JP2009033294A - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
JP2009033294A
JP2009033294A JP2007193018A JP2007193018A JP2009033294A JP 2009033294 A JP2009033294 A JP 2009033294A JP 2007193018 A JP2007193018 A JP 2007193018A JP 2007193018 A JP2007193018 A JP 2007193018A JP 2009033294 A JP2009033294 A JP 2009033294A
Authority
JP
Japan
Prior art keywords
conductor
antenna device
wavelength
partially
same plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007193018A
Other languages
Japanese (ja)
Inventor
Hideyuki Saotome
秀之 早乙女
Yasuhiro Nishioka
泰弘 西岡
Masataka Otsuka
昌孝 大塚
崇 ▲柳▼
Takashi Yanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007193018A priority Critical patent/JP2009033294A/en
Publication of JP2009033294A publication Critical patent/JP2009033294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an antenna device for broadening input impedance bandwidth without providing a resonance element or a coupling element other than a feeding element and without mounting a matching circuit on a circuit board other than an antenna mounting space. <P>SOLUTION: The antenna device includes: a first conductor 1; a second conductor 2 sufficiently thinner than wavelength and arranged with an optional interval with the first conductor; a third conductor 3 connected at least partially to the second conductor and arranged in the almost the same plane as that of the second conductor at an interval sufficiently smaller than the wavelength with respect to the second conductor; a fourth conductor 4 arranged in almost the same plane as that of the second conductor and the third conductor at an interval sufficiently smaller than the wavelength with the respect to the third conductor; a fifth conductor 5 connected at least partially to the fourth conductor and at least partially adjacently to the first conductor; and a sixth conductor 7 for connecting the first conductor and the second conductor, wherein a feed point 6 for applying ac voltage is provided between a part of the fifth conductor adjacent to the first conductor and a part of the first conductor facing the fifth conductor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、逆F型アンテナ或いはショートパッチアンテナのインピーダンス広帯域化に関するもので、特に、携帯電話、PDA等の移動体通信端末に適用するアンテナ装置に関するものである。   The present invention relates to a wide impedance band of an inverted F antenna or a short patch antenna, and more particularly to an antenna device applied to a mobile communication terminal such as a mobile phone or a PDA.

逆F型アンテナ或いはショートパッチアンテナは、小形なわりには良好な電気特性を有しているので、移動体通信端末など、アンテナ素子の小型化が要求される無線通信機器に広く利用されている。   Inverted F-type antennas or short patch antennas have good electrical characteristics in spite of their small size, and are therefore widely used in wireless communication devices such as mobile communication terminals that require miniaturization of antenna elements.

一方、近年の携帯電話無線通信システムでは、回線容量、回線品質の確保の観点から使用周波数帯および各周波数帯の帯域幅が年々増加している。従って、電波を送信および受信するアンテナにもマルチバンド化(多周波共用化)、広帯域化が要求されている。   On the other hand, in recent mobile phone wireless communication systems, the frequency band used and the bandwidth of each frequency band are increasing year by year from the viewpoint of securing line capacity and line quality. Therefore, antennas for transmitting and receiving radio waves are also required to be multiband (multifrequency sharing) and wideband.

さらに、近年の携帯電話のような無線端末装置は、使用するユーザーの利便性などの観点から小型・薄型化な物が求められており、小型・低姿勢な物理形状を維持したまま広帯域化する方法の開発が強く望まれている。   In addition, wireless terminal devices such as mobile phones in recent years are required to be small and thin from the viewpoint of user convenience, etc., and widen the bandwidth while maintaining a small and low-profile physical shape. The development of methods is highly desired.

逆F型アンテナ或いはショートパッチアンテナを広帯域化あるいは多周波共用化する手法としては、給電素子の周囲に無給電素子を配置する方法が知られているが、この方法は、アンテナ素子の体積が増加するという課題がある。   As a method of widening the inverse F-type antenna or the short patch antenna or sharing the multi-frequency, there is known a method of arranging a parasitic element around the feeding element, but this method increases the volume of the antenna element. There is a problem of doing.

他の方法としては、給電線路が実装された回路基板上に分布定数型の整合回路を設けて広帯域化を図る方法(例えば、非特許文献1参照)があるが、この方法は、回路基板上に分布定数型整合回路を実装するための比較的大きなエリアを必要とするので、携帯電話など極度に実装面積が制限される無線通信端末で実現するのは困難である。   As another method, there is a method of providing a distributed constant type matching circuit on a circuit board on which a feeder line is mounted to achieve a wide band (for example, see Non-Patent Document 1). In addition, since a relatively large area for mounting the distributed constant matching circuit is required, it is difficult to realize the wireless communication terminal whose mounting area is extremely limited, such as a mobile phone.

整合回路をチップインダクタやチップキャパシタなどの集中定数回路素子で構成すればこの問題はほぼ解消されるが、整合回路による損失が増大するという問題が生じる。さらに、集中定数回路素子の素子値を連続的に選択することはできず、離散的にしか選択できないため、最適整合を達成するのが困難になるという問題も生じると考えられる。   If the matching circuit is composed of lumped constant circuit elements such as a chip inductor and a chip capacitor, this problem is almost solved, but a problem that the loss due to the matching circuit increases occurs. Furthermore, since the element values of the lumped constant circuit elements cannot be selected continuously and can only be selected discretely, it may be difficult to achieve optimum matching.

H. F. Pues et al., “An Impedance-Matching Technique for Increasing the Bandwidth of Microstrip Antennas、”IEEE Trans. Antennas Propagat., vol.37, no.11, pp.1345-1354, Nov. 1989.H. F. Pues et al., “An Impedance-Matching Technique for Increasing the Bandwidth of Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol.37, no.11, pp.1345-1354, Nov. 1989.

この発明は上述した点に鑑みてなされたもので、給電素子以外の共振素子或いは結合素子を設けずに、また、アンテナ実装空間以外の回路基板上への整合回路を実装せずに、アンテナの体積をほとんど増加させることなく、移動体無線端末機に実装し易い形態で、逆F型アンテナ、ショートパッチアンテナ、或いはパッチアンテナの入力インピーダンス帯域幅(動作周波数帯域幅)を広帯域化することができるアンテナ装置を得ることを目的とする。   The present invention has been made in view of the above points, and without providing a resonance element or a coupling element other than the feeding element, and without mounting a matching circuit on a circuit board other than the antenna mounting space, The input impedance bandwidth (operating frequency bandwidth) of the inverted F-type antenna, the short patch antenna, or the patch antenna can be widened in a form that can be easily mounted on a mobile radio terminal without almost increasing the volume. An object is to obtain an antenna device.

この発明に係るアンテナ装置は、第1の導体と、波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、前記第2の導体に少なくとも一部が接続され、前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第3の導体と、前記第2の導体および前記第3の導体と略同一面内に、前記第3の導体に対して波長に比べて十分小さい間隔を隔てて配置された第4の導体と、前記第4の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、前記第1の導体と前記第2の導体とを接続する第6の導体とを備え、前記第1の導体に近接する前記第5の導体の部位と、それに対向する前記第1の導体の部位との間に交流電圧を印加する給電点を設けたことを特徴とする。   The antenna device according to the present invention is at least one in the first conductor, the second conductor that is sufficiently thin compared to the wavelength, and is arranged at an arbitrary interval from the first conductor, and the second conductor. A third conductor disposed in a plane substantially equal to the second conductor and spaced apart from the second conductor by a sufficiently smaller distance than a wavelength; the second conductor; and A fourth conductor disposed substantially in the same plane as the third conductor and spaced apart from the third conductor by a sufficiently smaller distance than the wavelength, and at least a part of the fourth conductor is connected to the fourth conductor. And a fifth conductor at least partially adjacent to the first conductor, and a sixth conductor connecting the first conductor and the second conductor, the first conductor being An alternating voltage between the portion of the fifth conductor adjacent to the portion of the first conductor facing the portion of the fifth conductor Characterized in that the feeding point is applied to.

また、第1の導体と、波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第4の導体と、前記第4の導体に少なくとも一部が接続され、前記第2の導体および前記第4の導体と略同一面内に、前記第4の導体に対して波長に比べて十分小さい間隔を隔てて配置された第3の導体と、前記第3の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、前記第1の導体と前記第2の導体とを接続する第6の導体とを備え、前記第1の導体に近接する前記第5の導体の部位と、それに対向する前記第1の導体の部位との間に交流電圧を印加する給電点を設けたことを特徴とする。   In addition, the first conductor, the second conductor which is sufficiently thin compared to the wavelength, and is arranged at an arbitrary interval from the first conductor, and the second conductor are arranged in substantially the same plane as the second conductor. A fourth conductor disposed at a sufficiently small distance from the wavelength of the two conductors, and at least a part of the fourth conductor is connected to the fourth conductor, and the second conductor and the fourth conductor; A third conductor disposed in a substantially same plane with a sufficiently small interval relative to the wavelength with respect to the fourth conductor, at least a part of which is connected to the third conductor, and the first conductor A fifth conductor that is at least partially close to the first conductor, and a sixth conductor that connects the first conductor and the second conductor, wherein the fifth conductor is adjacent to the first conductor. A feeding point for applying an AC voltage is provided between the conductor part and the first conductor part facing the conductor part. And wherein the door.

また、第1の導体と、波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第4の導体と、前記第4の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、前記第1の導体と前記第2の導体とを接続する第6の導体とを備え、前記第1の導体に近接する前記第5の導体の部位と、それに対向する前記第1の導体の部位との間に交流電圧を印加する給電点を設けたことを特徴とする。   In addition, the first conductor, the second conductor which is sufficiently thin compared to the wavelength, and is arranged at an arbitrary interval from the first conductor, and the second conductor are arranged in substantially the same plane as the second conductor. A fourth conductor disposed at a sufficiently small distance relative to the wavelength of the two conductors, and at least partly connected to the fourth conductor and at least partly close to the first conductor A fifth conductor that connects the first conductor and the second conductor, and a portion of the fifth conductor that is close to the first conductor, and faces the fifth conductor. A feeding point for applying an AC voltage is provided between the first conductor portion and the first conductor portion.

さらに、第1の導体と、波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、前記第2の導体に少なくとも一部が接続され、前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第3の導体と、前記第3の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、前記第1の導体と前記第2の導体とを接続する第6の導体と、前記第5の導体に波長に比べて十分小さい間隔を隔てて近接すると共に、前記第1の導体に波長に比べて十分小さい間隔を隔てて近接する第7の導体とを備え、前記第1の導体と前記第7の導体との間に交流電圧を印加する給電点を設けたことを特徴とする。   Further, the first conductor, a second conductor that is sufficiently thin compared to the wavelength, and is disposed at an arbitrary interval from the first conductor, and at least a part of the second conductor is connected to the second conductor, A third conductor disposed substantially in the same plane as the second conductor and spaced apart from the second conductor by a sufficiently smaller distance than the wavelength, and at least a part of the third conductor is connected to the third conductor. And a fifth conductor that is at least partially adjacent to the first conductor, a sixth conductor that connects the first conductor and the second conductor, and a wavelength of the fifth conductor compared to the wavelength. And a seventh conductor close to the first conductor with a sufficiently smaller distance than the wavelength, and the first conductor and the seventh conductor. A feeding point for applying an AC voltage is provided between them.

この発明によれば、給電素子以外の共振素子或いは結合素子を設けずに、また、アンテナ実装空間以外の回路基板上への整合回路を実装せずに、アンテナの体積をほとんど増加させることなく、移動体無線端末機に実装し易い形態で、逆F型アンテナ、ショートパッチアンテナ、或いはパッチアンテナの入力インピーダンス帯域幅(動作周波数帯域幅)を広帯域化することができる。   According to this invention, without providing a resonant element or a coupling element other than the feeding element, and without mounting a matching circuit on a circuit board other than the antenna mounting space, the volume of the antenna is hardly increased. The input impedance bandwidth (operating frequency bandwidth) of the inverted F-type antenna, the short patch antenna, or the patch antenna can be widened in a form that can be easily mounted on a mobile radio terminal.

実施の形態1.
以下、この発明の実施の形態1に係るアンテナ装置について説明する。図1は、この発明の実施の形態1に係るアンテナ装置の原理的な基本構成と回路モデルの説明図である。図1(a)に示すアンテナ装置は、方形導体板で例示される導体1と、導体1と任意の間隔を隔てて配置され、方形導体板で例示される導体2と、導体2と略同一平面上に、任意の距離を隔てて配置され、一箇所もしくは複数箇所で導体2と導通する任意形状の導体3と、導体3から見て導体2と反対側に、導体2および導体3と略同一平面上に、導体3と任意の距離を隔てて配置された任意形状の導体4と、少なくとも一部が導体4と導通し、一端が波長に比べて十分小さい間隔を隔てて、導体1と近接している任意形状の導体5と、本アンテナ装置に、つまり導体1に近接する導体5の部位とそれに対向する導体1の部位との間に、高周波電力を供給する給電点6と、導体1と導体2とを接続する任意形状の導体7とを備える。なお、ここでは、導体3は、+x軸方向の先端で導体2と接続されているものとする。
Embodiment 1 FIG.
Hereinafter, an antenna device according to Embodiment 1 of the present invention will be described. FIG. 1 is an explanatory view of the basic basic configuration and circuit model of an antenna device according to Embodiment 1 of the present invention. The antenna device shown in FIG. 1A is substantially the same as the conductor 1 and the conductor 2 which are arranged at an arbitrary interval from the conductor 1 exemplified by the rectangular conductor plate, and spaced apart from the conductor 1. Arranged at an arbitrary distance on the plane, the conductor 3 having an arbitrary shape that is electrically connected to the conductor 2 at one or a plurality of locations, and the conductor 2 and the conductor 3 on the side opposite to the conductor 2 when viewed from the conductor 3 On the same plane, the conductor 4 having an arbitrary shape arranged at an arbitrary distance from the conductor 3, at least a portion thereof is electrically connected to the conductor 4, and one end thereof is separated from the conductor 1 by an interval sufficiently smaller than the wavelength. An adjacent conductor 5 having an arbitrary shape, a feeding point 6 for supplying high-frequency power to the antenna apparatus, that is, between a portion of the conductor 5 adjacent to the conductor 1 and a portion of the conductor 1 opposed thereto, and a conductor 1 and a conductor 7 having an arbitrary shape for connecting the conductor 2. Here, it is assumed that the conductor 3 is connected to the conductor 2 at the tip in the + x-axis direction.

次に動作について説明する。任意の伝送線路で給電点6まで伝送されてきた高周波電流のうち、正の電流は導体5に、負の電流は導体1に流入する。導体5に流入した正の電流は導体4に達し、導体3と導体4が波長に比べて十分小さい間隔を隔てて配置されている場合には、導体4に達した(+)電荷のクーロン引力によって、導体3に(−)電荷が誘起される。導体4に流入する電流は高周波電流であるので、電荷の極性は交流周波数に応じて周期的に変化する。導体3に電荷の移動が生ずるので、導体3に高周波電流が流れる。このように、導体4と導体3は高周波的には容量性結合する。この場合、導体4と導体3が重なる部分は、主に先端開放の伝送線路として動作し、放射にはあまり寄与しないと考えられる。   Next, the operation will be described. Of the high-frequency current transmitted to the feeding point 6 through an arbitrary transmission line, a positive current flows into the conductor 5 and a negative current flows into the conductor 1. The positive current flowing into the conductor 5 reaches the conductor 4, and when the conductor 3 and the conductor 4 are arranged with a sufficiently small interval compared to the wavelength, the Coulomb attractive force of the (+) charge reaching the conductor 4 As a result, a (−) charge is induced in the conductor 3. Since the current flowing into the conductor 4 is a high-frequency current, the polarity of the charge changes periodically according to the AC frequency. Since charge transfer occurs in the conductor 3, a high-frequency current flows through the conductor 3. Thus, the conductor 4 and the conductor 3 are capacitively coupled in terms of high frequency. In this case, it is considered that the portion where the conductor 4 and the conductor 3 overlap mainly operates as a transmission line with an open end and does not contribute much to radiation.

導体4と導体3の重なる部分が理想的な先端開放の伝送線路として動作すると仮定し、その長さをLとすると、重なる部分の−x軸方向端部から+x軸方向をみたインピーダンスZは次式(1)で表される。 Suppose the overlapping portions of the conductor 4 and the conductor 3 is operated as a transmission line of an ideal end open, when the length and L a, impedance viewed + x-axis direction from the -x-axis direction end portion of the overlapping portion Z a Is represented by the following equation (1).

Figure 2009033294
Figure 2009033294

ここで、jは単位虚数である。また、Zo_aは導体4および導体3の幅あるいは直径、導体3と導体4の間隔t、および導体3と導体4の周囲の比誘電率εr1によって決定される伝送線路の特性インピーダンス、λは使用周波数に対する実効波長である。したがって、長さLが、下式(2)を満足するとき、Zは容量性リアクタンスとなる。 Here, j is a unit imaginary number. Z o — a is the width or diameter of the conductor 4 and the conductor 3, the distance t a between the conductor 3 and the conductor 4, and the characteristic impedance of the transmission line determined by the relative permittivity ε r1 around the conductor 3 and the conductor 4, λ Is the effective wavelength for the frequency used. Accordingly, the length L a is, when satisfying the following formula (2), Z a is a capacitive reactance.

Figure 2009033294
Figure 2009033294

前記導体3と導体4との高周波電磁結合と同様に、導体3に電荷移動が生じた場合、それに応じて導体2上の導体3と近接した部分にも電荷移動が生じ、電流が流れる。この場合、導体3に流れる電流と導体2の導体3と近接した部分に流れる電流とは互いに逆位相になると考えられ、さらに、当該部位の先端は導体で短絡されているので、当該部位は主に先端が短絡された伝送線路として動作すると考えられる。導体2と導体3が近接する部分の長さをLbとすると、当該部位の−x軸方向端部から+x軸方向をみたインピーダンスZは次式(3)で表される。 Similarly to the high-frequency electromagnetic coupling between the conductor 3 and the conductor 4, when charge transfer occurs in the conductor 3, charge transfer also occurs in a portion adjacent to the conductor 3 on the conductor 2 and current flows. In this case, it is considered that the current flowing in the conductor 3 and the current flowing in the portion of the conductor 2 adjacent to the conductor 3 are in opposite phases, and furthermore, since the tip of the part is short-circuited by the conductor, the part is the main part. It is considered to operate as a transmission line whose tip is short-circuited. When the length of the portion where the conductor 2 and the conductor 3 are close to each other is L b , the impedance Z b seen from the −x-axis direction end of the portion in the + x-axis direction is expressed by the following equation (3).

Figure 2009033294
Figure 2009033294

ここで、Zo_bは導体3の幅W、放射導体2と導体3の間隔t、放射導体2と導体3の間の比誘電率εr2によって決定される特性インピーダンス、λは使用周波数に対する実効波長である。したがって、当該部位の長さLが、下式(4)を満足するとき、Zは誘導性リアクタンスとなる。 Here, Z o — b is the width W b of the conductor 3, the distance t b between the radiating conductor 2 and the conductor 3, the characteristic impedance determined by the relative dielectric constant ε r2 between the radiating conductor 2 and the conductor 3, and λ is relative to the operating frequency. Effective wavelength. Accordingly, the length L b of the sites, when satisfying the following expression (4), Z b is the inductive reactance.

Figure 2009033294
Figure 2009033294

以上の考察から、図1(a)に示したアンテナの入力インピーダンスZinの振る舞いを表現する回路モデルは、導体1、導体2、および導体7で形成される共振器のインピーダンスをZとすると、まず、図1(b)のように表現することができる。図1(b)のA部は、導体3とそれに近接する導体2の一部分が形成するもので、高周波回路の観点からは直列ショートスタブで表現できると考えられる。同様に、図1(b)のB部は、導体3と導体4が近接する部分が形成するもので、高周波回路の観点からは直列オープンスタブで表現できると考えられる。 From the above consideration, the circuit model expressing the behavior of the input impedance Z in of the antenna shown in FIG. 1A is given by assuming that the impedance of the resonator formed by the conductor 1, the conductor 2, and the conductor 7 is Z r. First, it can be expressed as shown in FIG. Part A of FIG. 1B is formed by the conductor 3 and a part of the conductor 2 adjacent thereto, and is considered to be expressed by a series short stub from the viewpoint of the high frequency circuit. Similarly, the portion B in FIG. 1B is formed by a portion where the conductor 3 and the conductor 4 are close to each other, and can be expressed by a series open stub from the viewpoint of a high frequency circuit.

さらに、式(1)と式(3)の関係を用いると、図1(b)の回路は、図1(c)のように書けることができ、長さL、Lがともにλ/4未満に選定されている場合には近似的に図1(d)のようになる。即ち、導体2、導体3、および導体4でLC直列共振回路を構成すると考えられる。逆F型アンテナ、ショートパッチアンテナ、パッチアンテナなどのインピーダンスZは、並列共振のインピーダンス特性を有するので、並列共振回路Zと給電線路との間に直列に直列共振回路が挿入された形となり、給電線路とのインピーダンス整合帯域幅がZ単体より広帯域になると考えられる。 Furthermore, the use of the relationship of the formula (1) and (3), the circuit of FIG. 1 (b), can be written as in FIG. 1 (c), the length L a, L b are both lambda / When it is selected to be less than 4, it is approximately as shown in FIG. That is, it is considered that the LC series resonance circuit is configured by the conductor 2, the conductor 3, and the conductor 4. Inverted-F antenna, short patch antenna, the impedance Z r of such a patch antenna, since it has an impedance characteristic of the parallel resonance becomes a form that the series resonance circuit is inserted in series between the parallel resonant circuit Z r and the power supply line , the impedance matching band width of the feed line is considered to be a wide band from Z r alone.

また、実施の形態1において、給電線路は、同軸線路、マイクロストリップ線路、トリプレート線路、コプレーナ線路など、導体1と導体5の間に電位差を与えられる線路であればよく、利用形態に応じて最適な線路を選択すればよい。   In the first embodiment, the feed line may be any line that can provide a potential difference between the conductor 1 and the conductor 5, such as a coaxial line, a microstrip line, a triplate line, and a coplanar line. What is necessary is just to select an optimal track.

また、式(1)と式(3)は互いに独立な関係にあるので、前記直列共振回路の等価インダクタンスLと等価キャパシタンスCは互いに独立に選定できる。等価キャパシタンスCの値は、式(1)の右辺が1/(jωC)に等しいとした数式から算出することができる。また、等価インダクタンスLの値は、式(3)の右辺がjωLに等しいとした数式から算出することができる。   Further, since the equations (1) and (3) are independent of each other, the equivalent inductance L and the equivalent capacitance C of the series resonance circuit can be selected independently of each other. The value of the equivalent capacitance C can be calculated from an equation in which the right side of the equation (1) is equal to 1 / (jωC). Further, the value of the equivalent inductance L can be calculated from a mathematical formula in which the right side of the formula (3) is equal to jωL.

さらに、図1(a)に示すように、等価インダクタンスLの値は、導体2と導体3の間隔tを一定としたままでも、導体3の幅Wおよび長さLによっても調整可能である。等価キャパシタンスCの値は、導体3と導体4の間隔tを一定としたままでも、導体4の幅Wおよび長さLによっても調整可能である。 Furthermore, as shown in FIG. 1A, the value of the equivalent inductance L can be adjusted by the width W b and the length L b of the conductor 3 while keeping the distance t b between the conductor 2 and the conductor 3 constant. It is. The value of the equivalent capacitance C is also the interval t a conductor 3 and conductor 4 remains constant, it is also possible to adjust the width W a and the length L a of the conductor 4.

なお、通常は、長さL、Lを四分の一波長以下(式(2)、式(4)においてn=0の場合)に選定し、直列ショートスタブで直列誘導性リアクタンスLを、直列オープンスタブで直列容量性リアクタンスCを得るが、長さL、Lを式(2)、式(4)の範囲外に選定し、直列ショートスタブで直列容量性リアクタンスCを、直列オープンスタブで直列誘導性リアクタンスLを得ることも原理的には可能である。 In general, the lengths L a and L b are selected to be equal to or less than a quarter wavelength (when n = 0 in the formulas (2) and (4)), and the series inductive reactance L is set with the series short stub. The series capacitive reactance C is obtained with the series open stub, but the lengths L a and L b are selected out of the ranges of the equations (2) and (4), and the series capacitive reactance C is obtained with the series short stub. It is also possible in principle to obtain a series inductive reactance L with an open stub.

また、所望の直列リアクタンスを得る際に、L>Lとなる場合には、図1における導体3と導体4とを入れ替え、図2に示すような構成にすればよい。この場合の等価回路は、図1(d)においてLとCとを入れ替えた回路となるので、図1の構成と同様なインピーダンス広帯域化効果が得られると考えられる。 Moreover, when obtaining a desired series reactance, if L a > L b , the conductor 3 and the conductor 4 in FIG. 1 may be interchanged, and the configuration shown in FIG. Since the equivalent circuit in this case is a circuit in which L and C are interchanged in FIG. 1D, it is considered that an impedance broadening effect similar to the configuration of FIG. 1 can be obtained.

また、要求サイズ等の制約により、導体3の長さを長く出来ず、十分な誘導性リアクタンスが得られない場合には、図3(a)、(b)に示すように、導体5の形状をメアンダ状、螺旋状にし、導体5によって誘導性リアクタンスの不足分を補完すればよい。また、図3(c)に示すように、導体3を除去し、導体5のみによって誘導性リアクタンスを得るようにしてもよい。   If the length of the conductor 3 cannot be increased due to restrictions such as the required size and sufficient inductive reactance cannot be obtained, the shape of the conductor 5 is shown in FIGS. 3 (a) and 3 (b). May be formed in a meander shape or a spiral shape, and the inductive reactance deficiency may be supplemented by the conductor 5. Further, as shown in FIG. 3C, the conductor 3 may be removed, and inductive reactance may be obtained only by the conductor 5.

また、要求サイズ等の制約により、導体4を設けられず、直列の容量性リアクタンスが得られない場合には、図4に示すように、給電点6から導体8を伸ばして導体5に近接させ、導体8と導体5との電磁結合により容量性リアクタンスを得ればよい。容量性リアクタンスの値は、導体5と導体8が近接する部位の形状と面積、導体5と導体8が近接する部位の比誘電率、導体5と導体8の距離によって所望の値を得るように調整可能である。   Further, when the conductor 4 cannot be provided due to restrictions such as the required size and a series capacitive reactance cannot be obtained, the conductor 8 is extended from the feeding point 6 to be close to the conductor 5 as shown in FIG. The capacitive reactance may be obtained by electromagnetic coupling between the conductor 8 and the conductor 5. The value of the capacitive reactance is obtained according to the shape and area of the portion where the conductor 5 and the conductor 8 are close, the relative dielectric constant of the portion where the conductor 5 and the conductor 8 are close, and the distance between the conductor 5 and the conductor 8. It can be adjusted.

実施の形態2.
図5は、この発明の実施の形態2に係るアンテナ装置の構成を示す説明図である。9は、無線通信に必要な回路および電気・電子部品が実装された両面もしくは多層誘電体基板であり、ここでは両面基板で例示している。誘電体基板9には、導体1、給電線路となる導体8がエッチングで形成されている。10aおよび10bは、それぞれ導体5および導体7に相当し、弾性を有する導電性部品である。導体5と導体7のいずれか一方または両方の導電性部品10を耐熱性のあるスプリングコネクタ、金属製板バネにすれば、他の電気・電子部品とともに半田リフロー工程で誘電体基板9に実装できる。
Embodiment 2. FIG.
FIG. 5 is an explanatory diagram showing the configuration of the antenna device according to Embodiment 2 of the present invention. Reference numeral 9 denotes a double-sided or multilayer dielectric substrate on which circuits necessary for wireless communication and electric / electronic components are mounted. Here, the double-sided substrate is exemplified. On the dielectric substrate 9, a conductor 1 and a conductor 8 serving as a feed line are formed by etching. 10a and 10b correspond to the conductor 5 and the conductor 7, respectively, and are conductive parts having elasticity. If one or both of the conductor 5 and the conductor 7 are made of a heat-resistant spring connector or a metal leaf spring, they can be mounted on the dielectric substrate 9 together with other electrical / electronic components in a solder reflow process. .

また、12は、無線装置の外装筐体であり、低誘電率の樹脂がよく用いられる。11はアンテナ装置を構成する部品11の少なくとも一部、例えば導体2、導体3、導体4の一部または全部を含んだ部品であり、部品11を板金のみで製作した場合には、部品11を両面テープや接着剤などで外装筐体12内に固定すればよく、部品11を導体メッキが可能な樹脂成型品で製作する場合には、導体2、導体3、導体4をすべて表面に導体メッキで構成してもよいし、導体2、導体3、導体4を適宜、樹脂成型品の表面と裏面に分散して構成してもよいし、両面をまたがるように形成してもよい。設置に関しては、両面テープや接着剤などで外装筐体12に固定してもよいし、樹脂成型品にツメなどを設けて誘電体基板9に嵌め込むように固定してもよい。   Reference numeral 12 denotes an exterior housing of the wireless device, and a low dielectric constant resin is often used. 11 is a part including at least a part of the part 11 constituting the antenna device, for example, a part or all of the conductor 2, the conductor 3, and the conductor 4, and when the part 11 is manufactured only by sheet metal, the part 11 is What is necessary is just to fix in the exterior housing | casing 12 with a double-sided tape, an adhesive agent, etc., and when the component 11 is manufactured with the resin molding product in which conductor plating is possible, all conductor 2, conductor 3, and conductor 4 are conductor-plated on the surface. The conductor 2, the conductor 3, and the conductor 4 may be appropriately dispersed on the front and back surfaces of the resin molded product, or may be formed so as to straddle both sides. Regarding the installation, it may be fixed to the exterior housing 12 with a double-sided tape or an adhesive, or may be fixed so as to be fitted into the dielectric substrate 9 by providing a claw or the like on a resin molded product.

また、部品11をリジッドな誘電体基板やフレキシブルな誘電体フィルム基板で製作してもよい。部品11をフレキシブルな誘電体フィルム基板で製作した場合には、部品11は容易に折り曲げ可能になるので、図6に示すように、図3(a)、(c)の導体5の形状を実現することが可能となる。部品11上に形成された導体5と誘電体基板9に形成された導体8とを電気的に結合する方法としては、半田付けや勘合コネクタを用いる方法が考えられる。   Further, the component 11 may be manufactured using a rigid dielectric substrate or a flexible dielectric film substrate. When the component 11 is made of a flexible dielectric film substrate, the component 11 can be easily bent, so that the shape of the conductor 5 shown in FIGS. 3A and 3C is realized as shown in FIG. It becomes possible to do. As a method of electrically connecting the conductor 5 formed on the component 11 and the conductor 8 formed on the dielectric substrate 9, a method using soldering or a mating connector can be considered.

また、外装筐体12を導体メッキが可能な樹脂製外装筐体とし、導体2、導体3、導体4を導体メッキ技術等で外装筐体12の表面上に形成してもよい。   Alternatively, the outer casing 12 may be a resin-made outer casing capable of conductor plating, and the conductor 2, the conductor 3, and the conductor 4 may be formed on the surface of the outer casing 12 by a conductor plating technique or the like.

以上のような構成とすることにより、実施の形態2で述べたアンテナ構成を、実際の無線通信機器に実装可能な形態で実現できる。   With the above configuration, the antenna configuration described in Embodiment 2 can be realized in a form that can be mounted on an actual wireless communication device.

この発明の実施の形態1に係るアンテナ装置の原理的な基本構成と回路モデルの説明図である。It is explanatory drawing of the fundamental basic composition and circuit model of the antenna apparatus which concern on Embodiment 1 of this invention. 図1(a)における導体3と導体4とを入れ替えた場合の構成図である。It is a block diagram at the time of replacing the conductor 3 and the conductor 4 in Fig.1 (a). 図1(a)における導体3の長さを長く出来ず、十分な誘導性リアクタンスが得られない場合に導体5によって誘導性リアクタンスの不足分を補完する導体5の形状の変形例を示す図である。FIG. 6 is a diagram showing a modification of the shape of the conductor 5 that complements the shortage of inductive reactance by the conductor 5 when the length of the conductor 3 in FIG. 1A cannot be increased and sufficient inductive reactance cannot be obtained. is there. 図1(a)における導体4を設けられず、直列の容量性リアクタンスが得られない場合に、給電点6から導体8を伸ばして導体5に近接させ、導体8と導体5との電磁結合により容量性リアクタンスを得る変形例を示す図である。When the conductor 4 in FIG. 1A is not provided and a series capacitive reactance cannot be obtained, the conductor 8 is extended from the feeding point 6 to be close to the conductor 5, and the conductor 8 and the conductor 5 are electromagnetically coupled. It is a figure which shows the modification which obtains capacitive reactance. この発明の実施の形態2に係るアンテナ装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the antenna device which concerns on Embodiment 2 of this invention. 図5における、導体2、導体3、導体4の一部または全部を含んだ部品11を、フレキシブルな誘電体フィルム基板で製作した場合の説明図である。It is explanatory drawing at the time of manufacturing the components 11 containing the conductor 2, the conductor 3, and the part or all of the conductor 4 in FIG. 5 with a flexible dielectric film board | substrate.

符号の説明Explanation of symbols

1 導体(第1の導体)、2 導体(第2の導体)、3 導体(第3の導体)、4 導体(第4の導体)、5 導体(第5の導体)、6 給電点、7 導体(第6の導体)、8 導体(第7の導体)、9 誘電体基板、10aおよび10b 導体5および導体7に相当し、弾性を有する導電性部品、11 アンテナ装置を構成する部品、12 外装筐体。   1 conductor (1st conductor), 2 conductor (2nd conductor), 3 conductor (3rd conductor), 4 conductor (4th conductor), 5 conductor (5th conductor), 6 feeding point, 7 Conductor (sixth conductor), 8 conductor (seventh conductor), 9 dielectric substrate, 10a and 10b Equivalent to conductor 5 and conductor 7, conductive parts having elasticity, 11 parts constituting antenna device, 12 Exterior housing.

Claims (10)

第1の導体と、
波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、
前記第2の導体に少なくとも一部が接続され、前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第3の導体と、
前記第2の導体および前記第3の導体と略同一面内に、前記第3の導体に対して波長に比べて十分小さい間隔を隔てて配置された第4の導体と、
前記第4の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、
前記第1の導体と前記第2の導体とを接続する第6の導体と
を備え、
前記第1の導体に近接する前記第5の導体の部位と、それに対向する前記第1の導体の部位との間に交流電圧を印加する給電点を設けた
ことを特徴とするアンテナ装置。
A first conductor;
A second conductor that is sufficiently thin compared to the wavelength and that is spaced from the first conductor by an arbitrary distance;
A third conductor that is at least partially connected to the second conductor and is disposed in substantially the same plane as the second conductor with a sufficiently small distance from the second conductor relative to the wavelength; When,
A fourth conductor disposed in substantially the same plane as the second conductor and the third conductor, with a sufficiently small distance from the third conductor compared to the wavelength;
A fifth conductor at least partially connected to the fourth conductor and at least partially adjacent to the first conductor;
A sixth conductor connecting the first conductor and the second conductor; and
An antenna device, wherein a feeding point for applying an AC voltage is provided between a portion of the fifth conductor adjacent to the first conductor and a portion of the first conductor facing the first conductor.
第1の導体と、
波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、
前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第4の導体と、
前記第4の導体に少なくとも一部が接続され、前記第2の導体および前記第4の導体と略同一面内に、前記第4の導体に対して波長に比べて十分小さい間隔を隔てて配置された第3の導体と、
前記第3の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、
前記第1の導体と前記第2の導体とを接続する第6の導体と
を備え、
前記第1の導体に近接する前記第5の導体の部位と、それに対向する前記第1の導体の部位との間に交流電圧を印加する給電点を設けた
ことを特徴とするアンテナ装置。
A first conductor;
A second conductor that is sufficiently thin compared to the wavelength and that is spaced from the first conductor by an arbitrary distance;
A fourth conductor disposed in substantially the same plane as the second conductor, with a sufficiently small distance from the second conductor compared to the wavelength;
At least a portion is connected to the fourth conductor, and the second conductor and the fourth conductor are arranged in substantially the same plane with an interval sufficiently smaller than the wavelength with respect to the fourth conductor. A third conductor formed;
A fifth conductor that is at least partially connected to the third conductor and that is at least partially proximate to the first conductor;
A sixth conductor connecting the first conductor and the second conductor; and
An antenna device, wherein a feeding point for applying an AC voltage is provided between a portion of the fifth conductor adjacent to the first conductor and a portion of the first conductor facing the first conductor.
第1の導体と、
波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、
前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第4の導体と、
前記第4の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、
前記第1の導体と前記第2の導体とを接続する第6の導体と
を備え、
前記第1の導体に近接する前記第5の導体の部位と、それに対向する前記第1の導体の部位との間に交流電圧を印加する給電点を設けた
ことを特徴とするアンテナ装置。
A first conductor;
A second conductor that is sufficiently thin compared to the wavelength and that is spaced from the first conductor by an arbitrary distance;
A fourth conductor disposed in substantially the same plane as the second conductor, with a sufficiently small distance from the second conductor compared to the wavelength;
A fifth conductor at least partially connected to the fourth conductor and at least partially adjacent to the first conductor;
A sixth conductor connecting the first conductor and the second conductor; and
An antenna device, wherein a feeding point for applying an AC voltage is provided between a portion of the fifth conductor adjacent to the first conductor and a portion of the first conductor facing the first conductor.
第1の導体と、
波長に比べて十分薄く、前記第1の導体と任意の間隔を隔てて配置された第2の導体と、
前記第2の導体に少なくとも一部が接続され、前記第2の導体と略同一面内に、前記第2の導体に対して波長に比べて十分小さい間隔を隔てて配置された第3の導体と、
前記第3の導体に少なくとも一部が接続され、かつ前記第1の導体に少なくとも一部が近接する第5の導体と、
前記第1の導体と前記第2の導体とを接続する第6の導体と、
前記第5の導体に波長に比べて十分小さい間隔を隔てて近接すると共に、前記第1の導体に波長に比べて十分小さい間隔を隔てて近接する第7の導体と
を備え、
前記第1の導体と前記第7の導体との間に交流電圧を印加する給電点を設けた
ことを特徴とするアンテナ装置。
A first conductor;
A second conductor that is sufficiently thin compared to the wavelength and that is spaced from the first conductor by an arbitrary distance;
A third conductor that is at least partially connected to the second conductor and is disposed in substantially the same plane as the second conductor with a sufficiently small distance from the second conductor relative to the wavelength; When,
A fifth conductor that is at least partially connected to the third conductor and that is at least partially proximate to the first conductor;
A sixth conductor connecting the first conductor and the second conductor;
A seventh conductor that is close to the fifth conductor with a sufficiently small interval compared to the wavelength and that is close to the first conductor with a sufficiently small interval compared to the wavelength; and
An antenna device, wherein a feeding point for applying an AC voltage is provided between the first conductor and the seventh conductor.
請求項1から4までのいずれか1項に記載のアンテナ装置において、
前記第5の導体は、ジグザグ状あるいは螺旋状の形状を有する
ことを特徴とするアンテナ装置。
In the antenna device according to any one of claims 1 to 4,
The antenna device, wherein the fifth conductor has a zigzag shape or a spiral shape.
請求項1から4までのいずれか1項に記載のアンテナ装置において、
前記第5の導体と前記第6の導体の少なくともいずれか一方を、弾性を有する導電性部品で形成した
ことを特徴とするアンテナ装置。
In the antenna device according to any one of claims 1 to 4,
An antenna device, wherein at least one of the fifth conductor and the sixth conductor is formed of a conductive component having elasticity.
請求項1から6までのいずれか1項に記載のアンテナ装置において、
前記第1の導体は、誘電体基板上に形成された
ことを特徴とするアンテナ装置。
In the antenna device according to any one of claims 1 to 6,
The antenna device, wherein the first conductor is formed on a dielectric substrate.
請求項7に記載のアンテナ装置において、
アンテナ装置を構成する部品の少なくとも一部は、リジッド誘電体基板、フレキシブル誘電体フィルム基板、板金、もしくは導体メッキが可能な成型樹脂で製作された
ことを特徴とするアンテナ装置。
The antenna device according to claim 7, wherein
At least a part of the components constituting the antenna device is made of a rigid dielectric substrate, a flexible dielectric film substrate, a sheet metal, or a molded resin capable of conductor plating.
請求項8に記載のアンテナ装置において、
アンテナ装置を構成する部品の少なくとも一部は、誘電体である任意形状の外装筐体内に納められた
ことを特徴とする無線通信装置。
The antenna device according to claim 8, wherein
A wireless communication device characterized in that at least a part of components constituting the antenna device is housed in an outer casing of an arbitrary shape which is a dielectric.
請求項8に記載のアンテナ装置において、
前記第1の導体以外の導体の少なくとも一部は、樹脂製外装筐体の表面上に形成された
ことを特徴とするアンテナ装置。
The antenna device according to claim 8, wherein
At least a part of the conductors other than the first conductor is formed on the surface of the resin-made outer casing.
JP2007193018A 2007-07-25 2007-07-25 Antenna device Pending JP2009033294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193018A JP2009033294A (en) 2007-07-25 2007-07-25 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193018A JP2009033294A (en) 2007-07-25 2007-07-25 Antenna device

Publications (1)

Publication Number Publication Date
JP2009033294A true JP2009033294A (en) 2009-02-12

Family

ID=40403339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193018A Pending JP2009033294A (en) 2007-07-25 2007-07-25 Antenna device

Country Status (1)

Country Link
JP (1) JP2009033294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527522A (en) * 2016-07-27 2019-09-26 華為技術有限公司Huawei Technologies Co.,Ltd. Radio transceiver apparatus and base station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527522A (en) * 2016-07-27 2019-09-26 華為技術有限公司Huawei Technologies Co.,Ltd. Radio transceiver apparatus and base station
US11245197B2 (en) 2016-07-27 2022-02-08 Huawei Technologies Co., Ltd. Wireless transceiver apparatus and base station

Similar Documents

Publication Publication Date Title
CN113287230B (en) Antenna device and terminal
US10224630B2 (en) Multiband antenna
CN105633581B (en) Multi-frequency antenna and wireless communication device with same
KR100297702B1 (en) Surface-mount type antenna and communication equipment using same
JP5516681B2 (en) Multi-mode antenna, manufacturing method thereof, and portable radio terminal using the antenna
TWI425713B (en) Three-band antenna device with resonance generation
JP5060629B1 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
JP6490080B2 (en) Technology to adjust antenna by weak coupling of variable impedance element
JP2005210680A (en) Antenna device
US20120262355A1 (en) High gain low profile multi-band antenna for wireless communications
JP2004506363A (en) Wireless terminal
JP4148126B2 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE HAVING THE SAME
US20150009093A1 (en) Antenna apparatus and portable wireless device equipped with the same
US20120068901A1 (en) Multiband and broadband antenna using metamaterials, and communication apparatus comprising the same
US20120056788A1 (en) Multiband and broadband antenna using metamaterials, and communication apparatus comprising the same
CN103378413B (en) Antenna
WO2010018877A1 (en) Chip antenna
JP4049185B2 (en) Portable radio
JP2002176307A (en) Antenna device and radio communication equipment
JP6233319B2 (en) Multiband antenna and radio apparatus
JP5092066B2 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
JP2009033294A (en) Antenna device
JP4772608B2 (en) Wireless terminal device
GB2434037A (en) Co-linear planar inverted-F antennae arrangement
KR101708570B1 (en) Triple Band Ground Radiation Antenna