JP2009034620A - Method of manufacturing optical film - Google Patents

Method of manufacturing optical film Download PDF

Info

Publication number
JP2009034620A
JP2009034620A JP2007202247A JP2007202247A JP2009034620A JP 2009034620 A JP2009034620 A JP 2009034620A JP 2007202247 A JP2007202247 A JP 2007202247A JP 2007202247 A JP2007202247 A JP 2007202247A JP 2009034620 A JP2009034620 A JP 2009034620A
Authority
JP
Japan
Prior art keywords
film
coating
coating film
temperature
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007202247A
Other languages
Japanese (ja)
Inventor
Kunio Ishii
邦夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007202247A priority Critical patent/JP2009034620A/en
Publication of JP2009034620A publication Critical patent/JP2009034620A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical film which controls deformation of the film, e.g. wrinkling and curling, due to heat and hardening shrinkage of the coating film produced on irradiation of UV rays and deterioration of film characteristics of a formed functional film, e.g. the hardness, scratch resistance and adhesiveness to the substrate, in hardening a coating film containing a UV-hardenable resin by irradiating the film with UV rays so as to obtain a functional film having a good appearance and good film characteristics. <P>SOLUTION: The method is characterized by adjusting the temperature, Ti(°C), of the coating film after the drying process and before the UV irradiation process to 25-80°C and the temperature change per unit time, ΔT/t(°C/sec), to 6-18°C/sec, wherein t(sec) is the UV irradiation time for the coating film in the UV irradiation process, and ΔT(°C) is the temperature rise of the coating film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プラスチックフィルムなどのウェブ状の支持体上に紫外線硬化性樹脂を含む塗膜を塗布し、その塗膜を乾燥して紫外線硬化することで機能膜を形成する光学フィルムの製造方法に関する。   The present invention relates to a method for producing an optical film in which a functional film is formed by applying a coating film containing an ultraviolet curable resin on a web-like support such as a plastic film, and drying and ultraviolet curing the coating film. .

液晶ディスプレイに代表される各種ディスプレイの表面には、基材フィルム上に液晶内部を保護するためのハードコート膜、又は外光の反射によるコントラストの低下や像の映り込みを防止するための反射防止膜等の機能膜を形成した光学フィルムが設けられている。これらのハードコート膜や反射防止膜等の機能膜は、連続的に搬送されるウェブ状の支持体上に紫外線硬化性樹脂若しくは電子線硬化性樹脂等の電離放射線硬化性樹脂、又は熱硬化性樹脂等を含む塗液を塗布する工程と、支持体上に塗布された塗膜を乾燥する工程と、支持体上の塗膜を硬化する工程とを経ることにより形成される。
ここで、紫外線硬化性樹脂を含む塗液を支持体上に塗布し機能膜を形成する場合、支持体上の塗膜に紫外線を照射することで硬化する際、紫外線と同時に発生する熱や塗膜の硬化収縮により、シワやカールなどの光学フィルムの変形や、機能膜の硬度、耐擦傷性等の膜特性や、基材フィルムと機能膜との密着性の低下などの問題が生じる。
On the surface of various displays typified by liquid crystal displays, a hard coat film for protecting the inside of the liquid crystal on the base film, or anti-reflection to prevent contrast degradation and image reflection due to reflection of external light An optical film on which a functional film such as a film is formed is provided. These functional films such as hard coat films and antireflection films are formed on a web-like support that is continuously conveyed by ionizing radiation curable resins such as ultraviolet curable resins or electron beam curable resins, or thermosetting. It is formed by passing through a step of applying a coating liquid containing a resin or the like, a step of drying the coating film applied on the support, and a step of curing the coating film on the support.
Here, when a functional film is formed by applying a coating liquid containing an ultraviolet curable resin on a support, when curing is performed by irradiating the coating film on the support with ultraviolet rays, Due to curing shrinkage of the film, problems such as deformation of the optical film such as wrinkles and curls, film characteristics such as the hardness of the functional film and scratch resistance, and a decrease in adhesion between the base film and the functional film occur.

そのため、支持体上の塗膜を紫外線により硬化する方法においては、諸問題を解決するため多くの方法が提案されている(特許文献1〜5参照)。   Therefore, in the method of curing the coating film on the support with ultraviolet rays, many methods have been proposed to solve various problems (see Patent Documents 1 to 5).

特許文献1の方法によれば、加熱すると収縮するプラスチックの基材フィルム上に、電離放射線硬化性樹脂の塗料の塗膜を形成し、基材フィルムを加熱しながら電離放射線を照射して、基材フィルムの熱収縮率と塗膜の硬化収縮率との差が2.0%以下である条件下に塗膜を硬化させることで、実質上カールがなくフラットで、種々の加工に故障のないフィルムを得ることができる。
特許文献2の方法によれば、フィルムの表面と裏面との温度差が30℃以下で、または、透明樹脂のガラス転移温度以下、40℃以上で且つ±3℃のばらつき範囲内に調節した熱媒で温度調節された支持体にフィルムを接触させることで紫外線硬化型樹脂を硬化させることにより、基材フィルムを変形させずに紫外線硬化型樹脂を効率よく均一に硬化させ、密着性が十分に得られた積層フィルムが得られる。
特許文献3の方法によれば、冷却気体雰囲気中において、有機高分子フィルムの表面温度が70℃以下になるように冷却した状態で、乾燥塗膜に紫外線を照射して、厚さ3〜30μmの硬化塗膜を形成することにより、外観がよく、かつ密着性の良好な塗工フィルムが得られる。
特許文献4の方法によれば、基材フィルムを曲面状態に保持した状態で硬化性樹脂を硬化してハードコート層を形成することにより、ハードコート層を厚くした場合にもカールを小さく抑えることができる。
特許文献5の方法によれば、乾燥工程終了時から紫外線照射工程までの前記積層フィルムの温度変化を30℃以内に保って紫外線を照射することで、耐擦傷性が高く、製品フィルムの変形を起こさずに、紫外線硬化型樹脂成分の基材フィルムへの密着性を向上させることができる。
特開平3−19839号公報 特開2006−152134号公報 特開2006−159054号公報 特開2006−218449号公報 特開2007−98302号公報
According to the method of Patent Document 1, a coating film of ionizing radiation curable resin is formed on a plastic base film that shrinks when heated, and the base film is irradiated with ionizing radiation while being heated. By curing the coating film under a condition where the difference between the thermal shrinkage rate of the material film and the curing shrinkage rate of the coating film is 2.0% or less, it is substantially flat without curling and has no trouble in various processing. A film can be obtained.
According to the method of Patent Document 2, the temperature difference between the front surface and the back surface of the film is 30 ° C. or lower, or the glass transition temperature of the transparent resin or lower, 40 ° C. or higher, and adjusted within a variation range of ± 3 ° C. By curing the UV curable resin by bringing the film into contact with a support whose temperature is adjusted with a medium, the UV curable resin is efficiently and uniformly cured without deforming the base film, and sufficient adhesion is obtained. The obtained laminated film is obtained.
According to the method of Patent Document 3, in a cooling gas atmosphere, the dried coating film is irradiated with ultraviolet rays while being cooled so that the surface temperature of the organic polymer film is 70 ° C. or less, and the thickness is 3 to 30 μm. By forming this cured coating film, a coated film with good appearance and good adhesion can be obtained.
According to the method of Patent Document 4, curling is suppressed to be small even when the hard coat layer is thickened by forming the hard coat layer by curing the curable resin while the base film is held in a curved surface state. Can do.
According to the method of Patent Document 5, by irradiating ultraviolet rays while maintaining the temperature change of the laminated film from the end of the drying process to the ultraviolet irradiation process within 30 ° C., the scratch resistance is high and the product film is deformed. The adhesion of the ultraviolet curable resin component to the substrate film can be improved without causing it.
Japanese Patent Laid-Open No. 3-19839 JP 2006-152134 A JP 2006-159054 A JP 2006-218449 A JP 2007-98302 A

しかしながら、特許文献1に記載の方法では、加熱により基材フィルムの熱収縮率と塗膜の硬化収縮率の絶対値が大きくなり、これらの収縮率の差を制御してもシワ等のフィルムの変形が生じる。また、塗膜の厚さが大きい場合、硬化収縮率の絶対値が大きくなり、収縮率の差を制御してもカールを抑制することができない。
また、特許文献2に記載の方法では、フィルムの表面と裏面との温度差が30℃以下でもフィルムの裏面の温度が大きくなると塗膜の硬化収縮率が大きくなり、特にフィルムのカールを抑制することができない。
また、特許文献3に記載の方法では、熱によるフィルムの変形は抑制されるが、表面温度を70℃以下にすることで塗膜が効率よく硬化せず、機能膜の硬度や耐擦傷性等の膜特性の低下が生じる。
また、特許文献4に記載の方法では、ハードコート層が厚くてもカールを抑制することができるが、紫外線照射時に発生する熱によるフィルムの変形を抑制することができない。特に、ハードコート層が厚い場合はフィルムの変形は顕著に生じる。
また、特許文献5に記載の方法では、塗膜の耐擦傷性や基材フィルムとの密着性の向上は図れるが、紫外線照射時に発生する熱により基材フィルムの温度が急激に上昇するとフィルムの変形が生じる。
However, in the method described in Patent Document 1, the absolute value of the heat shrinkage rate of the base film and the curing shrinkage rate of the coating film is increased by heating, and even if the difference between these shrinkage rates is controlled, Deformation occurs. Further, when the thickness of the coating film is large, the absolute value of the curing shrinkage rate becomes large, and curling cannot be suppressed even if the difference in shrinkage rate is controlled.
In the method described in Patent Document 2, even when the temperature difference between the front surface and the back surface of the film is 30 ° C. or less, the curing shrinkage rate of the coating film increases as the temperature of the back surface of the film increases, and curling of the film is particularly suppressed. I can't.
In addition, in the method described in Patent Document 3, deformation of the film due to heat is suppressed, but the coating film is not efficiently cured by setting the surface temperature to 70 ° C. or less, and the hardness and scratch resistance of the functional film, etc. The film characteristics deteriorate.
Further, in the method described in Patent Document 4, curling can be suppressed even when the hard coat layer is thick, but deformation of the film due to heat generated during ultraviolet irradiation cannot be suppressed. In particular, when the hard coat layer is thick, the film is significantly deformed.
In addition, the method described in Patent Document 5 can improve the scratch resistance of the coating film and the adhesion to the base film, but if the temperature of the base film increases rapidly due to heat generated during ultraviolet irradiation, the film Deformation occurs.

本発明は、このような事情を鑑みてなされたものであり、その目的は、連続的に搬送される支持体(以下、基材または基材フィルムともいう)上に紫外線硬化性樹脂を含む塗液を塗布し、塗布された塗膜を乾燥し、紫外線を照射して塗膜を硬化するとき、紫外線と同時に発生する熱や塗膜の硬化収縮による搬送方向でのシワやカール等のフィルムの変形や、形成された機能膜の硬度や耐擦傷性、基材との密着性等の膜物性の低下を抑制し、外観、膜物性ともに良好な機能膜を得る光学フィルムの製造方法を提供するにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a coating containing an ultraviolet curable resin on a continuously transported support (hereinafter also referred to as a substrate or a substrate film). Applying the liquid, drying the applied coating, and curing the coating by irradiating with ultraviolet rays, the heat generated simultaneously with the ultraviolet rays and the film such as wrinkles and curls in the transport direction due to the curing shrinkage of the coating Provided is a method for producing an optical film that suppresses deformation, deterioration of film properties such as hardness and scratch resistance of the formed functional film, adhesion to a substrate, and the like, and obtains a functional film having good appearance and film physical properties. It is in.

本発明者らは、紫外線照射により連続的に搬送されるウェブ状の支持体上の塗膜を硬化する際、照射前の支持体の温度と、照射時の塗膜の温度の単位時間当たり変化量を制御することでフィルムの変形や塗膜の膜物性の低下を抑制することを見出し、本発明に至った。   The present inventors, when curing a coating film on a web-like support continuously conveyed by ultraviolet irradiation, changes the temperature of the support before irradiation and the temperature of the coating film during irradiation per unit time. The inventors have found that controlling the amount suppresses deformation of the film and deterioration of film properties of the coating film, and the present invention has been achieved.

すなわち、上記目的を達成するため、本発明の光学フィルムの製造方法は、連続的に搬送される支持体上に紫外線硬化性樹脂を含む塗液を塗布して前記支持体上に塗膜を形成する塗布工程と、前記塗布工程で前記支持体上に塗布された塗膜を乾燥する乾燥工程と、前記乾燥工程で乾燥した塗膜に紫外線を照射して塗膜を硬化する紫外線照射工程とを含む光学フィルムの製造方法において、前記乾燥工程後で前記紫外線照射工程前の前記塗膜の温度Ti(℃)を25以上80以下にし、かつ、前記紫外線照射工程で紫外線の照射時間をt(sec)、紫外線照射よる前記塗膜の温度上昇をΔT(℃)としたとき、紫外線照射時の前記塗膜の単位時間当たりの温度変化ΔT/t(℃/sec)を6以上18以下にしたことを特徴とする。   That is, in order to achieve the above object, the method for producing an optical film of the present invention forms a coating film on the support by applying a coating liquid containing an ultraviolet curable resin onto the support that is continuously conveyed. An application step for drying, a drying step for drying the coating film applied on the support in the application step, and an ultraviolet irradiation step for curing the coating film by irradiating the coating film dried in the drying step with ultraviolet rays. In the manufacturing method of the optical film, the temperature Ti (° C.) of the coating film after the drying step and before the ultraviolet irradiation step is set to 25 or more and 80 or less, and the ultraviolet irradiation time in the ultraviolet irradiation step is t (sec). ) When the temperature rise of the coating film due to ultraviolet irradiation is ΔT (° C.), the temperature change ΔT / t (° C./sec) per unit time of the coating film during ultraviolet irradiation is 6 or more and 18 or less. It is characterized by.

本発明の光学フィルムの製造方法によれば、連続的に搬送される支持体上の塗膜を紫外線照射により硬化する際、乾燥工程後で紫外線照射工程前の塗膜の温度Ti(℃)を25以上80以下にし、かつ、紫外線照射工程で塗膜に紫外線照射時間をt(sec)、紫外線を照射することによる塗膜の温度上昇をΔT(℃)としたときの紫外線照射時の単位時間当たりの塗膜の温度変化ΔT/t(℃/sec)を6以上18以下にする。
これにより、紫外線と同時に発生する熱や塗膜の硬化収縮によるシワやカールなどのフィルムの変形や、形成された機能膜の硬度や耐擦傷性、基材との密着性等の膜物性の低下を抑制することができ、外観、膜物性ともに良好な機能膜を得ることができる光学フィルムの製造方法を提供できる。
塗膜の温度Ti(℃)が25以上80以下であると、効率的に塗膜が硬化し、結果、機能膜の硬度や耐擦傷性等の膜特性が向上する。また、塗膜の温度Ti(℃)が80より大きいとフィルムへの熱ダメージが大きく、フィルムの変形等の外観の欠陥が生じる。一方、塗膜の温度Ti(℃)が25より小さいと、効率的に塗膜が硬化せず、機能膜の硬度や耐擦傷性等の膜特性が低下する。
また、紫外線照射時の単位時間当たりの塗膜の温度変化ΔT/t(℃/sec)が6以上18以下であると、熱や硬化収縮によるフィルムの変形を抑制できる。単位時間当たりの塗膜の温度変化ΔT/t(℃/sec)が18より大きいと、塗膜の急激な温度上昇により熱によるフィルムの変形が生じ、温度上昇が同じであっても、単位時間当りの温度変化が大きいとフィルムの変形が生じやすくなり、また、急激な硬化収縮により基材フィルムと塗膜との密着性が低下する。一方、単位時間当たりの塗膜の温度変化ΔT/t(℃/sec)が6より小さいと、フィルムの変形は抑制できるが、熱による硬化の促進が行われず、硬度や耐擦傷性等の膜特性が低下する。
According to the method for producing an optical film of the present invention, when the coating film on the continuously conveyed support is cured by ultraviolet irradiation, the temperature Ti (° C.) of the coating film after the drying process and before the ultraviolet irradiation process is set. Unit time at the time of UV irradiation when the UV irradiation time is set to 25 (T) and the temperature rise of the coating film due to UV irradiation is ΔT (° C.). The temperature change ΔT / t (° C./sec) of the hit coating film is set to 6 or more and 18 or less.
Due to this, heat generated simultaneously with ultraviolet rays, film deformation such as wrinkles and curls due to curing shrinkage of the coating film, deterioration of film properties such as hardness and scratch resistance of the formed functional film, adhesion to the substrate, etc. Can be suppressed, and a method for producing an optical film capable of obtaining a functional film having good appearance and film properties can be provided.
When the temperature Ti (° C.) of the coating film is 25 or more and 80 or less, the coating film is efficiently cured, and as a result, film properties such as hardness and scratch resistance of the functional film are improved. On the other hand, if the temperature Ti (° C.) of the coating film is higher than 80, thermal damage to the film is large, and defects in appearance such as film deformation occur. On the other hand, when the temperature Ti (° C.) of the coating film is less than 25, the coating film is not efficiently cured, and film properties such as hardness and scratch resistance of the functional film are deteriorated.
Further, when the temperature change ΔT / t (° C./sec) of the coating film per unit time during ultraviolet irradiation is 6 or more and 18 or less, deformation of the film due to heat or curing shrinkage can be suppressed. When the temperature change ΔT / t (° C./sec) of the coating film per unit time is greater than 18, even if the temperature rise is the same due to the rapid temperature rise of the coating film, the unit time When the temperature change per unit is large, the film is likely to be deformed, and the adhesiveness between the base film and the coating film is lowered due to rapid curing shrinkage. On the other hand, when the temperature change ΔT / t (° C./sec) of the coating film per unit time is smaller than 6, deformation of the film can be suppressed, but curing by heat is not promoted, and the film such as hardness and scratch resistance is not present. Characteristics are degraded.

以下、本発明の光学フィルムの製造方法に図面を参照して説明する。
図1は、実施の形態の光学フィルムの製造方法を示す図である。
実施の形態の光学フィルムの製造方法は、フィルムロール1からウェブ状の支持体(基材)9を連続的に巻き出して搬送し、コーティングロール2、塗布装置(ダイヘッド)3、乾燥装置5および紫外線照射装置6を経てフィルムロール7に巻き取る。塗布装置3は、搬送される支持体上に塗布装置3により塗液を塗布して塗膜を形成する(塗布工程)。乾燥装置5は、搬送される支持体上の塗膜中の溶剤を蒸発させる(乾燥工程)。紫外線照射装置6は、搬送される支持体上の塗膜を硬化する(紫外線照射工程)。
Hereinafter, the manufacturing method of the optical film of this invention is demonstrated with reference to drawings.
Drawing 1 is a figure showing a manufacturing method of an optical film of an embodiment.
The method for producing an optical film of the embodiment comprises that a web-like support (base material) 9 is continuously unwound from a film roll 1 and conveyed, and a coating roll 2, a coating device (die head) 3, a drying device 5 and The film is wound around a film roll 7 through an ultraviolet irradiation device 6. The coating apparatus 3 forms a coating film by applying a coating liquid on the transported support by the coating apparatus 3 (application process). The drying device 5 evaporates the solvent in the coating film on the transported support (drying process). The ultraviolet irradiation device 6 cures the coating film on the conveyed support (ultraviolet irradiation step).

塗布装置3による塗布方法には、ウェットコーティング法(ディップコーティング法、フローコーティング法、スプレーコーティング法、ロールコーティング法、グラビアロールコーティング法、エアードクターコーティング法、ワイヤードクターコーティング法、ナイフコーティング法、リバースコーティング法、トランスファーロールコーティング法、マイクログラビアコーティング法、キスコーティング法、キャストコーティング法、スロットオリフィスコーティング法、カレンダーコーティング法、ダイコーティング法等)などを採用できる。図1の塗布装置3にはダイコーティング法を示したが、ロール・ツー・ロール方式により連続して支持体上に塗膜を形成できればよく、これに限定されるものではない。   The coating method by the coating device 3 includes a wet coating method (dip coating method, flow coating method, spray coating method, roll coating method, gravure roll coating method, air doctor coating method, wire doctor coating method, knife coating method, reverse coating method. Method, transfer roll coating method, micro gravure coating method, kiss coating method, cast coating method, slot orifice coating method, calendar coating method, die coating method, etc.). Although the die coating method is shown in the coating apparatus 3 in FIG. 1, it is only necessary that a coating film can be continuously formed on the support by a roll-to-roll method, and the present invention is not limited to this.

乾燥装置5による乾燥方法には、支持体9上に塗液を塗布して形成した塗膜に直接熱風を吹きかけ、塗膜中の溶剤の蒸発を促進させる方法がある。このときの熱風の温度は一般的に50℃〜150℃であるが、塗膜中の残留溶剤量や溶剤の乾燥速度を考慮して熱風の風速や温度を調節する。また、直接熱風を吹き付けると乾燥ムラ等の外観欠陥が生じる場合があるため、直接熱風を吹き付けることなく間接的に基材を加熱する方法もある。   As a drying method using the drying device 5, there is a method of spraying hot air directly on a coating film formed by applying a coating liquid on the support 9 to promote evaporation of the solvent in the coating film. The temperature of the hot air at this time is generally 50 ° C. to 150 ° C., but the speed and temperature of the hot air are adjusted in consideration of the residual solvent amount in the coating film and the drying speed of the solvent. Further, since direct appearance of hot defects such as drying unevenness may occur when hot air is blown directly, there is a method of heating the substrate indirectly without blowing hot air directly.

紫外線照射装置6による紫外線硬化方法には、高圧水銀ランプやメタルハライドランプ等の各種ランプにより支持体9上の塗膜を硬化することができる。
本発明においては、乾燥工程後で紫外線照射工程前の塗膜の温度Ti(℃)が25以上80以下であることが好ましい。塗膜の温度Ti(℃)が25以上80以下であると、効率的に塗膜が硬化し、結果、機能膜の硬度や耐擦傷性等の膜特性が向上する。また、温度Ti(℃)が80より大きいとフィルムへの熱ダメージが大きく、フィルムの変形等の外観の欠陥が生じる。一方、温度Ti(℃)が25より小さいと、効率的に塗膜が硬化せず、機能膜の硬度や耐擦傷性等の膜特性が低下する。
In the ultraviolet curing method using the ultraviolet irradiation device 6, the coating film on the support 9 can be cured by various lamps such as a high-pressure mercury lamp and a metal halide lamp.
In this invention, it is preferable that the temperature Ti (degreeC) of the coating film after a drying process and before an ultraviolet irradiation process is 25-80. When the temperature Ti (° C.) of the coating film is 25 or more and 80 or less, the coating film is efficiently cured, and as a result, film properties such as hardness and scratch resistance of the functional film are improved. On the other hand, if the temperature Ti (° C.) is higher than 80, thermal damage to the film is large, and defects in appearance such as film deformation occur. On the other hand, when the temperature Ti (° C.) is less than 25, the coating film is not efficiently cured, and the film characteristics such as hardness and scratch resistance of the functional film are deteriorated.

乾燥工程後で紫外線照射工程前の塗膜の温度Tiは、紫外線照射前に塗膜を温調するとよい。例えば、本発明のように、紫外線照射装置6の手前のガイドロール4bに温調機構を設け、塗膜を温調することができる。また、乾燥装置5により塗膜の温度が上昇し、乾燥装置5を出た後は塗膜の温度は雰囲気中の温度につられて低下するため、乾燥装置5から紫外線照射装置6までの距離を調整することによって塗膜の温度を制御することもできる。また、乾燥装置5内の温度を調整することによっても塗膜の温度Tiを制御することができる。   The temperature Ti of the coating film after the drying process and before the ultraviolet irradiation process is preferably adjusted before the ultraviolet irradiation. For example, as in the present invention, the temperature of the coating film can be controlled by providing a temperature control mechanism on the guide roll 4b in front of the ultraviolet irradiation device 6. Moreover, since the temperature of the coating film rises by the drying device 5 and the temperature of the coating film decreases after leaving the drying device 5 due to the temperature in the atmosphere, the distance from the drying device 5 to the ultraviolet irradiation device 6 is increased. The temperature of the coating film can also be controlled by adjusting. The temperature Ti of the coating film can also be controlled by adjusting the temperature in the drying device 5.

さらに、紫外線照射工程での塗膜の紫外線照射時間をt(sec)、紫外線を照射することによる塗膜の温度上昇をΔTとしたときの、紫外線照射時の塗膜の単位時間当たりの温度変化ΔT/t(℃/sec)が6以上18以下であることが好ましい。塗膜の単位時間当たりの温度変化ΔT/t(℃/sec)が6以上18以下であると、熱や硬化収縮によるフィルムの変形を抑制できる。塗膜の単位時間当たりの温度変化ΔT/t(℃/sec)が18より大きいと、塗膜の急激な温度上昇により熱によるフィルムの変形が生じ、温度上昇が同じであっても、単位時間当りの温度変化が大きいとフィルムの変形が生じやすくなり、また、急激な硬化収縮により基材フィルムと塗膜との密着性が低下する。一方、塗膜の単位時間当たりの温度変化ΔT/t(℃/sec)が6より小さいと、フィルムの変形は抑制できるが、熱による硬化の促進が行われず、硬度や耐擦傷性等の膜特性が低下する。   Furthermore, the change in temperature per unit time of the coating film during UV irradiation when the UV irradiation time of the coating film in the UV irradiation process is t (sec) and the temperature rise of the coating film due to UV irradiation is ΔT. ΔT / t (° C./sec) is preferably 6 or more and 18 or less. When the temperature change ΔT / t (° C./sec) per unit time of the coating film is 6 or more and 18 or less, deformation of the film due to heat or curing shrinkage can be suppressed. If the temperature change ΔT / t (° C./sec) per unit time of the coating film is greater than 18, even if the temperature rise is the same, the unit time When the temperature change per hit is large, the film is likely to be deformed, and the adhesiveness between the base film and the coating film is lowered due to rapid curing shrinkage. On the other hand, if the temperature change ΔT / t (° C./sec) per unit time of the coating film is smaller than 6, deformation of the film can be suppressed, but curing due to heat is not promoted, and films such as hardness and scratch resistance are not present. Characteristics are degraded.

紫外線照射工程における紫外線照射時の塗膜の単位時間当たりの温度変化ΔT/t(℃/sec)については、支持体9の搬送速度を変化させたり、紫外線照射装置6のランプの出力を変化させることにより調節することができる。また、紫外線照射装置6を複数並べることにより照射時間を制御できる。また、支持体9を挟んで紫外線照射装置6と対向するようにキャンロール8が設けられる場合には、キャンロール8が温調機構を備え、キャンロール8の温度を変化させることにより、紫外線照射時の塗膜温度の時間変化ΔT/tを所望の範囲とすることができる。   Regarding the temperature change ΔT / t (° C./sec) per unit time of the coating film during the ultraviolet irradiation in the ultraviolet irradiation process, the transport speed of the support 9 is changed or the output of the lamp of the ultraviolet irradiation device 6 is changed. Can be adjusted. Further, the irradiation time can be controlled by arranging a plurality of ultraviolet irradiation devices 6. In addition, when the can roll 8 is provided so as to face the ultraviolet irradiation device 6 with the support 9 interposed therebetween, the can roll 8 includes a temperature control mechanism, and the temperature of the can roll 8 is changed, so that the ultraviolet irradiation is performed. The time change ΔT / t of the coating temperature at the time can be set to a desired range.

また、紫外線照射工程で塗膜に照射する紫外線の最高照度W(mW/cm)が100以上800以下であることが好ましい。最高照度Wとは、搬送される支持体9上の塗膜に照射される紫外線の照度のうち、最も高い照度のことをいう。紫外線の最高照度W(mW/cm)が800より大きいと、熱が過剰にフィルムに加わり大きく変形する。紫外線の最高照度W(mW/cm)が100より小さいと、十分な硬化がされず、機能膜の硬度や耐擦傷性が低下する。
照度に関しては、ランプの種類やランプ出力を変更することで、過剰な照度を制御することができる。
Moreover, it is preferable that the maximum illumination intensity W (mW / cm < 2 >) of the ultraviolet-ray irradiated to a coating film at an ultraviolet irradiation process is 100-800. The maximum illuminance W refers to the highest illuminance among the illuminances of ultraviolet rays applied to the coating film on the support 9 to be conveyed. When the maximum illuminance W (mW / cm 2 ) of the ultraviolet rays is greater than 800, heat is excessively applied to the film and is greatly deformed. When the maximum illuminance W (mW / cm 2 ) of ultraviolet rays is smaller than 100, sufficient curing is not achieved, and the hardness and scratch resistance of the functional film are lowered.
Regarding the illuminance, excessive illuminance can be controlled by changing the type of lamp and lamp output.

また、乾燥工程後、紫外線照射工程前の塗膜の膜厚が0.1〜50μmであることが好ましい。紫外線照射前の塗膜の膜厚は、赤外線膜厚計(例えば、フィルム厚さ計 RX−100、倉敷紡績社製)を用いて測定することができる。紫外線照射前の塗膜の膜厚が50μmより大きいと、塗膜の硬化収縮が大きくなり、フィルムの変形が大きくなる。一方、紫外線照射前の塗膜の膜厚が0.1μmより小さいと、機能膜の所望の硬度や耐擦傷性が発現しない場合がある。   Moreover, it is preferable that the film thickness of the coating film after a drying process and before an ultraviolet irradiation process is 0.1-50 micrometers. The film thickness of the coating film before ultraviolet irradiation can be measured using an infrared film thickness meter (for example, a film thickness meter RX-100, manufactured by Kurashiki Textile Co., Ltd.). When the film thickness of the coating film before ultraviolet irradiation is larger than 50 μm, the curing shrinkage of the coating film increases and the deformation of the film increases. On the other hand, when the film thickness of the coating film before ultraviolet irradiation is smaller than 0.1 μm, the desired hardness and scratch resistance of the functional film may not be exhibited.

次に、本発明の光学フィルムについて説明する。
図2に本発明の光学フィルムを示した。
図2に示すように、本発明の光学フィルム12は基材フィルム(支持体9)10と機能膜11から構成され、機能膜11には、高硬度、反射防止性、防眩性、帯電防止性等の機能性が付与される。機能膜11は機能性を付与する観点から、2以上の膜を積層してもよい。
Next, the optical film of the present invention will be described.
FIG. 2 shows the optical film of the present invention.
As shown in FIG. 2, the optical film 12 of the present invention is composed of a base film (support 9) 10 and a functional film 11. The functional film 11 has high hardness, antireflection, antiglare, antistatic. Functionality such as sex is added. The functional film 11 may be a laminate of two or more films from the viewpoint of imparting functionality.

本発明に用いられるウェブ状の支持体9(基材フィルム10)としては、プラスチックフィルムを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していれば良い。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ジアセチルセルロース、アセチルセルロースブチレート、ポリエチレンナフタレート(PEN)、シクロオレフィンポリマー、ポリイミド、ポリエーテルスルホン(PES)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)等のフィルムを用いることができる。中でも、液晶表示装置の前面に本発明の積層体を用いる場合、トリアセチルセルロース(TAC)フィルムは光学異方性がないため、好ましく用いられる。   As the web-like support 9 (base film 10) used in the present invention, a plastic film can be used. The plastic film only needs to have appropriate transparency and mechanical strength. Examples of the plastic film include polyethylene terephthalate (PET), triacetyl cellulose (TAC), diacetyl cellulose, acetyl cellulose butyrate, polyethylene naphthalate (PEN), cycloolefin polymer, polyimide, polyethersulfone (PES), and polymethyl. Films such as methacrylate (PMMA) and polycarbonate (PC) can be used. Especially, when using the laminated body of this invention for the front surface of a liquid crystal display device, since there is no optical anisotropy, a triacetylcellulose (TAC) film is used preferably.

本発明の塗液にあっては、下記の紫外線硬化樹脂や樹脂を溶解する溶剤、樹脂を硬化させる光重合開始剤が含まれるが、他に、レベリング剤、紫外線吸収剤、赤外線吸収剤、防汚剤、撥水剤などの各種添加剤を必要に応じて加えることができる。   The coating liquid of the present invention includes the following ultraviolet curable resin, a solvent for dissolving the resin, and a photopolymerization initiator for curing the resin. In addition, a leveling agent, an ultraviolet absorber, an infrared absorber, Various additives such as a stain and a water repellent can be added as necessary.

本発明の紫外線硬化型材料として用いられる樹脂としては、多価アルコールのアクリル酸またはメタクリル酸エステルのような多官能性のアクリレート、ジイソシアネートと多価アルコール及びアクリル酸またはメタクリル酸のヒドロキシエステル等から合成されるような多官能のウレタンアクリレート等が挙げられる。またこれらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用することができる。これらの樹脂は1種で用いてもよいが、2種類以上の混合物として用いてよい。また、これらの樹脂にシリカ粒子、アクリル粒子、アクリル−スチレン粒子、スチレン粒子、メラミン粒子、タルク、各種アルミノケイ酸塩、カオリンクレー、MgAlハイドロタルサイト等の光拡散粒子、フッ化カルシウム粒子、フッ化マグネシウム粒子、多孔質シリカ粒子等の低屈折粒子、金属粒子等の導電性粒子を含有させ、塗膜に反射防止性、防眩性、帯電防止性等を付与してもよい。   The resin used as the ultraviolet curable material of the present invention is synthesized from polyfunctional acrylates such as polyhydric alcohol acrylic acid or methacrylic acid ester, diisocyanate and polyhydric alcohol, and acrylic acid or methacrylic acid hydroxy ester. And polyfunctional urethane acrylate. Besides these, polyether resins having an acrylate functional group, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used. These resins may be used alone, but may be used as a mixture of two or more. In addition, these resins include silica particles, acrylic particles, acrylic-styrene particles, styrene particles, melamine particles, talc, various aluminosilicates, kaolin clay, MgAl hydrotalcite, etc., calcium fluoride particles, fluoride Low refractive particles such as magnesium particles and porous silica particles, and conductive particles such as metal particles may be contained to impart antireflection properties, antiglare properties, antistatic properties and the like to the coating film.

塗液化する際には、必要に応じて溶媒を加えることができる。このとき、溶媒としては、特に限定されないが、組成物の安定性、塗布層に対する揮発性などを考慮して、水や、メタノール・エタノール・イソプロパノール・ブタノール・2−メトキシエタノール等のアルコール類、アセトン・メチルエチルケトン・メチルイソブチル等のケトン類、酢酸メチル・酢酸エチル・酢酸ブチル等のエステル類、ジイソプロピルエーテル等のエーテル類、エチレングリコール・プロピレングリコール・ヘキシレングリコール等のグリコール類、エチルセロソルブ・ブチルセロソルブ・エチルカルビトール・ブチルカルビトール等のグリコールエーテル類、ヘキサン・ヘプタン・オクタン等の脂肪族炭化水素類、ハロゲン化炭化水素、ベンゼン・トルエン・キシレン等の芳香族炭化水素、N−メチルピロリドン、ジメチルホルムアミド等の中から適宜選択される。これらの溶媒は1種で用いてもよいが、2種類以上の混合物として用いてよい。   In forming the coating liquid, a solvent can be added as necessary. At this time, the solvent is not particularly limited, but water, alcohols such as methanol, ethanol, isopropanol, butanol, 2-methoxyethanol, acetone, etc. in consideration of the stability of the composition and the volatility with respect to the coating layer. -Ketones such as methyl ethyl ketone and methyl isobutyl, esters such as methyl acetate, ethyl acetate and butyl acetate, ethers such as diisopropyl ether, glycols such as ethylene glycol, propylene glycol and hexylene glycol, ethyl cellosolve, butyl cellosolve and ethyl Glycol ethers such as carbitol and butyl carbitol, aliphatic hydrocarbons such as hexane, heptane and octane, halogenated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, N-methylpyrrolidone, di It is suitably selected from such a solution of triethylsilane. These solvents may be used alone or as a mixture of two or more.

光重合開始剤(ラジカル重合開始剤)としては、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル[4−(メチルチオ)フェニル]モルフォリノプロパン−1−オン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、ベンゾフェノン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタン−1−オン、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキサイド等が挙げられる。光重合開始剤の添加量は、紫外線硬化型材料100重量部に対して、0.1〜10重量部が好ましい。   Examples of the photopolymerization initiator (radical polymerization initiator) include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 2-methyl [4- (methylthio) phenyl] morpholinopro. Pan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide Etc. The addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the ultraviolet curable material.

<光学フィルムの作製方法>
以下のようにして、支持体9上に機能膜11を形成し、実施例及び比較例の光学フィルム12を作製した。
<Method for producing optical film>
In the following manner, the functional film 11 was formed on the support 9, and optical films 12 of Examples and Comparative Examples were produced.

紫外線硬化性樹脂としてペンタエリスリトールトリアクリレート(PE−3A、共栄社化学社製)100重量部、溶剤としてトルエン100.5重量部、光重合開始剤としてイルガキュア184(チバスペシャリティケミカルズ社製)5重量部を混合させ、塗液を調製した。   100 parts by weight of pentaerythritol triacrylate (PE-3A, manufactured by Kyoeisha Chemical Co., Ltd.) as an ultraviolet curable resin, 100.5 parts by weight of toluene as a solvent, and 5 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator The mixture was mixed to prepare a coating solution.

次に連続して搬送される支持体9として650mm幅のトリアセチルセルロース(以下、TACという)フィルムを用い、塗布装置3としてエクストルージョン方式のダイヘッドを用いて上記組成の塗液を塗布した。塗布した塗膜は、乾燥装置5において50℃の熱風により乾燥した後、紫外線照射装置6に設置した高圧水銀ランプ(80W/cm)により硬化し、TACフィルム上に機能膜を形成した。なお、支持体9の搬送速度は15m/minである。
また、紫外線照射装置6の手前のガイドロール4bおよび紫外線照射装置6にあるキャンロール8は温調機構を有するものを用いた。
Next, a coating liquid having the above composition was applied using a triacetyl cellulose (hereinafter referred to as TAC) film having a width of 650 mm as the support 9 to be continuously conveyed and using an extrusion type die head as the coating device 3. The applied coating film was dried with hot air at 50 ° C. in the drying apparatus 5 and then cured with a high-pressure mercury lamp (80 W / cm) installed in the ultraviolet irradiation apparatus 6 to form a functional film on the TAC film. In addition, the conveyance speed of the support body 9 is 15 m / min.
Moreover, the guide roll 4b in front of the ultraviolet irradiation device 6 and the can roll 8 in the ultraviolet irradiation device 6 were those having a temperature control mechanism.

そして、放射温度センサ(FT−H20、キーエンス社製)を紫外線照射装置6の手前と直後に設置し、紫外線を照射する前の塗膜の温度Ti(℃)、紫外線を照射する時間をt(sec)、紫外線を照射することによる塗膜の温度上昇をΔT(℃)としたときの紫外線照射時の塗膜温度の時間変化ΔT/t(℃/sec)測定した。なお、紫外線の照射時間t(sec)は、紫外線の照射装置6の紫外線の照射幅と搬送速度から求めた。   Then, a radiation temperature sensor (FT-H20, manufactured by Keyence Corporation) is installed before and immediately after the ultraviolet irradiation device 6, and the temperature Ti (° C.) of the coating film before irradiation with ultraviolet rays and the time for irradiation with ultraviolet rays t ( sec), the time change ΔT / t (° C./sec) of the coating temperature at the time of ultraviolet irradiation, when ΔT (° C.) is the temperature rise of the coating film due to the irradiation with ultraviolet rays. The ultraviolet irradiation time t (sec) was obtained from the ultraviolet irradiation width of the ultraviolet irradiation device 6 and the conveyance speed.

温調機構を備える紫外線照射装置の手前のガイドロール4bおよび温調機構を備える紫外線照射装置6にあるキャンロール8の温度を変化させることにより、表1に示すように、紫外線を照射する前の塗膜の温度Ti(℃)、紫外線照射時の塗膜温度の時間変化ΔT/t(℃/sec)を変化させ、実施例、比較例の光学フィルムを作製した。   By changing the temperature of the guide roll 4b in front of the ultraviolet irradiation device having the temperature control mechanism and the temperature of the can roll 8 in the ultraviolet irradiation device 6 having the temperature control mechanism, as shown in Table 1, before irradiation with ultraviolet light The optical film of Examples and Comparative Examples was prepared by changing the temperature Ti (° C.) of the coating film and the time change ΔT / t (° C./sec) of the coating temperature during ultraviolet irradiation.

Figure 2009034620
Figure 2009034620

<評価方法>
得られた光学フィルムのシワ評価、カール評価、鉛筆硬度、耐擦傷性、機能膜とTACフィルムとの密着性の各評価を以下の方法にて実施した。
<Evaluation method>
Wrinkle evaluation, curl evaluation, pencil hardness, scratch resistance, and adhesion between the functional film and the TAC film of the obtained optical film were evaluated by the following methods.

(シワ評価)
得られた光学フィルムのシワの評価に関しては、光学フィルム12を650mm幅×1mに切り出し、切り出した光学フィルムを蛍光灯にあてることにより目視により評価をおこなった。以下の3段階で評価をおこなった。
3:シワが確認できない。
2:フィルムの搬送方向と平行のシワが確認しづらい。
1:フィルムの搬送方向と平行のシワが明らかに確認できる。
(Wrinkle evaluation)
Regarding the evaluation of wrinkles of the obtained optical film, the optical film 12 was cut into a width of 650 mm × 1 m, and the cut-out optical film was applied to a fluorescent lamp for visual evaluation. Evaluation was carried out in the following three stages.
3: Wrinkles cannot be confirmed.
2: Wrinkles parallel to the film transport direction are difficult to check.
1: Wrinkles parallel to the film transport direction can be clearly confirmed.

(カール評価)
得られた光学フィルムのカール評価に関しては、光学フィルムを10cm×10cm切り出し、切り出した光学フィルムを平坦な机に置き、カールの度合いを目視により評価をおこなった。以下の3段階で評価をおこなった。
3:カールの浮き上がりがほとんどない。
2:カールの浮き上がりが大きい。
1:カールの浮き上がりが筒状。
(Curl evaluation)
Regarding the curl evaluation of the obtained optical film, the optical film was cut out 10 cm × 10 cm, the cut out optical film was placed on a flat desk, and the degree of curling was evaluated visually. Evaluation was carried out in the following three stages.
3: There is almost no curl lifting.
2: The rise of curl is large.
1: Curl lift is cylindrical.

(鉛筆硬度試験)
JIS−K−5400に準じ、鉛筆引っかき試験機によりTACフィルム上の機能膜のすり傷を評価した。
(Pencil hardness test)
According to JIS-K-5400, the scratch of the functional film on the TAC film was evaluated by a pencil scratch tester.

(耐擦傷性試験)
スチールウール(#0000)により、TACフィルム上の機能膜を加重250gで10往復擦り、傷のつき方を目視評価した。傷のつき方は、以下の3段階で評価した。
3:傷を確認することができない。
2:十数本の傷を確認できる。
1:多数の傷を確認できる。
(Abrasion resistance test)
The functional film on the TAC film was rubbed 10 reciprocally with a weight of 250 g with steel wool (# 0000), and the scratching was visually evaluated. The method of scratching was evaluated in the following three stages.
3: Scratches cannot be confirmed.
2: Dozens of scratches can be confirmed.
1: Many scratches can be confirmed.

(密着性試験)
碁盤目テープ(クロスカット)法により評価した。TACフィルム上の機能膜に碁盤目状のマスをカッターナイフで作り、その上からセロハンテープを貼り付け、剥がしたときの100マスのうち剥離しなかった数(残存数)を数えた。
(Adhesion test)
Evaluation was made by a cross-cut tape method. A grid-like square was formed on the functional film on the TAC film with a cutter knife, and a cellophane tape was affixed thereon, and the number of 100 squares that had not been peeled off (remaining number) was counted.

表1から明らかなように、照射前の塗膜温度や照射時の塗膜温度の時間変化を制御することで、紫外線と同時に発生する熱や塗膜の硬化収縮によるシワやカールなどのフィルムの変形や、形成された機能膜の硬度や耐擦傷性、基材との密着性等の膜物性の低下を抑制することができた。   As is clear from Table 1, by controlling the temporal change of the coating film temperature before irradiation and the coating film temperature at the time of irradiation, the heat generated simultaneously with ultraviolet rays and the film such as wrinkles and curls due to curing shrinkage of the coating film It was possible to suppress the deterioration of film physical properties such as deformation, hardness and scratch resistance of the formed functional film, and adhesion to the substrate.

実施の形態の光学フィルムの製造方法を示す図である。It is a figure which shows the manufacturing method of the optical film of embodiment. 光学フィルムの断面図である。It is sectional drawing of an optical film.

符号の説明Explanation of symbols

1……巻出しロールフィルム、2……コーティングロール、3……ダイヘッド、4a〜4c……ガイドロール、5……乾燥装置、6……紫外線照射装置、7……巻取りロールフィルム、8……キャンロール、9……支持体、10……基材フィルム、11……機能膜、12……光学フィルム。   DESCRIPTION OF SYMBOLS 1 ... Unwinding roll film, 2 ... Coating roll, 3 ... Die head, 4a-4c ... Guide roll, 5 ... Drying device, 6 ... Ultraviolet irradiation device, 7 ... Winding roll film, 8 ... ... can roll, 9 ... support, 10 ... base film, 11 ... functional film, 12 ... optical film.

Claims (4)

連続的に搬送される支持体上に紫外線硬化性樹脂を含む塗液を塗布して前記支持体上に塗膜を形成する塗布工程と、前記塗布工程で前記支持体上に塗布された塗膜を乾燥する乾燥工程と、前記乾燥工程で乾燥した塗膜に紫外線を照射して塗膜を硬化する紫外線照射工程とを含む光学フィルムの製造方法において、
前記乾燥工程後で前記紫外線照射工程前の前記塗膜の温度Ti(℃)を25以上80以下にし、かつ、前記紫外線照射工程で紫外線の照射時間をt(sec)、紫外線照射よる前記塗膜の温度上昇をΔT(℃)としたとき、紫外線照射時の前記塗膜の単位時間当たりの温度変化ΔT/t(℃/sec)を6以上18以下にした、
ことを特徴とする光学フィルムの製造方法。
A coating process in which a coating liquid containing an ultraviolet curable resin is coated on a continuously conveyed support to form a coating film on the support, and a coating film coated on the support in the coating process In a method for producing an optical film, comprising: a drying step of drying the coating; and an ultraviolet irradiation step of curing the coating film by irradiating the coating film dried in the drying step with ultraviolet rays.
The coating film by which the temperature Ti (° C.) of the coating film after the drying process and before the ultraviolet irradiation process is 25 or more and 80 or less, and the ultraviolet irradiation time is t (sec) in the ultraviolet irradiation process. The temperature change ΔT / t (° C./sec) per unit time of the coating film at the time of ultraviolet irradiation was set to 6 or more and 18 or less, where ΔT (° C.) was the temperature rise.
The manufacturing method of the optical film characterized by the above-mentioned.
前記紫外線照射工程で塗膜に照射する紫外線の最大照度W(mW/cm)が100以上800以下であることを特徴とする請求項1に記載の光学フィルムの製造方法。 2. The method for producing an optical film according to claim 1, wherein a maximum illuminance W (mW / cm 2 ) of ultraviolet rays applied to the coating film in the ultraviolet irradiation step is 100 or more and 800 or less. 前記乾燥工程後で前記紫外線照射工程前の塗膜の膜厚が0.1μm以上50μm以下であることを特徴とする請求項1又は2に記載の光学フィルムの製造方法。   The method for producing an optical film according to claim 1 or 2, wherein a film thickness of the coating film after the drying step and before the ultraviolet irradiation step is 0.1 µm or more and 50 µm or less. 温調機能を有するガイドロールを1又は2本以上用いることにより前記乾燥工程後で前記紫外線照射工程前の塗膜の温度を調節することを特徴とする請求項1〜3のいずれか1項に記載の光学フィルムの製造方法。   The temperature of the coating film before the said ultraviolet irradiation process is adjusted after the said drying process by using 1 or 2 or more guide rolls which have a temperature control function in any one of Claims 1-3 characterized by the above-mentioned. The manufacturing method of the optical film of description.
JP2007202247A 2007-08-02 2007-08-02 Method of manufacturing optical film Pending JP2009034620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202247A JP2009034620A (en) 2007-08-02 2007-08-02 Method of manufacturing optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202247A JP2009034620A (en) 2007-08-02 2007-08-02 Method of manufacturing optical film

Publications (1)

Publication Number Publication Date
JP2009034620A true JP2009034620A (en) 2009-02-19

Family

ID=40437049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202247A Pending JP2009034620A (en) 2007-08-02 2007-08-02 Method of manufacturing optical film

Country Status (1)

Country Link
JP (1) JP2009034620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864878A (en) * 2017-05-16 2018-11-23 关西涂料株式会社 Coating film-forming methods
JP2018192470A (en) * 2017-05-16 2018-12-06 関西ペイント株式会社 Coating film formation method
CN114421143A (en) * 2021-12-30 2022-04-29 哈尔滨工业大学(深圳) Flexible antenna sensor and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217223A (en) * 1992-01-31 1993-08-27 Sony Corp Production of optical disk
JPH09100422A (en) * 1995-08-03 1997-04-15 Matsushita Electric Ind Co Ltd Ultraviolet-curable coating composition, magnet-optical disk using the same and its production
JP2003093963A (en) * 2001-09-21 2003-04-02 Konica Corp Method for manufacturing optical film
JP2004341017A (en) * 2003-05-13 2004-12-02 Konica Minolta Opto Inc Method for manufacturing hard coat film for forming optical thin film, antireflection film and display device using the same
JP2006152134A (en) * 2004-11-30 2006-06-15 Nippon Zeon Co Ltd Production method of laminated film
JP2007098302A (en) * 2005-10-05 2007-04-19 Nippon Zeon Co Ltd Method for manufacturing film having hard coat layer, and optical instrument
JP2008242003A (en) * 2007-03-27 2008-10-09 Konica Minolta Opto Inc Method for manufacturing hard coat film, optical film and anti-reflection film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217223A (en) * 1992-01-31 1993-08-27 Sony Corp Production of optical disk
JPH09100422A (en) * 1995-08-03 1997-04-15 Matsushita Electric Ind Co Ltd Ultraviolet-curable coating composition, magnet-optical disk using the same and its production
JP2003093963A (en) * 2001-09-21 2003-04-02 Konica Corp Method for manufacturing optical film
JP2004341017A (en) * 2003-05-13 2004-12-02 Konica Minolta Opto Inc Method for manufacturing hard coat film for forming optical thin film, antireflection film and display device using the same
JP2006152134A (en) * 2004-11-30 2006-06-15 Nippon Zeon Co Ltd Production method of laminated film
JP2007098302A (en) * 2005-10-05 2007-04-19 Nippon Zeon Co Ltd Method for manufacturing film having hard coat layer, and optical instrument
JP2008242003A (en) * 2007-03-27 2008-10-09 Konica Minolta Opto Inc Method for manufacturing hard coat film, optical film and anti-reflection film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864878A (en) * 2017-05-16 2018-11-23 关西涂料株式会社 Coating film-forming methods
JP2018192470A (en) * 2017-05-16 2018-12-06 関西ペイント株式会社 Coating film formation method
CN114421143A (en) * 2021-12-30 2022-04-29 哈尔滨工业大学(深圳) Flexible antenna sensor and preparation method thereof
CN114421143B (en) * 2021-12-30 2024-05-07 哈尔滨工业大学(深圳) Flexible antenna sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4457324B2 (en) Hard coat film for molding
TWI717529B (en) Hard coating film and image display device using the same
JP2015069197A (en) Hard coat film and image display device
KR102300811B1 (en) anti-glare film
JP2000127281A (en) Hard coat film or sheet
JP2012210755A (en) Laminate hard coat film for molding, method for manufacturing the same, and method for manufacturing resin molding
US20130216727A1 (en) Hard Coat Film, Coating Liquid For Forming A Hard Coat Layer, Polarizing Plate And Transmission Type LCD
KR102417938B1 (en) Anti-glare film
JP2010064013A (en) Method of manufacturing lamination film, and apparatus for manufacturing lamination film
TWI513995B (en) A hard coat film, a polarizing film, and an image display device
JP2009034620A (en) Method of manufacturing optical film
JP5929043B2 (en) Method for producing hard coat film
JP2010059280A (en) Hardcoat coating liquid, hardcoat film, and upper electrode plate for touch panel
JP7147121B2 (en) Protective film, laminate, polarizing plate, and image display device
JP2015197467A (en) Polarizer protection film and manufacturing method thereof
JP2009104054A (en) Optical film
JP2015039860A (en) Base film of transparent conductive film for touch panel, transparent conductive film for touch panel, and method for manufacturing the same
TW201247406A (en) Process for producing optical film, polarizing plate and image display device
JP2011131406A (en) Hard coat film for molding
JP2011131408A (en) Hard coat film for molding
KR101875244B1 (en) Optical film manufacturing method, polarizing plate, and image display device
JP2012187532A (en) Method for production of optical film, and optical film
JP7480512B2 (en) Hard Coat Film
JP2013186456A (en) Manufacturing method of optical film, and optical film
JP2010064382A (en) Hard coat film and method of manufacturing the same, polarizing plate, and transmission type liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409