JP2009032427A - Method of manufacturing electrode for lithium ion secondary battery - Google Patents

Method of manufacturing electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP2009032427A
JP2009032427A JP2007192816A JP2007192816A JP2009032427A JP 2009032427 A JP2009032427 A JP 2009032427A JP 2007192816 A JP2007192816 A JP 2007192816A JP 2007192816 A JP2007192816 A JP 2007192816A JP 2009032427 A JP2009032427 A JP 2009032427A
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium ion
slurry
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192816A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takeuchi
靖彦 竹内
Yusuke Fukumoto
友祐 福本
Tsuneo Ando
常男 安藤
Kazunori Kubota
和典 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007192816A priority Critical patent/JP2009032427A/en
Publication of JP2009032427A publication Critical patent/JP2009032427A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems: in preparation of porous film slurry, when solid content concentration is increased or treatment amount per once is increased, a load is increased and dispersion is made impossible. <P>SOLUTION: In a method of manufacturing an electrode for a lithium ion secondary battery containing at least a step of forming a porous film layer comprising an inorganic oxide fillers and a binder by adhesion on at least one of a positive electrode made of a composite lithium oxide and a negative electrode made of a lithium-retainable material, the step of forming the porous film layer by adhesion is that the inorganic oxide fillers are dispersed in paste comprising the inorganic oxide fillers, the binder and an organic solvent which is a dispersing medium by applying ultrasonic vibration and the porous film slurry for the lithium ion secondary battery is prepared. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池用電極の製造方法に関し、特にその多孔膜スラリーの分散方法に関する。   The present invention relates to a method for producing an electrode for a lithium ion secondary battery, and more particularly to a method for dispersing the porous membrane slurry.

リチウムイオン二次電池などの化学電池では、正極と負極との間に、それぞれの極板を電気的に絶縁し、さらに電解液を保持する役目をもつセパレータがある。リチウムイオン二次電池では、現在、主にポリエチレンからなる微多孔性薄膜シートが使われている。
しかしながら、これら樹脂からなるシート状セパレータは、概して低温で収縮しやすく、よって内部短絡や釘のような鋭利な形状の突起物が電池を貫いた時、瞬時に発生する短絡反応熱により短絡部が拡大し、さらに多大な反応熱を発生させ、異常過熱を促進するという課題を有していた。
In a chemical battery such as a lithium ion secondary battery, there is a separator between a positive electrode and a negative electrode that electrically insulates each electrode plate and further holds an electrolytic solution. Currently, microporous thin film sheets mainly made of polyethylene are used in lithium ion secondary batteries.
However, sheet-like separators made of these resins generally tend to shrink at low temperatures, so that when the sharply shaped protrusion such as an internal short circuit or a nail penetrates the battery, the short circuit part is caused by the short-circuit reaction heat that occurs instantaneously. It had the problem of expanding and generating much more heat of reaction and promoting abnormal overheating.

そこで、上記課題を含めた安全性を向上させるために、正負極いずれかの上に樹脂結着剤とアルミナなどの固体粒子を含む多孔膜層を形成する技術が提案されている(例えば特許文献1参照)。   Therefore, in order to improve safety including the above-mentioned problems, a technique for forming a porous film layer containing a resin binder and solid particles such as alumina on either the positive or negative electrode has been proposed (for example, Patent Documents). 1).

その中で、多孔膜層による高い安全性と良好な放電特性を両立したリチウムイオン二次電池を提供するためにメディアレス分散、その中でも高速回転せん断型装置、遠心場利用高速回転型装置を用いた多孔膜スラリーの作成方法が提案されている(例えば特許文献2参照)。
特開平07−220759号公報 国際公開第2005/124899号パンフレット
Among them, in order to provide a lithium-ion secondary battery that achieves both high safety and good discharge characteristics due to the porous membrane layer, medialess dispersion, especially high-speed rotary shear type devices and high-speed rotary type devices using centrifugal fields are used. A method for preparing a porous membrane slurry has been proposed (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 07-220759 International Publication No. 2005/124899 Pamphlet

しかしながら特許文献2に基づいて多孔膜スラリーを作成する場合、多くの無機酸化物フィラーを含むことから固形分濃度が高くなると分散することが出来なくなった。また1回あたりの処理量を増やそうとするとそれに応じ、回転翼を大きくする必要が生じるため、回転軸に対する負荷が高くなり分散できなくなるため、大掛かりな設備が必要となってくる。   However, when a porous membrane slurry is prepared based on Patent Document 2, since it contains many inorganic oxide fillers, it cannot be dispersed when the solid concentration increases. Further, if it is attempted to increase the amount of processing per one time, it is necessary to increase the size of the rotor blades. Therefore, the load on the rotating shaft becomes high and cannot be dispersed, so that a large facility is required.

本発明は上記課題を解決するもので、連続して効率よく多孔膜スラリーを作成する方法を提供することを目的とする。   This invention solves the said subject, and it aims at providing the method of producing a porous membrane slurry continuously and efficiently.

本発明のリチウムイオン二次電池用電極の製造方法は、正極または負極の少なくともいずれか一方に、無機酸化物フィラーおよび結着剤からなる多孔膜層が接着形成されており、その多孔膜スラリーの作成方法として超音波を用いることを特徴とするものである。   In the method for producing an electrode for a lithium ion secondary battery of the present invention, a porous film layer composed of an inorganic oxide filler and a binder is bonded to at least one of a positive electrode and a negative electrode. Ultrasonic waves are used as the creation method.

また、この際、ディスパー等で簡易に攪拌し作成したスラリーを、0.5〜2.0L/minの速度で流しながら、周波数10〜30kHz、振動振幅20〜40μmの超音波を付加することにより連続して分散することが好ましい。   Also, at this time, by applying the ultrasonic wave having a frequency of 10 to 30 kHz and a vibration amplitude of 20 to 40 μm while flowing the slurry prepared by simply stirring with a disper or the like at a speed of 0.5 to 2.0 L / min. It is preferable to disperse continuously.

以上のように本発明によれば、多孔膜スラリーを連続して効率よく作成することが可能となる。   As described above, according to the present invention, a porous membrane slurry can be continuously and efficiently produced.

本発明の好ましい態様を以下に示す。   Preferred embodiments of the present invention are shown below.

本発明の請求項1に記載の発明は、複合リチウム酸化物からなる正極、または、リチウムを保持しうる材料からなる負極の少なくともいずれか一方に、無機酸化物フィラーおよび結着剤からなる多孔膜層を接着形成する工程を少なくとも含むリチウムイオン二次電池用電極の製造方法において、前記多孔膜層を接着形成する工程は、無機酸化物フィラーと、結着剤と分散媒となる有機溶剤からなるペーストに超音波振動を加えて前記無機酸化物フィラーを分散させリチウムイオン二次電池用多孔膜スラリーを作成し多孔膜層を形成する工程であるものである。   According to the first aspect of the present invention, there is provided a porous film comprising an inorganic oxide filler and a binder on at least one of a positive electrode made of a composite lithium oxide and a negative electrode made of a material capable of holding lithium. In the method of manufacturing an electrode for a lithium ion secondary battery including at least a step of forming an adhesive layer, the step of forming the adhesive layer includes an inorganic oxide filler, a binder, and an organic solvent serving as a dispersion medium. This is a step of applying ultrasonic vibration to the paste to disperse the inorganic oxide filler to form a porous membrane slurry for a lithium ion secondary battery to form a porous membrane layer.

まず、本発明の骨子である多孔膜層については、以下に詳述する正負極のいずれかに接着形成されていなければならない。   First, the porous membrane layer, which is the gist of the present invention, must be bonded to one of the positive and negative electrodes described in detail below.

多孔膜を構成する結着剤には、耐熱性および耐電解液性を有するものが用いられる。結着剤には、例えばフッ素樹脂を用いることができる。フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等を用いることができる。また、結着剤には、ポリアクリル酸誘導体やポリアクリロニトリル誘導体などを用いることもできる。ポリアクリル酸誘導体やポリアクリロニトリル誘導体は、アクリル酸エチル単位、メタクリル酸メチル単位およびメタクリル酸エチル単位からなる群から選ばれる少なくとも1種を含むことが好ましい。また、ポリエチレン、スチレン−ブタジエンゴムなども用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特に、アクリルニトリル単位を含む高分子、すなわちポリアクリルニトリル誘導体が好ましい。このような材料を結着剤として用いると、多孔膜により一層の柔軟性が付与されるため、多孔膜にひび割れや剥がれが発生しにくくなる。   As the binder constituting the porous film, one having heat resistance and electrolytic solution resistance is used. As the binder, for example, a fluororesin can be used. As the fluororesin, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), or the like can be used. Moreover, a polyacrylic acid derivative, a polyacrylonitrile derivative, etc. can also be used for a binder. The polyacrylic acid derivative or polyacrylonitrile derivative preferably contains at least one selected from the group consisting of an ethyl acrylate unit, a methyl methacrylate unit, and an ethyl methacrylate unit. Polyethylene, styrene-butadiene rubber, etc. can also be used. These may be used alone or in combination of two or more. Among these, a polymer containing an acrylonitrile unit, that is, a polyacrylonitrile derivative is particularly preferable. When such a material is used as a binder, the porous film is given more flexibility, and thus the porous film is less likely to be cracked or peeled off.

多孔膜層にフィラーとして用いられるのは、無機酸化物でなければならない。各種樹脂微粒子もフィラーとしては一般的であるが、耐熱性が必要である上に、リチウムイオン二次電池の使用範囲内で電気化学的に安定である必要があり、これら要件を満たしつつ塗料化に適する材料としては無機酸化物が最も好ましい。   What is used as a filler in the porous membrane layer must be an inorganic oxide. Various resin fine particles are also commonly used as fillers, but they need heat resistance and must be electrochemically stable within the range of use of lithium ion secondary batteries. As a material suitable for the above, an inorganic oxide is most preferable.

また多孔膜層に占める含有率が50重量部以上99重量部以下であることがより好ましい。50重量部を下回る結着剤過多な場合、アルミナ間の隙間で構成される細孔構造の制御が困難になり、99重量部を上回る結着剤過少な場合、多孔膜層の密着性が低下するため脱落による機能の損失が引き起こされるからである。この無機酸化物は複数種を混合あるいは多層化して用いても良い。また、フィラー形状は球形に限らず、かさ密度が0.01〜0.8g/cm3であれば特に限定するものではない。たとえば一次粒子が集合した二次粒子形状、多粒子形状、樹脂状、珊瑚状、クラスター形状、ウィスカー状のものを用いることは空孔率の高い多孔膜層を得るために好ましい態様の1つである。 Moreover, it is more preferable that the content rate which occupies for a porous membrane layer is 50 to 99 weight part. When the amount of the binder is less than 50 parts by weight, it becomes difficult to control the pore structure formed by the gaps between the alumina, and when the amount of the binder is more than 99 parts by weight, the adhesion of the porous membrane layer is lowered. This is because loss of function is caused by dropout. This inorganic oxide may be used as a mixture of a plurality of types or in multiple layers. The filler shape is not limited to a spherical shape, and is not particularly limited as long as the bulk density is 0.01 to 0.8 g / cm 3 . For example, it is one of preferred embodiments to obtain a porous film layer having a high porosity by using a secondary particle shape in which primary particles are aggregated, a multiparticle shape, a resin shape, a cage shape, a cluster shape, or a whisker shape. is there.

この多孔膜層の厚みは特に限定されないが、多孔膜層の効用を発揮しつつ、高容量を確保する点から0.5〜20μmが好ましい。   Although the thickness of this porous membrane layer is not specifically limited, 0.5-20 micrometers is preferable from the point which ensures high capacity | capacitance, exhibiting the effect of a porous membrane layer.

正極については、活物質としてコバルト酸リチウム(LiCoO2)やその変性体(アルミニウム(Al)やマグネシウム(Mg)を共晶させたものなど)、ニッケル酸リチウム(LiNiO2)やその変性体(一部のニッケル(Ni)をコバルト(Co)に置換したものなど)、マンガン酸リチウム(LiMnO2)やその変性体などの複合酸化物を挙げることができる。
For the positive electrode, lithium cobaltate as an active material (LiCoO 2) or a modified product thereof (aluminum (Al), magnesium (Mg), such as those obtained by eutectic), lithium nickel oxide (LiNiO 2) or modifications thereof (an Composite oxides such as lithium manganate (LiMnO 2 ) and modified products thereof.

第1の結着剤としては、ポリテトラフルオロエチレン(PTFE)や変性アクリロニトリルゴム粒子バインダー(日本ゼオン株式会社製BM−500Bなど)と、増粘効果のあるカルボキシメチルセルロース(以下、CMCと略す)、ポリエチレンオキシド(PEO)、および可溶性変性アクリロニトリルゴム(日本ゼオン株式会社製BM−720Hなど)と組み合わせても良い。また、結着性と増粘性の両特徴を有するポリフッ化ビニリデン(PVDF)やその変性体を単独または組み合わせて用いても良い。導電剤としては、アセチレンブラック、ケッチェンブラック、および各種グラファイトを単独あるいは組み合わせて用いて良い。   As the first binder, polytetrafluoroethylene (PTFE) and modified acrylonitrile rubber particle binder (such as BM-500B manufactured by Nippon Zeon Co., Ltd.), carboxymethyl cellulose having a thickening effect (hereinafter abbreviated as CMC), It may be combined with polyethylene oxide (PEO) and soluble modified acrylonitrile rubber (such as BM-720H manufactured by Nippon Zeon Co., Ltd.). Moreover, you may use the polyvinylidene fluoride (PVDF) which has both the characteristics of a binding property and a viscosity increase, and its modified body individually or in combination. As the conductive agent, acetylene black, ketjen black, and various graphites may be used alone or in combination.

負極については、活物質として、各種天然黒鉛、人造黒鉛、シリサイドなどのシリコン系複合材料、および各種合金組成材料を用いることができる。第1の結着剤としてはPVDF、その変性体をはじめ各種バインダーを用いることができる。しかし、前述のようにリチウムイオン受入れ性向上の点から、スチレン・ブタジエンゴム(SBR)系樹脂やその変性体を、CMCを始めとするセルロース系樹脂と併用したり、少量添加するのがより好ましい。   For the negative electrode, various natural graphite, artificial graphite, silicon-based composite materials such as silicide, and various alloy composition materials can be used as the active material. As the first binder, various binders such as PVDF and modified products thereof can be used. However, from the viewpoint of improving lithium ion acceptability as described above, it is more preferable to use a styrene-butadiene rubber (SBR) resin or a modified product thereof in combination with a cellulose resin such as CMC, or to add a small amount. .

本発明の請求項2に記載の発明は、請求項1記載のリチウムイオン二次電池用電極の製造方法において、前記超音波振動は、周波数10〜30kHz、振幅20〜40μmであるとしたものである。   According to a second aspect of the present invention, in the method for manufacturing an electrode for a lithium ion secondary battery according to the first aspect, the ultrasonic vibration has a frequency of 10 to 30 kHz and an amplitude of 20 to 40 μm. is there.

そして、本発明の請求項3に記載の発明は、請求項1記載のリチウムイオン二次電池用電極の製造方法において、超音波振動の調整は、超音波の発信機の個数を変えることで行うものである。   According to a third aspect of the present invention, in the method for manufacturing an electrode for a lithium ion secondary battery according to the first aspect, the adjustment of ultrasonic vibration is performed by changing the number of ultrasonic transmitters. Is.

以下、実施例を用いてさらに詳細に説明する。   Hereinafter, it demonstrates in detail using an Example.

(実施例1)
かさ密度0.01g/cm3のアルミナ950gを、日本ゼオン株式会社製ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量部)625gおよび固形分濃度が40%になるように適量のNMPとともにホモディスパーにて攪拌し、1次スラリーを作製した。このスラリーを1.0L/minの速度で流しながら、周波数20kHz、振動振幅30μmの超音波を付加することにより2次スラリーを作製した。同様にして、10パスまで行い1、2,3,4,6,8,10パスでのスラリーサンプルを採取した。ホモディスパーにて作成した1次ペーストを流すことで連続分散させることから、仕込み量の影響はないために少量のスラリーにて確認した。
Example 1
Alumina 950g of bulk density 0.01 g / cm 3, Nippon Zeon Co., Ltd. of polyacrylonitrile modified rubber binder BM-720H (solids 8 parts by weight) 625 g and the appropriate amount of NMP to a solid concentration of 40% At the same time, the mixture was stirred with a homodisper to prepare a primary slurry. While flowing this slurry at a speed of 1.0 L / min, a secondary slurry was prepared by applying ultrasonic waves having a frequency of 20 kHz and a vibration amplitude of 30 μm. Similarly, up to 10 passes, slurry samples were taken in 1, 2, 3, 4, 6, 8, and 10 passes. Since the primary paste produced by the homodisper was continuously dispersed by flowing it, there was no influence of the charged amount, so a small amount of slurry was used.

(実施例2)
上記1次スラリーを1.0L/minの速度で流しながら、周波数20kHz、振動振幅20μmの超音波を付加することにより2次スラリーを作製した。その後上記方法と同様にスラリーサンプルを採取した。
(Example 2)
While flowing the primary slurry at a speed of 1.0 L / min, a secondary slurry was prepared by applying ultrasonic waves having a frequency of 20 kHz and a vibration amplitude of 20 μm. Thereafter, a slurry sample was collected in the same manner as described above.

(実施例3)
上記1次スラリーを1.0L/minの速度で流しながら、周波数20kHz、振動振幅40μmの超音波を付加することにより2次スラリーを作製した。その後上記方法と同様にスラリーサンプルを採取した。
(Example 3)
While flowing the primary slurry at a speed of 1.0 L / min, a secondary slurry was prepared by applying ultrasonic waves having a frequency of 20 kHz and a vibration amplitude of 40 μm. Thereafter, a slurry sample was collected in the same manner as described above.

(実施例4)
かさ密度0.01g/cm3のアルミナ950gを、日本ゼオン株式会社製ポリアクリ
ロニトリル変性ゴム結着剤BM−720H(固形分8重量部)625gおよび固形分濃度が50%になるように適量のNMPとともにホモディスパーにて攪拌し、1次スラリーを作製した。このスラリーを実施例1と同様に処理しスラリーを作製した。
Example 4
950 g of alumina having a bulk density of 0.01 g / cm 3 is mixed with 625 g of polyacrylonitrile-modified rubber binder BM-720H (solid content 8 parts by weight) manufactured by Nippon Zeon Co., Ltd. and an appropriate amount of NMP so that the solid content concentration is 50%. At the same time, the mixture was stirred with a homodisper to prepare a primary slurry. This slurry was treated in the same manner as in Example 1 to produce a slurry.

(比較例1)
かさ密度0.01g/cm3のアルミナ19kgを、日本ゼオン株式会社製ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量部)12.5kgおよび固形分濃度が40%になるように適量のNMPとともに高速回転せん段型装置(羽根径φ70)を用い8400rpmで15、30、45、60,75分攪拌しそれぞれスラリーを採取した。
(Comparative Example 1)
Appropriate amount of 19 kg of alumina having a bulk density of 0.01 g / cm 3 so that the polyacrylonitrile modified rubber binder BM-720H (solid content 8 parts by weight) 12.5 kg and solid content concentration of 40% by Nippon Zeon Co., Ltd. The slurry was collected by stirring at 8,400 rpm for 15, 30, 45, 60, and 75 minutes using a high-speed rotating stage type device (blade diameter φ70) together with NMP.

(改善前のスラリー作成方法)
(比較例2)
比較例1にある材料を、高速回転せん断型装置(羽根径φ70)を用い6400rpmで15、30、45、60,75分攪拌しそれぞれスラリーを採取した。9000rpmではモーターの負荷を超えてしまい攪拌できなかった
(比較例3)
かさ密度0.01g/cm3のアルミナ19kgを、日本ゼオン株式会社製ポリアクリロニトリル変性ゴム結着剤BM−720H(固形分8重量部)12.5kgおよび固形分濃度が50%になるように適量のNMPとともに高速回転せん段型装置(羽根径φ70)を用い8400rpmで攪拌しようとしたが負荷を超えてしまったため6400rpmで90分攪拌した。
(Slurry preparation method before improvement)
(Comparative Example 2)
The material in Comparative Example 1 was stirred at 6,400 rpm for 15, 30, 45, 60, and 75 minutes using a high-speed rotary shear type apparatus (blade diameter φ70), and each slurry was collected. At 9000 rpm, the motor load was exceeded and stirring was not possible (Comparative Example 3).
An appropriate amount of 19 kg of alumina having a bulk density of 0.01 g / cm 3 is 12.5 kg of polyacrylonitrile modified rubber binder BM-720H (8 parts by weight of solids) manufactured by Nippon Zeon Co., Ltd. and the solids concentration is 50%. Along with NMP, an attempt was made to stir at 8400 rpm using a high-speed rotating stage device (blade diameter φ70), but the load was exceeded, so stirring was performed at 6400 rpm for 90 minutes.

(比較例4)
処理能力を上げるため、高速回転せん段型装置の羽根径をφ95に変更し比較例2と同様にペーストを作成した。但し、回転数は比較例2の羽根の周速をあわせ、6200rpmではモーターの負荷を超えてしまったため、負荷を満足する5700pmで攪拌を行った。
(Comparative Example 4)
In order to increase the processing capacity, the blade diameter of the high-speed rotating stage type apparatus was changed to φ95, and a paste was prepared in the same manner as in Comparative Example 2. However, the rotational speed was adjusted to the peripheral speed of the blades of Comparative Example 2 and exceeded the motor load at 6200 rpm, so stirring was performed at 5700 pm which satisfied the load.

(比較例5)
実施例1で作成した1次スラリーを1.0L/minの速度で流しながら、周波数を5Hz、振幅を10μmの超音波を付加することにより2次スラリーを作製した。その後上記方法と同様にスラリーサンプルを採取した。
(Comparative Example 5)
While flowing the primary slurry prepared in Example 1 at a speed of 1.0 L / min, a secondary slurry was prepared by applying ultrasonic waves having a frequency of 5 Hz and an amplitude of 10 μm. Thereafter, a slurry sample was collected in the same manner as described above.

(比較例6)
実施例1で作成した1次スラリーを1.0L/minの速度で流しながら、周波数を40Hz、振幅を50μmの超音波を付加することにより2次スラリーを作製した。但し、3パス目以降は分散が急速に進むため共振ポイントがずれ発信しなかった。
(Comparative Example 6)
While flowing the primary slurry prepared in Example 1 at a speed of 1.0 L / min, a secondary slurry was prepared by applying ultrasonic waves having a frequency of 40 Hz and an amplitude of 50 μm. However, after the third pass, the dispersion progressed rapidly, so the resonance point shifted and no transmission occurred.

<評価方法および結果>
これらのスラリーを、以下に示す方法にて評価した。その結果を、表1、表2に記す。完成したスラリーをドクターブレードにより金属箔上に塗布し、次いで、塗膜を120℃で1時間乾燥させて多孔膜の試験片を得た。
<Evaluation method and results>
These slurries were evaluated by the methods shown below. The results are shown in Tables 1 and 2. The completed slurry was applied onto a metal foil with a doctor blade, and then the coating film was dried at 120 ° C. for 1 hour to obtain a porous film test piece.

次いで、多孔膜の試験片を、空隙を含まない真体積V1と空隙を含む見かけ体積V2とを測定し、空孔率Pを次式:
P(%)={(V2−V1)/V2}×100
より算出した。
Next, the true volume V1 including no void and the apparent volume V2 including the void are measured for the test piece of the porous film, and the porosity P is expressed by the following formula:
P (%) = {(V2−V1) / V2} × 100
Calculated from

今回、空孔率が46〜48%のものを良品と判断した。   This time, a product with a porosity of 46 to 48% was judged as a good product.

表1より明らかなように実施例1は4パス以上で、振幅を変更した実施例2・3でも到達するパス回数は前後するが良品の空孔率となるペーストを得ることができた。また固形分濃度を変更した実施例4でも実施例1よりパス回数は増えるが良品となるペーストを作成することができた。   As can be seen from Table 1, Example 1 has four or more passes, and even in Examples 2 and 3 in which the amplitude was changed, the number of passes reached could be obtained, but a paste having a non-defective porosity could be obtained. Further, in Example 4 in which the solid content concentration was changed, the number of passes was increased as compared with Example 1, but a paste that was a non-defective product could be produced.

表2より明らかなように高速回転せん断型装置では回転数を下げると良品の空孔率のペーストを作成できなかった。また比較例3のように固形分が増える、比較例4のように羽根径が大きくなると現状のモーターでは必要とされる回転数をペーストにかけることができず良品とした空孔率のペーストを作成できなかった。   As is clear from Table 2, a high-quality rotary shear type apparatus could not produce a good-quality porosity paste when the rotational speed was lowered. In addition, when the solid content increases as in Comparative Example 3 and the blade diameter increases as in Comparative Example 4, the current motor cannot apply the required number of rotations to the paste, and the porosity paste is a good product. Could not create.

実施例は実施例1に述べたように処理量の影響がないことから、別途作成した1次スラリーを連続して流すことで作成することができるため処理量を増やしても問題なく良品のスラリーを作成することができる。(60分で60リットルのスラリーを作成することができる。)
比較例1でも60分以上の時間をかければ良品のスラリーを作成することは可能であるが60分で作成できるペーストは30リットルである。実施例と同様の生産性を得ようとしても、比較例2にあるように回転数をあげることはできないので生産性の観点から実施例の方が望ましいと考える。
Since the embodiment has no influence on the processing amount as described in the first embodiment, it can be prepared by continuously flowing a separately prepared primary slurry. Can be created. (60 liters of slurry can be made in 60 minutes.)
Even in Comparative Example 1, it is possible to produce a good slurry if it takes 60 minutes or more, but the paste that can be produced in 60 minutes is 30 liters. Even if it is attempted to obtain the same productivity as that of the example, the rotational speed cannot be increased as in the comparative example 2, so that the example is preferable from the viewpoint of productivity.

表3より明らかなように周波数、および振幅を下げた場合、分散が緩やかになり10
パスでも良品のペーストを作成することができなかった。また周波数、振幅を上げると分散しすぎることとなり良品の範囲から外れてしまった。
As is apparent from Table 3, when the frequency and amplitude are lowered, the dispersion becomes gradual.
I couldn't make a good paste even in the pass. Further, when the frequency and amplitude were increased, the dispersion was excessive and the product was out of the good product range.

Figure 2009032427
Figure 2009032427

Figure 2009032427
Figure 2009032427

Figure 2009032427
Figure 2009032427

本発明のリチウムイオン二次電池は、安全性の優れたポータブル用電源等として有用である。   The lithium ion secondary battery of the present invention is useful as a portable power source having excellent safety.

Claims (3)

複合リチウム酸化物からなる正極、または、リチウムを保持しうる材料からなる負極の少なくともいずれか一方に、無機酸化物フィラーおよび結着剤からなる多孔膜層を接着形成する工程を少なくとも含むリチウムイオン二次電池用電極の製造方法において、
前記多孔膜層を接着形成する工程は、無機酸化物フィラーと、結着剤と分散媒となる有機溶剤からなるペーストに超音波振動を加えて前記無機酸化物フィラーを分散させリチウムイオン二次電池用多孔膜スラリーを作成し多孔膜層を形成する工程であることを特徴とするリチウムイオン二次電池用電極の製造方法。
At least one of a positive electrode made of a composite lithium oxide and a negative electrode made of a material capable of holding lithium is bonded to a porous membrane layer made of an inorganic oxide filler and a binder. In the method for producing the secondary battery electrode,
The step of bonding and forming the porous membrane layer includes a step of dispersing the inorganic oxide filler by applying ultrasonic vibration to a paste made of an inorganic oxide filler and a binder and an organic solvent that serves as a dispersion medium. A method for producing an electrode for a lithium ion secondary battery, which is a step of forming a porous membrane slurry for forming a porous membrane layer.
前記超音波振動は、周波数10〜30kHz、振幅20〜40μmである請求項1記載のリチウムイオン二次電池用電極の製造方法。   The method of manufacturing an electrode for a lithium ion secondary battery according to claim 1, wherein the ultrasonic vibration has a frequency of 10 to 30 kHz and an amplitude of 20 to 40 µm. 前記超音波振動を用いて作成するスラリーの物性の制御を、超音波の発信機の個数を変えるこによって行うことを特徴とする請求項1に記載のリチウムイオン二次電池用電極の製造方法。


2. The method for producing an electrode for a lithium ion secondary battery according to claim 1, wherein the physical properties of the slurry produced using the ultrasonic vibration are controlled by changing the number of ultrasonic transmitters.


JP2007192816A 2007-07-25 2007-07-25 Method of manufacturing electrode for lithium ion secondary battery Pending JP2009032427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192816A JP2009032427A (en) 2007-07-25 2007-07-25 Method of manufacturing electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192816A JP2009032427A (en) 2007-07-25 2007-07-25 Method of manufacturing electrode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2009032427A true JP2009032427A (en) 2009-02-12

Family

ID=40402762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192816A Pending JP2009032427A (en) 2007-07-25 2007-07-25 Method of manufacturing electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2009032427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093288A (en) * 2011-10-27 2013-05-16 Showa Denko Kk Production method of composite material for lithium secondary battery positive electrode
CN113275576A (en) * 2021-05-20 2021-08-20 上海天阳钢管有限公司 Method for manufacturing metal porous layer by ultrasonic wave
US11469405B2 (en) 2017-11-24 2022-10-11 Nec Corporation Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644963A (en) * 1992-07-24 1994-02-18 Japan Storage Battery Co Ltd Paste packing device
JPH06196199A (en) * 1992-12-24 1994-07-15 Canon Inc Secondary battery
JPH1055802A (en) * 1996-06-06 1998-02-24 Furukawa Battery Co Ltd:The Electrode for alkaline secondary battery and manufacture thereof
JPH10188961A (en) * 1996-12-27 1998-07-21 Fuji Film Selltec Kk Manufacture of sheetlike electrode plate and chemical battery
JPH10223217A (en) * 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd Manufacture of electrode for alkaline storage battery
JP2000294232A (en) * 1999-04-06 2000-10-20 Toshiba Battery Co Ltd Manufacture of alkaline battery
JP2002025547A (en) * 2000-07-11 2002-01-25 Asahi Kasei Corp Electrode for alkaline secondary battery
JP2003170104A (en) * 2001-09-27 2003-06-17 Toyota Motor Corp Direct bar coater
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2008053208A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644963A (en) * 1992-07-24 1994-02-18 Japan Storage Battery Co Ltd Paste packing device
JPH06196199A (en) * 1992-12-24 1994-07-15 Canon Inc Secondary battery
JPH1055802A (en) * 1996-06-06 1998-02-24 Furukawa Battery Co Ltd:The Electrode for alkaline secondary battery and manufacture thereof
JPH10188961A (en) * 1996-12-27 1998-07-21 Fuji Film Selltec Kk Manufacture of sheetlike electrode plate and chemical battery
JPH10223217A (en) * 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd Manufacture of electrode for alkaline storage battery
JP2000294232A (en) * 1999-04-06 2000-10-20 Toshiba Battery Co Ltd Manufacture of alkaline battery
JP2002025547A (en) * 2000-07-11 2002-01-25 Asahi Kasei Corp Electrode for alkaline secondary battery
JP2003170104A (en) * 2001-09-27 2003-06-17 Toyota Motor Corp Direct bar coater
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2008053208A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093288A (en) * 2011-10-27 2013-05-16 Showa Denko Kk Production method of composite material for lithium secondary battery positive electrode
US11469405B2 (en) 2017-11-24 2022-10-11 Nec Corporation Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
CN113275576A (en) * 2021-05-20 2021-08-20 上海天阳钢管有限公司 Method for manufacturing metal porous layer by ultrasonic wave

Similar Documents

Publication Publication Date Title
CN111433947B (en) Binder for electrochemically active material and method of forming electrochemically active material
CN104538594B (en) Anode material for lithium-ion secondary battery, its preparation method, lithium ion secondary battery cathode and lithium rechargeable battery
JP5561567B2 (en) Battery manufacturing method
JP6946427B2 (en) Battery anode slurry preparation method
JP6183360B2 (en) Electrode of lithium ion secondary battery and lithium ion secondary battery using the same
WO2006061940A1 (en) Lithium ion secondary battery and method for producing negative electrode thereof
JP4645778B2 (en) Electrode for lithium ion secondary battery
JPWO2013179909A1 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PREPARING THE ELECTRODE PASTE, AND METHOD FOR PRODUCING THE ELECTRODE
JP6472660B2 (en) Method for producing slurry for negative electrode of lithium ion secondary battery
JP2003012311A (en) Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
JP2016134269A (en) Method of manufacturing electrode
JP2012119078A (en) Method for manufacturing electrode mixture for power storage device
JP5652666B2 (en) Method for manufacturing electrode for secondary battery
JP5483092B2 (en) Battery, battery electrode and method for producing the same
JP2015153714A (en) Electrode for lithium ion secondary battery
JP2009289601A (en) Electrode plate, secondary battery, and method of manufacturing electrode plate
WO2022070542A1 (en) Electrode and method for producing electrode
JP4488779B2 (en) Nonaqueous electrolyte secondary battery manufacturing method and nonaqueous electrolyte secondary battery
JP2011253684A (en) Battery manufacturing method
JP2009032427A (en) Method of manufacturing electrode for lithium ion secondary battery
JP2006236658A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte battery
JP7130541B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP6958342B2 (en) Manufacturing method of laminated electrode body
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
WO2001013444A1 (en) Electrode structure, electric component and production methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326