREY−NAGEL DC−Fertigplatten SIL G−25 UV254プレート Thin layer chromatography (TLC): MACHEREY-NAGEL DC-Fertigplatten SIL G-25 UV 254 plate

[2−ハロカルボン酸の合成]
(合成例1−1)
(2−ヨード安息香酸の酸塩化物(2−Iodo−benzoyl−chloride(1))の合成)
50mlのナス型フラスコに2−ヨード安息香酸(1.98g,8.0mmol)、塩化チオニル(10ml)を加え、攪拌子を入れてセプタムキャップした。2時間還流させ、反応を止めたのち、反応混合物を濃縮し、ベンゼンで2回共沸させることで、黄色油状物である化合物1(2.2g,全量)を得た。
薄層クロマトグラフ:Rf=0.63(ヘキサン:酢酸エチル=4:1(体積比));
H−NMR (400MHz,CDCl) δ:8.07(d,1H,J=7.3Hz,one of Ar),8.04(d,1H,J=7.6Hz,one of
Ar),7.50(t,1H,J=7.3Hz,one of Ar),7.25(dd,1H,J=7.3,7.6Hz,one of Ar).
13C‐NMR (136 MHz, CDCl) δ:166.8,141.8,137.7,134.1,133.3,128.2,93.7.

Figure 2009035531
[Synthesis of 2-halocarboxylic acid]
(Synthesis Example 1-1)
(Synthesis of 2-iodobenzoic acid acid chloride (2-Iodo-benzoyl-chloride (1)))
2-Iodobenzoic acid (1.98 g, 8.0 mmol) and thionyl chloride (10 ml) were added to a 50 ml eggplant-shaped flask, and a stir bar was added to cap the septum. After refluxing for 2 hours to stop the reaction, the reaction mixture was concentrated and azeotroped twice with benzene to obtain Compound 1 (2.2 g, total amount) as a yellow oil.
Thin layer chromatograph: Rf = 0.63 (hexane: ethyl acetate = 4: 1 (volume ratio));
1 H-NMR (400 MHz, CDCl 3 ) δ: 8.07 (d, 1H, J = 7.3 Hz, one of Ar), 8.04 (d, 1H, J = 7.6 Hz, one of
Ar), 7.50 (t, 1H, J = 7.3 Hz, one of Ar), 7.25 (dd, 1H, J = 7.3, 7.6 Hz, one of Ar).
13 C-NMR (136 MHz, CDCl 3 ) δ: 166.8, 141.8, 137.7, 134.1, 133.3, 128.2, 93.7.
Figure 2009035531

(合成例1−2)
(2−ブロモ安息香酸の酸塩化物(2−Bromo−benzoyl−chloride(29))の合成)
50mlのナス型フラスコに2−ブロモ安息香酸(2.01g,10.0mmol)、塩化チオニル(10ml)を加え、攪拌子を入れたのち、塩化カルシウム環を備えたジムロート冷却環を付した。2時間還流させ、反応を止めたのち、反応混合物を濃縮し、ベンゼンで2回共沸させることで、無色油状物である化合物29(2.20g,全量)を得た。
薄層クロマトグラフ:Rf=0.51(ヘキサン:酢酸エチル=9:1(体積比));
H−NMR (400MHz,CDCl) δ:7.95(dd,2H,J=12.7,7.8Hz,Ar),7.40(t,1H,J=7.8Hz Ar),7.09‐7.18(m,1H,Ar);
13C−NMR(136 MHz,CDCl)δ:166.8,141.8,137.7,134.1,133.3,128.2,93.7.

Figure 2009035531
(Synthesis Example 1-2)
(Synthesis of 2-bromobenzoic acid acid chloride (2-Bromo-benzoyl-chloride (29)))
2-Bromobenzoic acid (2.01 g, 10.0 mmol) and thionyl chloride (10 ml) were added to a 50 ml eggplant-shaped flask, a stir bar was added, and a Dimroth cooling ring equipped with a calcium chloride ring was attached. After refluxing for 2 hours to stop the reaction, the reaction mixture was concentrated and azeotroped twice with benzene to obtain Compound 29 (2.20 g, total amount) as a colorless oil.
Thin layer chromatograph: Rf = 0.51 (hexane: ethyl acetate = 9: 1 (volume ratio));
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.95 (dd, 2H, J = 12.7, 7.8 Hz, Ar), 7.40 (t, 1H, J = 7.8 Hz Ar), 7 .09-7.18 (m, 1H, Ar);
13 C-NMR (136 MHz, CDCl 3 ) δ: 166.8, 141.8, 137.7, 134.1, 133.3, 128.2, 93.7.
Figure 2009035531

(合成例1−3)
(4−メチル−2−ブロモ安息香酸の酸塩化物(4−Methyl−2−Bromo−benzoyl−chloride(30))の合成)
50mlのナス型フラスコに4−メチル−2−ブロモ安息香酸(0.22g,1.0mmol)、塩化チオニル(10ml)を加え、攪拌子を入れたのち、塩化カルシウム環を備えたジムロート冷却環を付した。2時間還流させ、反応を止めたのち、反応混合物を濃縮し、ベンゼンで2回共沸させることで、無色油状物である新規化合物30(0.23g,全量)を得た。
薄層クロマトグラフ:Rf=0.57(ヘキサン:酢酸エチル=9:1(体積比));
H−NMR(400 MHz,CDCl) δ:7.94(d,1H,J=8.0Hz,Ar),7.46(s,1H,Ar),7.17(d,1H,J=8.5,Ar),2.33(s,3H,Me);
13C−NMR(136 MHz,CDCl)δ:165.3,134.2,131.3,134.2,128.3,128.2,122.0,21.2.

Figure 2009035531
(Synthesis Example 1-3)
(Acid chloride of 4-methyl-2-bromobenzoic acid (synthesis of 4-methyl-2-bromo-benzoyl-chloride (30)))
4-Methyl-2-bromobenzoic acid (0.22 g, 1.0 mmol) and thionyl chloride (10 ml) were added to a 50 ml eggplant-shaped flask, and a stirrer was added. Then, a Dimroth cooling ring equipped with a calcium chloride ring was added. It was attached. After refluxing for 2 hours to stop the reaction, the reaction mixture was concentrated and azeotroped twice with benzene to obtain a novel compound 30 (0.23 g, total amount) as a colorless oil.
Thin layer chromatograph: Rf = 0.57 (hexane: ethyl acetate = 9: 1 (volume ratio));
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.94 (d, 1H, J = 8.0 Hz, Ar), 7.46 (s, 1H, Ar), 7.17 (d, 1H, J = 8.5, Ar), 2.33 (s, 3H, Me);
13 C-NMR (136 MHz, CDCl 3 ) δ: 165.3, 134.2, 131.3, 134.2, 128.3, 128.2, 122.0, 21.2.

Figure 2009035531

(合成例1−4)
(5−フルオロ−2−ブロモ安息香酸の酸塩化物(5−Fluoro−2−Bromo−benzoyl−chloride(31))の合成)
50mlのナス型フラスコに5−フルオロ−2−ブロモ安息香酸(0.22g,1.0mmol)、塩化チオニル(10ml)を加え、攪拌子を入れたのち、塩化カルシウム環を備えたジムロート冷却環を付した。2時間還流させ、反応を止めたのち、反応混合物を濃縮し、ベンゼンで2回共沸させることで、無色油状物である化合物31(0.23g,全量)を得た。
薄層クロマトグラフ:Rf=0.57(ヘキサン:酢酸エチル=9:1(体積比));
H−NMR(400 MHz,CDCl) δ:7.68(dd,1H,J=8.5,2.7Hz,Ar),7.59(dd,1H,J=8.5,4.9Hz Ar),7.09(dt,1H,J=8.3,2.7Hz,Ar);
13C−NMR(136 MHz,CDCl)δ:164.8,162.3,159.8,136.2,128.2,121.7,120.3,115.7.

Figure 2009035531
(Synthesis Example 1-4)
(Acid chloride of 5-fluoro-2-bromobenzoic acid (synthesis of 5-Fluoro-2-Bromo-benzoyl-chloride (31)))
Add 5-fluoro-2-bromobenzoic acid (0.22 g, 1.0 mmol) and thionyl chloride (10 ml) to a 50 ml eggplant-shaped flask, and after adding a stir bar, place a Dimroth cooling ring equipped with a calcium chloride ring. It was attached. After refluxing for 2 hours to stop the reaction, the reaction mixture was concentrated and azeotroped twice with benzene to obtain Compound 31 (0.23 g, total amount) as a colorless oil.
Thin layer chromatograph: Rf = 0.57 (hexane: ethyl acetate = 9: 1 (volume ratio));
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.68 (dd, 1H, J = 8.5, 2.7 Hz, Ar), 7.59 (dd, 1H, J = 8.5, 4.). 9 Hz Ar), 7.09 (dt, 1H, J = 8.3, 2.7 Hz, Ar);
13 C-NMR (136 MHz, CDCl 3 ) δ: 164.8, 162.3, 159.8, 136.2, 128.2, 121.7, 120.3, 115.7.
Figure 2009035531

(合成例1−5)
(5−メトキシ−2−ブロモ安息香酸の酸塩化物(5−Methoxy−2−Bromo−benzoyl−chloride(32))の合成)
50mlのナス型フラスコに5−メトキシ−2−ブロモ安息香酸(0.23g,1.0mmol)、塩化チオニル(10ml)を加え、攪拌子を入れたのち、塩化カルシウム環を備えたジムロート冷却環を付した。2時間還流させ、反応を止めたのち、反応混合物を濃縮し、ベンゼンで2回共沸させることで、無色油状物である化合物32(0.24g,全量)を得た。
薄層クロマトグラフ:Rf=0.38(ヘキサン:酢酸エチル=1:1(体積比));
H−NMR(400MHz,CDCl) δ:7.40−7.54(m,2H,Ar),6.87−6.92(m,1H,Ar),3.78(s,3H,OMe);
13C−NMR(136MHz,CDCl) δ:166.7,158.6,135.4,128.2,120.5,118.3,111.5,55.8.

Figure 2009035531
(Synthesis Example 1-5)
(Synthesis of 5-methoxy-2-bromobenzoic acid acid chloride (5-Methoxy-2-Bromo-benzoyl-chloride (32)))
After adding 5-methoxy-2-bromobenzoic acid (0.23 g, 1.0 mmol) and thionyl chloride (10 ml) to a 50 ml eggplant-shaped flask and adding a stir bar, a Dimroth cooling ring equipped with a calcium chloride ring is added. It was attached. After refluxing for 2 hours to stop the reaction, the reaction mixture was concentrated and azeotroped twice with benzene to obtain Compound 32 (0.24 g, total amount) as a colorless oil.
Thin layer chromatograph: Rf = 0.38 (hexane: ethyl acetate = 1: 1 (volume ratio));
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.40-7.54 (m, 2H, Ar), 6.87-6.92 (m, 1H, Ar), 3.78 (s, 3H, OMe);
13 C-NMR (136 MHz, CDCl 3 ) δ: 166.7, 158.6, 135.4, 128.2, 120.5, 118.3, 111.5, 55.8.

Figure 2009035531

(合成例1−6)
(2−クロロ−クロロ安息香酸の酸塩化物(2−Chloro−benzoyl−chloride(33))の合成)
50mlのナス型フラスコに2−クロロ安息香酸(0.16g,1.0mmol)、塩化チオニル(10ml)を加え、攪拌子を入れたのち、塩化カルシウム環を備えたジムロート冷却環を付した。2時間還流させ、反応を止めたのち、反応混合物を濃縮し、ベンゼンで2回共沸させることで、無色油状物である化合物33(0.17g,全量)を得た。
薄層クロマトグラフ:Rf=0.54(ヘキサン:酢酸エチル=9:1(体積比));
H−NMR(400 MHz,CDCl) δ:7.96(dd,1H,J=8.0,1.7Hz,Ar),7.34−7.41(m,2H,Ar),7.25−7.30(m,1H,Ar);
13C−NMR(136 MHz,CDCl)δ:165.0,134.4,133.4,131.4,128.2(2C),127.0.

Figure 2009035531
(Synthesis Example 1-6)
(Synthesis of 2-chloro-chlorobenzoic acid acid chloride (2-Chloro-benzoyl-chloride (33)))
2-Chlorobenzoic acid (0.16 g, 1.0 mmol) and thionyl chloride (10 ml) were added to a 50 ml eggplant-shaped flask, a stir bar was added, and a Dimroth cooling ring equipped with a calcium chloride ring was attached. After refluxing for 2 hours to stop the reaction, the reaction mixture was concentrated and azeotroped twice with benzene to obtain Compound 33 (0.17 g, total amount) as a colorless oil.
Thin layer chromatograph: Rf = 0.54 (hexane: ethyl acetate = 9: 1 (volume ratio));
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.96 (dd, 1H, J = 8.0, 1.7 Hz, Ar), 7.34-7.41 (m, 2H, Ar), 7 .25-7.30 (m, 1H, Ar);
13 C-NMR (136 MHz, CDCl 3 ) δ: 165.0, 134.4, 133.4, 131.4, 128.2 (2C), 127.0.

Figure 2009035531

[酸ヒドラジンの合成]
(合成例2−1) 2−ヨード安息香酸 N’−フェニル−ヒドラジド(2−Iodo−benzoic acid N’−phenyl−hydrazide(2)の合成
フェニルヒドラジン(0.17g,1.6mmol)を6mlのジクロロメタン(以下、「DCM」という)に溶かし、その溶液に10%NaOH溶液を2ml加えた。さらに、DCM4mlに溶かした酸塩化物1(0.45g,1.7mmol)を加え、室温で1時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise条件:100%hexane〜50%EtOAc in hexane)に供することで、白色結晶であるヒドラジド体2(0.38g、収率:67%)を得た。
薄層クロマトグラフ:Rf=0.73(hexane:EtOAc=1:1(体積比));
H−NMR(核磁気共鳴)(400MHz,CDOD)δ:7.94(d,1H,J=7.8Hz,one of Ar),7.46−7.50(m,2H,Ar),7.17−7.24(m,3H,Ar),6.96−7.01(m,2H,Ar),6.83(t,1H,J=7.3Hz,one of Ar);
13C−NMR(核磁気共鳴)(136MHz,CD3OD)δ:172.3,149.8,142.2,141.1,132.5,130.0,129.5,129.3,121.3,114.5,93.5;
IR(赤外線スペクトル)(neat):3244(NH),1654(C=O),1494(C−N),1315,913,750,689cm−1
m.p.(融点)199℃−201℃.

Figure 2009035531
[Synthesis of acid hydrazine]
(Synthesis Example 2-1) Synthesis of 2-iodobenzoic acid N′-phenyl-hydrazide (2-Iodo-benzoic acid N′-phenyl-hydrazide (2)) 6 ml of phenylhydrazine (0.17 g, 1.6 mmol) Dissolved in dichloromethane (hereinafter referred to as “DCM”), 2 ml of 10% NaOH solution was added to the solution, and acid chloride 1 (0.45 g, 1.7 mmol) dissolved in 4 ml of DCM was added, and the mixture was stirred at room temperature for 1 hour. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine and dried over anhydrous magnesium sulfate, the desiccant was filtered and the solvent was distilled off under reduced pressure. Silica gel chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane) By subjecting, hydrazide body 2 is white crystals (0.38 g, yield: 67%) was obtained.
Thin layer chromatograph: Rf = 0.73 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (nuclear magnetic resonance) (400 MHz, CD 3 OD) δ: 7.94 (d, 1H, J = 7.8 Hz, one of Ar), 7.46-7.50 (m, 2H, Ar ), 7.17-7.24 (m, 3H, Ar), 6.96-7.01 (m, 2H, Ar), 6.83 (t, 1H, J = 7.3 Hz, one of Ar). ;
13 C-NMR (nuclear magnetic resonance) (136 MHz, CD3OD) δ: 172.3, 149.8, 142.2, 141.1, 132.5, 130.0, 129.5, 129.3, 121. 3, 114.5, 93.5;
IR (infrared spectrum) (neat): 3244 (NH), 1654 (C═O), 1494 (CN), 1315, 913, 750, 689 cm −1 ;
m. p. (Melting point) 199 ° C-201 ° C.
Figure 2009035531

(合成例2−2) 2−ヨード安息香酸 N’−tert−ブチル−ヒドラジド(2−Iodo−benzoic acid N’−tert−butyl−hydrazide (3))の合成
tert−ブチルヒドラジン塩酸塩(0.78g,6.3mmol)を18mlのDCMに溶かし、その溶液に10%NaOH溶液を12ml加えた。さらに、DCM4mlに溶かした酸塩化物1(1.67g,6.3mmol)を加え、室温で2時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise条件:100%hexane〜50%EtOAc in hexane)に供することで、白色結晶であるヒドラジド体3(1.72 g、収率:86%)を得た。
薄層クロマトグラフ:Rf=0.36(hexane:EtOAc=1:1);
H−NMR(400MHz,(CDCO)δ:8.87(br s,1H,NH),7.89(dd,1H,J=1.0,8.0Hz,one of Ar),7.44(ddd,1H,J=1.0,1.2,7.3Hz,one of Ar),7.37(dd,1H,J=2.0,7.6Hz,one of Ar),7.17(ddd,1H,J=1.2,2.0,7.3Hz,one of Ar),1.16(s,9H,t−Bu);
13C−NMR(136MHz,(CDCO)δ:168.8,142.7,140.4,131.7,129.4,128.8,93.6,55.7,27.8(3C).

Figure 2009035531
Synthesis Example 2-2 Synthesis of 2-iodobenzoic acid N′-tert-butyl-hydrazide (2-Iodo-benzoic acid N′-tert-butyl-hydrazide (3)) tert-butylhydrazine hydrochloride (0. 78 g, 6.3 mmol) was dissolved in 18 ml of DCM and 12 ml of 10% NaOH solution was added to the solution. Further, acid chloride 1 (1.67 g, 6.3 mmol) dissolved in 4 ml of DCM was added and stirred vigorously at room temperature for 2 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering the desiccant and distilling off the solvent under reduced pressure, the residue was subjected to silica gel chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane) to give hydrazide 3 (1.72 g) as white crystals. Yield: 86%).
Thin layer chromatograph: Rf = 0.36 (hexane: EtOAc = 1: 1);
1 H-NMR (400 MHz, (CD 3 ) 2 CO) δ: 8.87 (br s, 1 H, NH), 7.89 (dd, 1 H, J = 1.0, 8.0 Hz, one of Ar) , 7.44 (ddd, 1H, J = 1.0, 1.2, 7.3 Hz, one of Ar), 7.37 (dd, 1H, J = 2.0, 7.6 Hz, one of Ar) 7.17 (ddd, 1H, J = 1.2, 2.0, 7.3 Hz, one of Ar), 1.16 (s, 9H, t-Bu);
13 C-NMR (136 MHz, (CD 3 ) 2 CO) δ: 168.8, 142.7, 140.4, 131.7, 129.4, 128.8, 93.6, 55.7, 27. 8 (3C).
Figure 2009035531

(合成例2−3) 2−ヨード安息香酸 N’−(4−ニトロフェニル)−ヒドラジド(2−Iodo−benzoic acid N’−(4−nitro−phenyl)−hydrazide (4))の合成
100mlの三つ口フラスコに4−ニトロフェニルヒドラジン(1.16g,7.6mmol)入れ、窒素ガスで置換してセプタムキャップした。次に、dry THF40mlに溶かした酸塩化物1(2.02g,7.6mmol)を加えた。2時間還流させ、TLCによって出発物質の消失を確認し、反応を止めた。溶媒を減圧留去し、シリカゲルクロマトグラフィー(stepwise条件:100% hexane〜50% EtOAc in hexane)に供することで、クリーム色結晶であるヒドラジド体4(1.73g,収率:60%)を得た。
薄層クロマトグラフ:Rf=0.26(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:10.51(s,1H,NH),9.33(s,1H,NH),8.10(d,2H,J=9.3Hz,Ar),7.95(d,1H,J=7.8Hz,one of Ar),7.52(d,2H,J=4.4Hz,Ar),7.22−7.28(m,1H,one of Ar),6.95(d,2H,J=9.0Hz,Ar);
13C−NMR(136MHz,DMSO)δ:168.6,154.7,140.6,139.4,138.2,131.6,128.6,128.2,125.9,110.9,93.7.

Figure 2009035531
Synthesis Example 2-3 Synthesis of 2-iodobenzoic acid N ′-(4-nitrophenyl) -hydrazide (2-Iodo-benzoic acid N ′-(4-nitro-phenyl) -hydrazide (4)) 4-Nitrophenylhydrazine (1.16 g, 7.6 mmol) was placed in a three-necked flask, and was replaced with nitrogen gas and capped with a septum. Next, acid chloride 1 (2.02 g, 7.6 mmol) dissolved in 40 ml of dry THF was added. The reaction was stopped by refluxing for 2 hours and confirming the disappearance of the starting material by TLC. The solvent was distilled off under reduced pressure and subjected to silica gel chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane) to obtain hydrazide 4 (1.73 g, yield: 60%) as cream crystals. It was.
Thin layer chromatograph: Rf = 0.26 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.51 (s, 1H, NH), 9.33 (s, 1H, NH), 8.10 (d, 2H, J = 9.3 Hz, Ar), 7.95 (d, 1H, J = 7.8 Hz, one of Ar), 7.52 (d, 2H, J = 4.4 Hz, Ar), 7.22-7.28 (m, 1H, one of Ar), 6.95 (d, 2H, J = 9.0 Hz, Ar);
13 C-NMR (136 MHz, DMSO) δ: 168.6, 154.7, 140.6, 139.4, 138.2, 131.6, 128.6, 128.2, 125.9, 110.9 , 93.7.
Figure 2009035531

(合成例2−4) 2−ヨード安息香酸 N’−ナフタレン−1−イル−ヒドラジド(5−Iodo−benzoic acid N’−naphthalen−1−yl−hydrazide(5))の合成
1−ナフチルヒドラジン塩酸塩(1.22g,6.3mmol)を18mlのDCMに懸濁させ、その溶液に10% NaOH溶液を12ml加えた。さらに、DCM 4mlに溶かした酸塩化物1(1.67g,6.3mmol)を加え、室温で6時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise条件:100%hexane〜50%EtOAc in hexane)に供することで、薄茶色結晶であるヒドラジド体5(1.80g,収率:74%)を得た。
薄層クロマトグラフ:Rf=0.60(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:10.34(s,1H,NH),8.47(br s,1H,NH),8.28(d,1H,J=6.8Hz,one of Ar),7.97(d,1H,J=7.0Hz,one of Ar),7.84(dd,1H,J=1.7,6.8Hz,one of Ar),7.22−7.58(m,7H,naphthalen),7.04(dd,1H,J=1.7,7.0Hz,one of Ar);
13C−NMR(136MHz,DMSO)δ:168.6,143.8,141.0,139.6,133.8,131.4,128.7,128.1,128.0,126.3,125.8,124.6,122.3,121.9,118.6,105.6,93.7;
IR(neat):3332,3248(NH),1655(C=O),1516,767cm−1
HRMS(高分解能質量分析)(FAB(+)):calcd for C1713ONI 388.0073;found,388.0058;
m.p. 196℃−197℃.

Figure 2009035531
Synthesis Example 2-4 Synthesis of 2-iodobenzoic acid N′-naphthalen-1-yl-hydrazide (5-Iodo-benzoic acid N′-naphthalen-1-yl-hydrazide (5)) 1-naphthylhydrazine hydrochloride The salt (1.22 g, 6.3 mmol) was suspended in 18 ml DCM and 12 ml of 10% NaOH solution was added to the solution. Furthermore, acid chloride 1 (1.67 g, 6.3 mmol) dissolved in 4 ml of DCM was added and stirred vigorously at room temperature for 6 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering the desiccant and distilling off the solvent under reduced pressure, the residue was subjected to silica gel chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane) to give hydrazide 5 (1.80 g) as light brown crystals. Yield: 74%).
Thin layer chromatograph: Rf = 0.60 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.34 (s, 1 H, NH), 8.47 (br s, 1 H, NH), 8.28 (d, 1 H, J = 6.8 Hz, one of Ar), 7.97 (d, 1H, J = 7.0 Hz, one of Ar), 7.84 (dd, 1H, J = 1.7, 6.8 Hz, one of Ar), 7.22-7 .58 (m, 7H, naphthhalen), 7.04 (dd, 1H, J = 1.7, 7.0 Hz, one of Ar);
13 C-NMR (136 MHz, DMSO) δ: 168.6, 143.8, 141.0, 139.6, 133.8, 131.4, 128.7, 128.1, 128.0, 126.3 , 125.8, 124.6, 122.3, 121.9, 118.6, 105.6, 93.7;
IR (neat): 3332, 3248 (NH), 1655 (C═O), 1516, 767 cm −1 ;
HRMS (high resolution mass spectrometry) (FAB (+)): calcd for C 17 H 13 ON 2 I 388.0073; found, 388.0058;
m. p. 196 ° C-197 ° C.
Figure 2009035531

(合成例2−5) 2−ヨード安息香酸 N’−シクロヘキシル−ヒドラジド(2−Iodo−benzoic acid N’−cyclohexyl−hydrazide(6))の合成
シクロヘキシルヒドラジン塩酸塩(0.51g,3.4mmol)を9mlのDCMに懸濁させ、その溶液に10% NaOH溶液を6ml加えた。さらに、DCM 2mlに溶かした酸塩化物1(0.90g,3.4mmol)を加え、室温で5時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise条件:100% hexane〜50% EtOAc in hexane)に供し、さらに分取TLC(hexane:EtOAc=1:1)を行い、無色油状物であるヒドラジド体6(0.12g,収率11%)を71:29のアミド回転異性体の混合物として得た。
薄層クロマトグラフ:Rf=0.36(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,CDCl)δ:7.85(d,0.7H,J=7.8Hz,Ar),7.78(d,0.3H,J=7.8Hz,Ar)7.32−7.47(m,1H,one of Ar),7.20−7.27(m,2H,Ar),7.07(ddd,1H,J=7.6,7.8,23.4Hz,one
of Ar),4.60(t,0.3H,J=10.9Hz,Ar),4.22(br s,1.4H,NH),3.60(br s,0.6H,NH),3.14(t,0.7H,J=10.7Hz)0.90−2.02(m,11H,cyclohexane);
13C−NMR(136MHz,CDCl)δ:171.6,144.0,139.3,138.4,130.3,129.5,128.2,128.1,126.7,126.6,92.6,92.4,59.5,53.9,30.0,28.5,25.3,25.1,24.9;
IR(neat):2929(NH),2856,1629(C=O),1424(cyclohexane),1018,752cm−1

Figure 2009035531
Synthesis Example 2-5 Synthesis of 2-iodobenzoic acid N′-cyclohexyl-hydrazide (2-Ido-benzoic acid N′-cyclohexyl-hydrazide (6)) Cyclohexylhydrazine hydrochloride (0.51 g, 3.4 mmol) Was suspended in 9 ml DCM and 6 ml of 10% NaOH solution was added to the solution. Further, acid chloride 1 (0.90 g, 3.4 mmol) dissolved in 2 ml of DCM was added, and the mixture was vigorously stirred at room temperature for 5 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After the desiccant was filtered and the solvent was distilled off under reduced pressure, the residue was subjected to silica gel chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane), and further subjected to preparative TLC (hexane: EtOAc = 1: 1). The hydrazide 6 (0.12 g, 11% yield) as a colorless oil was obtained as a mixture of 71:29 amide rotamers.
Thin layer chromatograph: Rf = 0.36 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, CD 3 Cl) δ: 7.85 (d, 0.7 H, J = 7.8 Hz, Ar), 7.78 (d, 0.3 H, J = 7.8 Hz, Ar) 7.32-7.47 (m, 1H, one of Ar), 7.20-7.27 (m, 2H, Ar), 7.07 (ddd, 1H, J = 7.6, 7.8, 23.4Hz, one
of Ar), 4.60 (t, 0.3 H, J = 10.9 Hz, Ar), 4.22 (br s, 1.4 H, NH), 3.60 (br s, 0.6 H, NH) 3.14 (t, 0.7H, J = 10.7 Hz) 0.90-2.02 (m, 11H, cyclohexane);
13 C-NMR (136 MHz, CD 3 Cl) δ: 171.6, 144.0, 139.3, 138.4, 130.3, 129.5, 128.2, 128.1, 126.7, 126 6, 92.6, 92.4, 59.5, 53.9, 30.0, 28.5, 25.3, 25.1, 24.9;
IR (neat): 2929 (NH), 2856, 1629 (C═O), 1424 (cyclohexane), 1018, 752 cm −1.
Figure 2009035531

(合成例2−6) 2−ヨード安息香酸 N’−(2−メトキシ−フェニル)−ヒドラジド(2−Iodo−benzoic acid N’−(2−methoxy−phenyl)−hydrazide (7))の合成
2−メトキシフェニルヒドラジン塩酸塩(0.59g,3.4mmol)を9mlのDCMに懸濁させ、その溶液に10% NaOH溶液を6ml加えた。さらに、DCM 2mlに溶かした酸塩化物1(0.90g,3.4mmol)を加え、室温で5時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。次いで、乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise条件:100%hexane〜50%EtOAc in hexane)に供することで、薄オレンジ色結晶であるヒドラジド体7(0.80g,収率:65%)を得た。
薄層クロマトグラフ:Rf=0.56(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:10.29(s,1H,NH),7.92(d,1H,J=8.0Hz,one of Ar),7.42−7.52(m,2H,Ar),7.22(dt,1H,J=1.7,7.3Hz,one of Ar),6.95(dd,1H,J=1.5,7.6Hz,one of Ar),6.91(d,1H,J=8.0Hz,one of Ar),6.83(ddd,1H,J=1.5,7.3,7.6Hz,one of Ar),6.77(dt,1H,J=1.5,7.6Hz,one of Ar),3.83(s,1H,OMe);
13C−NMR(136MHz,CDCl)δ:168.4,146.5,140.9,139.3,137.8,131.3,128.6,128.1,120.7,119.3,112.0,110.4,93.8,55.5;
m.p. 154℃−155℃.

Figure 2009035531
(Synthesis Example 2-6) Synthesis of 2-iodobenzoic acid N ′-(2-methoxy-phenyl) -hydrazide (2-Iodo-benzoic acid N ′-(2-methoxy-phenyl) -hydrazide (7)) 2 -Methoxyphenylhydrazine hydrochloride (0.59 g, 3.4 mmol) was suspended in 9 ml DCM and 6 ml of 10% NaOH solution was added to the solution. Further, acid chloride 1 (0.90 g, 3.4 mmol) dissolved in 2 ml of DCM was added, and the mixture was vigorously stirred at room temperature for 5 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Next, the desiccant was filtered and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane), whereby hydrazide 7 (a pale orange crystal). 0.80 g, yield: 65%).
Thin layer chromatograph: Rf = 0.56 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.29 (s, 1H, NH), 7.92 (d, 1H, J = 8.0 Hz, one of Ar), 7.42-7.52 (m , 2H, Ar), 7.22 (dt, 1H, J = 1.7, 7.3 Hz, one of Ar), 6.95 (dd, 1H, J = 1.5, 7.6 Hz, one of Ar ), 6.91 (d, 1H, J = 8.0 Hz, one of Ar), 6.83 (ddd, 1H, J = 1.5, 7.3, 7.6 Hz, one of Ar), 6. 77 (dt, 1H, J = 1.5, 7.6 Hz, one of Ar), 3.83 (s, 1H, OMe);
13 C-NMR (136 MHz, CD 3 Cl) δ: 168.4, 146.5, 140.9, 139.3, 137.8, 131.3, 128.6, 128.1, 120.7, 119 .3, 112.0, 110.4, 93.8, 55.5;
m. p. 154 ° C-155 ° C.
Figure 2009035531

(合成例2−7) 2−ヨード安息香酸 N’−キノリン−2−イル−ヒドラジド(2−Iodo−benzoic acid N’−quinolin−2−yl−hydrazide(8))の合成
30mlの三つ口フラスコに2−ヒドラジノキノリン(1.5mmol,0.24g)を入れ、窒素ガスで置換してセプタムキャップした。次にdry THF 12mlに溶かした酸塩化物1(1.5mmol,0.40g)を加えた。2時間還流させ、TLCによって出発物質の消失を確認し、反応を止めた。そして、THF層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。次いで、乾燥剤を濾過し、溶媒を減圧留去したのち、溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー(stepwise条件:100% hexane〜50% EtOAc in hexane)に供することで、クリーム色結晶であるヒドラジド体8(0.16g,収率:28%)を得た。
薄層クロマトグラフRf=0.62(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,CDCl)δ:8.61(s,1H,NH),8.40(s,1H,NH),8.19(d,1H,J=8.8Hz,one of Ar),7.92(d,1H,J=7.6Hz,one of Ar),7.79(dd,2H,J=8.0,9.0Hz,Ar),7.45−7.75(m,2H,Ar),7.02−7.40(m,4H,Ar);
13C−NMR(136MHz,CDCl)δ:168.7,146.1,142.0,140.2,138.7,138.5,138.2,131.9,130.7,129.9,128.6,128.3,128.1,127.9,127.5,126.9,126.2,116.3,92.3.

Figure 2009035531
(Synthesis Example 2-7) Synthesis of 2-iodobenzoic acid N′-quinolin-2-yl-hydrazide (2-Iodo-benzoic acid N′-quinolin-2-yl-hydrazide (8)) 2-Hydrazinoquinoline (1.5 mmol, 0.24 g) was placed in the flask and replaced with nitrogen gas to cap the septum. Then acid chloride 1 (1.5 mmol, 0.40 g) dissolved in 12 ml dry THF was added. The reaction was stopped by refluxing for 2 hours and confirming the disappearance of the starting material by TLC. The THF layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Next, the desiccant is filtered, the solvent is distilled off under reduced pressure, the solvent is distilled off under reduced pressure, and the residue is subjected to silica gel chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane) to give cream crystals. As a result, hydrazide 8 (0.16 g, yield: 28%) was obtained.
Thin-layer chromatograph Rf = 0.62 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, CDCl 3 ) δ: 8.61 (s, 1 H, NH), 8.40 (s, 1 H, NH), 8.19 (d, 1 H, J = 8.8 Hz, one of Ar), 7.92 (d, 1H, J = 7.6 Hz, one of Ar), 7.79 (dd, 2H, J = 8.0, 9.0 Hz, Ar), 7.45-7.75. (M, 2H, Ar), 7.02-7.40 (m, 4H, Ar);
13 C-NMR (136 MHz, CDCl 3 ) δ: 168.7, 146.1, 142.0, 140.2, 138.7, 138.5, 138.2, 131.9, 130.7, 129. 9, 128.6, 128.3, 128.1, 127.9, 127.5, 126.9, 126.2, 116.3, 92.3.
Figure 2009035531

(合成例2−8) 2−ヨード安息香酸 N’’−(2,4,6−トリクロロフェニル)−ヒドラジド(2−Iodo−benzoic acid N’’−(2,4,6−trichloro−phenyl)−hydrazide(9))の合成
50mlの三つ口フラスコに2,4,6−トリクロロフェニルヒドラジン(0.48g,2.3mmol)入れ、窒素ガスで置換してセプタムキャップした。次に、dry THF 20 mlに溶かした酸塩化物1(0.61g,2.3mmol)を加えた。2時間還流させ、TLCによって出発物質の消失を確認し、反応を止めた。そして、THF層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。次いで、乾燥剤を濾過し、溶媒を減圧留去したのち、溶媒を減圧留去し、残渣を酢酸エチルに溶かして再結晶させ、白色結晶である新規なヒドラジド体9(0.69g,69%)を得た。
薄層クロマトグラフRf=0.72(hexane:EtOAc=4:1(体積比));
H−NMR(400MHz,DMSO)δ:10.53(s,1H,NH),7.89(d,1H,J=7.8Hz,one of Ar),7.38−7.49(m,3H,Ar),7.19(t,1H,J=6.6Hz,one of Ar);
13C−NMR(136MHz,DMSO)δ:167.9,140.9,139.9,139.6,131.4,128.8,128.5,127.9,125.4,124.8,93.9.
m.p. 204℃−205℃.

Figure 2009035531
(Synthesis Example 2-8) 2-Iodobenzoic acid N ″-(2,4,6-trichlorophenyl) -hydrazide (2-Iodo-benzoic acid N ″-(2,4,6-trichloro-phenyl) -Synthesis of hydrazide (9)) 2,4,6-trichlorophenylhydrazine (0.48 g, 2.3 mmol) was placed in a 50 ml three-necked flask and replaced with nitrogen gas and capped with a septum. Then acid chloride 1 (0.61 g, 2.3 mmol) dissolved in 20 ml dry THF was added. The reaction was stopped by refluxing for 2 hours and confirming the disappearance of the starting material by TLC. The THF layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Next, the desiccant was filtered, the solvent was distilled off under reduced pressure, the solvent was distilled off under reduced pressure, the residue was dissolved in ethyl acetate and recrystallized to give a novel hydrazide 9 (0.69 g, 69%) as white crystals. )
Thin-layer chromatograph Rf = 0.72 (hexane: EtOAc = 4: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.53 (s, 1 H, NH), 7.89 (d, 1 H, J = 7.8 Hz, one of Ar), 7.38-7.49 (m , 3H, Ar), 7.19 (t, 1H, J = 6.6 Hz, one of Ar);
13 C-NMR (136 MHz, DMSO) δ: 167.9, 140.9, 139.9, 139.6, 131.4, 128.8, 128.5, 127.9, 125.4, 124.8 93.9.
m. p. 204 ° C-205 ° C.
Figure 2009035531

(合成例2−9) 2−ブロモ安息香酸 N’−tert−ブチル−ヒドラジド(2−Bromo−benzoic acid N’−tert−butyl−hydrazide(34))の合成
tert−ブチルヒドラジン塩酸塩(0.37g,3.0mmol)を18mlのDCMに溶かし、その溶液に10% NaOH溶液を12ml加えた。さらに、DCM 4mlに溶かした酸塩化物29(0.66g,3.0mmol)を加え、室温で2時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、白色結晶であるヒドラジド体34(0.53 g、65%)を得た。
薄層クロマトグラフRf=0.46(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:8.12(br s, 1H, NH),7.41(dd,1H,J=1.0,7.7Hz,one of Ar),7.27(dd,1H,J=1.7,7.6Hz,one of Ar),7.18(dt,1H,J=7.3,1.2Hz,one of Ar),7.12(dt,1H,J=7.8,2.0Hz,one of Ar),4.63(br s,1H,NH),1.04(s,9H,t−Bu);
13C−NMR(136MHz,DMSO) δ:166.5,136.0,132.9,130.9,129.3,127.0,119.3,55.2,26.9(3C);
IR(neat):3382(NH),2969(Ar),2878(t−Bu),1648(C=O),1561,1473,1434,1338,853,735cm−1
HRMS(FAB):calcd for C1116Br NO 271.0419;found,271.0449;
m.p.:85−87℃.

Figure 2009035531
Synthesis Example 2-9 Synthesis of 2-bromobenzoic acid N′-tert-butyl-hydrazide (2-Bromo-benzoic acid N′-tert-butyl-hydrazide (34)) tert-butylhydrazine hydrochloride (0. 37 g, 3.0 mmol) was dissolved in 18 ml DCM and 12 ml of 10% NaOH solution was added to the solution. Furthermore, acid chloride 29 (0.66 g, 3.0 mmol) dissolved in 4 ml of DCM was added and stirred vigorously at room temperature for 2 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering the desiccant and evaporating the solvent under reduced pressure, the residue was subjected to silica gel chromatography (stepwise: 100% hexane to 50% EtOAc in hexane), whereby hydrazide 34 (0.53 g, white crystals) was obtained. 65%) was obtained.
Thin-layer chromatograph Rf = 0.46 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 8.12 (br s, 1 H, NH), 7.41 (dd, 1 H, J = 1.0, 7.7 Hz, one of Ar), 7.27 ( dd, 1H, J = 1.7, 7.6 Hz, one of Ar), 7.18 (dt, 1H, J = 7.3, 1.2 Hz, one of Ar), 7.12 (dt, 1H, J = 7.8, 2.0 Hz, one of Ar), 4.63 (brs, 1H, NH), 1.04 (s, 9H, t-Bu);
13 C-NMR (136 MHz, DMSO) δ: 166.5, 136.0, 132.9, 130.9, 129.3, 127.0, 119.3, 55.2, 26.9 (3C);
IR (neat): 3382 (NH), 2969 (Ar), 2878 (t-Bu), 1648 (C = O), 1561, 1473, 1434, 1338, 853, 735 cm −1 ;
HRMS (FAB): calcd for C 11 H 16 Br N 2 O 271.0419; found, 271.0449;
m. p. : 85-87 ° C.
Figure 2009035531

(合成例2−10) 2−ブロモ−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−benzoic acid N’−phenyl−hydrazide(35))の合成
フェニルヒドラジン(0.48g,4.4mmol)を6mlのDCMに溶かし、その溶液に10% NaOH溶液を2ml加えた。さらに、DCM 4mlに溶かした酸塩化物29(0.96g,4.4mmol)を加え、室温で2時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、白色結晶であるヒドラジド体35(0.52g、40%)を得た。
薄層クロマトグラフRf=0.73(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:10.20(s,1H,NH),8.00(br s,1H,NH),7.70(d, 1H,J=7.5Hz,one of Ar),7.44−7.53(m,2H,Ar),7.36−7.45(m,1H,one of Ar),7.17(t,2H,J=7.9,Ar),6.86(d,2H,J=7.7Hz,Ar),6.73(t,1H,J=7.2Hz,Ar);
13C−NMR(136MHz,DMSO) δ:167.2,149.1,137.4,133.0,131.5,129.2,128.8(2C),127.8,119.3,118.7(2C),112.4;
IR(neat):3242(NH),3009(Ar),2920(Me),1656(C=O),1495(Ar),1317,915,752cm−1
m.p.:170−172℃.

Figure 2009035531
Synthesis Example 2-10 Synthesis of 2-bromo-benzoic acid N′-phenyl-hydrazide (2-Bromo-benzoic acid N′-phenyl-hydrazide (35)) Phenyl hydrazine (0.48 g, 4.4 mmol) was prepared. Dissolved in 6 ml DCM, 2 ml of 10% NaOH solution was added to the solution. Further, acid chloride 29 (0.96 g, 4.4 mmol) dissolved in 4 ml of DCM was added and stirred vigorously at room temperature for 2 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering the desiccant and evaporating the solvent under reduced pressure, the residue was subjected to silica gel chromatography (stepwise: 100% hexane to 50% EtOAc in hexane), whereby hydrazide 35 (0.52 g, 40% %).
Thin layer chromatograph Rf = 0.73 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.20 (s, 1 H, NH), 8.00 (br s, 1 H, NH), 7.70 (d, 1 H, J = 7.5 Hz, one of Ar), 7.44-7.53 (m, 2H, Ar), 7.36-7.45 (m, 1H, one of Ar), 7.17 (t, 2H, J = 7.9, Ar) ), 6.86 (d, 2H, J = 7.7 Hz, Ar), 6.73 (t, 1H, J = 7.2 Hz, Ar);
13 C-NMR (136 MHz, DMSO) δ: 167.2, 149.1, 137.4, 133.0, 131.5, 129.2, 128.8 (2C), 127.8, 119.3 118.7 (2C), 112.4;
IR (neat): 3242 (NH), 3009 (Ar), 2920 (Me), 1656 (C═O), 1495 (Ar), 1317, 915, 752 cm −1 ;
m. p. : 170-172 ° C.
Figure 2009035531

(合成例2−11) 2−ブロモ安息香酸 N’−(4−ニトロ−フェニル)−ヒドラジド(2−Bromo−benzoic acid N’−(4−nitoro−phenyl)−hydrazide(36))の合成
ジムロート冷却管を付した100mlの三つ口フラスコに4−ニトロフェニルヒドラジン(0.46g,3.0mmol)を入れ、窒素ガスで置換してセプタムキャップした。次に、dry THF 40 mlに溶かした酸塩化物29(0.66g,3.0mmol)を加えた。2時間還流させ、TLCによって出発物質の消失を確認し、反応を止めた。溶媒を減圧留去し、シリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、茶褐色結晶であるヒドラジド体36(0.74g,74%)を得た。
薄層クロマトグラフRf=0.44(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:10.57(s,1H,NH),9.35(s,1H,NH),8.10(d,2H,J=9.3Hz,Ar),7.73(dd,1H,J=7.8,1.0Hz,one of Ar),7.58(dd,2H,J=7.3,1.8Hz,Ar),7.51(dt,1H,J=7.6,1.2Hz,1H,one of Ar),7.44(dt,1H,J=7.6,1.7Hz,one of Ar),6.93(d,2H,J=7.3Hz,one of Ar);
13C−NMR(136MHz,DMSO) δ:167.1,154.7,138.2,136.8,133.0,131.8,129.3,127.8,126.0,119.2,110.9;
IR(neat):3277(NH),1630(C=O),1596,1505(Ar),1330,1271,1109,839,749,687,597cm−1
m.p.:213−215℃.

Figure 2009035531
Synthesis Example 2-11 Synthesis of 2-bromobenzoic acid N ′-(4-nitro-phenyl) -hydrazide (2-Bromo-benzoic acid N ′-(4-nitro-phenyl) -hydrazide (36)) Dimroth 4-Nitrophenylhydrazine (0.46 g, 3.0 mmol) was placed in a 100 ml three-necked flask equipped with a condenser, and the septum was capped with nitrogen gas. Then acid chloride 29 (0.66 g, 3.0 mmol) dissolved in 40 ml dry THF was added. The reaction was stopped by refluxing for 2 hours and confirming the disappearance of the starting material by TLC. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel chromatography (stepwise: 100% hexane to 50% EtOAc in hexane) to obtain hydrazide 36 (0.74 g, 74%) as brown crystals.
Thin-layer chromatograph Rf = 0.44 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.57 (s, 1H, NH), 9.35 (s, 1H, NH), 8.10 (d, 2H, J = 9.3 Hz, Ar), 7.73 (dd, 1H, J = 7.8, 1.0 Hz, one of Ar), 7.58 (dd, 2H, J = 7.3, 1.8 Hz, Ar), 7.51 (dt, 1H, J = 7.6, 1.2 Hz, 1H, one of Ar), 7.44 (dt, 1H, J = 7.6, 1.7 Hz, one of Ar), 6.93 (d, 2H, J = 7.3 Hz, one of Ar);
13 C-NMR (136 MHz, DMSO) δ: 167.1, 154.7, 138.2, 136.8, 133.0, 131.8, 129.3, 127.8, 126.0, 119.2 , 110.9;
IR (neat): 3277 (NH), 1630 (C═O), 1596, 1505 (Ar), 1330, 1271, 1109, 839, 749, 687, 597 cm −1 ;
m. p. : 213-215 ° C.

Figure 2009035531

(合成例2−12) 2−ブロモ−4−メチル−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−4−methyl−benzoic acid N’−phenyl−hydrazide(37))の合成
フェニルヒドラジン(0.11g,1.0mmol)を6mlのDCMに溶かし、その溶液に10% NaOH溶液を2ml加えた。さらに、DCM 4mlに溶かした酸塩化物30(0.23g,1.0mmol)を加え、室温で2時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、白色結晶である新規なヒドラジド体37(0.17g、54%)を得た。
薄層クロマトグラフRf=0.39(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:10.11(d,1H,J=2.7,NH),7.96(d,1H,J=2.4,NH),7.54(s,1H,Ar),7.39(d,1H,J=7.8Hz,one of Ar),7.29(d,1H,J=7.8Hz,Ar),7.16(t,2H,J=7.3Hz,one of Ar),6.85(d,2H,J=7.6Hz,Ar),6.72(t,1H,J=7.3Hz,Ar),2.34(s,1H,Me);
13C−NMR(136MHz,DMSO) δ:167.1,149.1,141.5,134.4,133.2,129.0,128.7,128.2,119.1,118.6,112.3,20.4;
IR(neat):3242(NH),3029(Ar),2920(Me),1653(C=O),1496(Ar),1321,1039,917,827,760,692cm−1
FAB(+)−MS(NBA):m/z(%) 306(49)[MH],289(13),199(52),197(54),136(66);
m.p.:134−135℃.

Figure 2009035531
Synthesis Example 2-12 Synthesis of 2-bromo-4-methyl-benzoic acid N′-phenyl-hydrazide (2-Bromo-4-methyl-benzoic acid N′-phenyl-hydrazide (37)) Phenylhydrazine (0 .11 g, 1.0 mmol) was dissolved in 6 ml of DCM and 2 ml of 10% NaOH solution was added to the solution. Further, acid chloride 30 (0.23 g, 1.0 mmol) dissolved in 4 ml of DCM was added, and the mixture was vigorously stirred at room temperature for 2 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After the desiccant was filtered and the solvent was distilled off under reduced pressure, the residue was subjected to silica gel chromatography (stepwise: 100% hexane to 50% EtOAc in hexane) to give a novel hydrazide 37 (0.17 g) as white crystals. 54%).
Thin-layer chromatograph Rf = 0.39 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.11 (d, 1H, J = 2.7, NH), 7.96 (d, 1H, J = 2.4, NH), 7.54 (s , 1H, Ar), 7.39 (d, 1H, J = 7.8 Hz, one of Ar), 7.29 (d, 1H, J = 7.8 Hz, Ar), 7.16 (t, 2H, J = 7.3 Hz, one of Ar), 6.85 (d, 2H, J = 7.6 Hz, Ar), 6.72 (t, 1H, J = 7.3 Hz, Ar), 2.34 (s , 1H, Me);
13 C-NMR (136 MHz, DMSO) δ: 167.1, 149.1, 141.5, 134.4, 133.2, 129.0, 128.7, 128.2, 119.1, 118.6 , 112.3, 20.4;
IR (neat): 3242 (NH), 3029 (Ar), 2920 (Me), 1653 (C═O), 1496 (Ar), 1321, 1039, 917, 827, 760, 692 cm −1 ;
FAB (+)-MS (NBA): m / z (%) 306 (49) [MH + ], 289 (13), 199 (52), 197 (54), 136 (66);
m. p. : 134-135 ° C.

Figure 2009035531

(合成例2−13) 2−ブロモ−5−フルオロ−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−5−fluoro−benzoic acid N’−phenyl−hydrazide(38))の合成
フェニルヒドラジン(0.11g,1.0mmol)を6mlのDCMに溶かし、その溶液に10% NaOH溶液を2ml加えた。さらに、DCM 4mlに溶かした酸塩化物31(0.24g,1.0mmol)を加え、室温で2時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、白色結晶である新規なヒドラジド体38(0.09g、29%)を得た。
薄層クロマトグラフRf=0.26(hexane:EtOAc=7:3(体積比));
H−NMR(400MHz,DMSO) δ:10.57(s,1H,NH),7.99(s,1H,NH),7.74(dd,J=8.8,4.9Hz,1H,one of Ar),7.43(dd,1H,J=8.5,3.2Hz,one of Ar),7.31(dt,1H,J=8.5,3.2Hz,one of Ar),7.17(t,2H,J=8.5Hz, 1H, Ar),6.88(d,2H,J=7.8Hz,Ar),6.73(t,1H,J=7.3Hz,Ar);
13C−NMR(136MHz,DMSO) δ:195.9,162.2,159.7,148.4,139.0,138.9,134.9,134.8,128.7,118.7,118.6,118.4,116.5,116.3,114.1,114.0,112.4;
IR(neat):3271(NH),3049(Ar),1656(C=O),1515(Ar),1465,1262,753cm−1
FAB(+)−MS(NBA):m/z(%) 310(10)[MH],290[5],176[9],136[68],107[21],89[15],77[12];
m.p.:170−172℃.

Figure 2009035531
Synthesis Example 2-13 Synthesis of 2-bromo-5-fluoro-benzoic acid N′-phenyl-hydrazide (2-Bromo-5-fluoro-benzoic acid N′-phenyl-hydrazide (38)) Phenylhydrazine (0 .11 g, 1.0 mmol) was dissolved in 6 ml of DCM and 2 ml of 10% NaOH solution was added to the solution. Further, acid chloride 31 (0.24 g, 1.0 mmol) dissolved in 4 ml of DCM was added, and the mixture was vigorously stirred at room temperature for 2 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After the desiccant was filtered and the solvent was distilled off under reduced pressure, the residue was subjected to silica gel chromatography (stepwise: 100% hexane to 50% EtOAc in hexane) to give a novel hydrazide 38 (0.09 g) as white crystals. 29%).
Thin-layer chromatograph Rf = 0.26 (hexane: EtOAc = 7: 3 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.57 (s, 1 H, NH), 7.99 (s, 1 H, NH), 7.74 (dd, J = 8.8, 4.9 Hz, 1 H , One of Ar), 7.43 (dd, 1H, J = 8.5, 3.2 Hz, one of Ar), 7.31 (dt, 1H, J = 8.5, 3.2 Hz, one of Ar ), 7.17 (t, 2H, J = 8.5 Hz, 1H, Ar), 6.88 (d, 2H, J = 7.8 Hz, Ar), 6.73 (t, 1H, J = 7. 3 Hz, Ar);
13 C-NMR (136 MHz, DMSO) δ: 195.9, 162.2, 159.7, 148.4, 139.0, 138.9, 134.9, 134.8, 128.7, 118.7 118.6, 118.4, 116.5, 116.3, 114.1, 114.0, 112.4;
IR (neat): 3271 (NH), 3049 (Ar), 1656 (C═O), 1515 (Ar), 1465, 1262, 753 cm −1 ;
FAB (+)-MS (NBA): m / z (%) 310 (10) [MH + ], 290 [5], 176 [9], 136 [68], 107 [21], 89 [15], 77 [12];
m. p. : 170-172 ° C.

Figure 2009035531

(合成例2−14) 2−ブロモ−5−メトキシ−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−5−methoxy−benzoic acid N’−phenyl−hydrazide(39))の合成
フェニルヒドラジン(0.30g,2.8mmol)を6mlのDCMに溶かし、その溶液に10% NaOH溶液を2ml加えた。さらに、DCM 4mlに溶かした酸塩化物32(0.70g,2.8mmol)を加え、室温で2時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、白色結晶である新規なヒドラジド体39(0.50g、56%)を得た。
薄層クロマトグラフRf=0.51(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:10.17(s,1H,NH),7.96(s,1H,NH),7.58(dd,1H,J=8.0,0.73Hz,one of Ar),7.17(t,2H,J=7.6Hz,Ar),7.02(s,1H,one of Ar),6.99(d,1H,J=3.2Hz,one of Ar),6.86(d,2H,J=7.8Hz,Ar),6.72(t,1H,J=7.3Hz,Ar),3.11(s,3H,MeO);
13C−NMR(136MHz,DMSO) δ:166.7,158.4,149.0,138.0,133.9,128.7,118.6,117.0,114.9,112.4,109.4,55.7;
IR(neat):3238(NH),3006(Ar),1649(C=O),1598,1493(Ar),1242,1239cm−1
FAB(+)−MS(NBA):m/z(%) 322(12)[MH],238(14),213(8),176(9),136(65),107(21),85(42);
m.p.:153−155℃.

Figure 2009035531
Synthesis Example 2-14 Synthesis of 2-bromo-5-methoxy-benzoic acid N′-phenyl-hydrazide (2-Bromo-5-methoxy-benzoic acid N′-phenyl-hydrazide (39)) Phenylhydrazine (0) .30 g, 2.8 mmol) was dissolved in 6 ml of DCM and 2 ml of 10% NaOH solution was added to the solution. Further, acid chloride 32 (0.70 g, 2.8 mmol) dissolved in 4 ml of DCM was added and stirred vigorously at room temperature for 2 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After the desiccant was filtered and the solvent was distilled off under reduced pressure, the residue was subjected to silica gel chromatography (stepwise: 100% hexane to 50% EtOAc in hexane) to give a novel hydrazide 39 (0.50 g) as white crystals. 56%).
Thin-layer chromatograph Rf = 0.51 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.17 (s, 1H, NH), 7.96 (s, 1H, NH), 7.58 (dd, 1H, J = 8.0, 0.73 Hz, one of Ar), 7.17 (t, 2H, J = 7.6 Hz, Ar), 7.02 (s, 1H, one of Ar), 6.99 (d, 1H, J = 3.2 Hz, one of Ar), 6.86 (d, 2H, J = 7.8 Hz, Ar), 6.72 (t, 1H, J = 7.3 Hz, Ar), 3.11 (s, 3H, MeO);
13 C-NMR (136 MHz, DMSO) δ: 166.7, 158.4, 149.0, 138.0, 133.9, 128.7, 118.6, 117.0, 114.9, 112.4 , 109.4, 55.7;
IR (neat): 3238 (NH), 3006 (Ar), 1649 (C═O), 1598, 1493 (Ar), 1242, 1239 cm −1 ;
FAB (+)-MS (NBA): m / z (%) 322 (12) [MH + ], 238 (14), 213 (8), 176 (9), 136 (65), 107 (21), 85 (42);
m. p. 153-155 ° C.
Figure 2009035531

(合成例2−14) 2−クロロ−安息香酸 N’−フェニル−ヒドラジド(2−Chloro benzoic acid N’−phenyl−hydrazide(40))の合成
フェニルヒドラジン(0.32g,3.0mmol)を6mlのDCMに溶かし、その溶液に10% NaOH溶液を2ml加えた。さらに、DCM 4mlに溶かした酸塩化物33(0.53g,3.0mmol)を加え、室温で2時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、白色結晶であるヒドラジド体40(0.25g、34%)を得た。
薄層クロマトグラフRf=0.36(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:10.20(d,1H,J=2.0Hz,NH),8.00(d,1H,J=2.0Hz,NH),7.37−7.57(m,4H,Ar),7.17(t,2H,J=7.8Hz,Ar),6.84(d,2H,J=8.5Hz,Ar),6.73(t,1H,J=7.3Hz,one of Ar);
13C−NMR(136MHz,DMSO) δ:166.2,149.1,135.3,131.2,130.2,129.7,129.2,128.7,127.2,118.6,112.3;
IR(neat):3265(NH),3007(Ar),1653(C=O),1598,1494(Ar),1318,1239,916,742cm−1
m.p.:152−154℃.

Figure 2009035531
(Synthesis Example 2-14) Synthesis of 2-chloro-benzoic acid N′-phenyl-hydrazide (2-Chlorobenzoic acid N′-phenyl-hydrazide (40)) 6 ml of phenylhydrazine (0.32 g, 3.0 mmol) Was dissolved in DCM and 2 ml of 10% NaOH solution was added to the solution. Further, acid chloride 33 (0.53 g, 3.0 mmol) dissolved in 4 ml of DCM was added, and the mixture was vigorously stirred at room temperature for 2 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered and the solvent was distilled off under reduced pressure. Then, the residue was subjected to silica gel chromatography (step%: 100% hexane to 50% EtOAc in hexane), whereby hydrazide 40 (0.25 g, 34, 34, white crystals) was obtained. %).
Thin-layer chromatograph Rf = 0.36 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400MHz, DMSO ) δ: 10.20 (d, 1H, J = 2.0Hz, NH), 8.00 (d, 1H, J = 2.0Hz, NH), 7.37-7 .57 (m, 4H, Ar), 7.17 (t, 2H, J = 7.8 Hz, Ar), 6.84 (d, 2H, J = 8.5 Hz, Ar), 6.73 (t, 1H, J = 7.3 Hz, one of Ar);
13 C-NMR (136 MHz, DMSO) δ: 166.2, 149.1, 135.3, 131.2, 130.2, 129.7, 129.2, 128.7, 127.2, 118.6 , 112.3;
IR (neat): 3265 (NH), 3007 (Ar), 1653 (C═O), 1598, 1494 (Ar), 1318, 1239, 916, 742 cm −1 ;
m. p. : 152-154 ° C.

Figure 2009035531

(合成例2−15) N’−(2−ヨード−ベンゾイル)−ヒドラジンカルボン酸 tert−ブチルエステル(N’−(2−Iodo−benzoyl)−hydrazinecarboxylic acid tert−butyl ester(41))の合成
ジムロート冷却管を付した20mlの三つ口フラスコにtert−ブチルカーバゼート(0.13g,1.0mmol)を入れ、窒素ガスで置換してセプタムキャップした。次に、dry THF 6mlに溶かした酸塩化物28(0.61g,2.3mmol)を加えた。2時間還流させ、TLCによって出発物質の消失を確認し、反応を止めた。そして、THF層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。次いで、乾燥剤を濾過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、白色固体である新規なヒドラジド体41(0.27g,59%)を得た。
薄層クロマトグラフRf=0.68(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:7.88(d,2H,J=8.0Hz,two of Ar),7.50(d,1H,J=6.6Hz,one of Ar),7.39(dt,1H,J=7.6,1.0Hz,one of Ar),7.14(dt,1H,J=6.1,1.7Hz,one of Ar),6.90(s,1H,NH),1.50(s,9H,t−Bu);
13C−NMR(136MHz,DMSO) δ:168.2,155.2,140.1,138.9,131.9,28.8,128.1,92.8,82.1,28.1(3C);
IR(neat):3333(NH),3262,2976(t−Bu),1723,1670(C=0),1517(Ar),1498,1367,1253,1157,1013,914,860,748cm−1
m.p.:111−113℃.

Figure 2009035531
Synthesis Example 2-15 Synthesis of N ′-(2-iodo-benzoyl) -hydrazinecarboxylic acid tert-butyl ester (N ′-(2-Iodo-benzoyl) -hydrazine carbonate acid tert-butyl ester (41)) Dimroth Tert-butylcarbazate (0.13 g, 1.0 mmol) was placed in a 20 ml three-necked flask equipped with a condenser, and the septum cap was replaced with nitrogen gas. Then acid chloride 28 (0.61 g, 2.3 mmol) dissolved in 6 ml dry THF was added. The reaction was stopped by refluxing for 2 hours and confirming the disappearance of the starting material by TLC. The THF layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Next, the desiccant was filtered, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane), whereby a novel hydrazide 41 (0. 27 g, 59%).
Thin-layer chromatograph Rf = 0.68 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 7.88 (d, 2H, J = 8.0 Hz, two of Ar), 7.50 (d, 1H, J = 6.6 Hz, one of Ar), 7 .39 (dt, 1H, J = 7.6, 1.0 Hz, one of Ar), 7.14 (dt, 1H, J = 6.1, 1.7 Hz, one of Ar), 6.90 (s , 1H, NH), 1.50 (s, 9H, t-Bu);
13 C-NMR (136MHz, DMSO ) δ: 168.2,155.2,140.1,138.9,131.9,28.8,128.1,92.8,82.1,28.1 (3C);
IR (neat): 3333 (NH), 3262, 2976 (t-Bu), 1723, 1670 (C = 0), 1517 (Ar), 1498, 1367, 1253, 1157, 1013, 914, 860, 748 cm −1 ;
m. p. : 111-113 ° C.

Figure 2009035531

(合成例2−16) 安息香酸 N’−(2−ヨード−ベンゾイル)−ヒドラジド(Benzoic acid N’(2−Iodo−benzoyl)−hydrazide(42))の合成
ジムロート冷却管を付した20mlの三つ口フラスコにベンゾイルヒドラジン(0.27g,2.0mmol)を入れ、窒素ガスで置換してセプタムキャップした。次に、dry THF 10mlに溶かした酸塩化物28(0.54g,2.0mmol)を加えた。2時間還流させ、TLCによって出発物質の消失を確認し、反応を止めた。そして、THF層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。次いで、乾燥剤を濾過し、溶媒を減圧留去したのち、残渣を酢酸エチルに溶かして再結晶させ、白色結晶であるヒドラジド体42(0.26g,72%)を得た。
薄層クロマトグラフRf=0.45(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:10.62(s,1H,NH),10.34(s,1H,NH),7.93(d,J=3H,7.6Hz,Ar),7.60(t,1H,J=7.1Hz,Ar),7.47−7.55(m,4H,Ar),7.20−7.27(m,1H,Ar);
13C−NMR(136MHz,DMSO) δ:168.1,165.6,140.4,139.6,132.4,131.9,131.6,128.9,128.5,128.0,127.6,93.8;
IR(neat):3241(NH),3057(Ar),1639(C=0),1516(Ar),1486,1287,711cm−1
m.p.:185−187℃.

Figure 2009035531
(Synthesis Example 2-16) Synthesis of benzoic acid N ′-(2-iodo-benzoyl) -hydrazide (Benzoic acid N ′ (2-Iodo-benzoyl) -hydrazide (42)) Benzoylhydrazine (0.27 g, 2.0 mmol) was placed in a one-necked flask and replaced with nitrogen gas to cap the septum. Next, acid chloride 28 (0.54 g, 2.0 mmol) dissolved in 10 ml of dry THF was added. The reaction was stopped by refluxing for 2 hours and confirming the disappearance of the starting material by TLC. The THF layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Next, the desiccant was filtered and the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate and recrystallized to obtain hydrazide 42 (0.26 g, 72%) as white crystals.
Thin-layer chromatograph Rf = 0.45 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.62 (s, 1H, NH), 10.34 (s, 1H, NH), 7.93 (d, J = 3H, 7.6 Hz, Ar), 7.60 (t, 1H, J = 7.1 Hz, Ar), 7.47-7.55 (m, 4H, Ar), 7.20-7.27 (m, 1H, Ar);
13 C-NMR (136 MHz, DMSO) δ: 168.1, 165.6, 140.4, 139.6, 132.4, 131.9, 131.6, 128.9, 128.5, 128.0 , 127.6, 93.8;
IR (neat): 3241 (NH), 3057 (Ar), 1639 (C = 0), 1516 (Ar), 1486, 1287, 711 cm −1 ;
m. p. 185-187 ° C.
Figure 2009035531

(合成例2−17) 2−ヨード−安息香酸 N’−[(4−メチルフェニル)スルホニル]ヒドラジド(2−Iodo−benzoic acid N’−[(4−methylphenyl)sulfonyl]hydrazide(43))の合成
ジムロート冷却管を付した20mlの三つ口フラスコにp−トルエンスルフォニルヒドラジン(0.09g,0.5mmol)を入れ、窒素ガスで置換してセプタムキャップした。次に、dry THF 5mlに溶かした酸塩化物28(0.14g,0.5mmol)を加えた。2時間還流させ、TLCによって出発物質の消失を確認し、反応を止めた。そして、THF層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。次いで、乾燥剤を濾過し、溶媒を減圧留去したのち、残渣を酢酸エチルに溶かして再結晶させ、白色結晶であるヒドラジド体43(0.19g,92%)を得た。
薄層クロマトグラフRf=0.21(hexane:EtOAc=7:3(体積比));
H−NMR(400MHz,DMSO) δ:10.5(d,1H,J=3.2Hz,NH),10.1(d,1H,J=3.4Hz,NH),7.84(d,1H,J=7.8Hz,one of Ar),7.79(d,2H,J=8.3Hz,Ar),7.43(t,1H,J=7.3Hz,one of Ar),7.36(d,2H,J=8.0Hz,Ar),7.17(d,2H,J=7.3Hz,one of Ar),2.36(s,3H,Me);
13C−NMR(136MHz,DMSO) δ:167.2,143.3,139.7,139.5,136.2,131.5,129.3,128.6,128.0,93.6,21.1;
IR(neat):3285(NH),3153(Ar),1647(C=0),1529,1373,1342,1171,733,695cm−1
m.p.:200−201℃.

Figure 2009035531
(Synthesis Example 2-17) 2-Iodo-benzoic acid of N ′-[(4-methylphenyl) sulfonyl] hydrazide (2-Iodo-benzoic acid N ′-[(4-methylphenyl) sulfonyl] hydrazide (43)) Synthesis p-Toluenesulfonylhydrazine (0.09 g, 0.5 mmol) was placed in a 20 ml three-necked flask equipped with a Dimroth condenser, and replaced with nitrogen gas to cap the septum. Next, acid chloride 28 (0.14 g, 0.5 mmol) dissolved in 5 ml of dry THF was added. The reaction was stopped by refluxing for 2 hours and confirming the disappearance of the starting material by TLC. The THF layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Next, the desiccant was filtered and the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate and recrystallized to obtain hydrazide 43 (0.19 g, 92%) as white crystals.
Thin-layer chromatograph Rf = 0.21 (hexane: EtOAc = 7: 3 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.5 (d, 1H, J = 3.2 Hz, NH), 10.1 (d, 1H, J = 3.4 Hz, NH), 7.84 (d , 1H, J = 7.8 Hz, one of Ar), 7.79 (d, 2H, J = 8.3 Hz, Ar), 7.43 (t, 1H, J = 7.3 Hz, one of Ar), 7.36 (d, 2H, J = 8.0 Hz, Ar), 7.17 (d, 2H, J = 7.3 Hz, one of Ar), 2.36 (s, 3H, Me);
13 C-NMR (136 MHz, DMSO) δ: 167.2, 143.3, 139.7, 139.5, 136.2, 131.5, 129.3, 128.6, 128.0, 93.6 , 21.1;
IR (neat): 3285 (NH), 3153 (Ar), 1647 (C = 0), 1529, 1373, 1342, 1171, 733, 695 cm −1 ;
m. p. : 200-201 ° C.
Figure 2009035531

(合成例2−18) 2−ヨード−安息香酸 N’−ベンジル−ヒドラジド(2−Iodo−benzoic acid N’−benzyl−hydrazide(44))の合成
ベンジルヒドラジン塩酸塩(0.16g,1.0mmol)を4mlのDCMに懸濁させ、その溶液に10% NaOH溶液を3ml加えた。さらに、DCM 2mlに溶かした酸塩化物28(0.27g,1.0mmol)を加え、室温で5時間激しく攪拌した。TLCにより反応の終結を確認した後、DCM層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。次いで、乾燥剤を濾過し、溶媒を減圧留去したのち、残渣をシリカゲルクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、茶色粘性固体である新規なヒドラジド体44(0.21g,59%)を得た。
薄層クロマトグラフRf=0.45(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO) δ:7,86(dd,1H,J=8.0,3.7Hz,NH),7,77(dd,1H,J=8.0,3.2Hz,NH),7.16−7.47(m,5H,Ar),6.99−7.13(m,1H,Ar),4.90(d,1H,J=5.1Hz,Ar),4.46(d,1H,J=2.0Hz,CH),3.67(s,1H,NH);
13C−NMR(136MHz,DMSO) δ:171.9,168.9,143.3,141.0,139.2,138.3,135.2,134.8,130.6,129.5,129.0,128.7,128.6,128.2,128.0,127.8,127.6,127.5,127.0,93.0,92.4,55.2,53.2;
IR(neat):3320(NH),3212(Ar),3059(CH),3029,2921,1648(C=0),1424,1250,1016,736cm−1

Figure 2009035531
(Synthesis Example 2-18) Synthesis of 2-iodo-benzoic acid N′-benzyl-hydrazide (2-Iodo-benzoic acid N′-benzyl-hydrazide (44)) Benzylhydrazine hydrochloride (0.16 g, 1.0 mmol) ) Was suspended in 4 ml of DCM and 3 ml of 10% NaOH solution was added to the solution. Further, acid chloride 28 (0.27 g, 1.0 mmol) dissolved in 2 ml of DCM was added, and the mixture was vigorously stirred at room temperature for 5 hours. After confirming the completion of the reaction by TLC, the DCM layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Next, the desiccant was filtered and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel chromatography (stepwise: 100% hexane to 50% EtOAc in hexane), whereby a novel hydrazide body 44 (brown viscous solid) ( 0.21 g, 59%).
Thin-layer chromatograph Rf = 0.45 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 7, 86 (dd, 1 H, J = 8.0, 3.7 Hz, NH), 7, 77 (dd, 1 H, J = 8.0, 3.2 Hz, NH), 7.16-7.47 (m, 5H, Ar), 699-7.13 (m, 1H, Ar), 4.90 (d, 1H, J = 5.1 Hz, Ar), 4.46 (d, 1 H, J = 2.0 Hz, CH 2 ), 3.67 (s, 1 H, NH);
13 C-NMR (136 MHz, DMSO) δ: 171.9, 168.9, 143.3, 141.0, 139.2, 138.3, 135.2, 134.8, 130.6, 129.5 , 129.0, 128.7, 128.6, 128.2, 128.0, 127.8, 127.6, 127.5, 127.0, 93.0, 92.4, 55.2, 53 .2;
IR (neat): 3320 (NH), 3212 (Ar), 3059 (CH 2 ), 3029, 2921, 1648 (C = 0), 1424, 1250, 1016, 736 cm −1 .
Figure 2009035531

(実施例1)
合成例2−5で合成したヒドラジド体6を10ppmになるように、溶媒に溶解させたものを線虫に与えたところ、線虫に対して殺虫効果が認められた。これから、合成例5−1で合成したヒドラジド体6は、殺虫剤として用いられる可能性があることがわかった。
Example 1
When the hydrazide 6 synthesized in Synthesis Example 2-5 was dissolved in a solvent so as to have a concentration of 10 ppm, the nematode was found to have an insecticidal effect. From this, it was found that the hydrazide 6 synthesized in Synthesis Example 5-1 may be used as an insecticide.

[酸ヒドラジンの直接合成]
(合成例3−1) 2−ブロモ−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−benzoic acid N’−phenyl−hydrazide(35)の合成
アルゴン置換したナス型フラスコにフェニルヒドラジン(0.11mg,1.0mmol)を無水DMF(10ml)に溶解させ、2−ブロモ安息香酸(201.0mg,1.0mmol)、HOBt(ブタノール)・H2O(0.15g,1.1mmol)、トリエチルアミン(0.11g,1.1mmol)、DCC(0.21g,1.1mmol)を加えた後、40℃で12時間撹拌した。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、(合成例2−10)と同一の化合物である、白色であるヒドラジド体35(0.23g,78%)を得た。(合成例2−10)に比べ、ヒドラジド体の収率が良かった。ただし、副生物として多量の尿素が発生し、分離操作が困難だった。

Figure 2009035531
[Direct synthesis of acid hydrazine]
(Synthesis Example 3-1) Synthesis of 2-Bromo-benzoic acid N′-phenyl-hydrazide (2-Bromo-benzoic acid N′-phenyl-hydrazide (35)) , 1.0 mmol) is dissolved in anhydrous DMF (10 ml), 2-bromobenzoic acid (201.0 mg, 1.0 mmol), HOBt (butanol) .H 2 O (0.15 g, 1.1 mmol), triethylamine (0. 11 g, 1.1 mmol) and DCC (0.21 g, 1.1 mmol) were added, followed by stirring for 12 hours at 40 ° C. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, the organic layer was washed with distilled water and saturated brine, By filtering the desiccant and evaporating the solvent under reduced pressure, the residue was subjected to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane), so that (Synthesis Example 2-10) and A white hydrazide compound 35 (0.23 g, 78%) was obtained, which was the same compound, but the yield of the hydrazide compound was good compared to (Synthesis Example 2-10). Urea was generated and separation operation was difficult.
Figure 2009035531

(合成例3−2) 2−ブロモ−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−benzoic acid N’−phenyl−hydrazide(35)の合成
アルゴン置換したナス型フラスコにフェニルヒドラジン(0.11g,1.0mmol)を無水DMF(10ml)に溶解させ、2−ブロモ安息香酸(0.20g,1.0mmol)、HOBt(ブタノール)・HO(0.15g,1.1mmol)、DMAP(6.1mg,5mol%)、EDC・HCl(0.21g,1.1mmol)を加えた後、40℃で12時間撹拌した。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、(合成例2−10)と同一の化合物である、白色であるヒドラジド体35(0.23g,80%)を得た。(合成例2−10)に比べ、ヒドラジド体の収率が良かった。また、副生物はほとんど発生しなかった。

Figure 2009035531
(Synthesis Example 3-2) Synthesis of 2-Bromo-benzoic acid N′-phenyl-hydrazide (2-Bromo-benzoic acid N′-phenyl-hydrazide (35)) , 1.0 mmol) is dissolved in anhydrous DMF (10 ml), 2-bromobenzoic acid (0.20 g, 1.0 mmol), HOBt (butanol) .H 2 O (0.15 g, 1.1 mmol), DMAP ( 6.1 mg, 5 mol%) and EDC.HCl (0.21 g, 1.1 mmol) were added, followed by stirring for 12 hours at 40 ° C. The disappearance of the starting material was confirmed by TLC, distilled water was added, and the reaction was performed. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and anhydrous magnesium sulfate. By filtering the desiccant and distilling off the solvent under reduced pressure, the residue was subjected to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane), which was the same as (Synthesis Example 2-10). A white hydrazide compound 35 (0.23 g, 80%) was obtained as a compound, and the yield of the hydrazide compound was good compared to (Synthesis Example 2-10). It was.
Figure 2009035531

(合成例3−3) 2−ブロモ−5−フルオロ−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−5−fluoro−benzoic acid N’−phenyl−hydrazide(38))の合成
アルゴン置換したナス型フラスコにフェニルヒドラジン(0.11g,1.0mmol)を無水DMF(10ml)に溶解させ、2−ブロモ−5−フルオロ安息香酸(0.22g,1.0mmol)、HOBt・HO(0.15mg,1.1mmol)、DMAP(6.1mg,5mol%)、EDC・HCl(0.21g,1.1mmol)を加えた後、40℃で12時間撹拌した。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣を酢酸エチルに溶かして再結晶させ、(合成例2−13)と同一の化合物である、白色結晶であるヒドラジド体38(0.50g、98%)を得た。(合成例2−13)に比べて、極めて収率がよかった。

Figure 2009035531
Synthesis Example 3-3 Synthesis of 2-Bromo-5-fluoro-benzoic acid N′-phenyl-hydrazide (2-Bromo-5-fluoro-benzoic acid N′-phenyl-hydrazide (38)) Argon-substituted eggplant In a flask, phenylhydrazine (0.11 g, 1.0 mmol) was dissolved in anhydrous DMF (10 ml), and 2-bromo-5-fluorobenzoic acid (0.22 g, 1.0 mmol), HOBt · H 2 O (0 .15 mg, 1.1 mmol), DMAP (6.1 mg, 5 mol%) and EDC · HCl (0.21 g, 1.1 mmol) were added, and the mixture was stirred at 40 ° C. for 12 hours. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered and the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate and recrystallized, and the same compound as (Synthesis Example 2-13), hydrazide 38 (0.50 g) as white crystals. 98%). Compared to (Synthesis Example 2-13), the yield was extremely good.
Figure 2009035531

(合成例3−4) 2−ブロモ−5−メトキシ−安息香酸 N’−フェニル−ヒドラジド(2−Bromo−5−methoxy−benzoic acid N’−phenyl−hydrazide(39))の合成
アルゴン置換したナス型フラスコにフェニルヒドラジン(0.11g,1.0mmol)を無水DMF(10ml)に溶解させ、2−ブロモ−5−フルオロ安息香酸(0.22g,1.0mmol)、HOBt・HO(0.15mg,1.1mmol)、DMAP(6.1mg,5mol%)、EDC・HCl(0.21g,1.1mmol)を加えた後、40℃で12時間撹拌した。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、残渣を酢酸エチルに溶かして再結晶させ、(合成例2−14)と同一の化合物である、白色結晶であるヒドラジド体39(0.50g、98%)を得た。(合成例2−14)に比べて、極めて収率がよかった。

Figure 2009035531
Synthesis Example 3-4 Synthesis of 2-Bromo-5-methoxy-benzoic acid N′-phenyl-hydrazide (2-Bromo-5-methoxy-benzoic acid N′-phenyl-hydrazide (39)) Argon-substituted eggplant In a flask, phenylhydrazine (0.11 g, 1.0 mmol) was dissolved in anhydrous DMF (10 ml), and 2-bromo-5-fluorobenzoic acid (0.22 g, 1.0 mmol), HOBt · H 2 O (0 .15 mg, 1.1 mmol), DMAP (6.1 mg, 5 mol%) and EDC · HCl (0.21 g, 1.1 mmol) were added, and the mixture was stirred at 40 ° C. for 12 hours. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered and the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate and recrystallized, and the same compound as (Synthesis Example 2-14), hydrazide 39 (0.50 g) as white crystals. 98%). Compared to (Synthesis Example 2-14), the yield was extremely good.
Figure 2009035531

(合成例3−1)〜(合成例3−4)から、脱水縮合剤を用いると、塩酸化物を用いず、2−ハロ安息香酸とヒドラジンとから、酸ヒドラジドが直接合成できることがわかった。塩酸化物には、不安定なものが多く、酸ヒドラジドの収率を低下させる原因となるものがある。脱水縮合剤を用いると、工程を短縮できるとともに、酸ヒドラジドの収率を向上させることができる可能性があることがわかった。   From Synthesis Examples 3-1 to 3-4, it was found that acid hydrazide can be directly synthesized from 2-halobenzoic acid and hydrazine without using a salt oxide when a dehydrating condensing agent is used. Many of the salt oxides are unstable, and some of them cause a decrease in the yield of acid hydrazide. It has been found that the use of a dehydrating condensing agent can shorten the process and improve the yield of acid hydrazide.

[1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の合成]
(合成例4−1) 1−フェニル−1,2−ジヒドロインダゾール−3−オン(1−Phenyl−1,2−dihydro−indazole−3−one (10))の合成
30mlの三つ口フラスコにヒドラジド体2(0.17g,0.5mmol)、CuI(10mg,0.05mmol,10mol%)、L−プロリン(12mg,0.10mmol,20mol%)、KCO(0.14g,1.0mmol)、dry DMSO(5ml)を加え、窒素気流下、70℃で3時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去して、紫色結晶であるインダゾール誘導体10(0.096g,収率:91%)を得た。
薄層クロマトグラフ:Rf=0.73(hexane:EtOAc=1:1);
H−NMR(400MHz,DMSO)δ:11.28(s,1H,NH),7.76(d,2H,J=8.5Hz,Ar),7.68(d,2H,J=8.3Hz,Ar),7.51(dd,2H,J=7.8,8.1Hz,Ar),7.44(t,1H,J=7.8Hz,one of Ar),7.25(t,1H,J=7.3Hz,one of Ar),7.15(dd,1H,J=7.1,7.8Hz,one of Ar);
13C−NMR(136MHz,DMSO)δ:156.3,140.2,139.2.129.5(2C),128.4,124.8,120.6(2C),120.5,120.3,114.8,110.3;
上記H−NMRと13C−NMRとのスペクトルデータは、文献値のH−NMR(300MHz,DMSO)δ:11.25(br s,1H),7.77(m,2H),7.69(br d,2H,J=7.4Hz),7.49(m,3H),7.26(br t,1H,J=7.4Hz),7.16(br t,1H,J=7.5Hz)、13C−NMR(67.8MHz,CDCl)δ:156.6,140.6,139.6.129.9(2C),128.7,125.1,121.0(2C),120.9,120.7,115.1,110.7.)と一致した。

Figure 2009035531
[Synthesis of 1-Substituted-1,2-Dihydroindazol-3-one Derivative]
Synthesis Example 4-1 Synthesis of 1-phenyl-1,2-dihydroindazol-3-one (1-Phenyl-1,2-dihydro-indazole-3-one (10)) In a 30 ml three-necked flask Hydrazide 2 (0.17 g, 0.5 mmol), CuI (10 mg, 0.05 mmol, 10 mol%), L-proline (12 mg, 0.10 mmol, 20 mol%), K 2 CO 3 (0.14 g, 1.mol). 0 mmol), dry DMSO (5 ml) was added, and the mixture was reacted at 70 ° C. for 3 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered and the solvent was distilled off under reduced pressure to obtain indazole derivative 10 (0.096 g, yield: 91%) as purple crystals.
Thin layer chromatograph: Rf = 0.73 (hexane: EtOAc = 1: 1);
1 H-NMR (400 MHz, DMSO) δ: 11.28 (s, 1H, NH), 7.76 (d, 2H, J = 8.5 Hz, Ar), 7.68 (d, 2H, J = 8) .3 Hz, Ar), 7.51 (dd, 2H, J = 7.8, 8.1 Hz, Ar), 7.44 (t, 1H, J = 7.8 Hz, one of Ar), 7.25 ( t, 1H, J = 7.3 Hz, one of Ar), 7.15 (dd, 1H, J = 7.1, 7.8 Hz, one of Ar);
13 C-NMR (136 MHz, DMSO) δ: 156.3, 140.2, 139.2.129.5 (2C), 128.4, 124.8, 120.6 (2C), 120.5, 120 .3,114.8,110.3;
The spectrum data of the 1 H-NMR and 13 C-NMR are as follows: 1 H-NMR (300 MHz, DMSO) δ: 11.25 (brs, 1H), 7.77 (m, 2H), 7 .69 (br d, 2H, J = 7.4 Hz), 7.49 (m, 3H), 7.26 (br t, 1H, J = 7.4 Hz), 7.16 (br t, 1H, J = 7.5 Hz), 13 C-NMR (67.8 MHz, CDCl 3 ) δ: 156.6, 140.6, 139.6.129.9 (2C), 128.7, 125.1, 121.0 (2C), 120.9, 120.7, 115.1, 110.7. ).

Figure 2009035531

(合成例4−2) 1−tert−ブチル−1,2−ジヒドロインダゾール−3−オン(1−tert−Butyl−1,2−dihydro−indazol−3−one (11))の合成
30mlの三つ口フラスコにヒドラジド体3(0.32g,1.0mmol)、CuI(19mg,0.10mmol,10mol%)、L−プロリン(23mg,0.20mmol,20mol%)、KCO(0.28g,2.0mmol)、dry DMSO(10ml)を加え、窒素気流下、70℃で3時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去することで、乳白色結晶であるインダゾール誘導体11(0.16g,収率:83%)を得た。
薄層クロマトグラフ:Rf=0.36(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:10.50(s,1H,NH),7.59(d,1H,J=8.1Hz,one of Ar),7.52(d,1H,J=8.8Hz,one of Ar),7.20(ddd,1H,J=1.0,1.2,8.1Hz,one of Ar),6.92(dd,1H,J=7.3,7.6Hz,one of Ar),1.54(s,9H,t−Bu);
H−NMR(400MHz,CDCl)δ:7.81(d,1H,J=8.0Hz,one of Ar),7.54(d,1H,J=8.4Hz,one of Ar),7.38(dd,1H,J=6.3,8.5Hz,one of Ar),7.80(dd,1H,J=6.6,8.0Hz,one of Ar),1.51(s,9H,t−Bu);
13C−NMR(136MHz,DMSO)δ:153.0,139.6,126.4,120.2,118.2,114.1,111.9,58.3,29.3(3C);
IR(neat):2979(NH),1648(C=O),1538,1209,748cm−1
HRMS(ES1):calcd for C1114O 191.1179;found,191.1182;
m.p. 115℃−117℃.

Figure 2009035531
Synthesis Example 4-2 Synthesis of 1-tert-Butyl-1,2-dihydroindazol-3-one (1-tert-Butyl-1,2-dihydro-indazol-3-one (11)) In a two-necked flask, hydrazide 3 (0.32 g, 1.0 mmol), CuI (19 mg, 0.10 mmol, 10 mol%), L-proline (23 mg, 0.20 mmol, 20 mol%), K 2 CO 3 (0. 28 g, 2.0 mmol) and dry DMSO (10 ml) were added, and the mixture was reacted at 70 ° C. for 3 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered and the solvent was distilled off under reduced pressure to obtain indazole derivative 11 (0.16 g, yield: 83%) as milky white crystals.
Thin layer chromatograph: Rf = 0.36 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 10.50 (s, 1 H, NH), 7.59 (d, 1 H, J = 8.1 Hz, one of Ar), 7.52 (d, 1 H, J = 8.8 Hz, one of Ar), 7.20 (ddd, 1H, J = 1.0, 1.2, 8.1 Hz, one of Ar), 6.92 (dd, 1H, J = 7.3). , 7.6 Hz, one of Ar), 1.54 (s, 9H, t-Bu);
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.81 (d, 1H, J = 8.0 Hz, one of Ar), 7.54 (d, 1H, J = 8.4 Hz, one of Ar), 7.38 (dd, 1H, J = 6.3, 8.5 Hz, one of Ar), 7.80 (dd, 1H, J = 6.6, 8.0 Hz, one of Ar), 1.51 ( s, 9H, t-Bu);
13 C-NMR (136 MHz, DMSO) δ: 153.0, 139.6, 126.4, 120.2, 118.2, 114.1, 111.9, 58.3, 29.3 (3C);
IR (neat): 2979 (NH), 1648 (C═O), 1538, 1209, 748 cm −1 ;
HRMS (ES1): calcd for C 11 H 14 N 2 O 191.1179; found, 191.1182;
m. p. 115 ° C-117 ° C.
Figure 2009035531

(合成例4−3) 1−(4−ニトロフェニル)−1,2−ジヒドロインダゾール−3−オン(1−(4−Nitro−phenyl)−1,2−dihydro−indazol−3−one(12))の合成
30mlの三つ口フラスコにヒドラジド体4(0.21g,0.55mmol)、CuI(11mg,0.055mmol,10mol%)、L−プロリン(13mg,0.11mmol,20mol%)、KCO(0.15g,1.1mmol)、dry DMSO(10ml)を加え、窒素気流下、70℃で3時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(stepwise条件:100% hexane〜50% EtOAc in hexane)に供することで、黄色結晶であるインダゾール誘導体12(0.070g,50%)を得た。
薄層クロマトグラフ:Rf=0.63(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:11.88(br s,1H,NH),8.39(d,2H,J=7.6Hz,Ar),8.04(dd,3H,J=9.2Hz,10.4Hz,Ar),7.87(d,1H,J=7.6Hz,one of Ar),7.63(dd,1H,J=7.6,8.0Hz,one of Ar),7.33(dd,1H,J=7.2,7.6Hz,one of Ar);
13C−NMR(136MHz,DMSO)δ:158.0,145.5,142.6,139.3,129.4,125.5(2C),122.0,120.9,119.0(2C),116.6,111.5;
m.p. 285℃−287℃.

Figure 2009035531
Synthesis Example 4-3 1- (4-Nitrophenyl) -1,2-dihydroindazol-3-one (1- (4-Nitro-phenyl) -1,2-dihydro-indazol-3-one (12 )) Synthesis In a 30 ml three-necked flask, hydrazide 4 (0.21 g, 0.55 mmol), CuI (11 mg, 0.055 mmol, 10 mol%), L-proline (13 mg, 0.11 mmol, 20 mol%), K 2 CO 3 (0.15 g, 1.1 mmol) and dry DMSO (10 ml) were added, and the mixture was reacted at 70 ° C. for 3 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering the desiccant and distilling off the solvent under reduced pressure, it was subjected to silica gel column chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane), whereby indazole derivative 12 (0.070 g, 50 %).
Thin layer chromatograph: Rf = 0.63 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 11.88 (brs, 1H, NH), 8.39 (d, 2H, J = 7.6 Hz, Ar), 8.04 (dd, 3H, J = 9.2 Hz, 10.4 Hz, Ar), 7.87 (d, 1 H, J = 7.6 Hz, one of Ar), 7.63 (dd, 1 H, J = 7.6, 8.0 Hz, one of Ar), 7.33 (dd, 1H, J = 7.2, 7.6 Hz, one of Ar);
13 C-NMR (136 MHz, DMSO) δ: 158.0, 145.5, 142.6, 139.3, 129.4, 125.5 (2C), 122.0, 120.9, 119.0 ( 2C), 116.6, 111.5;
m. p. 285 ° C-287 ° C.
Figure 2009035531

(合成例4−4) 1−ナフタレン−1−イル−1,2−ジヒドロインダゾール−3−オン(1−Naphthalen−1−yl−1,2−dihydro−indazole−3−one(13))の合成
30mlの三つ口フラスコにヒドラジド体5(0.16g,0.41mmol)、CuI(8mg,0.041mmol,10mol%)、L−プロリン(9mg,0.081mmol,20mol%)、KCO(0.11g,0.82mmol)、dry DMSO(10ml)を加え、窒素気流下、70℃で3時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(stepwise条件:100%hexane〜50%EtOAc in hexane)に供し(ワンスポットカラム)、薄黄色結晶であるインダゾール誘導体13(0.10g,収率:96%)を得た。
薄層クロマトグラフ:Rf=0.48(hexane:EtOAc=4:1(体積比));
H−NMR(400MHz,DMSO)δ:11.22(br s,1H,NH),8.05(d,J=8.3Hz,1H,one of Ar),8.02(dd,J=2.0,7.3Hz,1H,one of Ar),7.80(d,1H,J=7.8Hz,one of Ar),7.72(d,1H,J=8.3Hz,one of Ar),7.56−7.67(m,3H,Ar),7.51(dd,1H,J=7.1,7.3Hz,one of Ar),7.33(dd,1H,J=7.3,7.8Hz,one of Ar),7.12(dd,1H,J=7.3,7.8Hz,one of Ar),7.07(d,1H,J=8.5Hz,one of Ar);
13C−NMR(136MHz,CDCl)δ:156.3,142.1,135.7
134.3,129.2,128.3,128.0,128.0,126.7,126.6,125.8,123.9,123.5,120.4,119.9,113.7,109.8;
m.p. 235℃−237℃.

Figure 2009035531
(Synthesis Example 4-4) of 1-Naphthalen-1-yl-1,2-dihydroindazol-3-one (1-Naphthalen-1-yl-1,2-dihydro-indazole-3-one (13)) Synthesis In a 30 ml three-necked flask, hydrazide 5 (0.16 g, 0.41 mmol), CuI (8 mg, 0.041 mmol, 10 mol%), L-proline (9 mg, 0.081 mmol, 20 mol%), K 2 CO 3 (0.11 g, 0.82 mmol) and dry DMSO (10 ml) were added, and the mixture was reacted at 70 ° C. for 3 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering the desiccant and distilling off the solvent under reduced pressure, it was subjected to silica gel column chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane) (one-spot column) to produce indazole derivative 13 (0 .10 g, yield: 96%).
Thin layer chromatograph: Rf = 0.48 (hexane: EtOAc = 4: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 11.22 (brs, 1H, NH), 8.05 (d, J = 8.3 Hz, 1H, one of Ar), 8.02 (dd, J = 2.0, 7.3 Hz, 1 H, one of Ar), 7.80 (d, 1 H, J = 7.8 Hz, one of Ar), 7.72 (d, 1 H, J = 8.3 Hz, one of Ar), 7.56-7.67 (m, 3H, Ar), 7.51 (dd, 1H, J = 7.1, 7.3 Hz, one of Ar), 7.33 (dd, 1H, J = 7.3, 7.8 Hz, one of Ar), 7.12 (dd, 1H, J = 7.3, 7.8 Hz, one of Ar), 7.07 (d, 1H, J = 8.5 Hz) , One of Ar);
13 C-NMR (136 MHz, CD 3 Cl) δ: 156.3, 142.1, 135.7
134.3, 129.2, 128.3, 128.0, 128.0, 126.7, 126.6, 125.8, 123.9, 123.5, 120.4, 119.9, 113. 7, 109.8;
m. p. 235 ° C-237 ° C.
Figure 2009035531

(合成例4−5) 1−シクロヘキシル−1,2−ジヒドロインダゾール−3−オン(1−Cyclohexyl−1,2−dihdro−indazol−3−one(14))の合成
30mlの三つ口フラスコにヒドラジド体6(0.070g,0.20mmol)、CuI(4mg,0.020mmol,10mol%)、L−プロリン(5mg,0.040mmol,20mol%)、KCO(0.056g,0.40mmol)、dry DMSO(10ml)を加え、窒素気流下、70℃で3時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去し、分取TLC(hexane:EtOAc=1:1)を4回繰り返して精製を行い、白色結晶であるインダゾール誘導体14(0.027g,収率:60%)を得た。
薄層クロマトグラフ:Rf=0.34(hexane:EtOAc=1:4(体積比));
H−NMR(400MHz,DMSO)δ:9.97(s,1H,NH),7.61(d,1H,J=8.0Hz,one of Ar),7.48(ddd,1H,J=1.2,7.2,8.0Hz,one of Ar),7.22(d,1H,J=8.3Hz,one of Ar),7.07(dd,1H,J=7.2,7.6Hz,one of Ar),4.19(ddt,1H,J=,3.7,3.9,11.7Hz,one of cyclohexane)1.59−1.85(m,6H,cyclohexane),1.30−1.44(m,2H,cyclohexane),1.06−1.24(m,2H,cyclohexane);
13C−NMR(136MHz,DMSO)δ:160.3,146.3,131.1,122.8,120.8,117.7,112.3,52.6,30.6(2C),25.1,25.0.

Figure 2009035531

Synthesis Example 4-5 Synthesis of 1-cyclohexyl-1,2-dihydroindazol-3-one (1-Cyclohexyl-1,2-dihydro-indazol-3-one (14)) In a 30 ml three-necked flask Hydrazide 6 (0.070 g, 0.20 mmol), CuI (4 mg, 0.020 mmol, 10 mol%), L-proline (5 mg, 0.040 mmol, 20 mol%), K 2 CO 3 (0.056 g, .0 mol). 40 mmol), dry DMSO (10 ml) was added, and the mixture was reacted at 70 ° C. for 3 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered, the solvent was distilled off under reduced pressure, purification was performed by repeating preparative TLC (hexane: EtOAc = 1: 1) four times, and the indazole derivative 14 (0.027 g, yield: 60) as white crystals was purified. %).
Thin layer chromatograph: Rf = 0.34 (hexane: EtOAc = 1: 4 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 9.97 (s, 1H, NH), 7.61 (d, 1H, J = 8.0 Hz, one of Ar), 7.48 (ddd, 1H, J = 1.2, 7.2, 8.0 Hz, one of Ar), 7.22 (d, 1H, J = 8.3 Hz, one of Ar), 7.07 (dd, 1H, J = 7.2). , 7.6 Hz, one of Ar), 4.19 (ddt, 1H, J =, 3.7, 3.9, 11.7 Hz, one of cyclohexane) 1.59-1.85 (m, 6H, cyclohexane) ), 1.30-1.44 (m, 2H, cyclohexane), 1.06-1.24 (m, 2H, cyclohexane);
13 C-NMR (136 MHz, DMSO) δ: 160.3, 146.3, 131.1, 122.8, 120.8, 117.7, 112.3, 52.6, 30.6 (2C), 25.1, 25.0.
Figure 2009035531

(合成例4−6) 1−(2−メトキシフェニル)−1,2−ジヒドロインダゾール−3−オン(1−(2−Methoxy−phenyl)−1,2−dihydro−indazol−3−one(15))の合成
30mlの三つ口フラスコにヒドラジド体7(0.26g,0.70mmol)、CuI(13mg,0.070mmol,10mol%)、L−プロリン(16mg,0.14mmol,20mol%)、KCO(0.19g,1.4mmol,2eg)、dry DMSO(10ml)を加え、窒素気流下、70℃で3時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(stepwise条件:100% hexane〜50% EtOAc in hexane)に供することで、黄色結晶であるインダゾール誘導体15(0.038g,収率:23%)を得た。
薄層クロマトグラフ:Rf=0.49(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:11.0(br s,1H,NH),7.70(d,1H,J=8.0Hz,one of Ar),7.29−7.42(m,3H,Ar),7.24(d,1H,J=8.3Hz,one of Ar),7.01−7.09(m,3H,Ar),3.77(s,3H,OMe);
13C−NMR(136MHz,DMSO)δ:156.0,153.4,141.3,128.5,128.3,127.6,127.3,120.8,119.9,119.3,113.6,112.8,110.9,55.5.

Figure 2009035531
Synthesis Example 4-6 1- (2-Methoxyphenyl) -1,2-dihydroindazol-3-one (1- (2-Methoxyxy-phenyl) -1,2-dihydro-indazol-3-one (15 )) Synthesis In a 30 ml three-necked flask, hydrazide 7 (0.26 g, 0.70 mmol), CuI (13 mg, 0.070 mmol, 10 mol%), L-proline (16 mg, 0.14 mmol, 20 mol%), K 2 CO 3 (0.19 g, 1.4 mmol, 2 eg) and dry DMSO (10 ml) were added, and the mixture was reacted at 70 ° C. for 3 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered, the solvent was distilled off under reduced pressure, and it was subjected to silica gel column chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane) to give indazole derivative 15 (0.038 g, yield) as yellow crystals. : 23%).
Thin layer chromatograph: Rf = 0.49 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 11.0 (br s, 1 H, NH), 7.70 (d, 1 H, J = 8.0 Hz, one of Ar), 7.29-7.42 ( m, 3H, Ar), 7.24 (d, 1H, J = 8.3 Hz, one of Ar), 7.01-7.09 (m, 3H, Ar), 3.77 (s, 3H, OMe) );
13 C-NMR (136 MHz, DMSO) δ: 156.0, 153.4, 141.3, 128.5, 128.3, 127.6, 127.3, 120.8, 119.9, 119.3 113.6, 112.8, 110.9, 55.5.
Figure 2009035531

(合成例4−7) 1−キノリン−2−イル−1,2−ジヒドロインダゾール−3−オン(1−Quinolin−2−yl−1,2−dihydro−indazol−3−one(16))の合成
50mlの三つ口フラスコにヒドラジド体8(0.14g,0.36mmol)、CuI(7mg,0.36mmol,10mol%)、L−プロリン(8mg,0.73mmol,20mol%)、KCO(0.10g,0.72mmol,2eg)、dry DMSO(20ml)を加え、窒素気流下、室温で3時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(stepwise条件:100% hexane〜50% EtOAc in hexane)に供することで、インダゾール誘導体16(0.043g,収率:45%)を得た。
薄層クロマトグラフ:Rf=0.75(hexane:EtOAc=1:1(体積比));
H−NMR(400MHz,DMSO)δ:11.5(br s,1H,NH),8.43(br s,1H,NH),8.30−8.40(m,1H,one of Ar),7.25−8.10(m,9H,Ar);
13C−NMR(136MHz,DMSO)δ:148.9,145.6,138.5,130.5,130.2,130.2,128.1,127.8,127.7,127.6,126.5,126.2,124.9,119.3,117.3,116.1.

Figure 2009035531
(Synthesis Example 4-7) of 1-quinolin-2-yl-1,2-dihydroindazol-3-one (1-Quinolin-2-yl-1,2-dihydro-indazol-3-one (16)) Synthesis In a 50 ml three-necked flask, hydrazide 8 (0.14 g, 0.36 mmol), CuI (7 mg, 0.36 mmol, 10 mol%), L-proline (8 mg, 0.73 mmol, 20 mol%), K 2 CO 3 (0.10 g, 0.72 mmol, 2 eg) and dry DMSO (20 ml) were added, and the mixture was reacted at room temperature for 3 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. Indazole derivative 16 (0.043 g, yield: 45%) was obtained by filtering the desiccant and evaporating the solvent under reduced pressure and subjecting it to silica gel column chromatography (stepwise conditions: 100% hexane to 50% EtOAc in hexane). Got.
Thin layer chromatograph: Rf = 0.75 (hexane: EtOAc = 1: 1 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 11.5 (br s, 1 H, NH), 8.43 (br s, 1 H, NH), 8.30-8.40 (m, 1 H, one of Ar ), 7.25-8.10 (m, 9H, Ar);
13 C-NMR (136 MHz, DMSO) δ: 148.9, 145.6, 138.5, 130.5, 130.2, 130.2, 128.1, 127.8, 127.7, 127.6 , 126.5, 126.2, 124.9, 119.3, 117.3, 116.1.
Figure 2009035531

(合成例4−8) 1−tert−ブチル−1,2−ジヒドロインダゾール−3−オン(1−tert−Butyl−1,2−dihydro−indazol−3−one (11))の合成
30mlの三つ口フラスコにヒドラジド体34(0.027g,0.1mmol)、CuI(1.9mg,0.10mmol,10mol%)、L−プロリン(2.3mg,0.020mmol,20mol%)、KCO(0.028g,2.0mmol)、dry DMSO(10ml)を加え、窒素気流下、室温で12時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去することで、(合成例4−2)と同一の化合物である、乳白色結晶であるインダゾール誘導体11(0.012g,65%)を得た。TLC上で見る限り副生成物はなく純度が高いと判断し、精製は行わなかった。(合成例4−2)より収率は悪かったが、純度の高いインダゾール誘導体11が得られた。

Figure 2009035531
(Synthesis Example 4-8) Synthesis of 1-tert-butyl-1,2-dihydroindazol-3-one (1-tert-Butyl-1,2-dihydro-indazol-3-one (11)) The hydrazide 34 (0.027 g, 0.1 mmol), CuI (1.9 mg, 0.10 mmol, 10 mol%), L-proline (2.3 mg, 0.020 mmol, 20 mol%), K 2 CO 3 (0.028 g, 2.0 mmol) and dry DMSO (10 ml) were added, and the mixture was reacted at room temperature for 12 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. By filtering the desiccant and distilling off the solvent under reduced pressure, an indazole derivative 11 (0.012 g, 65%) which is a milky white crystal, which is the same compound as (Synthesis Example 4-2), was obtained. As far as seen on TLC, it was judged that there was no by-product and the purity was high, and purification was not performed. Although the yield was worse than (Synthesis Example 4-2), the indazole derivative 11 having high purity was obtained.
Figure 2009035531

(合成例4−9) 1−フェニル−1,2−ジヒドロインダゾール−3−オン(1−Phenyl−1,2−dihydro−indazole−3−one (10))の合成
30mlの三つ口フラスコにヒドラジド体35(0.12g,0.4mmol)、CuI(7.6mg,0.04mmol,10mol%)、L−プロリン(9.2mg,0.08mmol,20mol%)、KCO(0.055g,0.4mmol)、dry DMSO(3ml)を加え、窒素気流下、室温で12時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去することで、(合成例4−1)と同一の化合物である、紫色結晶であるインダゾール誘導体10(0.052g,62%)を得た。TLC上で見る限り副生成物はなく純度が高いと判断し、精製は行わなかった。(合成例4−1)より収率は悪かったが、純度の高いインダゾール誘導体10が得られた。

Figure 2009035531
Synthesis Example 4-9 Synthesis of 1-phenyl-1,2-dihydroindazol-3-one (1-Phenyl-1,2-dihydro-indazole-3-one (10)) In a 30 ml three-necked flask Hydrazide 35 (0.12 g, 0.4 mmol), CuI (7.6 mg, 0.04 mmol, 10 mol%), L-proline (9.2 mg, 0.08 mmol, 20 mol%), K 2 CO 3 (0. 055 g, 0.4 mmol) and dry DMSO (3 ml) were added, and the mixture was reacted at room temperature for 12 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. By filtering the desiccant and distilling off the solvent under reduced pressure, indazole derivative 10 (0.052 g, 62%), which is the same compound as (Synthesis Example 4-1), which is a purple crystal, was obtained. As far as seen on TLC, it was judged that there was no by-product and the purity was high, and purification was not performed. Although the yield was worse than (Synthesis Example 4-1), indazole derivative 10 having high purity was obtained.
Figure 2009035531

(合成例4−10) 1−(4−ニトロフェニル)−1,2−ジヒドロインダゾール−3−オン(1−(4−Nitro−phenyl)−1,2−dihydro−indazol−3−one(12))の合成
30mlの三つ口フラスコにヒドラジド体36(0.13g,0.5mmol)、CuI(10mg,0.05mmol,10mol%)、L−プロリン(13mg,0.1mmol,20mol%)、KCO(0.14g,1.0mmol)、dry DMSO(5ml)を加え、窒素気流下、室温で12時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、(合成例4−3)と同一の化合物である、黄色結晶であるインダゾール誘導体12(0.065g,51%)を得た。(合成例4−3)とほぼ同等の収率であった。

Figure 2009035531
Synthesis Example 4-10 1- (4-Nitrophenyl) -1,2-dihydroindazol-3-one (1- (4-Nitro-phenyl) -1,2-dihydro-indazol-3-one (12 )) Synthesis In a 30 ml three-necked flask, hydrazide 36 (0.13 g, 0.5 mmol), CuI (10 mg, 0.05 mmol, 10 mol%), L-proline (13 mg, 0.1 mmol, 20 mol%), K 2 CO 3 (0.14 g, 1.0 mmol) and dry DMSO (5 ml) were added and reacted at room temperature for 12 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. After filtering the desiccant and distilling off the solvent under reduced pressure, it is the same compound as (Synthesis Example 4-3) by subjecting it to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane). Indazole derivative 12 (0.065 g, 51%) as yellow crystals was obtained. The yield was almost the same as (Synthesis Example 4-3).
Figure 2009035531

(合成例4−11) 1−フェニル−6−メチル−1,2−ジヒドロインダゾール−3−オン(1−Phenyl−6−methyl−1,2−dihydro−indazol−3−one(45))の合成
30mlの三つ口フラスコにヒドラジド体37(0.03g,0.1mmol)、CuI(1.9mg,0.02mmol,10mol%)、L−プロリン(2.3mg,0.02mmol,20mol%)、KCO(0.03g,0.2mmol)、dry DMSO(3ml)を加え、窒素気流下、室温で12時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのちシリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、乳白色結晶であるインダゾール誘導体45(14mg,63%)を得た。
薄層クロマトグラフ:Rf=0.56(hexane:EtOAc=3:2(体積比));
H−NMR(400MHz,DMSO) δ:11.15(s,1H,NH),7.67(dd,2H,J=8.8,1.2Hz,Ar),7.61(d,1H,J=7.3Hz,one of Ar),7.56(s,1H,one of Ar),7.50(t,2H,J=8.0Hz,Ar),7.24(t,1H,J=7.3Hz,Ar),6.98(d,1H,J=8.0Hz,one of Ar),2.44(s,1H,Me);
13C−NMR(136MHz,DMSO) δ:156.2,140.3,139.8,138.4,124.6,122.3,120.6,120.1,113.0,109.8;
IR(neat):3477(NH),2961(Ar),2920(Me),1551(C=O),1499(Ar),1310,1262,1097,1030,802cm−1
HRMS(ES1):calcd for C1412O 225.1028;found,225.1009;
m.p.170−172℃.

Figure 2009035531
Synthesis Example 4-11 1-phenyl-6-methyl-1,2-dihydroindazol-3-one (1-phenyl-6-methyl-1,2-dihydro-indazol-3-one (45)) Synthesis In a 30 ml three-necked flask, hydrazide 37 (0.03 g, 0.1 mmol), CuI (1.9 mg, 0.02 mmol, 10 mol%), L-proline (2.3 mg, 0.02 mmol, 20 mol%) , K 2 CO 3 (0.03 g, 0.2 mmol) and dry DMSO (3 ml) were added, and the mixture was reacted at room temperature for 12 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. Indazole derivative 45 (14 mg, 63%) which is milky white crystals is obtained by filtering the desiccant and evaporating the solvent under reduced pressure, and then subjecting it to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane). It was.
Thin layer chromatograph: Rf = 0.56 (hexane: EtOAc = 3: 2 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 11.15 (s, 1H, NH), 7.67 (dd, 2H, J = 8.8, 1.2 Hz, Ar), 7.61 (d, 1H) , J = 7.3 Hz, one of Ar), 7.56 (s, 1H, one of Ar), 7.50 (t, 2H, J = 8.0 Hz, Ar), 7.24 (t, 1H, J = 7.3 Hz, Ar), 6.98 (d, 1H, J = 8.0 Hz, one of Ar), 2.44 (s, 1H, Me);
13 C-NMR (136 MHz, DMSO) δ: 156.2, 140.3, 139.8, 138.4, 124.6, 122.3, 120.6, 120.1, 113.0, 109.8 ;
IR (neat): 3477 (NH), 2961 (Ar), 2920 (Me), 1551 (C═O), 1499 (Ar), 1310, 1262, 1097, 1030, 802 cm −1 ;
HRMS (ES1): calcd for C 14 H 12 N 2 O 225.1028; found, 225.1009;
m. p. 170-172 ° C.
Figure 2009035531

(合成例4−12) 1−フェニル−5−フルオロ−1,2−ジヒドロインダゾール−3−オン(1−Phenyl−5−fluoro−1,2−dihydro−indazol−3−one(46))の合成
30mlの三つ口フラスコにヒドラジド体38(0.03g,0.1mmol)、CuI(1.9mg,0.02mmol,10mol%)、L−プロリン(2.3mg,0.02mmol,20mol%)、KCO(0.03g,0.2mmol)、dry DMSO(3ml)を加え、窒素気流下、室温で12時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのちシリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、乳白色結晶である新規なインダゾール誘導体46(14mg,63%)を得た。
薄層クロマトグラフ:Rf=0.46(hexane:EtOAc=7:3(体積比));
H−NMR(400MHz,DMSO) δ:11.34(s,1H,NH),7.77(dd,1H,J=9.3,1.5Hz,Ar),7.66(d,2H,J=8.0Hz Ar),7.51(t,3H,J=7.6Hz,Ar),7.33(t,1H,J=9.0Hz,one of Ar),7.26(t,1H,J=7.3Hz,Ar);
13C−NMR(136MHz,DMSO) δ:157.8,156.0,155.5,139.9,136.3,136.2,129.5,125.0,120.6,117.4,117.1,112.0,104.9,104.6;
FAB(+)−MS(NBA):m/z(%) 229(12) [MH],173(8),151(32),120(12),107(27),85(43),79(29);
IR(neat):3062(Ar),2665,1659,1561(C=O),1499(Ar),1276,1072,793,757,693cm−1
m.p.:195−197℃.

Figure 2009035531
(Synthesis Example 4-12) of 1-phenyl-5-fluoro-1,2-dihydroindazol-3-one (1-Phenyl-5-fluoro-1,2-dihydro-indazol-3-one (46)) Synthesis A hydrazide 38 (0.03 g, 0.1 mmol), CuI (1.9 mg, 0.02 mmol, 10 mol%), L-proline (2.3 mg, 0.02 mmol, 20 mol%) in a 30 ml three-necked flask , K 2 CO 3 (0.03 g, 0.2 mmol) and dry DMSO (3 ml) were added, and the mixture was reacted at room temperature for 12 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. A novel indazole derivative 46 (14 mg, 63%) that is milky white crystals is obtained by filtering the desiccant and evaporating the solvent under reduced pressure, and then subjecting it to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane). Got.
Thin layer chromatograph: Rf = 0.46 (hexane: EtOAc = 7: 3 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 11.34 (s, 1H, NH), 7.77 (dd, 1H, J = 9.3, 1.5 Hz, Ar), 7.66 (d, 2H) , J = 8.0 Hz Ar), 7.51 (t, 3H, J = 7.6 Hz, Ar), 7.33 (t, 1H, J = 9.0 Hz, one of Ar), 7.26 (t , 1H, J = 7.3 Hz, Ar);
13 C-NMR (136 MHz, DMSO) δ: 157.8, 156.0, 155.5, 139.9, 136.3, 136.2, 129.5, 125.0, 120.6, 117.4 , 117.1, 112.0, 104.9, 104.6;
FAB (+)-MS (NBA): m / z (%) 229 (12) [MH + ], 173 (8), 151 (32), 120 (12), 107 (27), 85 (43), 79 (29);
IR (neat): 3062 (Ar), 2665, 1659, 1561 (C═O), 1499 (Ar), 1276, 1072, 793, 757, 693 cm −1 ;
m. p. 195-197 ° C.
Figure 2009035531

(合成例4−13) 1−フェニル−5−メトキシ−1,2−ジヒドロインダゾール−3−オン(1−Phenyl−5−methoxy−1,2−dihydro−indazol−3−one(47))の合成
30mlの三つ口フラスコにヒドラジド体39(0.11g,0.3mmol)、CuI(6.3mg,0.03mmol,10mol%)、L−プロリン(7.7mg,0.06mmol,20mol%)、KCO(0.09g,0.6mmol)、dry DMSO(3ml)を加え、窒素気流下、室温で12時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのちシリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、黄色結晶である新規なインダゾール誘導体47(44mg,56%)を得た。
薄層クロマトグラフ:Rf=0.46(hexane:EtOAc=7:3(体積比));
H−NMR(400MHz,DMSO) δ:7.70(d,1H,J=9.7Hz,one of Ar),7.65(d,2H,J=7.6Hz,Ar),7.49(t,2H,J=7.3Hz,Ar),7.21(t,1H,J=7.3Hz,Ar),7.15(s,1H,one of Ar),7.09(dd,1H,J=9.0,2.4Hz,one of Ar),3.80(s,3H,OMe);
13C−NMR(136MHz,DMSO) δ:156.0,153.8,140.4,134.9,129.5,124.4,120.0,119.4,115.0,111.6,100.3,55.5;
FAB(+)−MS(NBA):m/z(%) 241(12)[MH],169(14),136(71),107(27),85(85),77(16);
IR(neat):2938(Ar),2835(Me),1595(C=O),1498(Ar),1286,1264,1158,1028,755,694cm−1
m.p.:158−160℃.

Figure 2009035531
(Synthesis Example 4-13) of 1-phenyl-5-methoxy-1,2-dihydroindazol-3-one (1-Phenyl-5-methoxy-1,2-dihydro-indazol-3-one (47)) Synthesis In a 30 ml three-necked flask, hydrazide 39 (0.11 g, 0.3 mmol), CuI (6.3 mg, 0.03 mmol, 10 mol%), L-proline (7.7 mg, 0.06 mmol, 20 mol%) , K 2 CO 3 (0.09 g, 0.6 mmol) and dry DMSO (3 ml) were added, and the mixture was reacted at room temperature for 12 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. A novel indazole derivative 47 (44 mg, 56%) which is a yellow crystal is obtained by filtering the desiccant and evaporating the solvent under reduced pressure, and then subjecting it to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane). Got.
Thin layer chromatograph: Rf = 0.46 (hexane: EtOAc = 7: 3 (volume ratio));
1 H-NMR (400 MHz, DMSO) δ: 7.70 (d, 1H, J = 9.7 Hz, one of Ar), 7.65 (d, 2H, J = 7.6 Hz, Ar), 7.49 (T, 2H, J = 7.3 Hz, Ar), 7.21 (t, 1H, J = 7.3 Hz, Ar), 7.15 (s, 1H, one of Ar), 7.09 (dd, 1H, J = 9.0, 2.4 Hz, one of Ar), 3.80 (s, 3H, OMe);
13 C-NMR (136 MHz, DMSO) δ: 156.0, 153.8, 140.4, 134.9, 129.5, 124.4, 120.0, 119.4, 115.0, 111.6 , 100.3, 55.5;
FAB (+)-MS (NBA): m / z (%) 241 (12) [MH + ], 169 (14), 136 (71), 107 (27), 85 (85), 77 (16);
IR (neat): 2938 (Ar), 2835 (Me), 1595 (C═O), 1498 (Ar), 1286, 1264, 1158, 1028, 755, 694 cm −1 ;
m. p. 158-160 ° C.
Figure 2009035531

(合成例4−14) 1−フェニル−1,2−ジヒドロインダゾール−3−オン(1−Phenyl−1,2−dihydro−indazol−3−one(10))の合成
30mlの三つ口フラスコにヒドラジド体40(0.05g,0.2mmol)、CuI(4mg,0.02mmol,10mol%)、L−プロリン(5mg,0.04mmol,20mol%)、KCO(0.06g,0.4mmol)、dry DMSO(3 ml)を加え、窒素気流下、70℃で12時間反応させた。出発物質の消失をTLCにより確認し、蒸留水を加え、反応を停止させた。次いで、反応混合液を酢酸エチルで抽出し、有機層を蒸留水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾過し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィー(stepwise:100% hexane〜50% EtOAc in hexane)に供することで、(合成例4−1)、(合成例4−9)と同一の化合物である、紫色結晶であるインダゾール誘導体10(27mg,66%)を得た。(合成例4−1)、(合成例4−9)の場合より、収率は悪かった。

Figure 2009035531
(Synthesis Example 4-14) Synthesis of 1-phenyl-1,2-dihydroindazol-3-one (1-Phenyl-1,2-dihydro-indazol-3-one (10)) In a 30 ml three-necked flask Hydrazide 40 (0.05 g, 0.2 mmol), CuI (4 mg, 0.02 mmol, 10 mol%), L-proline (5 mg, 0.04 mmol, 20 mol%), K 2 CO 3 (0.06 g, 0. 4 mmol), dry DMSO (3 ml) was added, and the mixture was reacted at 70 ° C. for 12 hours under a nitrogen stream. The disappearance of the starting material was confirmed by TLC, and distilled water was added to stop the reaction. Next, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with distilled water and saturated brine, and dried over anhydrous magnesium sulfate. The desiccant was filtered and the solvent was distilled off under reduced pressure, and then subjected to silica gel column chromatography (stepwise: 100% hexane to 50% EtOAc in hexane), so that (Synthesis Example 4-1) and (Synthesis Example 4-9). Indazole derivative 10 (27 mg, 66%) which is a purple crystal, which is the same compound as) was obtained. The yield was worse than in the cases of (Synthesis Example 4-1) and (Synthesis Example 4-9).
Figure 2009035531

以上の合成例から、本発明の方法を用いると、1−置換−1,2−ジヒドロインダゾール−3−オン誘導体が容易に、高収率で製造できることがわかった。   From the above synthesis examples, it was found that 1-substituted-1,2-dihydroindazol-3-one derivatives can be easily produced in high yields by using the method of the present invention.

[反応温度の検討]
上記1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11を室温で3時間反応させた以外は、合成例2−2と同様に行った。1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の収率は82%と、70℃で加熱した合成例2−2における収率83%と、大差がないことがわかった。また、合成例4−9からわかるように、臭素化体であるヒドラジド体を用いた場合でも、同様に室温において反応が進行することがわかった。これにより、本発明の方法は、室温においても進行することがわかった。
[Examination of reaction temperature]
The same procedure as in Synthesis Example 2-2 was conducted, except that the 1-substituted-1,2-dihydroindazol-3-one derivative 11 was reacted at room temperature for 3 hours. It was found that the yield of the 1-substituted-1,2-dihydroindazol-3-one derivative 11 was 82%, which was not much different from the yield of Synthesis Example 2-2 heated at 70 ° C. in 83%. Further, as can be seen from Synthesis Example 4-9, it was found that the reaction proceeds similarly at room temperature even when a hydrazide which is a brominated product is used. Thereby, it turned out that the method of this invention advances also at room temperature.

[反応溶媒の検討]
上記1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11を無水DMSOでなく、未精製の缶出しDMSOを用いて反応させた以外は、合成例2−2と同様に行った。1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の収率は97%と、無水DMSOを用いた合成例2−2における収率83%より、はるかに高収率であった。これにより、本発明の方法は、未精製の有機溶媒を用いてもよいことがわかった。
[Examination of reaction solvent]
The reaction was performed in the same manner as in Synthesis Example 2-2 except that the 1-substituted-1,2-dihydroindazol-3-one derivative 11 was reacted not with anhydrous DMSO but with unpurified canned DMSO. The yield of the 1-substituted-1,2-dihydroindazol-3-one derivative 11 was 97%, much higher than the yield of 83% in Synthesis Example 2-2 using anhydrous DMSO. Thereby, it turned out that the method of this invention may use an unpurified organic solvent.

[触媒量の検討]
上記1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の合成において、CuIを5mol%と1mol%にした以外は、合成例2−2と同様に行った。1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の収率は、5mol%の場合:79%、1mol%の場合:63%と、CuIを10mol%用いた合成例2−2における収率83%よりも収率は低下するが、高収率であることがわかった。これにより、本発明の方法は、CuIを減らしてもよいことがわかった。
[Examination of catalyst amount]
Synthesis of the 1-substituted-1,2-dihydroindazol-3-one derivative 11 was performed in the same manner as in Synthesis Example 2-2 except that CuI was changed to 5 mol% and 1 mol%. The yield of 1-substituted-1,2-dihydroindazol-3-one derivative 11 was 79% in the case of 5 mol%: 63% in the case of 1 mol%, and in Synthesis Example 2-2 using 10 mol% of CuI. Although the yield was lower than 83%, it was found that the yield was high. Thereby, it turned out that the method of this invention may reduce CuI.

[L−プロリンの検討]
上記1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の合成において、L−プロリンを用いなかった以外は、合成例2−2と同様に行った。1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の収率は94%と、L−プロリンを用いないで合成しても、合成例2−2における収率83%よりも収率は高かった。しかし、この方法で得られる1−置換−1,2−ジヒドロインダゾール−3−オン誘導体は、純度が低いので、精製を要した。精製後の収率は82%であった。一方、合成例2−2で得られる1−置換−1,2−ジヒドロインダゾール−3−オン誘導体は、分液操作を行うだけで単離できる。これにより、本発明の方法において、L−プロリンを併用するほうが、反応の特異性が向上することがわかった。
[Examination of L-proline]
The synthesis of the 1-substituted-1,2-dihydroindazol-3-one derivative 11 was performed in the same manner as in Synthesis Example 2-2 except that L-proline was not used. The yield of the 1-substituted-1,2-dihydroindazol-3-one derivative 11 is 94%, which is greater than the yield of 83% in Synthesis Example 2-2 even when synthesized without using L-proline. Was expensive. However, since the 1-substituted-1,2-dihydroindazol-3-one derivative obtained by this method has low purity, purification was required. The yield after purification was 82%. On the other hand, the 1-substituted-1,2-dihydroindazol-3-one derivative obtained in Synthesis Example 2-2 can be isolated simply by performing a liquid separation operation. Thereby, in the method of this invention, it turned out that the specificity of reaction improves more using L-proline together.

[パラジウム触媒の検討]
上記1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の合成において、CuIとL−プロリンの代わりにパラジウム触媒[Pd(η−C)Cl]を用いた以外は、合成例2−2と同様に行った。1−置換−1,2−ジヒドロインダゾール−3−オン誘導体11の生成は確認できたが、多数の副生物が生成したため、単離できなかった。


[Examination of palladium catalyst]
In the synthesis of the 1-substituted-1,2-dihydroindazol-3-one derivative 11, except that a palladium catalyst [Pd (η 3 -C 3 H 5 ) Cl 2 ] was used instead of CuI and L-proline. This was carried out in the same manner as in Synthesis Example 2-2. Although the production of the 1-substituted-1,2-dihydroindazol-3-one derivative 11 was confirmed, it could not be isolated because a number of by-products were produced.


Claims (5)

下記一般式(I)で表される2−ハロアリール酸塩化物と、
Figure 2009035531

(式中、Aは酸性官能基を、Hrは、ハロゲンを、R〜Rは水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。)
下記一般式(II)で表されるヒドラジンと、
Figure 2009035531

(式中、Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
を、反応させて、下記一般式(III)で表されるヒドラジド体を製造する、ヒドラジド体の製造方法。
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
2-haloaryl acid chloride represented by the following general formula (I);
Figure 2009035531

(In the formula, A represents an acidic functional group, Hr represents a halogen, R 1 to R 4 represent a hydrogen atom, an optionally substituted alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, an aryl group, a heterocyclic group, an acyl group, a cyano group, a carboxyl group, an oxycarbonyl group, .R 1 to mean a carbamoyl group, an amino group, a sulfino group, a halogen And R 2 , R 2 and R 3 , R 3 and R 4 may be bonded to each other to form a ring.)
Hydrazine represented by the following general formula (II):
Figure 2009035531

(Wherein R is an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, which may have a substituent or a branch, An aryl group, a heterocyclic group, an acyl group, a sulfino group, and an oxycarbonyl group are shown.)
To produce a hydrazide represented by the following general formula (III).
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an optionally substituted hydrogen atom, an optionally substituted alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group. , alkylthio group, aryl ether group, aryl thioether group, an aryl group, a heterocyclic group, a cyano group, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a sulfino group, means a halogen .R 1 and R 2 , R 2 and R 3 , R 3 and R 4 may be bonded to each other to form a ring, A represents an acidic functional group, and R has a substituent or a branch. Alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl Thioether group, an aryl group, a heterocyclic group, an acyl group, a sulfino group, an oxy carbonyl group.)
下記一般式(III)で表されるヒドラジド体を触媒存在下で分子内カップリングさせ、
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
下記一般式(IV)で表される1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の製造方法。
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
The hydrazide represented by the following general formula (III) is intramolecularly coupled in the presence of a catalyst,
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)
A method for producing a 1-substituted-1,2-dihydroindazol-3-one derivative represented by the following general formula (IV):
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)
下記一般式(I)で表される2−ハロカルボン酸塩化物と、
Figure 2009035531

(式中、Aは酸性官能基を、Hrは、ハロゲンを、R〜Rは水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。)
下記一般式(II)で表されるヒドラジンと、
Figure 2009035531

(式中、Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
を、反応させて、下記一般式(III)で表されるヒドラジド体を製造し、
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
得られたヒドラジド体を触媒存在下で分子内カップリングさせ、
下記一般式(IV)で表される1−置換−1,2−ジヒドロインダゾール−3−オン誘導体の製造方法。
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
2-halocarboxylic acid chloride represented by the following general formula (I):
Figure 2009035531

(In the formula, A represents an acidic functional group, Hr represents a halogen, R 1 to R 4 represent a hydrogen atom, an optionally substituted alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, an aryl group, a heterocyclic group, an acyl group, a cyano group, a carboxyl group, an oxycarbonyl group, .R 1 to mean a carbamoyl group, an amino group, a sulfino group, a halogen And R 2 , R 2 and R 3 , R 3 and R 4 may be bonded to each other to form a ring.)
Hydrazine represented by the following general formula (II):
Figure 2009035531

(Wherein R is an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, which may have a substituent or a branch, An aryl group, a heterocyclic group, an acyl group, a sulfino group, and an oxycarbonyl group are shown.)
To produce a hydrazide represented by the following general formula (III),
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)
Intramolecular coupling of the obtained hydrazide in the presence of a catalyst,
A method for producing a 1-substituted-1,2-dihydroindazol-3-one derivative represented by the following general formula (IV):
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)
下記一般式(III)で表されるヒドラジド体。
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
A hydrazide represented by the following general formula (III).
Figure 2009035531

(Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether, which may be substituted. Group, aryl group, heterocyclic group, acyl group, cyano group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, sulfino group, halogen, R 1 and R 2 , R 2 and R 3 , R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)
下記一般式(IV)で表される1−置換−1,2−ジヒドロインダゾール−3−オン誘導体。
Figure 2009035531

(式中、R〜Rは、水素原子、置換されていてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、シアノ基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、スルフィノ基、ハロゲンを意味する。RとR、RとR、RとRとは、それぞれ結合して環を形成していてもよい。Aは、酸性官能基を示す。Rは、置換基や分岐を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、アシル基、スルフィノ基、オキシカルボニル基を示す。)
A 1-substituted-1,2-dihydroindazol-3-one derivative represented by the following general formula (IV).
Figure 2009035531

Wherein R 1 to R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether, which may be substituted. group, an aryl group, a heterocyclic group, an acyl group, a cyano group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a sulfino group, means a halogen .R 1 and R 2, R 2 and R 3, R 3 And R 4 may be bonded to each other to form a ring, A represents an acidic functional group, R represents an alkyl group, a cycloalkyl group, a substituent group or a branched group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heterocyclic group Acyl group, a sulfino group, an oxy carbonyl group.)
JP2008145672A 2007-07-10 2008-06-03 Method for producing hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative, hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative Pending JP2009035531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145672A JP2009035531A (en) 2007-07-10 2008-06-03 Method for producing hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative, hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007181503 2007-07-10
JP2008145672A JP2009035531A (en) 2007-07-10 2008-06-03 Method for producing hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative, hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative

Publications (1)

Publication Number Publication Date
JP2009035531A true JP2009035531A (en) 2009-02-19

Family

ID=40437770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145672A Pending JP2009035531A (en) 2007-07-10 2008-06-03 Method for producing hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative, hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative

Country Status (1)

Country Link
JP (1) JP2009035531A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082763A (en) * 2016-02-15 2017-08-22 中山大学 A kind of method for synthesizing indazole ketone compounds
US9856253B2 (en) 2015-04-17 2018-01-02 Abbvie, Inc. Tricyclic modulators of TNF signaling
US9879016B2 (en) 2015-04-17 2018-01-30 Abbvie Inc. Indazolones as modulators of TNF signaling
US10160748B2 (en) 2015-04-17 2018-12-25 Abbvie Inc. Indazolones as modulators of tnf signaling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9856253B2 (en) 2015-04-17 2018-01-02 Abbvie, Inc. Tricyclic modulators of TNF signaling
US9879016B2 (en) 2015-04-17 2018-01-30 Abbvie Inc. Indazolones as modulators of TNF signaling
US10160748B2 (en) 2015-04-17 2018-12-25 Abbvie Inc. Indazolones as modulators of tnf signaling
US10266532B2 (en) 2015-04-17 2019-04-23 Abbvie Inc. Tricyclic modulators of TNF signaling
US10273238B2 (en) 2015-04-17 2019-04-30 Abbvie Inc. Indazolones as modulators of TNF signaling
CN107082763A (en) * 2016-02-15 2017-08-22 中山大学 A kind of method for synthesizing indazole ketone compounds

Similar Documents

Publication Publication Date Title
Schuh et al. A domino copper-catalyzed CN and CO cross-coupling for the conversion of primary amides into oxazoles
CN107698586A (en) It is a kind of that the method for preparing Pyridine-quinazolinocompound compound is catalyzed by copper compound
JP2022534067A (en) Compounds and their use as RET kinase inhibitors
CN109232363B (en) Synthetic method of 3-selenocyanoindole compound
JP2009035531A (en) Method for producing hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative, hydrazide compound and 1-substituted-1,2-dihydroindazol-3-one derivative
CN111333634A (en) Preparation method and application of natural product Streptochlorin and derivatives thereof
Zhang et al. Copper (I)‐Catalyzed Intramolecular N‐N Coupling of Cyclopropyl O‐Acyl Ketoximes: Synthesis of Spiro‐fused Pyrazolin‐5‐ones
JP2009046408A (en) Dihalo polycyclic aromatic compound, pyrrolyl polycyclic aromatic compound and method for producing the same
JP5212665B2 (en) Photolabile protecting group
CN110183341A (en) 1,2- dicarbapentaborane class compound and its synthetic method
WO2017209297A1 (en) Triarylene compound and method for producing same
CN102153433B (en) N-monosubstituted-alpha-carbonylamide compound and preparation method thereof
KR101845935B1 (en) preparation method of pyridoisoindole derivatives
CN101486710B (en) Method for synthesizing 3-halogenated indolizine compound
CN110078655A (en) A kind of method that photocatalysis prepares Benzazole compounds
Duraisamy et al. Photothermal Aza‐Michael Addition of Divergent Amines to Vinyl Sulfones: A Method Towards Transition Metal‐and Base‐Free Medium
JP4418430B2 (en) Method for producing sulfonamide-containing indole compound
JP2010065015A (en) Method for producing quinoxalin-2-one derivative
CN112552235B (en) Synthetic method of 2, 3-diacyl quinoline compound
CN104136422A (en) Compound, method for producing compound, and method for purifying compound
CN115057840B (en) Synthesis method of 3-acyl coumarin compound promoted by visible light
CN114773284B (en) Synthesis method of visible light mediated dihydroisoxazole
CN109970596B (en) Method for preparing 1, 1-diiodo olefin derivative through N-propynamide trifunctional reaction
JP2008106037A (en) Method for producing indole compound and indole compound
JPS60139672A (en) Production of amide derivative