JP2009031721A - Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution - Google Patents

Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution Download PDF

Info

Publication number
JP2009031721A
JP2009031721A JP2007328748A JP2007328748A JP2009031721A JP 2009031721 A JP2009031721 A JP 2009031721A JP 2007328748 A JP2007328748 A JP 2007328748A JP 2007328748 A JP2007328748 A JP 2007328748A JP 2009031721 A JP2009031721 A JP 2009031721A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
resin
mass
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007328748A
Other languages
Japanese (ja)
Inventor
Katsumi Nukada
克己 額田
Wataru Yamada
渉 山田
Masahiro Iwasaki
真宏 岩崎
Kazuhiro Koseki
一浩 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007328748A priority Critical patent/JP2009031721A/en
Priority to US12/049,718 priority patent/US8679709B2/en
Priority to CN2008100925153A priority patent/CN101334593B/en
Publication of JP2009031721A publication Critical patent/JP2009031721A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor high in mechanical strength of the outermost layer of a photosensitive layer, capable of preventing separation, of preventing degradation of electric characteristics and image quality characteristics by repeated use over a long time, and of stably providing an image having low environment dependency. <P>SOLUTION: This electrophotographic photoreceptor has a conductive substrate and a photosensitive layer provided on a surface of the conductive substrate, and is characterized in that the outermost layer of the photosensitive layer is formed by containing a crosslinked product using a guanamine compound and at least one kind of charge transporting material having at least one substitution group selected from a group consisting of -OH, -OCH<SB>3</SB>, -NH, -SH, and -COOH. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子写真感光体、プロセスカートリッジ、画像形成装置、及び皮膜形成用塗布液に関するものである。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and a coating forming coating solution.

電子写真方式の画像形成装置は、一般的には次の如く構成、及びプロセスを有するものである。すなわち、電子写真感光体表面を帯電手段で所定の極性及び電位に帯電させ、帯電後の電子写真感光体表面を、像露光により選択的に除電することにより静電潜像を形成させた後、現像手段で該静電潜像にトナーを付着させることにより、潜像をトナー像として現像し、トナー像を転写手段で被転写媒体に転写させることにより、画像形成物として排出させる。   An electrophotographic image forming apparatus generally has the following configuration and process. That is, the surface of the electrophotographic photosensitive member is charged to a predetermined polarity and potential by a charging unit, and the surface of the electrophotographic photosensitive member after charging is selectively discharged by image exposure to form an electrostatic latent image. The latent image is developed as a toner image by attaching toner to the electrostatic latent image by the developing unit, and the toner image is transferred to a transfer medium by the transfer unit, and discharged as an image formed product.

近年電子写真感光体は、高速、かつ高印字品質が得られるという利点を有するため、複写機及びレーザービームプリンター等の分野において著しく利用されている。これら画像形成装置において用いられる電子写真感光体として、従来からのセレン、セレンーテルル合金、セレンーヒ素合金、硫化カドミウム等無機光導電材料を用いた電子写真感光体に比べ、安価で製造性及び廃棄性の点で優れた利点を有する有機光導電材料を用いた有機感光体が主流を占める様になってきている。   In recent years, electrophotographic photoreceptors have the advantage of being able to obtain high speed and high printing quality, and thus have been remarkably used in the fields of copying machines and laser beam printers. As an electrophotographic photosensitive member used in these image forming apparatuses, it is inexpensive, manufacturable and disposable compared to conventional electrophotographic photosensitive members using inorganic photoconductive materials such as selenium, selenium-tellurium alloy, selenium-arsenic alloy, cadmium sulfide. Organic photoreceptors using organic photoconductive materials that have advantages in terms of the point have come to dominate.

帯電方式としては、従来はコロナ放電器を使用したコロナ帯電方式が用いられてきた。しかし、近年は、低オゾン及び低電力などの利点を有する接触帯電方式が実用化され、盛んに用いられるようになってきている。接触帯電方式は、帯電用部材として導電性部材を感光体表面に接触、又は近接させ、該帯電部材に電圧を印加することにより、感光体表面を帯電させるものである。また、帯電部材に印加する方式としては、直流電圧のみを印加する直流方式と、直流電圧に交流電圧を重畳して印加する交流重畳方式とがある。この接触帯電方式では、装置の小型化が図れ、かつ、オゾンなどのガスの発生が少ないという利点を有している。   Conventionally, a corona charging method using a corona discharger has been used as the charging method. However, in recent years, a contact charging method having advantages such as low ozone and low power has been put into practical use and has been actively used. In the contact charging method, a conductive member as a charging member is brought into contact with or close to the surface of the photosensitive member, and a voltage is applied to the charging member to charge the surface of the photosensitive member. In addition, as a method of applying to the charging member, there are a direct current method in which only a direct current voltage is applied and an alternating current superposition method in which an alternating current voltage is superimposed on the direct current voltage. This contact charging method has the advantage that the apparatus can be downsized and the generation of gas such as ozone is small.

また、転写方式としては直接紙に転写する方式が主流であったが、転写される紙の自由度が広がることから、近年では中間転写体を用いて転写する方式が盛んに用いられている。   As a transfer method, a method of directly transferring to paper has been the mainstream. However, in recent years, a method of transferring using an intermediate transfer member has been widely used because the degree of freedom of the transferred paper is widened.

一方、接触帯電方式による感光体の劣化・磨耗を抑制することや、直接帯電方式や中間転写体使用による感光体の傷・突き刺の発生を抑制して、感光体リーク(感光体に局所過大電流が流れる現象)の発生を抑制する目的で、電子写真感光体表面に保護層を設けて強度を向上させることが提案されている。保護層を形成する材料系としては、例えば、特許文献1には導電粉をフェノール樹脂に分散したものが提案されている。特許文献2には有機―無機ハイブリッド材料によるものが提案されている。特許文献3には連鎖重合性材料によるものが提案されている。特許文献4にはアクリル系材料によるものが提案されている。また、特許文献5にはアルコール可溶性電荷輸送材料とフェノール樹脂によるものが提案されている。   On the other hand, it is possible to suppress photoreceptor deterioration and wear by the contact charging method, and to prevent the photoreceptor from being scratched or pierced by the direct charging method or the use of an intermediate transfer member. In order to suppress the occurrence of a phenomenon in which a current flows), it has been proposed to improve the strength by providing a protective layer on the surface of the electrophotographic photoreceptor. As a material system for forming the protective layer, for example, Patent Document 1 proposes a material in which conductive powder is dispersed in a phenol resin. Patent Document 2 proposes an organic-inorganic hybrid material. Patent Document 3 proposes a chain polymerizable material. Patent Document 4 proposes an acrylic material. Patent Document 5 proposes an alcohol-soluble charge transport material and a phenol resin.

また、特許文献6にはアルキルエーテル化ベンゾグアナミン・ホルムアルデヒド樹脂と、電子受容性カルボン酸あるいは、電子受容性ポリカルボン酸無水物の硬化膜が提案されている。特許文献7にはベンゾグアナミン樹脂にヨウ素、有機スルホン酸化合物、あるいは、塩化第二鉄などをドーピングした硬化膜が、特許文献8には特定の添加剤とフェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、シロキサン樹脂、あるいは、ウレタン樹脂との硬化膜が提案されている。   Patent Document 6 proposes a cured film of an alkyl etherified benzoguanamine / formaldehyde resin and an electron-accepting carboxylic acid or an electron-accepting polycarboxylic acid anhydride. Patent Document 7 discloses a cured film obtained by doping a benzoguanamine resin with iodine, an organic sulfonic acid compound, or ferric chloride. Patent Document 8 discloses a specific additive and a phenol resin, a melamine resin, a benzoguanamine resin, and a siloxane resin. Alternatively, a cured film with a urethane resin has been proposed.

特許第3287678号公報Japanese Patent No. 3287678 特開平12−019749号公報Japanese Patent Laid-Open No. 12-019749 特開2005−234546号公報JP 2005-234546 A 特開2000−66424号公報JP 2000-66424 A 特開2002−82469号公報JP 2002-82469 A 特開昭62−251757号公報Japanese Patent Laid-Open No. 62-251757 特開平7−146564号公報Japanese Patent Laid-Open No. 7-146564 特開2006−84711公報JP 2006-84711 A

例えば、前記特許文献2乃至4、特許文献6乃至8に開示された電子写真感光体は、機械的強度が高く、耐擦が高いために長寿命化が図れるものである。一方で、前記特許文献5に開示されたフェノール樹脂を用いた保護層は、ガスバリア性が高く、かつ、放電生成物などの酸化性の強いガスに対する耐性が高く、長期に渡って安定した画像が得られ点ですぐれるものである。   For example, the electrophotographic photosensitive members disclosed in Patent Documents 2 to 4 and Patent Documents 6 to 8 have high mechanical strength and high abrasion resistance, so that the life can be extended. On the other hand, the protective layer using the phenol resin disclosed in Patent Document 5 has a high gas barrier property and a high resistance to an oxidizing gas such as a discharge product, and a stable image for a long time. It is excellent in points.

本発明の課題は、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる電子写真感光体を提供することである。
また、本発明の課題は、上記電子写真感光体を利用した、プロセスカートリッジ、及び画像形成装置を提供することである。
また、本発明の課題は、下層に対する密着性に優れた皮膜が形成され、長期にわたる繰り返し使用による性能劣化が抑制される皮膜形成用塗布液を提供することである。
The problems of the present invention are that the outermost layer of the photosensitive layer has a high mechanical strength and is prevented from peeling off, and the deterioration of the electrical characteristics and image quality characteristics due to repeated use over a long period of time is suppressed. An electrophotographic photosensitive member is provided.
Another object of the present invention is to provide a process cartridge and an image forming apparatus using the electrophotographic photosensitive member.
Moreover, the subject of this invention is providing the coating liquid for film formation in which the film | membrane excellent in the adhesiveness with respect to a lower layer is formed, and the performance degradation by repeated use over a long term is suppressed.

上記課題は、以下の手段により解決される。即ち、   The above problem is solved by the following means. That is,

請求項1に係る発明は、
導電性基体と、
前記導電性基体表面に設けた感光層と、
を有し、
前記感光層の最表面層が、グアナミン化合物と、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種とを用いた架橋物を含んで構成されことを特徴とする電子写真感光体である。
The invention according to claim 1
A conductive substrate;
A photosensitive layer provided on the surface of the conductive substrate;
Have
The outermost surface layer of the photosensitive layer is a guanamine compound and at least one kind of charge transporting material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. An electrophotographic photoreceptor characterized in that it comprises a cross-linked product using

請求項2に係る発明は、
前記グアナミン化合物が、下記一般式(A)で示される化合物及びその多量体の少なくとも1種であることを特徴とする請求項1に記載の電子写真感光体である。
The invention according to claim 2
2. The electrophotographic photoreceptor according to claim 1, wherein the guanamine compound is at least one of a compound represented by the following general formula (A) and a multimer thereof.

(前記一般式(A)中、Rは、炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基、炭素数6以上10以下の置換若しくは未置換のフェニル基、又は炭素数4以上10以下の置換若しくは未置換の脂環式炭化水素基を示す。R乃至Rは、それぞれ独立に水素、−CH−OH、又は−CH−O−Rを示す。Rは、水素、又は炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基を示す。) (In the general formula (A), R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, or 4 carbon atoms. The substituted or unsubstituted alicyclic hydrocarbon group is 10 or more and R 2 to R 5 each independently represents hydrogen, —CH 2 —OH, or —CH 2 —O—R 6 , R 6. Represents hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms.)

請求項3に係る発明は、
前記一般式(A)において、Rが炭素数6以上10以下の置換若しくは未置換のフェニル基示し、R乃至Rが−CH−O−Rを示すことを特徴とする請求項2に記載の電子写真感光体である。
The invention according to claim 3
In the general formula (A), R 1 represents a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, and R 2 to R 5 represent —CH 2 —O—R 6. 2. The electrophotographic photosensitive member according to 2.

請求項4に係る発明は、
前記一般式(A)において、Rがメチル基又はn-ブチル基から選ばれることを特徴とする請求項2または3に記載の電子写真感光体である。
The invention according to claim 4
4. The electrophotographic photosensitive member according to claim 2, wherein in the general formula (A), R 6 is selected from a methyl group and an n-butyl group.

請求項5に係る発明は、
前記電荷輸送性材料が、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基を少なくとも3つ持つ電荷輸送性材料であることを特徴とする請求項1乃至4のいずれか1項に記載の電子写真感光体である。
The invention according to claim 5
The charge transporting material is a charge transporting material having at least three substituents selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. 5. The electrophotographic photosensitive member according to any one of 4 above.

請求項6に係る発明は、
前記電荷輸送性材料が、下記一般式(I)で示される化合物であることを特徴とする請求項1乃至3のいずれか1項に記載の電子写真感光体である。
F−((−R−X)n1−Y)n2 (I)
(一般式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基、n1は0又は1を示し、n2は1以上4以下の整数を示す。Xは酸素、NH、又は硫黄原子を示し、Yは−OH、−OCH、−NH、−SH、又は−COOHを示す。)
The invention according to claim 6
The electrophotographic photosensitive member according to any one of claims 1 to 3, wherein the charge transporting material is a compound represented by the following general formula (I).
F - ((- R 7 -X ) n1 R 8 -Y) n2 (I)
(In general formula (I), F is an organic group derived from a compound having a hole transporting ability, and R 7 and R 8 are each independently a linear or branched alkylene group having 1 to 5 carbon atoms. , N1 represents 0 or 1, n2 represents an integer of 1 to 4, X represents an oxygen, NH, or sulfur atom, Y represents —OH, —OCH 3 , —NH 2 , —SH, or — COOH is shown.)

請求項7に係る発明は、
前記一般式(I)で示される化合物において、n2が3又は4を示すことを特徴とする請求項6に記載の電子写真感光体である。
The invention according to claim 7 provides:
7. The electrophotographic photoreceptor according to claim 6, wherein in the compound represented by the general formula (I), n2 represents 3 or 4.

請求項8に係る発明は、
請求項1乃至7のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体を帯電させる帯電手段、前記電子写真感光体に形成された静電潜像をトナーにより現像する現像手段、及び、前記電子写真感光体の表面に残存したトナーを除去するトナー除去手段からなる群より選ばれる少なくとも一種と、を備えることを特徴とするプロセスカートリッジである。
The invention according to claim 8 provides:
An electrophotographic photoreceptor according to any one of claims 1 to 7,
Charging means for charging the electrophotographic photosensitive member, developing means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with toner, and toner removal for removing toner remaining on the surface of the electrophotographic photosensitive member At least one selected from the group consisting of means.

請求項9に記載の発明は、
前記現像手段が、前記電子写真感光体の移動方向に対して逆方向に移動する現像剤保持体を有することを特徴とする請求項8に記載のプロセスカートリッジである。
The invention according to claim 9 is:
9. The process cartridge according to claim 8, wherein the developing unit includes a developer holder that moves in a direction opposite to a moving direction of the electrophotographic photosensitive member.

請求項10に係る発明は、
請求項1乃至7のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体を帯電させる帯電手段と、
帯電した前記電子写真感光体に静電潜像形成する静電潜像手段と、
前記電子写真感光体に形成された静電潜像をトナーにより現像する現像手段と、
前記トナー像を被転写体に転写する転写手段と、
を備えることを特徴とする画像形成装置である。
The invention according to claim 10 is:
An electrophotographic photoreceptor according to any one of claims 1 to 7,
Charging means for charging the electrophotographic photoreceptor;
Electrostatic latent image means for forming an electrostatic latent image on the charged electrophotographic photosensitive member;
Developing means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with toner;
Transfer means for transferring the toner image to a transfer object;
An image forming apparatus comprising:

請求項11に記載の発明は、
前記現像手段が、前記電子写真感光体の移動方向に対して逆方向に移動する現像剤保持体を有することを特徴とする請求項10に記載の画像形成装置である。
The invention according to claim 11
The image forming apparatus according to claim 10, wherein the developing unit includes a developer holder that moves in a direction opposite to a moving direction of the electrophotographic photosensitive member.

請求項12に係る発明は、
グアナミン化合物と、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種とを少なくとも含む皮膜形成用塗布液である。
The invention according to claim 12
Coating solution for forming a film, comprising at least a guanamine compound and at least one charge transporting material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. It is.

請求項13に係る発明は、
導電性基体と、
前記導電性基体表面に設けた感光層と、
を有し、
前記感光層の最表面層が、グアナミン化合物と、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種とを含む皮膜形成用塗布液を塗布し架橋物としたものを含んで構成されことを特徴とする電子写真感光体である。
The invention according to claim 13 is:
A conductive substrate;
A photosensitive layer provided on the surface of the conductive substrate;
Have
The outermost surface layer of the photosensitive layer is a guanamine compound and at least one kind of charge transporting material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. An electrophotographic photoreceptor characterized in that it comprises a cross-linked product obtained by applying a film-forming coating solution containing

請求項1に係る発明によれば、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる。   According to the first aspect of the present invention, the mechanical strength of the outermost layer of the photosensitive layer is high and peeling is suppressed, deterioration of electrical characteristics and image quality characteristics due to repeated use over a long period of time is suppressed, and environmental dependency is low and stable. To obtain an image.

請求項2に係る発明によれば、より効果的に、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる。   According to the invention of claim 2, the mechanical strength of the outermost layer of the photosensitive layer is more effectively suppressed and the peeling is suppressed, and the deterioration of the electrical characteristics and the image quality characteristics due to repeated use over a long period is suppressed. The image is obtained with low stability.

請求項3に係る発明によれば、より効果的に、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる。   According to the invention of claim 3, the mechanical strength of the outermost layer of the photosensitive layer is more effectively suppressed and peeling is suppressed, and deterioration of electrical characteristics and image quality characteristics due to repeated use over a long period of time is suppressed. The image is obtained with low stability.

請求項4に係る発明によれば、より効果的に、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる。   According to the invention according to claim 4, the mechanical strength of the outermost layer of the photosensitive layer is more effectively suppressed and peeling is suppressed, and deterioration of electrical characteristics and image quality characteristics due to repeated use over a long period of time is suppressed. The image is obtained with low stability.

請求項5に係る発明によれば、架橋密度が上がり、より強度の高い架橋膜が得られ、特にブレードクリーナーを用いた際の電子写真感光体の回転トルクが低減され、ブレードへのダメージの抑制や、電子写真感光体の磨耗が抑制される。   According to the invention of claim 5, the crosslinking density is increased and a stronger crosslinked film is obtained. In particular, the rotational torque of the electrophotographic photosensitive member when using a blade cleaner is reduced, and the damage to the blade is suppressed. In addition, wear of the electrophotographic photosensitive member is suppressed.

請求項6に係る発明によれば、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる。   According to the invention of claim 6, the mechanical strength of the outermost layer of the photosensitive layer is high and peeling is suppressed, deterioration of electrical characteristics and image quality characteristics due to repeated use over a long period of time is suppressed, and environmental dependency is low and stable. To obtain an image.

請求項7に係る発明によれば、架橋密度が上がり、より強度の高い架橋膜が得られ、特にブレードクリーナーを用いた際の電子写真感光体の回転トルクが低減され、ブレードへのダメージの抑制や、電子写真感光体の磨耗が抑制される。   According to the invention of claim 7, the crosslinking density is increased and a stronger crosslinked film can be obtained. In particular, the rotational torque of the electrophotographic photosensitive member when using a blade cleaner is reduced, and the damage to the blade is suppressed. In addition, wear of the electrophotographic photosensitive member is suppressed.

請求項8に係る発明によれば、長期にわたり、環境依存が低減され、安定して画像が得られる。   According to the eighth aspect of the invention, environmental dependence is reduced over a long period of time, and an image can be stably obtained.

請求項9に係る発明によれば、現像剤保持体と電子写真感光体との間に留まるトナーで電子写真感光体表面が摺擦される共に、電子写真感光体表面に付着した放電生成物(特には、オゾン、NOxに起因する低抵抗物質)の掻き取り性が向上され、放電生成物の堆積が極めて長期間抑制される。   According to the ninth aspect of the present invention, the surface of the electrophotographic photosensitive member is rubbed with the toner remaining between the developer holding member and the electrophotographic photosensitive member, and the discharge product attached to the surface of the electrophotographic photosensitive member ( In particular, the scraping property of the low-resistance substance due to ozone and NOx is improved, and the accumulation of discharge products is suppressed for a very long time.

請求項10に係る発明によれば、長期にわたり、環境依存が低減され、安定して画像が得られる。   According to the invention of claim 10, environmental dependence is reduced over a long period of time, and an image can be obtained stably.

請求項11に係る発明によれば、現像剤保持体と電子写真感光体との間に留まるトナーで電子写真感光体表面が摺擦される共に、電子写真感光体表面に付着した放電生成物(特には、オゾン、NOxに起因する低抵抗物質)の掻き取り性が向上され、放電生成物の堆積が極めて長期間抑制される。   According to the eleventh aspect of the present invention, the surface of the electrophotographic photosensitive member is rubbed with the toner remaining between the developer holding member and the electrophotographic photosensitive member, and the discharge product attached to the surface of the electrophotographic photosensitive member ( In particular, the scraping property of the low-resistance substance due to ozone and NOx is improved, and the accumulation of discharge products is suppressed for a very long time.

請求項12に係る発明によれば、下層に対する密着性に優れた皮膜が形成され、長期にわたる繰り返し使用による性能劣化が抑制される。   According to the invention which concerns on Claim 12, the film | membrane excellent in the adhesiveness with respect to a lower layer is formed, and the performance degradation by repeated use over a long term is suppressed.

請求項13に係る発明によれば、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる。   According to the invention of claim 13, the mechanical strength of the outermost layer of the photosensitive layer is high and the peeling is suppressed, the deterioration of the electrical characteristics and the image quality characteristics due to repeated use over a long period of time is suppressed, and the environmental dependency is low and stable. To obtain an image.

(電子写真感光体)
本実施形態に係る電子写真感光体は、導電性基体と、導電性基体表面に設けた感光層と、を有し、感光層の最表面層が、後述するグアナミン化合物と特定の電化輸送性材料とを用いた架橋物を含んで構成された層であることを特徴としている。
(Electrophotographic photoreceptor)
The electrophotographic photoreceptor according to the exemplary embodiment includes a conductive substrate and a photosensitive layer provided on the surface of the conductive substrate, and the outermost surface layer of the photosensitive layer includes a guanamine compound and a specific electrotransport material described later. It is the layer comprised including the crosslinked material using these.

本実施形態に係る電子写真感光体では、上記構成とすることで、感光層の最表層の機械的強度が高いと共に剥がれが抑制され、長期にわたる繰り返し使用による電気特性及び画質特性の劣化が抑制され、環境依存性が低く安定して画像が得られる。この理由は定かではないが、以下のように推測される。   In the electrophotographic photoreceptor according to the exemplary embodiment, the above-described configuration has high mechanical strength of the outermost layer of the photosensitive layer and suppresses peeling, and deterioration of electrical characteristics and image quality characteristics due to repeated use over a long period is suppressed. The image can be obtained stably with low environmental dependency. The reason for this is not clear, but is presumed as follows.

グアナミン骨格を有するグアナミン化合物と、特定の官能基を有する電荷輸送性材料とにより、高度に架橋されると共に、環境により電気特性の変動が抑制された膜が形成される。また、上記特定の化合物を用いることで、架橋時(硬化時)に、体積収縮が生じ難く、形成される膜の下層との接着性も向上される。   The guanamine compound having a guanamine skeleton and the charge transporting material having a specific functional group form a film that is highly cross-linked and in which fluctuations in electrical properties are suppressed by the environment. In addition, by using the specific compound, volume shrinkage hardly occurs at the time of crosslinking (curing), and adhesion with the lower layer of the formed film is also improved.

特に、グアナミン化合物として一般式(A)で示される化合物を用いると、当該化合物が適度な疎水性を付与する官能基(式中Rが相当)を有することから、放電生成ガスの吸着や水分の吸着を抑制すると共に、架橋部位(架橋サイト)が一分子中に最大4つ存在することから、高度に架橋された膜となる。加えて、特定の電荷輸送性材料として一般式(I)で示される化合物を用いると、高度に架橋されると共に、電子写真特性、耐電特性等も高められる。 In particular, when a compound represented by the general formula (A) is used as the guanamine compound, since the compound has a functional group (corresponding to R 1 in the formula) imparting appropriate hydrophobicity, the adsorption of the gas generated by the discharge and moisture Adsorption is suppressed, and a maximum of four cross-linking sites (cross-linking sites) exist in one molecule, so that a highly cross-linked film is obtained. In addition, when the compound represented by the general formula (I) is used as the specific charge transporting material, it is highly crosslinked, and the electrophotographic characteristics, electric resistance characteristics and the like are enhanced.

加えて、特定の化合物を用いることから、硬度が高い膜となり、画像形成装置内外から混入する導電性異物の該感光体への突き刺りを減少させることによりリーク発生が予防される。さらに、膜磨耗を抑えられ、長期繰り返し使用に対してもリーク発生が防止される。   In addition, since a specific compound is used, the film has a high hardness, and the occurrence of leakage is prevented by reducing the piercing of the conductive foreign matter mixed from the inside and outside of the image forming apparatus into the photoconductor. Furthermore, film wear can be suppressed, and leakage can be prevented even when used repeatedly for a long time.

従って、本実施形態に係る電子写真感光体では、上記効果を奏されるものと推測される。   Therefore, the electrophotographic photosensitive member according to this embodiment is presumed to have the above effect.

以下、図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付することとし、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

(電子写真感光体)
以下に本発明で使用される電子写真感光体について説明する。
図1は、実施形態に係る電子写真用感光体の好適な一実施形態を示す模式断面図である。図2乃至図3はそれぞれ他の実施形態に係る電子写真感光体を示す模式断面図である。
(Electrophotographic photoreceptor)
The electrophotographic photoreceptor used in the present invention will be described below.
FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the electrophotographic photoreceptor according to the embodiment. 2 to 3 are schematic sectional views showing electrophotographic photosensitive members according to other embodiments.

図1に示す電子写真感光体7は、導電性基体4上に下引層1が設けられ、その上に電荷発生層2、電荷輸送層3、保護層5が順次形成された感光層が設けられている。   The electrophotographic photoreceptor 7 shown in FIG. 1 is provided with a subbing layer 1 on a conductive substrate 4, and a photosensitive layer in which a charge generation layer 2, a charge transport layer 3, and a protective layer 5 are sequentially formed thereon. It has been.

図2に示す電子写真感光体7は、図1に示す電子写真感光体7と同様に電荷発生層2と電荷輸送層3とに機能が分離された感光層を備えるものである。また、図3に示す電子写真感光体7は、電荷発生材料と電荷輸送材料とを同一の層(単層型感光層6(電荷発生/電荷輸送層))に含有するものである。   The electrophotographic photosensitive member 7 shown in FIG. 2 includes a photosensitive layer in which the functions are separated into the charge generation layer 2 and the charge transport layer 3 as in the electrophotographic photosensitive member 7 shown in FIG. The electrophotographic photoreceptor 7 shown in FIG. 3 contains the charge generation material and the charge transport material in the same layer (single-layer type photosensitive layer 6 (charge generation / charge transport layer)).

図2に示す電子写真感光体7においては、導電性基体4上に下引層1が設けられ、その上に電荷輸送層3、電荷発生層2、保護層5が順次形成された感光層が設けられている。また、図3に示す電子写真感光体7においては、導電性基体4上に下引層1が設けられ、その上に単層型感光層6、保護層5が順次形成された感光層が設けられている。   In the electrophotographic photosensitive member 7 shown in FIG. 2, an undercoat layer 1 is provided on a conductive substrate 4, and a photosensitive layer in which a charge transport layer 3, a charge generation layer 2, and a protective layer 5 are sequentially formed thereon. Is provided. In the electrophotographic photoreceptor 7 shown in FIG. 3, the undercoat layer 1 is provided on the conductive substrate 4, and the photosensitive layer in which the single-layer type photosensitive layer 6 and the protective layer 5 are sequentially formed thereon is provided. It has been.

そして、上記図1乃至図3に示す電子写真感光体7が、上記最表面層に相当する。なお、図1乃至図3に示す電子写真感光体において、下引層は設けても設けなくてもよい。   The electrophotographic photoreceptor 7 shown in FIGS. 1 to 3 corresponds to the outermost surface layer. In the electrophotographic photoreceptor shown in FIGS. 1 to 3, the undercoat layer may or may not be provided.

以下、代表例として図1に示す電子写真感光体7に基づいて、各要素について説明する。   Hereinafter, each element will be described based on the electrophotographic photoreceptor 7 shown in FIG. 1 as a representative example.

<導電性基体>
導電性基体4としては、例えば、アルミニウム、銅、亜鉛、ステンレス、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等の金属又は合金を用いて構成される金属板、金属ドラム、及び金属ベルト、又は、導電性ポリマー、酸化インジウム等の導電性化合物やアルミニウム、パラジウム、金等の金属又は合金を塗布、蒸着又はラミネートした紙、プラスチックフィルム、ベルト等が挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
<Conductive substrate>
Examples of the conductive substrate 4 include a metal plate, a metal drum, and a metal belt formed using a metal or an alloy such as aluminum, copper, zinc, stainless steel, chromium, nickel, molybdenum, vanadium, indium, gold, or platinum. Alternatively, a paper, a plastic film, a belt, or the like on which a conductive compound such as a conductive polymer or indium oxide, or a metal or alloy such as aluminum, palladium, or gold is applied, vapor-deposited, or laminated can be given. Here, “conductive” means that the volume resistivity is less than 10 13 Ωcm.

電子写真感光体7がレーザープリンターに使用される場合、レーザー光を照射する際に生じる干渉縞を防止するために、導電性基体4の表面は、中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化することが望ましい。Raが0.04μm未満であると、鏡面に近くなるので干渉防止効果が不十分となる傾向があり、Raが0.5μmを越えると、被膜を形成しても画質が粗くなる傾向がある。なお、非干渉光を光源に用いる場合には、干渉縞防止の粗面化は特に必要なく、導電性基体4表面の凹凸による欠陥の発生が防げるため、より長寿命化に適する。   When the electrophotographic photoreceptor 7 is used in a laser printer, the surface of the conductive substrate 4 has a center line average roughness Ra of 0.04 μm or more and 0 in order to prevent interference fringes generated when laser light is irradiated. It is desirable to roughen the surface to 5 μm or less. If Ra is less than 0.04 μm, it becomes close to a mirror surface, so that the effect of preventing interference tends to be insufficient. If Ra exceeds 0.5 μm, the image quality tends to be rough even if a film is formed. When non-interfering light is used for the light source, it is not particularly necessary to roughen the interference fringes, and it is possible to prevent the occurrence of defects due to the irregularities on the surface of the conductive substrate 4, and thus it is suitable for longer life.

粗面化の方法としては、研磨剤を水に懸濁させて支持体に吹き付けることによって行う湿式ホーニング、又は回転する砥石に支持体を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が望ましい。   Surface roughening methods include wet honing by suspending the abrasive in water and spraying it on the support, or centerless grinding and anodic oxidation in which the support is pressed against a rotating grindstone and continuously ground. Processing is desirable.

また、他の粗面化の方法としては、導電性基体4表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、支持体表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も望ましく用いられる。   As another roughening method, a conductive or semiconductive powder is dispersed in a resin without roughening the surface of the conductive substrate 4 to form a layer on the surface of the support. A method of roughening with particles dispersed in the layer is also desirably used.

ここで、陽極酸化による粗面化処理は、アルミニウムを陽極とし電解質溶液中で陽極酸化することによりアルミニウム表面に酸化膜を形成するものである。電解質溶液としては、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、陽極酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが望ましい。   Here, the roughening treatment by anodic oxidation is to form an oxide film on the aluminum surface by anodizing in an electrolyte solution using aluminum as an anode. Examples of the electrolyte solution include a sulfuric acid solution and an oxalic acid solution. However, the porous anodic oxide film formed by anodic oxidation is chemically active as it is, easily contaminated, and has a large resistance fluctuation due to the environment. Therefore, the pores of the anodic oxide film are sealed with pressurized water vapor or boiling water (a metal salt such as nickel may be added) by volume expansion due to a hydration reaction, and a sealing process is performed to change to a more stable hydrated oxide. It is desirable.

陽極酸化膜の膜厚については、0.3μm以上15μm以下が望ましい。この膜厚が0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。他方、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向にある。   The thickness of the anodic oxide film is desirably 0.3 μm or more and 15 μm or less. When this film thickness is less than 0.3 μm, the barrier property against implantation tends to be poor and the effect tends to be insufficient. On the other hand, if it exceeds 15 μm, the residual potential tends to increase due to repeated use.

また、導電性基体4には、酸性水溶液による処理又はベーマイト処理を施してもよい。リン酸、クロム酸及びフッ酸を含む酸性処理液による処理は以下のようにして実施される。先ず、酸性処理液を調整する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲が望ましい。処理温度は42℃以上48℃以下が望ましいが、処理温度を高く保つことにより、当該処理温度の範囲よりも低い場合に比べ一層速く、かつ厚い被膜が形成される。被膜の膜厚は、0.3μm以上15μm以下が望ましい。0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。他方、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向がある。   Further, the conductive substrate 4 may be subjected to treatment with an acidic aqueous solution or boehmite treatment. The treatment with an acidic treatment liquid containing phosphoric acid, chromic acid and hydrofluoric acid is carried out as follows. First, an acidic treatment liquid is prepared. The mixing ratio of phosphoric acid, chromic acid and hydrofluoric acid in the acidic treatment liquid is such that phosphoric acid is in the range of 10% by mass to 11% by mass, chromic acid is in the range of 3% by mass to 5% by mass, and hydrofluoric acid is 0.00%. The concentration of these acids is preferably in the range of 13.5 mass% to 18 mass%. The treatment temperature is preferably 42 ° C. or more and 48 ° C. or less, but by keeping the treatment temperature high, a thicker film can be formed faster than when the treatment temperature is lower than the range. The film thickness is preferably from 0.3 μm to 15 μm. If it is less than 0.3 μm, the barrier property against injection tends to be poor and the effect tends to be insufficient. On the other hand, when it exceeds 15 μm, there is a tendency that the residual potential increases due to repeated use.

ベーマイト処理は、90℃以上100℃以下の純水中に5分間以上60分間以下浸漬すること、又は90℃以上120℃以下の加熱水蒸気に5分間以上60分間以下接触させることにより行われる。被膜の膜厚は、0.1μm以上5μm以下が望ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の他種に比べ被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。   The boehmite treatment is performed by immersing in pure water at 90 ° C. or more and 100 ° C. or less for 5 minutes or more and 60 minutes or less, or by contacting with heated steam at 90 ° C. or more and 120 ° C. or less for 5 minutes or more and 60 minutes or less. The film thickness is preferably 0.1 μm or more and 5 μm or less. This is further anodized using an electrolyte solution with lower film solubility than other types such as adipic acid, boric acid, borate, phosphate, phthalate, maleate, benzoate, tartrate, citrate, etc. It may be processed.

<下引層>
下引層1は、例えば、結着樹脂に無機粒子を含有して構成される。
無機粒子としては、粉体抵抗(体積抵抗率)102Ω・cm以上1011Ω・cm以下のものが望ましく用いられる。これは下引層1はリーク耐性、キャリアブロック性獲得のために適切な抵抗を得ることが必要でるためである。なお、上記範囲の下限よりも無機粒子の抵抗値が低いと十分なリーク耐性が得られず、この範囲の上限よりも高いと残留電位上昇を引き起こしてしまう懸念がある。
<Underlayer>
The undercoat layer 1 is configured by containing inorganic particles in a binder resin, for example.
As the inorganic particles, powder resistance (volume resistivity) of 10 2 Ω · cm or more and 10 11 Ω · cm or less is desirably used. This is because the undercoat layer 1 needs to obtain an appropriate resistance for leak resistance and carrier block property acquisition. In addition, if the resistance value of the inorganic particles is lower than the lower limit of the above range, sufficient leakage resistance cannot be obtained, and if it is higher than the upper limit of this range, there is a concern that the residual potential is increased.

中でも上記抵抗値を有する無機粒子としては、酸化錫、酸化チタン、酸化亜鉛、酸化ジルコニウム等の無機粒子を用いるのが望ましく、特に酸化亜鉛は望ましく用いられる。   Among these, inorganic particles such as tin oxide, titanium oxide, zinc oxide, and zirconium oxide are preferably used as the inorganic particles having the resistance value, and zinc oxide is particularly preferably used.

また、無機粒子は表面処理を行ったものでもよく、表面処理の異なるもの、又は、粒子径の異なるものなど2種以上混合して用いてもよい。   Further, the inorganic particles may be subjected to a surface treatment, or may be used by mixing two or more kinds such as those having different surface treatments or particles having different particle diameters.

また、無機粒子としては、BET法による比表面積が10m2/g以上のものが望ましく用いられる。比表面積値が10m2/g未満のものは帯電性低下を招きやすく、良好な電子写真特性を得にくい傾向がある。 As the inorganic particles, those having a specific surface area of 10 m 2 / g or more by the BET method are desirably used. Those having a specific surface area value of less than 10 m 2 / g tend to cause a decrease in chargeability and tend to make it difficult to obtain good electrophotographic characteristics.

さらに無機粒子とアクセプター性化合物を含有させることで電気特性の長期安定性、キャリアブロック性に優れたものが得られる。アクセプター性化合物としては所望の特性が得られるものならばいかなるものでも使用可能であるが、クロラニル、ブロモアニル等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾールや2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)1,3,4−オキサジアゾール等のオキサジアゾール系化合物、キサントン系化合物、チオフェン化合物、3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物等の電子輸送性物質などが望ましく、特にアントラキノン構造を有する化合物が望ましい。さらに、ヒドロキシアントラキノン系化合物、アミノアントラキノン系化合物、アミノヒドロキシアントラキノン系化合物等、アントラキノン構造を有するアクセプター性化合物が望ましく用いられ、具体的にはアントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が挙げられる。   Further, by incorporating inorganic particles and an acceptor compound, a product having excellent electrical properties for a long period of time and carrier blockability can be obtained. As the acceptor compound, any compound can be used as long as the desired characteristics can be obtained. However, quinone compounds such as chloranil and bromoanil, tetracyanoquinodimethane compounds, 2,4,7-trinitrofluorenone, Fluorenone compounds such as 2,4,5,7-tetranitro-9-fluorenone, 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, and 2,5 Oxadiazole compounds such as -bis (4-naphthyl) -1,3,4-oxadiazole, 2,5-bis (4-diethylaminophenyl) 1,3,4-oxadiazole, xanthone compounds, Desirable are electron transport materials such as thiophene compounds and diphenoquinone compounds such as 3,3 ′, 5,5′tetra-t-butyldiphenoquinone. In particular compounds having an anthraquinone structure are preferable. Furthermore, acceptor compounds having an anthraquinone structure such as hydroxyanthraquinone compounds, aminoanthraquinone compounds, aminohydroxyanthraquinone compounds, and the like are desirably used, and specific examples include anthraquinone, alizarin, quinizarin, anthralfin, and purpurin.

これらのアクセプター性化合物の含有量は所望の特性が得られる範囲であれば任意に設定してもよいが、望ましくは無機粒子に対して0.01質量%以上20質量%以下含有される。さらに電荷蓄積防止と無機粒子の凝集を防止する観点から0.05質量%以上10質量%以下が望ましい。無機粒子の凝集は、導電路形成にバラツキが生じやすくなり、繰り返し使用時に残留電位の上昇など維持性の悪化を招きやすくなるだけでなく、黒点などの画質欠陥も引き起こしやすくなる。   The content of these acceptor compounds may be arbitrarily set as long as desired characteristics are obtained, but is desirably 0.01% by mass or more and 20% by mass or less with respect to the inorganic particles. Furthermore, 0.05 mass% or more and 10 mass% or less are desirable from a viewpoint of preventing charge accumulation and preventing aggregation of inorganic particles. Aggregation of the inorganic particles tends to cause variations in the formation of the conductive path, which not only tends to cause deterioration in sustainability such as an increase in residual potential during repeated use, but also easily causes image quality defects such as black spots.

アクセプター化合物は、下引層の塗布時に添加するだけでも良いし、無機粒子表面にあらかじめ付着させておいてもよい。無機粒子表面にアクセプター化合物を付与させる方法としては、乾式法、又は、湿式法が挙げられる。   The acceptor compound may be added only when the undercoat layer is applied, or may be previously attached to the surface of the inorganic particles. Examples of the method for imparting the acceptor compound to the surface of the inorganic particles include a dry method or a wet method.

乾式法にて表面処理を施す場合には無機粒子をせん断力の大きなミキサ等で攪拌しながら、直接又は有機溶媒に溶解させたアクセプター化合物を滴下、乾燥空気や窒素ガスとともに噴霧させることによってバラツキが生じることなく処理される。添加又は噴霧する際には溶剤の沸点以下の温度で行われることが望ましい。溶剤の沸点以上の温度で噴霧すると、バラツキが生じることなく攪拌される前に溶剤が蒸発し、アクセプター化合物が局部的にかたまってしまいバラツキのない処理ができにくい欠点があり、望ましくない。添加又は噴霧した後、さらに100℃以上で焼き付けを行ってもよい。焼き付けは所望の電子写真特性が得られる温度、時間であれば任意の範囲で実施される。   When surface treatment is performed by a dry method, dispersion is caused by dropping an acceptor compound dissolved in an organic solvent directly or with dry air or nitrogen gas while stirring inorganic particles with a mixer having a large shearing force. Processed without occurring. The addition or spraying is preferably performed at a temperature below the boiling point of the solvent. When spraying at a temperature equal to or higher than the boiling point of the solvent, the solvent evaporates before stirring without causing variation, and the acceptor compound is locally concentrated, which makes it difficult to perform processing without variation. After addition or spraying, baking may be performed at 100 ° C. or higher. Baking is carried out in an arbitrary range as long as the temperature and time allow the desired electrophotographic characteristics to be obtained.

湿式法としては、無機粒子を溶剤中で攪拌、超音波、サンドミルやアトライター、ボールミル等を用いて分散し、アクセプター化合物を添加し攪拌又は分散したのち、溶剤除去することでバラツキが生じることなく処理される。溶剤除去方法はろ過又は蒸留により留去される。溶剤除去後にはさらに100℃以上で焼き付けを行ってもよい。焼き付けは所望の電子写真特性が得られる温度、時間であれば任意の範囲で実施される。湿式法においては表面処理剤を添加する前に無機粒子含有水分を除去することもでき、その例として表面処理に用いる溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法を用いてもよい。   As a wet method, the inorganic particles are dispersed in a solvent using stirring, ultrasonic waves, a sand mill, an attritor, a ball mill, etc., added with an acceptor compound, stirred or dispersed, and then the solvent is removed without causing variations. It is processed. The solvent removal method is distilled off by filtration or distillation. After removing the solvent, baking may be performed at 100 ° C. or higher. Baking is carried out in an arbitrary range as long as the temperature and time allow the desired electrophotographic characteristics to be obtained. In the wet method, water containing inorganic particles can also be removed before adding the surface treatment agent. For example, a method of removing with stirring and heating in a solvent used for the surface treatment, a method of removing by azeotropic distillation with the solvent May be used.

また、無機粒子はアクセプター化合物を付与する前に表面処理を施してもよい。表面処理剤としては所望の特性が得られるものであればよく、公知の材料から選択される。例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、界面活性材等が挙げられる。特に、シランカップリング剤は良好な電子写真特性を与えるため望ましく用いられる。さらにアミノ基を有するシランカップリング剤は下引層1に良好なブロッキング性を与えるため望ましく用いられる。   In addition, the inorganic particles may be subjected to a surface treatment before the acceptor compound is provided. The surface treatment agent is not particularly limited as long as it has desired characteristics and is selected from known materials. For example, a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a surfactant, and the like can be given. In particular, silane coupling agents are desirably used because they provide good electrophotographic properties. Further, a silane coupling agent having an amino group is desirably used because it gives the undercoat layer 1 good blocking properties.

アミノ基を有するシランカップリング剤としては所望の電子写真感光体特性を得られるものであればいかなる物でも用いてもよいが、具体的例としてはγ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン等が挙げられるが、これらに限定されるものではない。   Any silane coupling agent having an amino group may be used as long as the desired electrophotographic photoreceptor characteristics can be obtained. Specific examples include γ-aminopropyltriethoxysilane, N-β-. (Aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethylmethoxysilane, N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane, etc. However, it is not limited to these.

また、シランカップリング剤は2種以上混合して使用してもよい。前記アミノ基を有するシランカップリング剤と併用して用いてもよいシランカップリング剤の例としてはビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシラン等が挙げられるが、これらに限定されるものではない。   Two or more silane coupling agents may be mixed and used. Examples of the silane coupling agent that may be used in combination with the silane coupling agent having an amino group include vinyltrimethoxysilane, γ-methacryloxypropyl-tris (β-methoxyethoxy) silane, β- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl)- γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethylmethoxysilane, N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane, γ-chloropropyltri Methoxysilane, etc. Not intended to be.

表面処理方法は公知の方法であればいかなる方法でも使用可能であるが、乾式法又は湿式法を用いることがよい。また、アクセプター付与とカップリング剤等による表面処理を同時に行ってもよい。   As the surface treatment method, any known method can be used, but a dry method or a wet method is preferably used. Moreover, you may perform surface treatment by acceptor provision and a coupling agent etc. simultaneously.

下引層1中の無機粒子に対するシランカップリング剤の量は所望の電子写真特性が得られる量であれば任意に設定されるが分散性向上の観点から、無機粒子に対して0.5質量%以上10質量%以下が望ましい。   The amount of the silane coupling agent relative to the inorganic particles in the undercoat layer 1 is arbitrarily set as long as the desired electrophotographic characteristics can be obtained, but from the viewpoint of improving dispersibility, 0.5 mass with respect to the inorganic particles. % To 10% by mass is desirable.

下引層1に含有される結着樹脂としては、良好な膜が形成されるもので、かつ所望の特性が得られるものであれば公知のいかなるものでも使用可能であるが、例えばポリビニルブチラール等のアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂等の公知の高分子樹脂化合物、また電荷輸送性基を有する電荷輸送性樹脂やポリアニリン等の導電性樹脂等を用いられる。中でも上層の塗布溶剤に不溶な樹脂が望ましく用いられ、特にフェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂等が望ましく用いられる。これらを2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。   As the binder resin contained in the undercoat layer 1, any known resin can be used as long as it can form a good film and can obtain desired characteristics. For example, polyvinyl butyral, etc. Acetal resin, polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate-maleic anhydride resin, Known polymer resin compounds such as silicone resins, silicone-alkyd resins, phenol resins, phenol-formaldehyde resins, melamine resins, urethane resins, charge transport resins having charge transport groups, and conductive resins such as polyaniline, etc. Used. Among these, resins that are insoluble in the upper coating solvent are preferably used, and phenol resins, phenol-formaldehyde resins, melamine resins, urethane resins, epoxy resins, and the like are particularly preferable. When these are used in combination of two or more, the mixing ratio is set as necessary.

下引層形成用塗布液中のアクセプター性を付与した金属酸化物とバインダー樹脂、又は無機粒子とバインダー樹脂との比率は所望する電子写真感光体特性を得られる範囲で任意に設定される。   The ratio of the metal oxide to which the acceptor property is imparted in the coating solution for forming the undercoat layer and the binder resin, or the inorganic particles and the binder resin is arbitrarily set within a range in which desired electrophotographic photoreceptor characteristics can be obtained.

下引層1中には電気特性向上、環境安定性向上、画質向上のために種々の添加物を用いてもよい。添加物としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料を用いられる。シランカップリング剤は金属酸化物の表面処理に用いられるが、添加剤としてさらに塗布液に添加して用いてもよい。ここで用いられるシランカップリング剤の具体例としてはビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシラン等である。ジルコニウムキレート化合物の例として、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。   Various additives may be used in the undercoat layer 1 in order to improve electrical characteristics, environmental stability, and image quality. As additives, known materials such as polycyclic condensation type, azo type electron transporting pigments, zirconium chelate compounds, titanium chelate compounds, aluminum chelate compounds, titanium alkoxide compounds, organic titanium compounds, silane coupling agents, and the like are used. It is done. The silane coupling agent is used for the surface treatment of the metal oxide, but may be further added to the coating solution as an additive. Specific examples of the silane coupling agent used here include vinyltrimethoxysilane, γ-methacryloxypropyl-tris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- Glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (Aminoethyl) -γ-aminopropylmethylmethoxysilane, N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane, γ-chloropropyltrimethoxysilane and the like. Examples of zirconium chelate compounds include zirconium butoxide, zirconium zirconium acetoacetate, zirconium triethanolamine, acetylacetonate zirconium butoxide, ethyl acetoacetate butoxide, zirconium acetate, zirconium oxalate, zirconium lactate, zirconium phosphonate, zirconium octoate, naphthene. Zirconate, zirconium laurate, zirconium stearate, zirconium isostearate, methacrylate zirconium butoxide, stearate zirconium butoxide, isostearate zirconium butoxide and the like.

チタニウムキレート化合物の例としてはテトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。 Examples of titanium chelate compounds include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, titanium acetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate ammonium salt, Examples thereof include titanium lactate, titanium lactate ethyl ester, titanium triethanolamate, and polyhydroxytitanium stearate.

アルミニウムキレート化合物の例としてはアルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、ジエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。 Examples of the aluminum chelate compound include aluminum isopropylate, monobutoxy aluminum diisopropylate, aluminum butyrate, diethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate) and the like.

これらの化合物は単独に若しくは複数の化合物の混合物又は重縮合物として用いてもよい。   These compounds may be used alone or as a mixture or polycondensate of a plurality of compounds.

下引層形成用塗布液を調整するための溶媒としては公知の有機溶剤、例えばアルコール系、芳香族系、ハロゲン化炭化水素系、ケトン系、ケトンアルコール系、エーテル系、エステル系等から任意で選択される。溶媒としては、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤を用いられる。   As a solvent for adjusting the coating solution for forming the undercoat layer, any known organic solvent such as alcohol, aromatic, halogenated hydrocarbon, ketone, ketone alcohol, ether, ester, etc. Selected. Examples of the solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate, Usual organic solvents such as dioxane, tetrahydrofuran, methylene chloride, chloroform, chlorobenzene and toluene are used.

また、これらの分散に用いる溶剤は単独又は2種以上混合して用いてもよい。混合する際、使用される溶剤としては、混合溶剤としてバインダー樹脂を溶かし得る溶剤であれば、いかなるものでも使用される。   Moreover, you may use the solvent used for these dispersion | distribution individually or in mixture of 2 or more types. When mixing, any solvent can be used as long as it can dissolve the binder resin as the mixed solvent.

分散方法としては、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカーなどの公知の方法を用いられる。さらにこの下引層1を設けるときに用いる塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法を用いられる。   As a dispersion method, known methods such as a roll mill, a ball mill, a vibration ball mill, an attritor, a sand mill, a colloid mill, and a paint shaker can be used. Further, as the coating method used when the undercoat layer 1 is provided, conventional methods such as blade coating method, wire bar coating method, spray coating method, dip coating method, bead coating method, air knife coating method, curtain coating method, etc. Is used.

このようにして得られた下引層形成用塗布液を用い、導電性基体上に下引層1が成膜される。   The undercoat layer 1 is formed on the conductive substrate using the undercoat layer-forming coating solution thus obtained.

また、下引層1は、ビッカース強度が35以上とされていることが望ましい。
さらに、下引層1は、所望の特性が得られるのであれば、いかなる厚さに設定されるが、厚さが15μm以上が望ましく、さらに望ましくは15μm以上50μm以下とされていることが望ましい。
The undercoat layer 1 preferably has a Vickers strength of 35 or more.
Furthermore, the undercoat layer 1 is set to any thickness as long as desired characteristics can be obtained. The thickness is preferably 15 μm or more, and more preferably 15 μm or more and 50 μm or less.

下引層1の厚さが15μm未満であるときには、充分な耐リーク性能を得ることができず、また50μm以上であるときには長期使用した場合に残留電位が残りやすくなるため画像濃度異常を招きやすい欠点がある。   When the thickness of the undercoat layer 1 is less than 15 μm, sufficient leakage resistance cannot be obtained, and when it is 50 μm or more, residual potential tends to remain when used for a long period of time, so that it tends to cause an abnormal image density. There are drawbacks.

また、下引層1の表面粗さ(十点平均粗さ)はモアレ像防止のために、使用される露光用レーザー波長λの1/4n(nは上層の屈折率)から1/2λまでに調整される。表面粗さ調整のために下引層中に樹脂などの粒子を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等を用いられる。   Further, the surface roughness (ten-point average roughness) of the undercoat layer 1 is from 1 / 4n (n is the refractive index of the upper layer) to 1 / 2λ of the exposure laser wavelength λ used to prevent moire images. Adjusted to In order to adjust the surface roughness, particles such as a resin may be added to the undercoat layer. As the resin particles, silicone resin particles, cross-linked polymethyl methacrylate resin particles, and the like are used.

また、表面粗さ調整のために下引層を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等を用いられる。   Further, the undercoat layer may be polished for adjusting the surface roughness. As a polishing method, buffing, sandblasting, wet honing, grinding, or the like can be used.

塗布したものを乾燥させて下引層を得るが、通常、乾燥は溶剤を蒸発させ、製膜可能な温度で行われる。   The applied layer is dried to obtain an undercoat layer. Usually, the drying is performed at a temperature at which the solvent can be evaporated to form a film.

<電荷発生層>
電荷発生層2は電荷発生材料及び結着樹脂を含有する層である。
電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料、ジブロモアントアントロン等の縮環芳香族顔料、ペリレン顔料、ピロロピロール顔料、フタロシアニン顔料、酸化亜鉛、三方晶系セレン等が挙げられる。これらの中でも、近赤外域のレーザー露光に対しては、金属及又は無金属フタロシアニン顔料が望ましく、特に、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン、特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン、特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン、特開平4−189873号公報、特開平5−43823号公報等に開示されたチタニルフタロシアニンがより望ましい。また、近紫外域のレーザー露光に対してはジブロモアントアントロン等の縮環芳香族顔料、チオインジゴ系顔料、ポルフィラジン化合物、酸化亜鉛、三方晶系セレン等がより望ましい。
<Charge generation layer>
The charge generation layer 2 is a layer containing a charge generation material and a binder resin.
Examples of the charge generation material include azo pigments such as bisazo and trisazo, condensed aromatic pigments such as dibromoanthanthrone, perylene pigments, pyrrolopyrrole pigments, phthalocyanine pigments, zinc oxide, and trigonal selenium. Among these, metal and metal-free phthalocyanine pigments are desirable for near-infrared laser exposure. In particular, hydroxygallium phthalocyanine disclosed in JP-A-5-263007, JP-A-5-279591, and the like. Chlorogallium phthalocyanine disclosed in JP-A-5-98181, dichlorotin phthalocyanine disclosed in JP-A-5-140472, JP-A-5-140473, etc., JP-A-4-189873, More preferred is titanyl phthalocyanine disclosed in Kaihei 5-43823. For near-ultraviolet laser exposure, condensed aromatic pigments such as dibromoanthanthrone, thioindigo pigments, porphyrazine compounds, zinc oxide, and trigonal selenium are more desirable.

電荷発生層2に使用される結着樹脂としては、広範な絶縁性樹脂から選択され、また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。望ましい結着樹脂としては、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。電荷発生材料と結着樹脂の配合比は質量比で10:1から1:10までの範囲内であることが望ましい。ここで、「絶縁性」とは、ここで、「絶縁性」とは体積抵抗率が1013Ωcm以上であることをいう。 The binder resin used for the charge generation layer 2 is selected from a wide range of insulating resins, and selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, polyvinylpyrene, and polysilane. Also good. Desirable binder resins include polyvinyl butyral resins, polyarylate resins (polycondensates of bisphenols and aromatic divalent carboxylic acids, etc.), polycarbonate resins, polyester resins, phenoxy resins, vinyl chloride-vinyl acetate copolymers, polyamides. Resins, acrylic resins, polyacrylamide resins, polyvinyl pyridine resins, cellulose resins, urethane resins, epoxy resins, caseins, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, and the like. These binder resins are used singly or in combination of two or more. The blending ratio of the charge generation material and the binder resin is preferably in the range of 10: 1 to 1:10 by mass ratio. Here, “insulating” means here that “insulating” means that the volume resistivity is 10 13 Ωcm or more.

電荷発生層2は、上記電荷発生材料及び結着樹脂を所定の溶剤中に分散した塗布液を用いて形成される。   The charge generation layer 2 is formed using a coating solution in which the charge generation material and the binder resin are dispersed in a predetermined solvent.

分散に用いる溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等が挙げられ、これらは1種を単独で又は2種以上を混合して用いられる。   Solvents used for dispersion include methanol, ethanol, n-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, n-butyl acetate, dioxane, tetrahydrofuran, and methylene chloride. , Chloroform, chlorobenzene, toluene and the like. These may be used alone or in admixture of two or more.

また、電荷発生材料及び結着樹脂を溶剤中に分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の通常の方法を用いられる。これらの分散方法により、分散による電荷発生材料の結晶型の変化が防止される。さらにこの分散の際、電荷発生材料の平均粒径を0.5μm以下、望ましくは0.3μm以下、さらに望ましくは0.15μm以下にすることが有効である。   In addition, as a method for dispersing the charge generating material and the binder resin in the solvent, usual methods such as a ball mill dispersion method, an attritor dispersion method, and a sand mill dispersion method can be used. By these dispersion methods, changes in the crystal form of the charge generation material due to dispersion are prevented. Further, at the time of dispersion, it is effective that the average particle size of the charge generating material is 0.5 μm or less, desirably 0.3 μm or less, and more desirably 0.15 μm or less.

また、電荷発生層2を形成する際には、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法を用いられる。   Further, when forming the charge generation layer 2, a usual method such as a blade coating method, a Meyer bar coating method, a spray coating method, a dip coating method, a bead coating method, an air knife coating method, or a curtain coating method is used. .

このようにして得られる電荷発生層2の膜厚は、望ましくは0.1μm以上5.0μm以下、さらに望ましくは0.2μm以上2.0μm以下である。 The film thickness of the charge generation layer 2 obtained in this way is desirably 0.1 μm or more and 5.0 μm or less, and more desirably 0.2 μm or more and 2.0 μm or less.

<電荷輸送層>
電荷輸送層3は、電荷輸送材料と結着樹脂を含有して、又は高分子電荷輸送材を含有して形成される。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン等のフルオレノン化合物、キサントン系化合物、ベンゾフェノン系化合物、シアノビニル系化合物、エチレン系化合物等の電子輸送性化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物などの正孔輸送性化合物があげられる。これらの電荷輸送材料は1種を単独で又は2種以上を混合して用いられるが、これらに限定されるものではない。
<Charge transport layer>
The charge transport layer 3 is formed containing a charge transport material and a binder resin, or containing a polymer charge transport material.
Examples of charge transport materials include quinone compounds such as p-benzoquinone, chloranil, bromanyl, anthraquinone, tetracyanoquinodimethane compounds, fluorenone compounds such as 2,4,7-trinitrofluorenone, xanthone compounds, benzophenone compounds Electron transporting compounds such as cyanovinyl compounds and ethylene compounds, triarylamine compounds, benzidine compounds, arylalkane compounds, aryl-substituted ethylene compounds, stilbene compounds, anthracene compounds, hydrazone compounds, etc. Examples thereof include pore-transporting compounds. These charge transport materials may be used alone or in combination of two or more, but are not limited thereto.

電荷輸送材料としては電荷移動度の観点から、下記構造式(a−1)で示されるトリアリールアミン誘導体、及び下記構造式(a−2)で示されるベンジジン誘導体が望ましい。   As the charge transport material, from the viewpoint of charge mobility, a triarylamine derivative represented by the following structural formula (a-1) and a benzidine derivative represented by the following structural formula (a-2) are desirable.

(構造式(a−1)中、Rは、水素原子又はメチル基を示す。nは1又は2を示す。Ar及びArは各々独立に置換若しくは未置換のアリール基、−C−C(R)=C(R10)(R11)、又は−C−CH=CH−CH=C(R12)(R13)を示し、R乃至R13はそれぞれ独立に水素原子、置換若しくは未置換のアルキル基、又は置換若しくは未置換のアリール基を表す。置換基としてはハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、又は炭素数1以上3以下のアルキル基で置換された置換アミノ基を示す。) (In Structural Formula (a-1), R 8 represents a hydrogen atom or a methyl group. N represents 1 or 2. Ar 6 and Ar 7 are each independently a substituted or unsubstituted aryl group, —C 6. H 4 —C (R 9 ) ═C (R 10 ) (R 11 ), or —C 6 H 4 —CH═CH—CH═C (R 12 ) (R 13 ), wherein R 9 to R 13 are Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, including a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms; A substituted amino group substituted with a group or an alkyl group having 1 to 3 carbon atoms.)

(構造式(a−2)中、R14及びR14’は同一でも異なってもよく、各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、を示す。R15、R15’、R16、及びR16’は同一でも異なってもよく、各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、炭素数1以上2以下のアルキル基で置換されたアミノ基、置換若しくは未置換のアリール基、−C(R17)=C(R18)(R19)、又は−CH=CH−CH=C(R20)(R21)を示し、R17乃至R21は各々独立に水素原子、置換若しくは未置換のアルキル基、又は置換若しくは未置換のアリール基を表す。m及びnは各々独立に0以上2以下の整数を示す。) (In Structural Formula (a-2), R 14 and R 14 ′ may be the same or different, and each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. R 15 , R 15 ′ , R 16 , and R 16 ′ may be the same or different and each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 carbon atom. Or more, an alkoxy group having 5 or less, an amino group substituted with an alkyl group having 1 to 2 carbon atoms, a substituted or unsubstituted aryl group, -C (R 17 ) = C (R 18 ) (R 19 ), or- CH = CH—CH═C (R 20 ) (R 21 ), wherein R 17 to R 21 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group. And n are each independently 0 or more and 2 It represents an integer of below.)

ここで、上記構造式(a−1)で示されるトリアリールアミン誘導体、及び上記構造式(a−2)で示されるベンジジン誘導体のうち、特に、「−C−CH=CH−CH=C(R12)(R13)」を有するトリアリールアミン誘導体、及び「−CH=CH−CH=C(R20)(R21)」を有するベンジジン誘導体が、電荷移動度、保護層との接着性、前画像の履歴が残ることで生じる残像(以下「ゴースト」と言う場合がある)などの観点で優れ望ましい。 Here, triarylamine derivatives represented by the structural formula (a-1), and among the benzidine derivative represented by the above formula (a-2), in particular, "- C 6 H 4 -CH = CH -CH ═C (R 12 ) (R 13 ) ”and a benzidine derivative having“ —CH═CH—CH═C (R 20 ) (R 21 ) ”have charge mobility, protective layer and It is excellent and desirable from the standpoints of adhesiveness and afterimage (hereinafter sometimes referred to as “ghost”) caused by the history of the previous image remaining.

電荷輸送層3に用いる結着樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーンアルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等が挙げられる。また、上述のように、特開平8−176293号公報、特開平8−208820号公報に開示されているポリエステル系高分子電荷輸送材等高分子電荷輸送材を用いてもよい。これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。電荷輸送材料と結着樹脂との配合比は質量比で10:1から1:5までが望ましい。   The binder resin used for the charge transport layer 3 is polycarbonate resin, polyester resin, polyarylate resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, styrene-butadiene copolymer. , Vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly- N-vinyl carbazole, polysilane, etc. are mentioned. Further, as described above, polymer charge transport materials such as polyester-based polymer charge transport materials disclosed in JP-A-8-176293 and JP-A-8-208820 may be used. These binder resins are used singly or in combination of two or more. The blending ratio of the charge transport material and the binder resin is desirably 10: 1 to 1: 5 by mass ratio.

また、電荷輸送材料として高分子電荷輸送材を用いてもよい。高分子電荷輸送材としては、ポリ−N−ビニルカルバゾール、ポリシランなどの電荷輸送性を有する公知のものを用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系高分子電荷輸送材は、他種に比べ高い電荷輸送性を有しており、特に望ましいものである。高分子電荷輸送材はそれだけでも成膜可能であるが、後述する結着樹脂と混合して成膜してもよい。   In addition, a polymer charge transport material may be used as the charge transport material. As the polymer charge transporting material, known materials having charge transporting properties such as poly-N-vinylcarbazole and polysilane are used. In particular, polyester polymer charge transport materials disclosed in JP-A-8-176293, JP-A-8-208820 and the like have a higher charge transportability than other types, and are particularly desirable. is there. The polymer charge transport material can be formed by itself, but may be formed by mixing with a binder resin described later.

電荷輸送層3は、上記構成材料を含有する電荷輸送層形成用塗布液を用いて形成される。電荷輸送層形成用塗布液に用いる溶剤としては、ベンゼン、トルエン、キシレン、クロルベンゼン等の芳香族炭化水素類、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロンゲン化脂肪族炭化水素類、テトラヒドロフラン、エチルエーテル等の環状もしくは直鎖状のエーテル類等の通常の有機溶剤を単独又は2種以上混合して用いられる。また、上記各構成材料の分散方法としては、公知の方法が使用される。   The charge transport layer 3 is formed using a charge transport layer forming coating solution containing the above-described constituent materials. Solvents used in the coating solution for forming the charge transport layer include aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, ketones such as acetone and 2-butanone, and halogenation such as methylene chloride, chloroform and ethylene chloride. Ordinary organic solvents such as aliphatic hydrocarbons, cyclic ethers such as tetrahydrofuran and ethyl ether or linear ethers may be used alone or in combination of two or more. Moreover, a well-known method is used as a dispersion method of each said constituent material.

電荷輸送層形成用塗布液を電荷発生層2の上に塗布する際の塗布方法としては、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。   The coating method for applying the charge transport layer forming coating solution onto the charge generation layer 2 includes blade coating method, Mayer bar coating method, spray coating method, dip coating method, bead coating method, air knife coating method, A usual method such as a curtain coating method is used.

電荷輸送層3の膜厚は、望ましくは5μm以上50μm以下、より望ましくは10μm以上30μm以下である。   The film thickness of the charge transport layer 3 is desirably 5 μm or more and 50 μm or less, and more desirably 10 μm or more and 30 μm or less.

<保護層>
保護層5は、電子写真感光体7における最表面層であり、最表面の磨耗、傷などに対する耐性を持たせ、且つ、トナーの転写効率を上げるために設けられる層である。
<Protective layer>
The protective layer 5 is the outermost surface layer in the electrophotographic photosensitive member 7 and is a layer provided in order to give resistance to abrasion and scratches on the outermost surface and to increase toner transfer efficiency.

保護層5は、グアナミン化合物と−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種とを用いた架橋物を含んで構成されている。まず、グアナミン化合物について説明する。 The protective layer 5 is cross-linked using a guanamine compound and at least one charge transporting material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. It is composed of things. First, the guanamine compound will be described.

グアナミン化合物としては、例えば、アセトグアナミン、ベンゾグアナミン、ホルモグアナミン、ステログアナミン、スピログアナミン、シクロヘキシルグアナミンなどが挙げられる。   Examples of the guanamine compound include acetoguanamine, benzoguanamine, formoguanamine, steroguanamine, spiroguanamine, cyclohexylguanamine and the like.

グアナミン化合物としては、特に下記一般式(A)で示される化合物及びその多量体の少なくとも1種であることが望ましい。ここで、多量体は、一般式(A)で示される化合物を構造単位として重合されたオリゴマーであり、その重合度は例えば2以上200以下(望ましくは2以上100以下)である。なお、一般式(A)で示される化合物は、一種単独で用いもよりが、2種以上を併用してもよい。特に、一般式(A)で示される化合物は、2種以上混合して用いたり、それを構造単位とする多量体(オリゴマー)として用いたりすると、溶剤に対する溶解性が向上される。   The guanamine compound is particularly preferably at least one of a compound represented by the following general formula (A) and a multimer thereof. Here, the multimer is an oligomer polymerized using the compound represented by the general formula (A) as a structural unit, and the degree of polymerization thereof is, for example, 2 or more and 200 or less (preferably 2 or more and 100 or less). The compound represented by the general formula (A) may be used alone or in combination of two or more. In particular, when the compound represented by the general formula (A) is used as a mixture of two or more kinds, or used as a multimer (oligomer) having the structural unit as a structural unit, the solubility in a solvent is improved.

一般式(A)中、Rは、炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基、炭素数6以上10以下の置換若しくは未置換のフェニル基、又は炭素数4以上10以下の置換若しくは未置換の脂環式炭化水素基を示す。R乃至Rは、それぞれ独立に水素、−CH−OH、又は−CH−O−Rを示す。Rは、水素、又は炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基を示す。 In general formula (A), R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, or 4 to 10 carbon atoms. The following substituted or unsubstituted alicyclic hydrocarbon groups are shown. R 2 to R 5 each independently represent hydrogen, —CH 2 —OH, or —CH 2 —O—R 6 . R 6 represents hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms.

一般式(A)において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以下8以上であり、より望ましくは炭素数が1以上5以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。 In the general formula (A), the alkyl group representing R 1 has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms. . The alkyl group may be linear or branched.

一般式(A)中、Rを示すフェニル基は、炭素数6以上10以下であるが、より望ましくは6以上8以下である。当該フェニル基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。 In general formula (A), the phenyl group represented by R 1 has 6 to 10 carbon atoms, and more preferably 6 to 8 carbon atoms. Examples of the substituent substituted with the phenyl group include a methyl group, an ethyl group, and a propyl group.

一般式(A)中、Rを示す脂環式炭化水素基は、炭素数4以上10以下であるが、より望ましくは5以上8以下である。当該脂環式炭化水素基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。 In general formula (A), the alicyclic hydrocarbon group representing R 1 has 4 to 10 carbon atoms, and more preferably 5 to 8 carbon atoms. Examples of the substituent substituted with the alicyclic hydrocarbon group include a methyl group, an ethyl group, and a propyl group.

一般式(A)中、R乃至Rを示す「−CH−O−R」において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以下8以上であり、より望ましくは炭素数が1以上6以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。好ましくは、メチル基、エチル基、ブチル基などが挙げられる。 In the general formula (A), in “—CH 2 —O—R 6 ” representing R 2 to R 5 , the alkyl group representing R 6 has 1 to 10 carbon atoms, and desirably has carbon atoms. 1 or less and 8 or more, and more preferably 1 or more and 6 or less. The alkyl group may be linear or branched. Preferably, a methyl group, an ethyl group, a butyl group, etc. are mentioned.

一般式(A)で示される化合物としては、特に望ましくは、Rが炭素数6以上10以下の置換若しくは未置換のフェニル基を示し、R乃至Rがそれぞれ独立に−CH−O−Rを示される化合物である。また、Rは、メチル基またはn-ブチル基から選ばれることが望ましい。 As the compound represented by the general formula (A), it is particularly desirable that R 1 represents a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, and R 2 to R 5 are each independently —CH 2 —O. It is a compound represented by —R 6 . R 6 is preferably selected from a methyl group and an n-butyl group.

一般式(A)で示される化合物は、例えば、グアナミンとホルムアルデヒドとを用いて公知の方法(例えば、実験化学講座第4版、28巻、430ページ)で合成される。   The compound represented by the general formula (A) is synthesized by, for example, a known method using guanamine and formaldehyde (for example, Experimental Chemistry Course 4th Edition, Volume 28, page 430).

以下、一般式(A)で示される化合物の具体例を示すが、これらに限られるわけではない。また、以下の具体例は、単量体のものを示すが、これらを構造単位とする多量体(オリゴマー)であってもよい。   Specific examples of the compound represented by the general formula (A) are shown below, but are not limited thereto. Moreover, although the following specific examples show the thing of a monomer, the multimer (oligomer) which uses these as a structural unit may be sufficient.

一般式(A)で示される化合物の市販品としては、例えば、”スーパーベッカミン(R)L−148−55、スーパーベッカミン(R)13−535、スーパーベッカミン(R)L−145−60、スーパーベッカミン(R)TD−126”以上大日本インキ社製、”ニカラックBL−60、ニカラックBX−4000”以上日本カーバイド社製、などが挙げられる。   Commercially available products of the compound represented by the general formula (A) include, for example, “Superbecamine (R) L-148-55, Superbecamine (R) 13-535, Superbecamine (R) L-145- 60, Superbecamine (R) TD-126 "manufactured by Dainippon Ink Co., Ltd.," Nicarac BL-60, Nicarac BX-4000 "manufactured by Nippon Carbide, and the like.

また、一般式(A)で示される化合物は、合成後又は市販品の購入後、残留触媒の影響を取り除くために、トルエン、キシレン、酢酸エチル、などの適当な溶剤に溶解し、蒸留水、イオン交換水などで洗浄してもよいし、イオン交換樹脂で処理して除去してもよい。   In addition, the compound represented by the general formula (A) is dissolved in an appropriate solvent such as toluene, xylene, ethyl acetate or the like after the synthesis or after purchase of a commercially available product in order to remove the influence of the residual catalyst. It may be washed with ion exchange water or the like, or may be removed by treatment with an ion exchange resin.

次に、特定の電荷輸送性材料について説明する。特定の電荷輸送性材料としては、例えば、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つものが好適に挙げられる。特に、特定の電荷輸送性材料としては、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基を少なくとも3つ持つものが好適に挙げられる。この如く、特定の電荷輸送性材料に反応性官能基(当該置換基)が増えることで、架橋密度が上がり、より強度の高い架橋膜が得られ、特にブレードクリーナーを用いた際の電子写真感光体の回転トルクが低減され、ブレードへのダメージの抑制や、電子写真感光体の磨耗が抑制される。この詳細は不明であるが、反応性官能基の数が増すことで、架橋密度の高い硬化膜が得られることから、電子写真感光体の極表面の分子運動が抑制されてブレード部材表面分子との相互作用が弱まるためと推測される。 Next, a specific charge transport material will be described. As the specific charge transporting material, for example, a material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH is preferably exemplified. In particular, specific charge transporting materials preferably include those having at least three substituents selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. As described above, by increasing the reactive functional group (substituent) in a specific charge transporting material, the crosslink density is increased and a cross-linked film having higher strength can be obtained. In particular, electrophotographic photosensitive when using a blade cleaner is used. The rotational torque of the body is reduced, and the damage to the blade is suppressed and the wear of the electrophotographic photosensitive member is suppressed. Although the details are unknown, since a cured film having a high crosslinking density can be obtained by increasing the number of reactive functional groups, the molecular motion of the extreme surface of the electrophotographic photosensitive member is suppressed, so that It is presumed that this interaction weakens.

特定の電荷輸送性材料としては、下記一般式(I)で示される化合物であることが望ましい。
F−((−R−X)n1−Y)n2 (I)
The specific charge transporting material is preferably a compound represented by the following general formula (I).
F - ((- R 7 -X ) n1 R 8 -Y) n2 (I)

一般式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基を示し、n1は0又は1を示し、n2は1以上4以下の整数を示す。Xは酸素、NH、又は硫黄原子を示し、Yは−OH、−OCH、−NH、−SH、又は−COOHを示す。 In general formula (I), F is an organic group derived from a compound having a hole transporting ability, R 7 and R 8 are each independently a linear or branched alkylene group having 1 to 5 carbon atoms. N1 represents 0 or 1, and n2 represents an integer of 1 or more and 4 or less. X represents an oxygen, NH, or sulfur atom, and Y represents —OH, —OCH 3 , —NH 2 , —SH, or —COOH.

一般式(I)中、Fを示す正孔輸送能を有する化合物から誘導される有機基における正孔輸送能を有する化合物としては、アリールアミン誘導体が好適に挙げられる。アリールアミン誘導体としては、トリフェニルアミン誘導体、テトラフェニルベンジジン誘導体が好適に挙げられる。   In general formula (I), an arylamine derivative is preferably used as the compound having a hole transporting ability in an organic group derived from a compound having a hole transporting ability represented by F. Preferred examples of the arylamine derivative include a triphenylamine derivative and a tetraphenylbenzidine derivative.

そして、一般式(I)で示される化合物は、下記一般式(II)で示される化合物であることが望ましい。一般式(II)で示される化合物は、特に、電荷移動度、酸化などに対する安定性等に優れる。   The compound represented by the general formula (I) is preferably a compound represented by the following general formula (II). The compound represented by the general formula (II) is particularly excellent in charge mobility, stability against oxidation and the like.

一般式(II)中、Ar乃至Arは、同一でも異なっていてもよく、それぞれ独立に置換若しくは未置換のアリール基を示し、Arは置換若しくは未置換のアリール基又は置換若しくは未置換のアリーレン基を示し、Dは−(−R−X)n1−Yを示し、cはそれぞれ独立に0又は1を示し、kは0又は1を示し、Dの総数は1以上4以下である。また、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基を示し、n1は0又は1を示し、Xは酸素、NH、又は硫黄原子を示し、Yは−OH、−OCH、−NH、−SH、又は−COOHを示す。 In general formula (II), Ar 1 to Ar 4 may be the same or different and each independently represents a substituted or unsubstituted aryl group, and Ar 5 represents a substituted or unsubstituted aryl group or substituted or unsubstituted. D represents — (— R 7 —X) n1 R 8 —Y, c represents 0 or 1 independently, k represents 0 or 1, and the total number of D is 1 or more and 4 It is as follows. R 7 and R 8 each independently represents a linear or branched alkylene group having 1 to 5 carbon atoms, n1 represents 0 or 1, X represents an oxygen, NH, or sulfur atom. , Y represents —OH, —OCH 3 , —NH 2 , —SH, or —COOH.

一般式(II)中、Dを示す「−(−R−X)n1−Y」は、一般式(I)と同様であり、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基である。また、n1として望ましくは、1である。また、Xとして望ましくは、酸素である。また、Yとして望ましくは水酸基である。
なお、一般式(II)におけるDの総数は、一般式(I)におけるn2に相当し、望ましくは、2以上4以下であり、さらに望ましくは3以上4以下である。つまり、一般式(I)や一般式(II)において、望ましくは一分子中に2以上4以下、さらに望ましくは3以上4以下とすると、架橋密度が上がり、より強度の高い架橋膜が得られ、特にブレードクリーナーを用いた際の電子写真感光体の回転トルクが低減され、ブレードへのダメージの抑制や、電子写真感光体の磨耗が抑制される。この詳細は不明であるが、反応性官能基の数が増すことで、架橋密度の高い硬化膜が得られ、電子写真感光体の極表面の分子運動が抑制されてブレード部材表面分子との相互作用が弱まるためと推測される。
In the general formula (II), “— (— R 7 —X) n1 R 8 —Y” representing D is the same as in the general formula (I), and R 7 and R 8 each independently have 1 or more carbon atoms. It is a linear or branched alkylene group of 5 or less. N1 is preferably 1. X is preferably oxygen. Y is preferably a hydroxyl group.
The total number of D in the general formula (II) corresponds to n2 in the general formula (I), preferably 2 or more and 4 or less, and more preferably 3 or more and 4 or less. That is, in the general formula (I) and the general formula (II), when the molecular weight is desirably 2 or more and 4 or less, more desirably 3 or more and 4 or less in one molecule, the crosslinking density increases and a crosslinked film with higher strength can be obtained. In particular, the rotational torque of the electrophotographic photosensitive member when using a blade cleaner is reduced, so that damage to the blade and wear of the electrophotographic photosensitive member are suppressed. Details of this are unknown, but by increasing the number of reactive functional groups, a cured film with a high crosslink density can be obtained, and molecular motion on the extreme surface of the electrophotographic photoreceptor is suppressed, allowing mutual interaction with the blade member surface molecules. It is presumed that the action is weakened.

一般式(II)中、Ar乃至Arとしては、下記式(1)乃至(7)のうちのいずれかであることが望ましい。なお、下記式(1)乃至(7)は、各Ar乃至Arに連結され得る「−(D)」と共に示す。 In general formula (II), Ar 1 to Ar 4 are preferably any of the following formulas (1) to (7). Incidentally, the following equation (1) to (7) can be coupled to each Ar 1 to Ar 4 - shown with "(D) C".

式(1)乃至(2)中、Rは水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルキル基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基からなる群より選ばれる1種を表し、R10乃至R12はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Arは置換又は未置換のアリーレン基を表し、D及びCは一般式(II)における「D」、「c」と同様であり、sはそれぞれ0又は1を表し、tは1以上3以下の整数を表す。] In Formulas (1) and (2), R 9 is a phenyl substituted with a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Represents one selected from the group consisting of a group, an unsubstituted phenyl group, and an aralkyl group having 7 to 10 carbon atoms, wherein R 10 to R 12 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a carbon number, respectively. One selected from the group consisting of an alkoxy group having 1 to 4 carbon atoms, a phenyl group substituted with an alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom Ar represents a substituted or unsubstituted arylene group, D and C are the same as “D” and “c” in formula (II), s represents 0 or 1, and t is 1 or more, respectively. Integer less than 3 Represent. ]

ここで、式(7)中のArとしては、下記式(8)又は(9)で表されるものが望ましい。   Here, as Ar in Formula (7), what is represented by following formula (8) or (9) is desirable.

[式(8)、(9)中、R13及びR14はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、tは1以上3以下の整数を表す。] [In formulas (8) and (9), R 13 and R 14 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. 1 represents one selected from the group consisting of a phenyl group substituted with, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms and a halogen atom, and t represents an integer of 1 to 3. ]

また、式(7)中のZ’としては、下記式(10)乃至(17)のうちのいずれかで表されるものが望ましい。   Further, Z ′ in the formula (7) is preferably represented by any one of the following formulas (10) to (17).

[式(10)乃至(17)中、R15及びR16はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Wは2価の基を表し、q及びrはそれぞれ1以上10以下の整数を表し、tはそれぞれ1以上3以下の整数を表す。] [In the formulas (10) to (17), R 15 and R 16 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Represents a phenyl group substituted with, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom, W represents a divalent group, q and r each represent Represents an integer of 1 to 10, and t represents an integer of 1 to 3. ]

上記式(16)乃至(17)中のWとしては、下記(18)乃至(26)で表される2価の基のうちのいずれかであることが望ましい。但し、式(25)中、uは0以上3以下の整数を表す。   W in the formulas (16) to (17) is preferably any one of divalent groups represented by the following (18) to (26). However, in formula (25), u represents an integer of 0 or more and 3 or less.

また、一般式(II)中、Arは、kが0のときはAr乃至Arの説明で例示されたアリール基であり、kが1のときはかかるアリール基から所定の水素原子を除いたアリーレン基である In general formula (II), Ar 5 is an aryl group exemplified in the description of Ar 1 to Ar 4 when k is 0, and when k is 1, a predetermined hydrogen atom is taken from the aryl group. Excluded arylene group

一般式(I)で示される化合物の具体例としては、以下に示す化合物(I)−1乃至(I)−34が挙げられる。なお、上記一般式(I)で示される化合物は、これらにより何ら限定されるものではない。   Specific examples of the compound represented by the general formula (I) include the following compounds (I) -1 to (I) -34. In addition, the compound shown by the said general formula (I) is not limited at all by these.

ここで、グアナミン化合物(一般式(A)で示される化合物)と、特定の電荷輸送性材料(一般式(I)で示される化合物)との割合としては、電気特性、強度の観点から、グアナミン化合物に1質量部に対して、特定の電荷輸送性材料が0.2質量部以上4質量部以下であることが望ましく、より望ましくは0.3質量部以上3質量部以下であり、さらに望ましくは0.4質量部以上2質量部以下である。   Here, the ratio between the guanamine compound (the compound represented by the general formula (A)) and the specific charge transporting material (the compound represented by the general formula (I)) is guanamine from the viewpoint of electrical characteristics and strength. The specific charge transporting material is desirably 0.2 parts by mass or more and 4 parts by mass or less, more desirably 0.3 parts by mass or more and 3 parts by mass or less, and further desirably, relative to 1 part by mass of the compound. Is 0.4 parts by mass or more and 2 parts by mass or less.

また、グアナミン化合物(一般式(A)で示される化合物)は、層構成材料全体に対し、10質量%以上80質量%以下用いることが望ましく、より望ましくは15「質量%以上70質量%以下、さらに望ましくは20質量%以上65質量%以下である。   The guanamine compound (compound represented by the general formula (A)) is preferably used in an amount of 10% by mass to 80% by mass, more preferably 15% by mass to 70% by mass, based on the entire layer constituent material. More desirably, it is 20 mass% or more and 65 mass% or less.

以下、保護層5についてさらに詳細に説明する。
保護層5には、グアナミン化合物(一般式(A)で示される化合物)と特定の電荷輸送性材料(一般式(I)で示される化合物)との架橋物と共に、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキッド樹脂などを混合して用いてもよいい。また、強度を向上させるために、スピロアセタール系グアナミン樹脂(例えば「CTU−グアナミン」(味の素ファインテクノ(株)))など、一分子中の官能基のより多い化合物を当該架橋物中の材料に共重合させることも効果的である。
Hereinafter, the protective layer 5 will be described in more detail.
The protective layer 5 includes a cross-linked product of a guanamine compound (a compound represented by the general formula (A)) and a specific charge transporting material (a compound represented by the general formula (I)), a phenol resin, a melamine resin, and urea. You may mix and use resin, an alkyd resin, etc. Further, in order to improve the strength, a compound having more functional groups in one molecule such as spiroacetal guanamine resin (for example, “CTU-guanamine” (Ajinomoto Fine Techno Co., Ltd.)) is used as the material in the crosslinked product. Copolymerization is also effective.

また、保護層5には、放電生成ガスを吸着しすぎないように、添加することで放電生成ガスによる酸化を効果的に抑制する目的から、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂などの他の熱硬化性樹脂を混合して用いてもよい。 In addition, other heat such as phenol resin, melamine resin, and benzoguanamine resin is added to the protective layer 5 for the purpose of effectively suppressing oxidation by the discharge generated gas by adding so as not to absorb the discharge generated gas excessively. A curable resin may be mixed and used.

また、保護層5には、さらに、膜の成膜性、可とう性、潤滑性、接着性を調整するなどの目的から、他のカップリング剤、フッ素化合物と混合して用いても良い。この化合物として、各種シランカップリング剤、及び市販のシリコーン系ハードコート剤が用いられる。   Further, the protective layer 5 may be used in combination with another coupling agent or a fluorine compound for the purpose of adjusting the film formability, flexibility, lubricity, and adhesiveness of the film. As this compound, various silane coupling agents and commercially available silicone hard coat agents are used.

シランカップリング剤としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、等が用いられる。市販のハードコート剤としては、KP−85、X−40−9740、X−8239(以上、信越シリコーン社製)、AY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等が用いられる。また、撥水性等の付与のために、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、1H,1H,2H,2H−パーフルオロアルキルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリエトシキシラン、等の含フッ素化合物を加えても良い。シランカップリング剤は任意の量で使用されるが、含フッ素化合物の量は、フッ素を含まない化合物に対して質量で0.25倍以下とすることが望ましい。この使用量を超えると、架橋膜の成膜性に問題が生じる場合がある。   As the silane coupling agent, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and the like are used. As a commercially available hard coat agent, KP-85, X-40-9740, X-8239 (manufactured by Shin-Etsu Silicone), AY42-440, AY42-441, AY49-208 (manufactured by Toray Dow Corning) Etc. are used. In order to impart water repellency and the like, (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, 3- (hepta) Fluoroisopropoxy) propyltriethoxysilane, 1H, 1H, 2H, 2H-perfluoroalkyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorooctyl Fluorine-containing compounds such as triethoxysilane may be added. Although the silane coupling agent is used in an arbitrary amount, the amount of the fluorine-containing compound is desirably 0.25 times or less by mass with respect to the compound not containing fluorine. If this amount is exceeded, there may be a problem with the film formability of the crosslinked film.

また、保護層5の放電ガス耐性、機械強度、耐傷性、粒子分散性、粘度コントロール、トルク低減、磨耗量コントロール、ポットライフの延長などの目的でアルコールに溶解する樹脂を加えてもよい。   Moreover, you may add resin which melt | dissolves in alcohol for the purpose of discharge gas resistance of the protective layer 5, mechanical strength, scratch resistance, particle dispersibility, viscosity control, torque reduction, wear amount control, pot life extension, and the like.

ここで、アルコールに可溶な樹脂とは、炭素数5以下のアルコールに1質量%以上溶解可能な樹脂を意味する。アルコール系溶剤に可溶な樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂などのポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロ−ス樹脂、ポリビニルフェノール樹脂などがあげられる。特に、電気特性の点でポリビニルアセタール樹脂、ポリビニルフェノール樹脂が望ましい。当該樹脂の重量平均分子量は2,000以上100,000以下が望ましく、5,000以上50,000以下がより望ましい。樹脂の分子量が2,000未満であると樹脂の添加による効果が不十分となる傾向にあり、また、100,000を超えると溶解度が低下して添加量が制限され、さらには塗布時に製膜不良を招く傾向にある。また、当該樹脂の添加量は1質量%以上40質量%以下が望ましく、1質量%以上30質量%以下がより望ましく、5質量%以上20質量%以下がさらに望ましい。当該樹脂の添加量が1質量%未満であると樹脂の添加による効果が不十分となる傾向にあり、また、40質量%を超えると高温高湿下(例えば28℃、85%RH)での画像ボケが発生しやすくなる。   Here, the alcohol-soluble resin means a resin that can be dissolved by 1 mass% or more in an alcohol having 5 or less carbon atoms. Examples of resins that are soluble in alcohol solvents include polyvinyl acetal resins such as polyvinyl butyral resin, polyvinyl formal resin, and partially acetalized polyvinyl acetal resin in which a part of butyral is modified with formal or acetoacetal (for example, manufactured by Sekisui Chemical Co., Ltd.) ESREC B, K, etc.), polyamide resin, cellulose resin, polyvinylphenol resin and the like. In particular, polyvinyl acetal resin and polyvinyl phenol resin are desirable in terms of electrical characteristics. The resin preferably has a weight average molecular weight of 2,000 to 100,000, and more preferably 5,000 to 50,000. If the molecular weight of the resin is less than 2,000, the effect due to the addition of the resin tends to be insufficient, and if it exceeds 100,000, the solubility is reduced and the addition amount is limited. It tends to cause defects. The amount of the resin added is preferably 1% by mass or more and 40% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. If the addition amount of the resin is less than 1% by mass, the effect of the addition of the resin tends to be insufficient. If the addition amount exceeds 40% by mass, the temperature is high under high humidity (for example, 28 ° C., 85% RH). Image blur is likely to occur.

保護層5には、帯電装置で発生するオゾン等の酸化性ガスによる劣化を防止する目的で、酸化防止剤を添加することが望ましい。感光体表面の機械的強度を高め、感光体が長寿命になると、感光体が酸化性ガスに長い時間接触することになるため、従来より強い酸化耐性が要求される。酸化防止剤としては、ヒンダードフェノール系又はヒンダードアミン系が望ましく、有機イオウ系酸化防止剤、フォスファイト系酸化防止剤、ジチオカルバミン酸塩系酸化防止剤、チオウレア系酸化防止剤、ベンズイミダゾール系酸化防止剤、などの公知の酸化防止剤を用いてもよい。酸化防止剤の添加量としては20質量%以下が望ましく、10質量%以下がより望ましい。   It is desirable to add an antioxidant to the protective layer 5 for the purpose of preventing deterioration due to an oxidizing gas such as ozone generated in the charging device. When the mechanical strength of the surface of the photoconductor is increased and the photoconductor has a long life, the photoconductor is in contact with the oxidizing gas for a long time, and therefore, stronger oxidation resistance is required than before. Antioxidants are preferably hindered phenols or hindered amines, organic sulfur antioxidants, phosphite antioxidants, dithiocarbamate antioxidants, thiourea antioxidants, benzimidazole antioxidants. , Etc., may be used. The addition amount of the antioxidant is preferably 20% by mass or less, and more preferably 10% by mass or less.

ヒンダードフェノール系酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノール、2,5−ジ−t−ブチルヒドロキノン、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナマイド、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、2,6−ジ−t−ブチル−4−エチルフェノール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、2,5−ジ−t−アミルヒドロキノン、2−t−ブチル−6−(3−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)等が挙げられる。   Examples of the hindered phenol antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butylhydroquinone, N, N′-hexamethylene bis (3,5-di). -T-butyl-4-hydroxyhydrocinnamide, 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 2,4-bis [(octylthio) methyl] -o-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol) 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 2,5-di-t-amylhydroquinone, 2-t-butyl-6- (3-butyl-2- Dorokishi-5-methylbenzyl) -4-methylphenyl acrylate, 4,4'-butylidene bis (3-methyl -6-t-butylphenol) and the like.

更に、保護層5には、残留電位を下げる目的、又は強度を向上させる目的で、各種粒子を添加してもよい。粒子の一例として、ケイ素含有粒子が挙げられる。ケイ素含有粒子とは、構成元素にケイ素を含む粒子であり、具体的には、コロイダルシリカ及びシリコーン粒子等が挙げられる。ケイ素含有粒子として用いられるコロイダルシリカは、平均粒径1nm以上100nm以下、望ましくは10nm以上30nm以下のシリカを、酸性もしくはアルカリ性の水分散液、アルコール、ケトン、又はエステル等の有機溶媒中に分散させたものから選ばれ、一般に市販されているものを使用してもよい。保護層5中のコロイダルシリカの固形分含有量は、特に限定されるものではないが、製膜性、電気特性、強度の面から、保護層5の全固形分全量を基準として、0.1質量%以上50質量%以下、望ましくは0.1質量%以上30質量%以下の範囲で用いられる。   Furthermore, various particles may be added to the protective layer 5 for the purpose of lowering the residual potential or improving the strength. An example of the particles is silicon-containing particles. The silicon-containing particles are particles containing silicon as a constituent element, and specific examples include colloidal silica and silicone particles. Colloidal silica used as silicon-containing particles is prepared by dispersing silica having an average particle size of 1 nm to 100 nm, preferably 10 nm to 30 nm in an organic solvent such as an acidic or alkaline aqueous dispersion, alcohol, ketone, or ester. A commercially available product may be used. The solid content of colloidal silica in the protective layer 5 is not particularly limited, but 0.1% based on the total solid content of the protective layer 5 in terms of film forming properties, electrical characteristics, and strength. It is used in the range of mass% to 50 mass%, desirably 0.1 mass% to 30 mass%.

ケイ素含有粒子として用いられるシリコーン粒子は、シリコーン樹脂粒子、シリコーンゴム粒子、シリコーン表面処理シリカ粒子から選ばれ、一般に市販されているものが使用される。これらのシリコーン粒子は球状で、その平均粒径は望ましくは1nm以上500nm以下、より望ましくは10nm以上100nm以下である。シリコーン粒子は、化学的に不活性で、樹脂への分散性に優れる小径粒子であり、さらに十分な特性を得るために必要とされる含有量が低いため、架橋反応を阻害することなく、電子写真感光体の表面性状が改善される。すなわち、強固な架橋構造中にバラツキが生じることなくに取り込まれた状態で、電子写真感光体表面の潤滑性、撥水性を向上させ、長期にわたって良好な耐磨耗性、耐汚染物付着性が維持される。保護層5中のシリコーン粒子の含有量は、保護層5の全固形分全量を基準として、望ましくは0.1質量%以上30質量%以下、より望ましくは0.5質量%以上10質量%以下である。   The silicone particles used as the silicon-containing particles are selected from silicone resin particles, silicone rubber particles, and silicone surface-treated silica particles, and those commercially available are generally used. These silicone particles are spherical, and the average particle size is desirably 1 nm or more and 500 nm or less, and more desirably 10 nm or more and 100 nm or less. Silicone particles are small particles that are chemically inert and excellent in dispersibility in resins, and since the content required to obtain more sufficient properties is low, the crosslinking reaction is not hindered. The surface properties of the photographic photoreceptor are improved. In other words, it is improved in lubricity and water repellency on the surface of the electrophotographic photosensitive member in a state of being taken in without a variation in a strong cross-linked structure, and has good wear resistance and contamination resistance adhesion over a long period of time. Maintained. The content of the silicone particles in the protective layer 5 is desirably 0.1% by mass or more and 30% by mass or less, more desirably 0.5% by mass or more and 10% by mass or less, based on the total amount of the total solid content of the protective layer 5. It is.

また、その他の粒子としては、四フッ化エチレン、三フッ化エチレン、六フッ化プロピレン、フッ化ビニル、フッ化ビニリデン等のフッ素系粒子や“第8回ポリマー材料フォーラム講演予稿集 p89”に示される如く、フッ素樹脂と水酸基を有するモノマーを共重合させた樹脂からなる粒子、ZnO−Al23、SnO2−Sb23、In23−SnO2、ZnO2−TiO2、ZnO−TiO2、MgO−Al23、FeO−TiO2、TiO2、SnO2、In23、ZnO、MgO等の半導電性金属酸化物が挙げられる。また、同様な目的でシリコーンオイル等のオイルを添加してもよい。シリコーンオイルとしては、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル;アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ジメチルシクロシロキサン類;1,3,5−トリメチル−1.3.5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等の環状メチルフェニルシクロシロキサン類;ヘキサフェニルシクロトリシロキサン等の環状フェニルシクロシロキサン類;(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン等のフッ素含有シクロシロキサン類;メチルヒドロシロキサン混合物、ペンタメチルシクロペンタシロキサン、フェニルヒドロシクロシロキサン等のヒドロシリル基含有シクロシロキサン類;ペンタビニルペンタメチルシクロペンタシロキサン等のビニル基含有シクロシロキサン類等が挙げられる。 Other particles include fluorine-based particles such as ethylene tetrafluoride, ethylene trifluoride, propylene hexafluoride, vinyl fluoride, vinylidene fluoride, and “8th Polymer Material Forum Lecture Proceedings p89”. As shown, particles made of a resin obtained by copolymerizing a fluororesin and a monomer having a hydroxyl group, ZnO—Al 2 O 3 , SnO 2 —Sb 2 O 3 , In 2 O 3 —SnO 2 , ZnO 2 —TiO 2 , ZnO Examples thereof include semiconductive metal oxides such as —TiO 2 , MgO—Al 2 O 3 , FeO—TiO 2 , TiO 2 , SnO 2 , In 2 O 3 , ZnO, and MgO. For the same purpose, an oil such as silicone oil may be added. Silicone oils include silicone oils such as dimethylpolysiloxane, diphenylpolysiloxane, and phenylmethylsiloxane; amino-modified polysiloxane, epoxy-modified polysiloxane, carboxyl-modified polysiloxane, carbinol-modified polysiloxane, methacryl-modified polysiloxane, mercapto-modified poly Reactive silicone oils such as siloxane and phenol-modified polysiloxane; cyclic dimethylcyclosiloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane; 1,3,5- Trimethyl-1.3.5-triphenylcyclotrisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetraphenylcyclo Cyclic methylphenylcyclosiloxanes such as trasiloxane, 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentaphenylcyclopentasiloxane; cyclic phenylcyclosiloxanes such as hexaphenylcyclotrisiloxane Fluorine-containing cyclosiloxanes such as (3,3,3-trifluoropropyl) methylcyclotrisiloxane; hydrosilyl group-containing cyclosiloxanes such as methylhydrosiloxane mixtures, pentamethylcyclopentasiloxane, and phenylhydrocyclosiloxane; penta And vinyl group-containing cyclosiloxanes such as vinylpentamethylcyclopentasiloxane.

また、保護層5には、金属、金属酸化物及びカーボンブラック等を添加してもよい。金属としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀及びステンレス等、又はこれらの金属をプラスチックの粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ及びアンチモンをドープした酸化ジルコニウム等が挙げられる。これらは単独で用いることも、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合しても、固溶体や融着の形にしてもよい。導電性粒子の平均粒径は保護層の透明性の点で0.3μm以下、特に0.1μm以下が望ましい。   Further, a metal, metal oxide, carbon black, or the like may be added to the protective layer 5. Examples of the metal include aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, or those obtained by depositing these metals on the surface of plastic particles. Examples of the metal oxide include zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony and tantalum-doped tin oxide, and antimony-doped zirconium oxide. . These may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion. The average particle diameter of the conductive particles is preferably 0.3 μm or less, particularly preferably 0.1 μm or less, from the viewpoint of the transparency of the protective layer.

保護層5には、グアナミン化合物(一般式(A)で示される化合物)や電荷輸送材料の硬化を促進するために硬化触媒を使用してもよい。硬化触媒として酸系の触媒を望ましく用いられる。酸系の触媒としては、酢酸、クロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、シュウ酸、マレイン酸、マロン酸、乳酸などの脂肪族カルボン酸、安息香酸、フタル酸、テレフタル酸、トリメリット酸などの芳香族カルボン酸、メタンスルホン酸、ドデシルスルホン酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、などの脂肪族、及び芳香族スルホン酸類などが用いられるが、含硫黄系材料を用いることが望ましい。   In the protective layer 5, a curing catalyst may be used in order to accelerate the curing of the guanamine compound (the compound represented by the general formula (A)) or the charge transport material. An acid catalyst is preferably used as the curing catalyst. Acid-based catalysts include acetic acid, chloroacetic acid, trichloroacetic acid, trifluoroacetic acid, oxalic acid, maleic acid, malonic acid, lactic acid and other aliphatic carboxylic acids, benzoic acid, phthalic acid, terephthalic acid, trimellitic acid, etc. Aromatic carboxylic acids, methane sulfonic acids, dodecyl sulfonic acids, benzene sulfonic acids, aliphatics such as dodecyl benzene sulfonic acids, naphthalene sulfonic acids, and aromatic sulfonic acids are used, but sulfur-containing materials should be used. desirable.

硬化触媒として含硫黄系材料を用いることにより、この含硫黄系材料がグアナミン化合物(一般式(A)で示される化合物)や電荷輸送材料の硬化触媒として優れた機能を発揮し、硬化反応を促進して得られる保護層5の機械的強度がより向上される。更に、電荷輸送性材料として上記一般式(I)(一般式(II)含む)で表される化合物を用いる場合、含硫黄系材料は、これら電荷輸送性材料に対するドーパントとしても優れた機能を発揮し、得られる機能層の電気特性がより向上される。その結果、電子写真感光体を形成した場合に、機械強度、成膜性及び電気特性の全てが高水準で達成される。   By using a sulfur-containing material as a curing catalyst, this sulfur-containing material exhibits an excellent function as a curing catalyst for guanamine compounds (compounds represented by the general formula (A)) and charge transport materials, and accelerates the curing reaction. Thus, the mechanical strength of the protective layer 5 obtained is further improved. Furthermore, when the compound represented by the general formula (I) (including the general formula (II)) is used as the charge transport material, the sulfur-containing material exhibits an excellent function as a dopant for these charge transport materials. In addition, the electrical characteristics of the obtained functional layer are further improved. As a result, when an electrophotographic photosensitive member is formed, all of mechanical strength, film formability, and electrical characteristics are achieved at a high level.

硬化触媒としての含硫黄系材料は、常温(例えば25℃)、又は、加熱後に酸性を示すものが望ましく、接着性、ゴースト、電気特性の観点で有機スルホン酸及びその誘導体の少なくとも1種が最も望ましい。保護層5中にこれら触媒の存在は、XPS等により容易に確認される。   The sulfur-containing material as a curing catalyst is preferably at room temperature (for example, 25 ° C.) or exhibits acidity after heating, and at least one of organic sulfonic acid and its derivatives is most preferable from the viewpoint of adhesiveness, ghost, and electrical characteristics. desirable. The presence of these catalysts in the protective layer 5 is easily confirmed by XPS or the like.

有機スルホン酸及び/又はその誘導体としては、例えば、パラトルエンスルホン酸、ジノニルナフタレンスルホン酸(DNNSA)、ジノニルナフタレンジスルホン酸(DNNDSA)、ドデシルベンゼンスルホン酸、フェノールスルホン酸等が挙げられる。これらの中でも、触媒能、成膜性の観点から、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸が望ましい。また、硬化性樹脂組成物中で、ある程度解離可能であれば、有機スルホン酸塩を用いてもよい。   Examples of the organic sulfonic acid and / or a derivative thereof include p-toluenesulfonic acid, dinonylnaphthalenesulfonic acid (DNNSA), dinonylnaphthalenedisulfonic acid (DNNDSA), dodecylbenzenesulfonic acid, and phenolsulfonic acid. Among these, paratoluenesulfonic acid and dodecylbenzenesulfonic acid are desirable from the viewpoint of catalytic ability and film formability. Further, an organic sulfonate may be used as long as it can be dissociated to some extent in the curable resin composition.

また、一定以上の温度をかけたときに触媒能力が高くなる、所謂、熱潜在性触媒を用いることで、液保管温度では触媒能が低く、硬化時に触媒能が高くなるため、硬化温度の低下と、保存安定性が両立される。   In addition, by using a so-called thermal latent catalyst that increases the catalytic ability when a temperature above a certain level is applied, the catalytic ability is low at the liquid storage temperature and the catalytic ability is high at the time of curing. And storage stability.

熱潜在性触媒として、たとえば有機スルホン化合物等をポリマーで粒子状に包んだマイクロカプセル、ゼオライトの如く空孔化合物に酸等を吸着させたもの、プロトン酸及び/又はプロトン酸誘導体を塩基でブロックした熱潜在性プロトン酸触媒や、プロトン酸及び/又はプロトン酸誘導体を一級もしくは二級のアルコールでエステル化したもの、プロトン酸及び/又はプロトン酸誘導体をビニルエーテル類及び/又はビニルチオエーテル類でブロックしたもの、三フッ化ホウ素のモノエチルアミン錯体、三フッ化ホウ素のピリジン錯体などがあげられる。   As a heat latent catalyst, for example, a microcapsule in which an organic sulfone compound or the like is encapsulated in a polymer form, an adsorbed acid or the like on a pore compound such as zeolite, and a proton acid and / or proton acid derivative is blocked with a base Thermal latent proton acid catalyst, proton acid and / or proton acid derivative esterified with primary or secondary alcohol, proton acid and / or proton acid derivative blocked with vinyl ethers and / or vinyl thioethers And boron trifluoride monoethylamine complex, boron trifluoride pyridine complex, and the like.

中でも、触媒能、保管安定性、入手性、コストの面でプロトン酸及び/又はプロトン酸誘導体を塩基でブロックしたものが望ましい。   Among them, a product obtained by blocking a protonic acid and / or a protonic acid derivative with a base in terms of catalytic ability, storage stability, availability, and cost is desirable.

熱潜在性プロトン酸触媒のプロトン酸として、硫酸、塩酸、酢酸、ギ酸、硝酸、リン酸、スルホン酸、モノカルボン酸、ポリカルボン酸類、プロピオン酸、シュウ酸、安息香酸、アクリル酸、メタクリル酸、イタコン酸、フタル酸、マレイン酸、ベンゼンスルホン酸、o、m、p−トルエンスルホン酸、スチレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。また、プロトン酸誘導体として、スルホン酸、リン酸等のプロトン酸のアルカリ金属塩又はアルカリ土類金属円などの中和物、プロトン酸骨格が高分子鎖中に導入された高分子化合物(ポリビニルスルホン酸等)等が挙げられる。プロトン酸をブロックする塩基として、アミン類が挙げられる。   As the protonic acid of the heat latent protonic acid catalyst, sulfuric acid, hydrochloric acid, acetic acid, formic acid, nitric acid, phosphoric acid, sulfonic acid, monocarboxylic acid, polycarboxylic acids, propionic acid, oxalic acid, benzoic acid, acrylic acid, methacrylic acid, Itaconic acid, phthalic acid, maleic acid, benzenesulfonic acid, o, m, p-toluenesulfonic acid, styrenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, decylbenzenesulfonic acid, undecylbenzenesulfonic acid, Examples include tridecylbenzenesulfonic acid, tetradecylbenzenesulfonic acid, dodecylbenzenesulfonic acid and the like. In addition, as protonic acid derivatives, neutralized products such as alkali metal salts of alkaline acids or alkaline earth metal circles such as sulfonic acid and phosphoric acid, and polymer compounds in which a protonic acid skeleton is introduced into the polymer chain (polyvinylsulfone) Acid, etc.). Examples of the base that blocks the protonic acid include amines.

アミン類として、1級、2級又は3級アミンに分類される。特に制限はなく、いずれも使用してもよい。   The amines are classified as primary, secondary or tertiary amines. There is no restriction in particular and any of them may be used.

1級アミンとして、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、セカンダリーブチルアミン、アリルアミン、メチルヘキシルアミン等が挙げられる。   Examples of the primary amine include methylamine, ethylamine, propylamine, isopropylamine, n-butylamine, isobutylamine, t-butylamine, hexylamine, 2-ethylhexylamine, secondary butylamine, allylamine, and methylhexylamine.

2級アミンとして、ジメチルアミン、ジエチルアミン、ジn−プロピルアミン、ジイソプロピルアミン、ジn−ブチルアミン、ジイソブチルアミン、ジt−ブチルアミン、ジヘキシルアミン、ジ(2−エチルヘキシル)アミン、N−イソプロピルN−イソブチルアミン、ジ(2−エチルヘキシル)アミン、ジセカンダリーブチルアミン、ジアリルアミン、N−メチルヘキシルアミン、3−ピペコリン、4−ピペコリン、2,4−ルペチジン、2,6−ルペチジン、3,5−ルペチジン、モルホリン、N−メチルベンジルアミン等が挙げられる。   As secondary amines, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, dihexylamine, di (2-ethylhexyl) amine, N-isopropyl N-isobutylamine , Di (2-ethylhexyl) amine, disecondary butylamine, diallylamine, N-methylhexylamine, 3-pipecoline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, morpholine, N -Methylbenzylamine and the like.

3級アミンとして、トリメチルアミン、トリエチルアミン、トリn−プロピルアミン、トリイソプロピルアミン、トリn−ブチルアミン、トリイソブチルアミン、トリt−ブチルアミン、トリヘキシルアミン、トリ(2−エチルヘキシル)アミン、N−メチルモルホリン、N,N−ジメチルアリルアミン、N−メチルジアリルアミン、トリアリルアミン、N,N−ジメチルアリルアミン、N,N,N’,N’ーテトラメチルー1,2ージアミノエタン、N,N,N’,N’ーテトラメチルー1,3ージアミノプロパン、N,N,N’,N’ーテトラアリルー1,4ージアミノブタン、Nーメチルピペリジン、ピリジン、4ーエチルピリジン、Nープロピルジアリルアミン、3−ジメチルアミノプロパノ−ル、2−エチルピラジン、2,3−ジメチルピラジン、2,5−ジメチルピラジン、2,4−ルチジン、2,5−ルチジン、3,4−ルチジン、3,5−ルチジン、2,4,6−コリジン、2−メチル−4−エチルピリジン、2−メチル−5−エチルピリジン、N,N,N’,N’ −テトラメチルヘキサメチレンジアミン、N−エチル−3−ヒドロキシピペリジン、3−メチル−4−エチルピリジン、3−エチル−4−メチルピリジン、4−(5−ノニル)ピリジン、イミダゾ−ル、N−メチルピペラジン等が挙げられる。   As tertiary amines, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-t-butylamine, trihexylamine, tri (2-ethylhexyl) amine, N-methylmorpholine, N, N-dimethylallylamine, N-methyldiallylamine, triallylamine, N, N-dimethylallylamine, N, N, N ′, N′-tetramethyl-1,2-diaminoethane, N, N, N ′, N′-tetramethyl-1,3 -Diaminopropane, N, N, N ', N'-tetraallyl-1,4-diaminobutane, N-methylpiperidine, pyridine, 4-ethylpyridine, N-propyldiallylamine, 3-dimethylaminopropanol, 2-ethylpyrazine, 2, 3-di Tilpyrazine, 2,5-dimethylpyrazine, 2,4-lutidine, 2,5-lutidine, 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine, 2-methyl-4-ethylpyridine, 2-methyl-5-ethylpyridine, N, N, N ′, N′-tetramethylhexamethylenediamine, N-ethyl-3-hydroxypiperidine, 3-methyl-4-ethylpyridine, 3-ethyl-4-methyl Pyridine, 4- (5-nonyl) pyridine, imidazole, N-methylpiperazine and the like can be mentioned.

市販品としては、キングインダストリーズ社製の「NACURE2501」(トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH6.0以上pH7.2以下、解離温度80℃)、「NACURE2107」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH8.0以上pH9.0以下、解離温度90℃)、「NACURE2500」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度65℃)、「NACURE2530」(p−トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH5.7以上pH6.5以下、解離温度65℃)、「NACURE2547」(p−トルエンスルホン酸解離、水溶液、pH8.0以上pH9.0以下、解離温度107℃)、「NACURE2558」(p−トルエンスルホン酸解離、エチレングリコール溶媒、pH3.5以上pH4.5以下、解離温度80℃)、「NACUREXP−357」(p−トルエンスルホン酸解離、メタノール溶媒、pH2.0以上pH4.0以下、解離温度65℃)、「NACUREXP−386」(p−トルエンスルホン酸解離、水溶液、pH6.1以上pH6.4以下、解離温度80℃)、「NACUREXC―2211」(p−トルエンスルホン酸解離、pH7.2以上pH8.5以下、解離温度80℃)、「NACURE5225」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度120℃)、「NACURE5414」(ドデシルベンゼンスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE5528」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH7.0以上pH8.0以下、解離温度120℃)、「NACURE5925」(ドデシルベンゼンスルホン酸解離、pH7.0以上pH7.5以下、解離温度130℃)、「NACURE1323」(ジノニルナフタレンスルホン酸解離、キシレン溶媒、pH6.8以上pH7.5以下、解離温度150℃)、「NACURE1419」(ジノニルナフタレンスルホン酸解離、キシレン/メチルイソブチルケトン溶媒、解離温度150℃)、「NACURE1557」(ジノニルナフタレンスルホン酸解離、ブタノール/2−ブトキシエタノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACUREX49−110」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃)、「NACURE3525」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH7.0以上pH8.5以下、解離温度120℃)、「NACUREXP−383」(ジノニルナフタレンジスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE3327」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACURE4167」(リン酸解離、イソプロパノール/イソブタノール溶媒、pH6.8以上pH7.3以下、解離温度80℃)、「NACUREXP−297」(リン酸解離、水/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃、「NACURE4575」(リン酸解離、pH7.0以上pH8.0以下、解離温度110℃)等が挙げられる。   Commercially available products include “NACURE2501” (toluenesulfonic acid dissociation, methanol / isopropanol solvent, pH 6.0 to pH 7.2, dissociation temperature 80 ° C.), “NACURE2107” (p-toluenesulfonic acid dissociation, manufactured by King Industries, Inc. Isopropanol solvent, pH 8.0 to pH 9.0, dissociation temperature 90 ° C.) “NACURE 2500” (p-toluenesulfonic acid dissociation, isopropanol solvent, pH 6.0 to pH 7.0, dissociation temperature 65 ° C.), “NACURE 2530” (P-toluenesulfonic acid dissociation, methanol / isopropanol solvent, pH 5.7 to pH 6.5, dissociation temperature 65 ° C.), “NACURE2547” (p-toluenesulfonic acid dissociation, aqueous solution, pH 8.0 to pH 9.0, Dissociation temperature 107 ), “NACURE2558” (p-toluenesulfonic acid dissociation, ethylene glycol solvent, pH 3.5 to pH4.5, dissociation temperature 80 ° C.), “NACUREXP-357” (p-toluenesulfonic acid dissociation, methanol solvent, pH 2. 0 to pH 4.0, dissociation temperature 65 ° C.) “NACUREXP-386” (p-toluenesulfonic acid dissociation, aqueous solution, pH 6.1 to pH 6.4, dissociation temperature 80 ° C.), “NACUREX C-2211” (p -Toluenesulfonic acid dissociation, pH 7.2 to pH 8.5, dissociation temperature 80 ° C.), “NACURE 5225” (dodecylbenzenesulfonic acid dissociation, isopropanol solvent, pH 6.0 to pH 7.0, dissociation temperature 120 ° C.), “ NACURE 5414 "(dodecylbenzenesulfonic acid dissociation, key Ren solvent, dissociation temperature 120 ° C.), “NACURE 5528” (dodecylbenzenesulfonic acid dissociation, isopropanol solvent, pH 7.0 to pH 8.0, dissociation temperature 120 ° C.), “NACURE 5925” (dodecylbenzenesulfonic acid dissociation, pH 7.0) PH 7.5 or less, dissociation temperature 130 ° C., “NACURE 1323” (disinyl naphthalene sulfonic acid dissociation, xylene solvent, pH 6.8 to pH 7.5, dissociation temperature 150 ° C.), “NACURE 1419” (dinonyl naphthalene sulfonic acid Dissociation, xylene / methyl isobutyl ketone solvent, dissociation temperature 150 ° C.), “NACURE1557” (dinonylnaphthalenesulfonic acid dissociation, butanol / 2-butoxyethanol solvent, pH 6.5 to pH 7.5, dissociation temperature 150 ° C.), “ NA CUREX 49-110 ”(dinonyl naphthalene disulfonic acid dissociation, isobutanol / isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 90 ° C.),“ NACURE 3525 ”(dinonyl naphthalene disulfonic acid dissociation, isobutanol / isopropanol solvent, pH 7.0 to pH 8.5, dissociation temperature 120 ° C., “NACUREXP-383” (dinonyl naphthalene disulfonic acid dissociation, xylene solvent, dissociation temperature 120 ° C.), “NACURE 3327” (dinonyl naphthalene disulfonic acid dissociation, isobutanol / Isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 150 ° C.), “NACURE4167” (phosphoric acid dissociation, isopropanol / isobutanol solvent, pH 6.8 to pH 7.3, dissociation temperature 80 ), “NACUREXP-297” (phosphoric acid dissociation, water / isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 90 ° C., “NACURE 4575” (phosphoric acid dissociation, pH 7.0 to pH 8.0, dissociation temperature) 110 ° C.).

これらの熱潜在性触媒は単独又は二種類以上組み合わせても使用される。   These thermal latent catalysts may be used alone or in combination of two or more.

熱潜在性触媒の配合量は樹脂溶液中の固形分100部に対して、0.01質量%以上20質量%以下であることが望ましく、特に0.1質量%以上10質量%以下が適している。20質量%を超える添加量であると、焼成処理後に異物となって析出することがあり、0.01質量%未満では触媒活性が低くなる。   The blending amount of the heat-latent catalyst is preferably 0.01% by mass or more and 20% by mass or less, and particularly preferably 0.1% by mass or more and 10% by mass or less with respect to 100 parts by solid content in the resin solution. Yes. If the addition amount exceeds 20% by mass, it may precipitate as a foreign substance after the calcination treatment, and if it is less than 0.01% by mass, the catalytic activity becomes low.

以上の構成の保護層5は、上記グアナミン化合物(一般式(A)で示される化合物)と上記特定の電荷輸送性材料の少なくとも1種とを少なくとも含む皮膜形成用塗布液を用いて形成される。この皮膜形成用塗布液は、必要に応じて、上記保護層5の構成成分が添加される。   The protective layer 5 having the above configuration is formed using a coating liquid for film formation containing at least the guanamine compound (the compound represented by the general formula (A)) and at least one of the specific charge transporting materials. . In the coating liquid for film formation, the constituent components of the protective layer 5 are added as necessary.

当該皮膜形成用塗布液の調整は、無溶媒で行うか、必要に応じてメタノール、エタノール、プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類等の溶剤を用いて行ってもよい。かかる溶剤は1種を単独で又は2種以上を混合して使用可能であるが、望ましくは沸点が100℃以下のものである。溶剤としては、特に、少なくとも1種以上の水酸基を持つ溶剤(例えば、アルコール類等)を用いることがよい。   The coating solution for film formation is prepared without a solvent or, if necessary, alcohols such as methanol, ethanol, propanol and butanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, diethyl ether and dioxane. You may carry out using solvents, such as. Such solvents can be used singly or in combination of two or more, and preferably have a boiling point of 100 ° C. or lower. As the solvent, it is particularly preferable to use a solvent having at least one hydroxyl group (for example, alcohol).

溶剤量は任意に設定されるが、少なすぎるとグアナミン化合物(一般式(A)で示される化合物)が析出しやすくなるため、グアナミン化合物(一般式(A)で示される化合物)1質量部に対し0.5質量部以上30質量部以下、望ましくは、1質量部以上20質量部以下で使用される。   The amount of the solvent is arbitrarily set, but if it is too small, the guanamine compound (compound represented by the general formula (A)) is likely to be precipitated, so that 1 part by weight of the guanamine compound (compound represented by the general formula (A)). On the other hand, it is used in an amount of 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass.

また、上記成分を反応させて塗布液を得るときには、単純に混合、溶解させるだけでもよいが、室温(例えば25℃)以上100℃以下、望ましくは、30℃以上80℃以下で10分以上100時間以下、望ましくは1時間以上50時間以下加温しても良い。また、この際に超音波を照射することも望ましい。これにより、恐らく部分的な反応が進行し、塗膜欠陥のなく膜厚のバラツキが少ない膜が得られやすくなる。   In addition, when the coating liquid is obtained by reacting the above components, it may be simply mixed and dissolved, but it is room temperature (for example, 25 ° C.) to 100 ° C., preferably 30 ° C. to 80 ° C. for 10 minutes to 100 Heating may be performed for a period of time or less, preferably 1 hour or more and 50 hours or less. It is also desirable to irradiate ultrasonic waves at this time. Thereby, it is likely that a partial reaction proceeds, and it is easy to obtain a film having no coating film defects and little variation in film thickness.

そして、皮膜形成用塗布液を電荷輸送層3の上に、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法により塗布し、必要に応じて例えば温度100℃以上170以下で加熱することで、硬化させることで、保護層5が得られる。   Then, a coating solution for forming a film is formed on the charge transport layer 3 by a usual method such as a blade coating method, a Mayer bar coating method, a spray coating method, a dip coating method, a bead coating method, an air knife coating method, or a curtain coating method. The protective layer 5 can be obtained by curing by applying at a temperature of, for example, 100 ° C. or more and 170 or less if necessary.

なお、皮膜形成用塗布液は、感光体用途以外にも、例えば、蛍光発色性塗料、ガラス表面、プラスチック表面などの帯電防止膜等に利用される。この皮膜形成用塗布液を用いると、下層に対する密着性に優れた皮膜が形成され、長期にわたる繰り返し使用による性能劣化が抑制される。   The coating liquid for forming a film is used for, for example, an antistatic film on a fluorescent coloring paint, a glass surface, a plastic surface, etc., in addition to the use as a photoreceptor. When this coating liquid for forming a film is used, a film having excellent adhesion to the lower layer is formed, and performance deterioration due to repeated use over a long period is suppressed.

ここで、上記電子写真感光体は、機能分離型の例を説明したが、単層型感光層6(電荷発生/電荷輸送層)中の電荷発生材料の含有量は、10質量%以上85質量%以下程度、望ましくは20質量%以上50質量%以下である。また、電荷輸送材料の含有量は5質量%以上50質量%以下とすることが望ましい。単層型感光層6(電荷発生/電荷輸送層)の形成方法は、電荷発生層2や電荷輸送層3の形成方法と同様である。単層型感光層(電荷発生/電荷輸送層)6の膜厚は5μm以上50μm以下程度が望ましく、10μm以上40μm以下とするのがさらに望ましい。   Here, the electrophotographic photoreceptor has been described as an example of the function separation type, but the content of the charge generation material in the single-layer type photosensitive layer 6 (charge generation / charge transport layer) is 10% by mass or more and 85% by mass. % Or less, desirably 20 mass% or more and 50 mass% or less. In addition, the content of the charge transport material is desirably 5% by mass or more and 50% by mass or less. The method for forming the single-layer type photosensitive layer 6 (charge generation / charge transport layer) is the same as the method for forming the charge generation layer 2 and the charge transport layer 3. The film thickness of the single-layer type photosensitive layer (charge generation / charge transport layer) 6 is preferably about 5 μm to 50 μm, and more preferably 10 μm to 40 μm.

なお、実施形態では、グアナミン化合物(一般式(A)で示される化合物)と、特定の電荷輸送性材料(一般式(I)で示される化合物)との架橋物を保護層5に用いた形態を説明したが、保護層5がない層構成の場合、例えば、その最表面層に位置する電荷輸送層に用いてもよい。   In the embodiment, a form in which a crosslinked product of a guanamine compound (a compound represented by the general formula (A)) and a specific charge transporting material (a compound represented by the general formula (I)) is used for the protective layer 5. However, in the case of a layer configuration without the protective layer 5, for example, it may be used for a charge transport layer located in the outermost surface layer.

(画像形成装置/プロセスカートリッジ)
図4は、実施形態に係る画像形成装置を示す概略構成図である。画像形成装置100は、図4に示すように。電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9と、転写装置40と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光可能な位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。
(Image forming device / process cartridge)
FIG. 4 is a schematic configuration diagram illustrating the image forming apparatus according to the embodiment. The image forming apparatus 100 is as shown in FIG. A process cartridge 300 including the electrophotographic photosensitive member 7, an exposure device 9, a transfer device 40, and an intermediate transfer member 50 are provided. In the image forming apparatus 100, the exposure device 9 is disposed at a position where the electrophotographic photosensitive member 7 can be exposed from the opening of the process cartridge 300, and the transfer device 40 is interposed between the electrophotographic photosensitive member via the intermediate transfer member 50. 7, and a part of the intermediate transfer member 50 is disposed in contact with the electrophotographic photosensitive member 7.

図4におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置8、現像装置11及びクリーニング装置13を一体に支持している。クリーニング装置13は、クリーニングブレード(クリーニング部材)を有しており、クリーニングブレード131は、電子写真感光体7の表面に接触するように配置されている。   The process cartridge 300 in FIG. 4 integrally supports the electrophotographic photoreceptor 7, the charging device 8, the developing device 11, and the cleaning device 13 in a housing. The cleaning device 13 has a cleaning blade (cleaning member), and the cleaning blade 131 is disposed so as to contact the surface of the electrophotographic photosensitive member 7.

また、潤滑材14を感光体7の表面に供給する繊維状部材132(ロール状)、クリーニングをアシストする繊維状部材133(平ブラシ状)を用いた例を示してあるが、これらは必要に応じて使用してもよい。   Further, an example is shown in which a fibrous member 132 (roll shape) for supplying the lubricant 14 to the surface of the photoreceptor 7 and a fibrous member 133 (flat brush shape) for assisting cleaning are used. It may be used accordingly.

帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。   As the charging device 8, for example, a contact type charger using a conductive or semiconductive charging roller, a charging brush, a charging film, a charging rubber blade, a charging tube or the like is used. Further, a non-contact type roller charger, a known charger such as a scorotron charger using a corona discharge or a corotron charger may be used.

なお、図示しないが、画像の安定性を高める目的で、電子写真感光体7の周囲には、電子写真感光体7の温度を上昇させ、相対温度を低減させるための感光体加熱部材を設けてもよい。   Although not shown, a photosensitive member heating member for increasing the temperature of the electrophotographic photosensitive member 7 and reducing the relative temperature is provided around the electrophotographic photosensitive member 7 for the purpose of improving the stability of the image. Also good.

露光装置9としては、例えば、感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、所望の像様に露光する光学系機器等が挙げられる。光源の波長は感光体の分光感度領域にあるものが使用される。半導体レーザーの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザーや青色レーザーとして400nm以上450nm以下近傍に発振波長を有するレーザーも利用してもよい。また、カラー画像形成のためにはマルチビーム出力が可能なタイプの面発光型のレーザー光源も有効である。   Examples of the exposure apparatus 9 include optical system devices that expose the surface of the photoconductor 7 with light such as semiconductor laser light, LED light, and liquid crystal shutter light in a desired image-like manner. The wavelength of the light source is in the spectral sensitivity region of the photoreceptor. As the wavelength of the semiconductor laser, near infrared having an oscillation wavelength near 780 nm is the mainstream. However, the present invention is not limited to this wavelength, and an oscillation wavelength laser in the 600 nm range or a laser having an oscillation wavelength in the vicinity of 400 nm to 450 nm as a blue laser may be used. For color image formation, a surface-emitting laser light source capable of multi-beam output is also effective.

現像装置11としては、例えば、磁性若しくは非磁性の一成分系現像剤又は二成分系現像剤等を接触又は非接触させて現像する一般的な現像装置を用いて行ってもよい。その現像装置としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、上記一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが好ましい。   As the developing device 11, for example, a general developing device that performs development by bringing a magnetic or non-magnetic one-component developer or a two-component developer into contact or non-contact may be used. The developing device is not particularly limited as long as it has the functions described above, and is selected according to the purpose. For example, a known developing device having a function of attaching the one-component developer or the two-component developer to the photoreceptor 7 using a brush, a roller, or the like can be used. Among these, those using a developing roller holding the developer on the surface are preferable.

以下、現像装置11に使用されるトナーについて説明する。
本実施形態の画像形成装置に用いられるトナーは、高い現像性及び転写性並びに高画質を得る観点から、平均形状係数((ML2/A)×(π/4)×100、ここでMLは粒子の最大長を表し、Aは粒子の投影面積を表す)が100以上150以下であることが望ましく、105以上145以下であることがより望ましく、110以上140以下であることがさらに望ましい。さらに、トナーとしては、体積平均粒子径が3μm以上12μm以下であることが望ましく、3.5μm以上10μm以下であることがより望ましく、4μm以上9μm以下であることがさらに望ましい。この平均形状係数及び体積平均粒子径を満たすトナーを用いることにより、現像性及び転写性が高まり、いわゆる写真画質と呼ばれる高画質の画像が得られる。
Hereinafter, the toner used in the developing device 11 will be described.
The toner used in the image forming apparatus of the present embodiment has an average shape factor ((ML 2 / A) × (π / 4) × 100, where ML is a value from the viewpoint of obtaining high developability and transferability and high image quality. The maximum length of the particle is represented, and A represents the projected area of the particle) is preferably from 100 to 150, more preferably from 105 to 145, and even more preferably from 110 to 140. Further, the toner preferably has a volume average particle diameter of 3 μm or more and 12 μm or less, more preferably 3.5 μm or more and 10 μm or less, and further preferably 4 μm or more and 9 μm or less. By using a toner that satisfies this average shape factor and volume average particle diameter, the developability and transferability are improved, and a so-called high-quality image called photographic image quality is obtained.

トナーは、上記平均形状係数及び体積平均粒子径を満足する範囲のものであれば特に製造方法により限定されるものではないが、例えば、結着樹脂、着色剤及び離型剤、必要に応じて帯電制御剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力又は熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液と、着色剤及び離型剤、必要に応じて帯電制御剤等の分散液とを混合し、凝集、加熱融着させ、トナー粒子を得る乳化重合凝集法;結着樹脂を得るための重合性単量体と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液とを水系溶媒に懸濁させて造粒する溶解懸濁法等により製造されるトナーが使用される。   The toner is not particularly limited by the production method as long as it satisfies the above average shape factor and volume average particle diameter. For example, the toner may include a binder resin, a colorant, a release agent, and the like. A kneading and pulverizing method in which a charge control agent is added, kneading, pulverizing, and classifying; a method in which the shape of particles obtained by the kneading and pulverizing method is changed by mechanical impact force or thermal energy; Emulsion polymerization of the body, and the resulting dispersion is mixed with a dispersion of a colorant, a release agent and, if necessary, a charge control agent, and then agglomerated and heat-fused to obtain toner particles. Suspension polymerization method in which a polymerizable monomer for obtaining a binder resin, a colorant, a release agent, and a charge control agent, if necessary, are suspended in an aqueous solvent and polymerized; A water-based solution of the resin, a colorant, a release agent, and a solution such as a charge control agent as necessary. Toner is used which is suspended in and produced by a dissolution suspension method in which granulated.

また上記方法で得られたトナーをコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造をもたせる製造方法等、公知の方法が使用される。なお、トナーの製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が望ましく、乳化重合凝集法が特に望ましい。   Further, a known method such as a production method in which the toner obtained by the above method is used as a core, and agglomerated particles are further adhered and heat-fused to give a core-shell structure is used. The toner production method is preferably a suspension polymerization method, an emulsion polymerization aggregation method, or a dissolution suspension method in which an aqueous solvent is used from the viewpoint of shape control and particle size distribution control, and an emulsion polymerization aggregation method is particularly desirable.

トナー母粒子は、結着樹脂、着色剤及び離型剤からなり、必要であれば、シリカや帯電制御剤を含有して構成される。   The toner base particles are composed of a binder resin, a colorant, and a release agent, and include silica and a charge control agent as necessary.

トナー母粒子に使用される結着樹脂としては、スチレン、クロロスチレン等のスチレン類、エチレン、プロピレン、ブチレン、イソプレン等のモノオレフィン類、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ドデシル等のα−メチレン脂肪族モノカルボン酸エステル類、ビニルメチルエーテル、ビニルエチルエーテル、ビニルブチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロペニルケトン等のビニルケトン類等の単独重合体及び共重合体、ジカルボン酸類とジオール類との共重合によるポリエステル樹脂等が挙げられる。   Binder resins used for toner base particles include styrenes such as styrene and chlorostyrene, monoolefins such as ethylene, propylene, butylene and isoprene, vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate, etc. Α-methylene aliphatics such as vinyl esters, methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate Homopolymers and copolymers of monocarboxylic acid esters, vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl butyl ether, vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone and vinyl isopropenyl ketone Polyester resins by copolymerization of dicarboxylic acids and diols.

特に代表的な結着樹脂としては、ポリスチレン、スチレン−アクリル酸アルキル共重合体、スチレン−メタクリル酸アルキル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエチレン、ポリプロピレン、ポリエステル樹脂等が挙げられる。さらに、ポリウレタン、エポキシ樹脂、シリコーン樹脂、ポリアミド、変性ロジン、パラフィンワックス等が挙げられる。   Particularly representative binder resins include polystyrene, styrene-alkyl acrylate copolymer, styrene-alkyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, and styrene-maleic anhydride copolymer. A polymer, polyethylene, a polypropylene, a polyester resin etc. are mentioned. Further, polyurethane, epoxy resin, silicone resin, polyamide, modified rosin, paraffin wax and the like can be mentioned.

また、着色剤としては、マグネタイト、フェライト等の磁性粉、カーボンブラック、アニリンブルー、カルイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.I.ピグメント・イエロー17、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:3等を代表的なものとして例示される。   In addition, as colorants, magnetic powders such as magnetite and ferrite, carbon black, aniline blue, caryl blue, chrome yellow, ultramarine blue, Dupont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, Lamp Black, Rose Bengal, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. I. Pigment yellow 17, C.I. I. Pigment blue 15: 1, C.I. I. Pigment Blue 15: 3 is exemplified as a representative example.

離型剤としては、低分子ポリエチレン、低分子ポリプロピレン、フィッシャートロピィシュワックス、モンタンワックス、カルナバワックス、ライスワックス、キャンデリラワックス等を代表的なものとして例示される。   Typical examples of the release agent include low molecular weight polyethylene, low molecular weight polypropylene, Fischer tropical wax, montan wax, carnauba wax, rice wax, and candelilla wax.

また、帯電制御剤としては、公知のものが使用されるが、アゾ系金属錯化合物、サリチル酸の金属錯化合物、極性基を含有するレジンタイプの帯電制御剤が用いられる。湿式製法でトナーを製造する場合、イオン強度の制御と廃水汚染の低減の点で水に溶解しにくい素材を使用することが望ましい。また、トナーとしては、磁性材料を内包する磁性トナー及び磁性材料を含有しない非磁性トナーのいずれであってもよい。   As the charge control agent, known ones are used, and azo metal complex compounds, metal complex compounds of salicylic acid, and resin type charge control agents containing polar groups are used. When toner is produced by a wet process, it is desirable to use a material that is difficult to dissolve in water in terms of controlling ionic strength and reducing wastewater contamination. The toner may be either a magnetic toner containing a magnetic material or a non-magnetic toner containing no magnetic material.

現像装置11に用いるトナーとしては、上記トナー母粒子及び上記外添剤をヘンシェルミキサー又はVブレンダー等で   As the toner used in the developing device 11, the toner base particles and the external additive are mixed with a Henschel mixer or a V blender.

混合することによって製造される。また、トナー母粒子を湿式にて製造する場合は、湿式にて外添することも可能である。 Manufactured by mixing. In addition, when the toner base particles are produced by a wet method, external addition can also be performed by a wet method.

現像装置11に用いるトナーには滑性粒子を添加してもよい。滑性粒子としては、グラファイト、二硫化モリブデン、滑石、脂肪酸、脂肪酸金属塩等の固体潤滑剤や、ポリプロピレン、ポリエチレン、ポリブテン等の低分子量ポリオレフィン類、加熱により軟化点を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪族アミド類やカルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス、ミツロウの動物系ワックス、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の鉱物、石油系ワックス、及びそれらの変性物が使用される。これらは、1種を単独で、又は2種以上を併用して使用される。但し、平均粒径としては0.1μm以上10μm以下の範囲が望ましく、上記化学構造のものを粉砕して、粒径をそろえてもよい。トナーへの添加量は望ましくは0.05質量%以上2.0質量%以下、より望ましくは0.1質量%以上1.5質量%以下の範囲である。   Lubricating particles may be added to the toner used in the developing device 11. Lubricating particles include solid lubricants such as graphite, molybdenum disulfide, talc, fatty acids and fatty acid metal salts, low molecular weight polyolefins such as polypropylene, polyethylene and polybutene, silicones having a softening point upon heating, oleic amides , Erucic acid amide, ricinoleic acid amide, stearic acid amide and other aliphatic amides, carnauba wax, rice wax, candelilla wax, tree wax, jojoba oil and other plant wax, beeswax animal wax, montan wax, Minerals such as ozokerite, ceresin, paraffin wax, microcrystalline wax, Fischer-Tropsch wax, petroleum-based wax, and modified products thereof are used. These are used individually by 1 type or in combination of 2 or more types. However, the average particle size is preferably in the range of 0.1 μm or more and 10 μm or less, and those having the above chemical structure may be pulverized to make the particle sizes uniform. The amount added to the toner is desirably in the range of 0.05% by mass to 2.0% by mass, and more desirably in the range of 0.1% by mass to 1.5% by mass.

現像装置11に用いるトナーには、電子写真感光体表面の付着物、劣化物除去の目的等で、無機粒子、有機粒子、該有機粒子に無機粒子を付着させた複合粒子等を加えてもよい。   To the toner used in the developing device 11, inorganic particles, organic particles, composite particles obtained by attaching inorganic particles to the organic particles, and the like may be added for the purpose of removing deposits and deteriorated materials on the surface of the electrophotographic photosensitive member. .

無機粒子としては、シリカ、アルミナ、チタニア、ジルコニア、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸マグネシウム、酸化亜鉛、酸化クロム、酸化セリウム、酸化アンチモン、酸化タングステン、酸化スズ、酸化テルル、酸化マンガン、酸化ホウ素、炭化ケイ素、炭化ホウ素、炭化チタン、窒化ケイ素、窒化チタン、窒化ホウ素等の各種無機酸化物、窒化物、ホウ化物等が好適に使用される。   Inorganic particles include silica, alumina, titania, zirconia, barium titanate, aluminum titanate, strontium titanate, magnesium titanate, zinc oxide, chromium oxide, cerium oxide, antimony oxide, tungsten oxide, tin oxide, tellurium oxide, Various inorganic oxides such as manganese oxide, boron oxide, silicon carbide, boron carbide, titanium carbide, silicon nitride, titanium nitride, and boron nitride, nitrides, borides, and the like are preferably used.

また、上記無機粒子を、テトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等のチタンカップリング剤、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトエリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン等のシランカップリング剤等で処理を行ってもよい。また、シリコーンオイル、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸金属塩によって疎水化処理したものも望ましく使用される。   In addition, the inorganic particles may be mixed with titanium coupling agents such as tetrabutyl titanate, tetraoctyl titanate, isopropyl triisostearoyl titanate, isopropyl tridecylbenzene sulfonyl titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, γ- (2- Aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) γ-aminopropyltrimethoxy Silane hydrochloride, hexamethyldisilazane, methyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane The treatment may be performed with a silane coupling agent such as run, decyltrimethoxysilane, dodecyltrimethoxysilane, phenyltrimethoxysilane, o-methylphenyltrimethoxysilane, and p-methylphenyltrimethoxysilane. In addition, those hydrophobized with higher fatty acid metal salts such as silicone oil, aluminum stearate, zinc stearate, calcium stearate and the like are also desirably used.

有機粒子としては、スチレン樹脂粒子、スチレンアクリル樹脂粒子、ポリエステル樹脂粒子、ウレタン樹脂粒子等が挙げられる。   Examples of the organic particles include styrene resin particles, styrene acrylic resin particles, polyester resin particles, and urethane resin particles.

粒子径としては、個数平均粒子径で望ましくは5nm以上1000nm以下、より望ましくは5nm以上800nm以下、さらに望ましくは5nm以上700nm以下でのものが使用される。平均粒子径が、上記下限値未満であると、研磨能力に欠ける傾向があり、他方、上記上限値を超えると、電子写真感光体表面に傷を発生しやすくなる傾向がある。また、上述した粒子と滑性粒子との添加量の和が0.6質量%以上であることが望ましい。   The particle diameter is preferably 5 nm to 1000 nm, more preferably 5 nm to 800 nm, and even more preferably 5 nm to 700 nm in terms of number average particle diameter. If the average particle size is less than the lower limit, the polishing ability tends to be lacking. On the other hand, if the average particle size exceeds the upper limit, the surface of the electrophotographic photoreceptor tends to be damaged. Moreover, it is desirable that the sum of the addition amounts of the above-described particles and the lubricating particles is 0.6% by mass or more.

トナーに添加されるその他の無機酸化物としては、粉体流動性、帯電制御等の為、1次粒径が40nm以下の小径無機酸化物を用い、更に付着力低減や帯電制御の為、それより大径の無機酸化物を添加することが望ましい。これらの無機酸化物粒子は公知のものが使用されるが、精密な帯電制御を行う為にはシリカと酸化チタンを併用することが望ましい。   Other inorganic oxides added to the toner are small-diameter inorganic oxides with a primary particle size of 40 nm or less for powder flowability, charge control, etc. It is desirable to add a larger diameter inorganic oxide. Known inorganic oxide particles are used, but it is desirable to use silica and titanium oxide in combination for precise charge control.

また、小径無機粒子については表面処理することにより、分散性が高くなり、粉体流動性を上げる効果が大きくなる。さらに、炭酸カルシウム、炭酸マグネシウム等の炭酸塩や、ハイドロタルサイト等の無機鉱物を添加することも放電精製物を除去するために望ましい。 Further, the surface treatment of the small-diameter inorganic particles increases the dispersibility and increases the effect of increasing the powder fluidity. Furthermore, it is desirable to add carbonates such as calcium carbonate and magnesium carbonate and inorganic minerals such as hydrotalcite in order to remove the discharge purified product.

また、電子写真用カラートナーはキャリアと混合して使用されるが、キャリアとしては、鉄粉、ガラスビーズ、フェライト粉、ニッケル粉又はそれ等の表面に樹脂を被覆したものが使用される。また、キャリアとの混合割合は、設定される。   In addition, the color toner for electrophotography is used by mixing with a carrier. As the carrier, iron powder, glass beads, ferrite powder, nickel powder, or those coated with a resin are used. The mixing ratio with the carrier is set.

転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。   As the transfer device 40, for example, a contact transfer charger using a belt, a roller, a film, a rubber blade, etc., or a known transfer charger such as a scorotron transfer charger using a corona discharge or a corotron transfer charger. Can be mentioned.

中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体50の形態としては、ベルト状以外にドラム状のものを用いられる。   As the intermediate transfer member 50, a belt-like member (intermediate transfer belt) made of polyimide, polyamideimide, polycarbonate, polyarylate, polyester, rubber or the like having semiconductivity is used. Further, as the form of the intermediate transfer member 50, a drum-like one is used in addition to the belt-like shape.

画像形成装置100は、上述した各装置の他に、例えば、感光体7に対して光除電を行う光除電装置を備えていてもよい。   In addition to the above-described devices, the image forming apparatus 100 may include, for example, a light neutralizing device that performs light neutralization on the photoconductor 7.

図5は、他の実施形態に係る画像形成装置を示す概略断面図である。画像形成装置120は、図5に示すように、プロセスカートリッジ300を4つ搭載したタンデム方式のフルカラー画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。   FIG. 5 is a schematic cross-sectional view showing an image forming apparatus according to another embodiment. As shown in FIG. 5, the image forming apparatus 120 is a tandem-type full-color image forming apparatus equipped with four process cartridges 300. In the image forming apparatus 120, four process cartridges 300 are arranged in parallel on the intermediate transfer member 50, and one electrophotographic photosensitive member is used for one color. The image forming apparatus 120 has the same configuration as that of the image forming apparatus 100 except that it is a tandem system.

タンデム型の画像形成装置に本発明の電子写真感光体を用いた場合、4本の感光体の電気特性が安定することから、より長期に渡ってカラーバランスの優れた画質が得られる。   When the electrophotographic photosensitive member of the present invention is used in a tandem type image forming apparatus, the electric characteristics of the four photosensitive members are stabilized, so that an image quality with excellent color balance can be obtained over a longer period.

また、本実施形態に係る画像形成装置(プロセスカートリッジ)において、現像装置(現像手段)は、電子写真感光体の移動方向(回転方向)に対して逆方向に移動(回転)する現像剤保持体である現像ローラを有することが望ましい。ここで、現像ローラは表面に現像剤を保持する円筒状の現像スリーブを有しており、また、現像装置はこの現像スリーブに供給する現像剤の量を規制する規制部材を有する構成のものが挙げられる。現像装置の現像ローラを電子写真感光体の回転方向に対して逆方向に移動(回転)させることで、現像ローラと電子写真感光体との間に留まるトナーで電子写真感光体表面が摺擦される。そして、この摺擦と、グアナミン化合物及び特定の電荷輸送性材料(特に、上記如く反応性官能基の数を増やして架橋密度の高い硬化膜が得られる材料)の架橋物によって高められた付着物除去性とにより、電子写真感光体表面に付着した放電生成物(特には、オゾン、NOxに起因する低抵抗物質)の掻き取り性が向上され、かかる放電生成物の堆積が極めて長期間抑制されると考えられる。その結果、解像度低下やスジ、画像ボケなどの高耐摩耗性感光体特有の画質欠陥の発生が抑制され、高画質化及び高寿命化が更に高水準で達成されたものと推察される。また、放電生成物の堆積が抑制されることで、電子写真感光体表面の優れた滑り性が長期に亘って維持されると考えられる。その結果、クリーニングブレードのめくれや異音などの発生が十分防止され、高水準のクリーニング性能が長期間持続される。
また、本実施形態の画像形成装置においては、放電生成物の堆積をより長期に亘って抑制する観点から、現像スリーブと感光体との間隔を200μm以上600μm以下とすることが好ましく、300μm以上500μm以下とすることがより好ましい。また、同様の観点から、現像スリーブと上述の現像剤量を規制する規制部材である規制ブレードとの間隔を300μm以上1000μm以下とすることが好ましく、400μm以上750μm以下とすることがより好ましい。
更に、放電生成物の堆積をより長期に亘って抑制する観点から、現像ロール表面の移動速度の絶対値を、感光体表面の移動速度の絶対値(プロセススピード)の1.5倍以上2.5倍以下とすることが好ましく、1.7倍以上2.0倍以下とすることがより好ましい。
Further, in the image forming apparatus (process cartridge) according to the present embodiment, the developing device (developing means) is a developer holder that moves (rotates) in the opposite direction to the moving direction (rotating direction) of the electrophotographic photosensitive member. It is desirable to have a developing roller that is Here, the developing roller has a cylindrical developing sleeve that holds developer on the surface, and the developing device has a configuration that includes a regulating member that regulates the amount of developer supplied to the developing sleeve. Can be mentioned. By moving (rotating) the developing roller of the developing device in a direction opposite to the rotation direction of the electrophotographic photosensitive member, the surface of the electrophotographic photosensitive member is rubbed with toner remaining between the developing roller and the electrophotographic photosensitive member. The And the deposits enhanced by this rubbing and a crosslinked product of a guanamine compound and a specific charge transporting material (in particular, a material capable of obtaining a cured film having a high crosslinking density by increasing the number of reactive functional groups as described above) The removal property improves the scraping property of the discharge products (especially low resistance substances caused by ozone and NOx) adhering to the surface of the electrophotographic photosensitive member, and the deposition of such discharge products is suppressed for a very long time. It is thought. As a result, the occurrence of image quality defects peculiar to a high wear resistance photoconductor such as resolution reduction, streaks, and image blurring is suppressed, and it is assumed that higher image quality and longer life have been achieved at a higher level. Moreover, it is considered that excellent slipperiness of the electrophotographic photosensitive member surface is maintained over a long period of time by suppressing the accumulation of discharge products. As a result, the cleaning blade can be prevented from turning over or generating abnormal noise, and a high level of cleaning performance can be maintained for a long time.
In the image forming apparatus of the present embodiment, the distance between the developing sleeve and the photosensitive member is preferably 200 μm or more and 600 μm or less, and preferably 300 μm or more and 500 μm, from the viewpoint of suppressing the accumulation of discharge products over a longer period. More preferably, it is as follows. From the same viewpoint, the distance between the developing sleeve and the regulating blade that is a regulating member that regulates the developer amount is preferably 300 μm or more and 1000 μm or less, and more preferably 400 μm or more and 750 μm or less.
Further, from the viewpoint of suppressing the accumulation of discharge products over a longer period, the absolute value of the moving speed of the developing roll surface is 1.5 times or more the absolute value (process speed) of the moving speed of the photoreceptor surface. It is preferably 5 times or less, more preferably 1.7 times or more and 2.0 times or less.

また、本実施形態に係る画像形成装置(プロセスカートリッジ)において、現像装置(現像手段)は、磁性体を有する現像剤保持体を備え、磁性キャリア及びトナーを含む2成分系現像剤で静電潜像を現像するものであることが望ましい。この構成では、一成分系現像剤、特に非磁性一成分現像剤の場合に比べ、カラー画像でよりきれいな画質が得られ、更に高水準で高画質化及び高寿命化が実現される。   Further, in the image forming apparatus (process cartridge) according to the present embodiment, the developing device (developing unit) includes a developer holding body having a magnetic material, and is a two-component developer containing a magnetic carrier and toner. It is desirable to develop an image. In this configuration, a clearer image quality can be obtained with a color image, and higher image quality and longer life can be achieved compared to the case of a one-component developer, particularly a non-magnetic one-component developer.

以下実施例によって本発明をさらに具体的に説明するが,本発明はこれらに限定されるものではない。     Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

<グアナミン樹脂(G−1)>
A-15の構造を含有するスーパーベッカミン(R)L−148−55(ブチル化ベンゾグアナミン樹脂:大日本インキ社製)500質量部をキシレン500質量部に溶解し、各々蒸留水300mlを用いて5回水洗した。最終洗浄水の電導度は、6μS/cmであった。この溶液を減圧にて溶剤留去し、水あめ状の樹脂250質量部を得た。これをグアナミン樹脂G−1とする。
<Guanamine resin (G-1)>
500 parts by mass of Superbecamine (R) L-148-55 (Butylated benzoguanamine resin: manufactured by Dainippon Ink Co., Ltd.) containing the structure of A-15 was dissolved in 500 parts by mass of xylene, and each using 300 ml of distilled water. Washed 5 times with water. The conductivity of the final wash water was 6 μS / cm. The solvent was distilled off from the solution under reduced pressure to obtain 250 parts by weight of a candy-like resin. This is designated as guanamine resin G-1.

ここで、電導度は洗浄水を直接電導度計(Conductivity MeterDS−12:堀場製作所製)を用いて室温(約20°)にて測定した。     Here, the electrical conductivity was measured at room temperature (about 20 °) using washing water with a direct conductivity meter (Conductivity Meter DS-12: manufactured by HORIBA, Ltd.).

<グアナミン樹脂(G−2)>
A-14の構造を含有するスーパーベッカミン(R)13−535(メチル化ベンゾグアナミン樹脂:大日本インキ社製)500質量部をキシレン500質量部に溶解し、各々蒸留水300mlを用いて5回水洗した。最終洗浄水の電導度は、7μS/cmであった。この溶液を減圧にて溶剤留去し、水あめ状の樹脂270質量部を得た。これをグアナミン樹脂G−2とする。
<Guanamine resin (G-2)>
500 parts by mass of Superbecamine (R) 13-535 (methylated benzoguanamine resin: manufactured by Dainippon Ink Co., Ltd.) containing the structure of A-14 is dissolved in 500 parts by mass of xylene, and each time 5 times using 300 ml of distilled water. Washed with water. The conductivity of the final wash water was 7 μS / cm. The solvent was distilled off from the solution under reduced pressure to obtain 270 parts by weight of a candy-like resin. This is designated as guanamine resin G-2.

<グアナミン樹脂(G−3)>
A-15の構造を含有するスーパーベッカミン(R)L−148−55(ブチル化ベンゾグアナミン樹脂:大日本インキ社製)500質量部をキシレン500質量部に溶解し、陽イオン交換樹脂:アンバーライト15(ローム・アンド・ハース社製)、20質量部、陰イオン交換樹脂:アンバーライトIRA−400(ローム・アンド・ハース社製)、20質量部を加え、20分攪拌した後、イオン交換樹脂をろ別した。この溶液10質量部に蒸留水10質量部を加えて攪拌後、静置し、分離した水相の電導度を測定したところ、3μS/cmであった。樹脂溶液を減圧にて溶剤留去し、水あめ状の樹脂250質量部を得た。これをグアナミン樹脂G−3とする。
<Guanamine resin (G-3)>
500 parts by mass of Superbecamine (R) L-148-55 (Butylated benzoguanamine resin: Dainippon Ink Co., Ltd.) containing the structure of A-15 was dissolved in 500 parts by mass of xylene, and cation exchange resin: Amberlite 15 (manufactured by Rohm and Haas), 20 parts by mass, anion exchange resin: Amberlite IRA-400 (manufactured by Rohm and Haas), 20 parts by mass, and after stirring for 20 minutes, ion exchange resin Was filtered. 10 parts by mass of distilled water was added to 10 parts by mass of this solution, stirred, allowed to stand, and the conductivity of the separated aqueous phase was measured to find 3 μS / cm. The solvent of the resin solution was distilled off under reduced pressure to obtain 250 parts by mass of a candy-like resin. This is designated as guanamine resin G-3.

<グアナミン樹脂(G−4)>
A-15の構造を含有するスーパーベッカミン(R)L−148−55そのままをグアナミン樹脂G−4とする。
<Guanamine resin (G-4)>
Superbecamine (R) L-148-55 containing the structure of A-15 is referred to as guanamine resin G-4.

<グアナミン樹脂(G−5)>
A-14の構造を含有するスーパーベッカミン(R)13−535そのままをグアナミン樹脂G−5とする。
<Guanamine resin (G-5)>
Superbecamine (R) 13-535 containing the structure of A-14 is referred to as guanamine resin G-5.

<グアナミン樹脂(G−6)>
A-17の構造を含有するニカラックBL−60(日本カーバイド社製)そのままをグアナミン樹脂G−6とする。この樹脂中には約37質量%のキシレン系溶剤を含有している。
<Guanamine resin (G-6)>
Nicarac BL-60 (manufactured by Nippon Carbide) containing the structure of A-17 as it is is referred to as guanamine resin G-6. This resin contains about 37% by mass of a xylene-based solvent.

<触媒−1>
パラトルエンスルホン酸を触媒−1とする。
<Catalyst-1>
Paratoluenesulfonic acid is used as catalyst-1.

<触媒−2>
NACURE2501(キングインダストリー社製)を触媒−2とする。
<Catalyst-2>
NACURE2501 (manufactured by King Industry) is referred to as catalyst-2.

<触媒−3>
NACURE5225(キングインダストリー社製)を触媒−3とする。
<Catalyst-3>
NACURE 5225 (manufactured by King Industry) is referred to as catalyst-3.

<触媒−4>
NACURE4167(キングインダストリー社製)を触媒−4とする。
<Catalyst-4>
NACURE4167 (manufactured by King Industry) is referred to as catalyst-4.

<実施例1>
以下の如く電子写真感光体を作製した。
<Example 1>
An electrophotographic photoreceptor was prepared as follows.

(下引層の作製)
酸化亜鉛:(平均粒子径70nm:テイカ社製:比表面積値15m2/g)100質量部をテトラヒドロフラン500質量部と攪拌混合し、シランカップリング剤(KBM503:信越化学社製)1.3質量部を添加し、2時間攪拌した。その後トルエンを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛を得た。
前記表面処理を施した酸化亜鉛110質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン0.6質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、さらに60℃で減圧乾燥を行いアリザリン付与酸化亜鉛を得た。
(Preparation of undercoat layer)
Zinc oxide: (average particle size 70 nm: manufactured by Teica Co., Ltd .: specific surface area value 15 m 2 / g) 100 parts by mass is stirred and mixed with 500 parts by mass of tetrahydrofuran, and silane coupling agent (KBM503: manufactured by Shin-Etsu Chemical Co., Ltd.) 1.3 masses. Part was added and stirred for 2 hours. Thereafter, toluene was distilled off under reduced pressure and baked at 120 ° C. for 3 hours to obtain a silane coupling agent surface-treated zinc oxide.
110 parts by mass of the surface-treated zinc oxide was stirred and mixed with 500 parts by mass of tetrahydrofuran, a solution prepared by dissolving 0.6 parts by mass of alizarin in 50 parts by mass of tetrahydrofuran was added, and the mixture was stirred at 50 ° C. for 5 hours. did. Then, the zinc oxide to which alizarin was imparted by filtration under reduced pressure was filtered off, and further dried at 60 ° C. under reduced pressure to obtain alizarin imparted zinc oxide.

このアリザリン付与酸化亜鉛60質量部と硬化剤 (ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製) :13.5質量部とブチラール樹脂 (エスレックBM−1 、積水化学社製) 15質量部をメチルエチルケトン85質量部に溶解した溶液38質量部とメチルエチルケトン :25質量部とを混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い分散液を得た。   60 parts by mass of this alizarin-provided zinc oxide and a curing agent (blocked isocyanate Sumijoule 3175, manufactured by Sumitomo Bayern Urethane Co., Ltd.): 13.5 parts by mass and butyral resin (ESREC BM-1, manufactured by Sekisui Chemical Co., Ltd.) 15 parts by mass of methyl ethyl ketone 38 parts by mass of the solution dissolved in 85 parts by mass and 25 parts by mass of methyl ethyl ketone were mixed, and dispersion was performed for 2 hours with a sand mill using 1 mmφ glass beads.

得られた分散液に触媒としてジオクチルスズジラウレート:0.005質量部、シリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製):40質量部を添加し、下引層塗布用液を得た。この塗布液を浸漬塗布法にて直径30mm、長さ340mm、肉厚1mmのアルミニウム基材上に塗布し、170℃、40分の乾燥硬化を行い厚さ18μmの下引層を得た。   Dioctyltin dilaurate: 0.005 parts by mass and silicone resin particles (Tospearl 145, manufactured by GE Toshiba Silicone): 40 parts by mass were added as catalysts to the resulting dispersion to obtain an undercoat layer coating solution. This coating solution was applied onto an aluminum substrate having a diameter of 30 mm, a length of 340 mm, and a thickness of 1 mm by a dip coating method, followed by drying and curing at 170 ° C. for 40 minutes to obtain an undercoat layer having a thickness of 18 μm.

(電荷発生層の作製)
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3゜,16.0゜,24.9゜,28.0゜の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15質量部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)10質量部、n−酢酸ブチル200質量部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn−酢酸ブチル175質量部、メチルエチルケトン180質量部を添加し、攪拌して電荷発生層用の塗布液を得た。この電荷発生層用塗布液を下引層上に浸漬塗布し、常温(25℃)で乾燥して、膜厚が0.2μmの電荷発生層を形成した。
(Preparation of charge generation layer)
Bragg angles (2θ ± 0.2 °) of X-ray diffraction spectrum using Cukα characteristic X-ray as a charge generating material are at least 7.3 °, 16.0 °, 24.9 °, 28.0 ° A mixture consisting of 15 parts by mass of hydroxygallium phthalocyanine having a diffraction peak, 10 parts by mass of vinyl chloride / vinyl acetate copolymer resin (VMCH, manufactured by Nihon Unicar) as a binder resin, and 200 parts by mass of n-butyl acetate, The glass beads having a diameter of 1 mmφ were dispersed for 4 hours by a sand mill. To the obtained dispersion, 175 parts by mass of n-butyl acetate and 180 parts by mass of methyl ethyl ketone were added and stirred to obtain a coating solution for a charge generation layer. This charge generation layer coating solution was dip coated on the undercoat layer and dried at room temperature (25 ° C.) to form a charge generation layer having a thickness of 0.2 μm.

(電荷輸送層の作製)
N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミン45質量部及びビスフェノールZポリカーボネート樹脂(粘度平均分子量:4万)55質量部をクロルベンゼン800質量部に加えて溶解し,電荷輸送層用塗布液を得た。この塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って膜厚が15μmの電荷輸送層を形成した。
(Preparation of charge transport layer)
N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1 ′] biphenyl-4,4′-diamine 45 parts by mass and bisphenol Z polycarbonate resin (viscosity average molecular weight: 40,000) 55 parts by mass was added to 800 parts by mass of chlorobenzene and dissolved to obtain a charge transport layer coating solution. This coating solution was applied onto the charge generation layer and dried at 130 ° C. for 45 minutes to form a charge transport layer having a thickness of 15 μm.

(保護層の作製)
グアナミン樹脂G−1:3質量部、(I−2)で示される化合物3質量部、コロイダルシリカ(商品名:PL−1、扶桑化学工業社製)0.3質量部、ポリビニルフェノール樹脂(重量平均分子量約8000、Aldrich製)0.2質量部、1−メトキシ−2−プロパノール8質量部、並びに3,5−ジ−t−ブチル−4−ヒドロキシトルエン(BHT)0.2質量部、p−トルエンスルホン酸0.01質量部を加えて保護層用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、室温(25℃)で30分風乾した後、150℃で1時間加熱処理して硬化させ、膜厚約7μmの保護層を形成して実施例1の感光体を作製した。
(Preparation of protective layer)
Guanamine resin G-1: 3 parts by mass, 3 parts by mass of the compound represented by (I-2), colloidal silica (trade name: PL-1, manufactured by Fuso Chemical Industry Co., Ltd.) 0.3 parts by mass, polyvinylphenol resin (weight) (Average molecular weight of about 8000, made by Aldrich) 0.2 parts by mass, 1-methoxy-2-propanol 8 parts by mass, and 3,5-di-t-butyl-4-hydroxytoluene (BHT) 0.2 parts by mass, p -Toluenesulfonic acid 0.01 mass part was added and the coating liquid for protective layers was prepared. This coating solution is applied on the charge transport layer by a dip coating method, air-dried at room temperature (25 ° C.) for 30 minutes, and then cured by heat treatment at 150 ° C. for 1 hour to form a protective layer having a thickness of about 7 μm. Thus, a photoreceptor of Example 1 was produced.

なお、電荷輸送層を形成した後の感光体を、保護層用塗布液に1時間浸漬し続けたが、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミンが保護層用塗布液に溶出することはなかった。   The photoreceptor after the charge transport layer was formed was kept immersed in the protective layer coating solution for 1 hour, but N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1 , 1 ′] biphenyl-4,4′-diamine was not eluted into the coating solution for the protective layer.

[画質評価]
上述のようにして作製した電子写真感光体を富士ゼロックス社製、DocuCentre Color 400CPに装着し、低温低湿(8℃、20%RH)及び高温高湿(28℃、85%RH)において、以下の評価を連続して行なった。なお、現像器を摺擦部における現像剤ロール(現像剤保持体)と電子写真感光体の移動方向が同じ方向となるように設定(以下「ウィズ方式」と言う場合がある。)した現像器を設置したものを用いた。
すなわち、低温低湿(8℃、20%RH)の環境下にて10%ハーフトーン画像を連続して5000枚の画像形成テストを行なった5000枚目印字直後の画質、及び、5000枚画像形成テストを実施した後、低温低湿(8℃、20%RH)環境下で24時間放置した後の最初の画質について以下のゴースト、カブリ、スジ、画像流れを評価した。
その結果を表2に示した。
[Image quality evaluation]
The electrophotographic photosensitive member produced as described above is attached to Fuji Xerox Co., Ltd., DocuCentre Color 400CP, and at low temperature and low humidity (8 ° C., 20% RH) and high temperature and high humidity (28 ° C., 85% RH), the following Evaluation was performed continuously. Note that the developing device is set so that the moving direction of the developer roll (developer holding member) and the electrophotographic photosensitive member in the rubbing portion is the same (hereinafter may be referred to as “with method”). The one installed was used.
That is, the image quality immediately after printing the 5000th sheet after performing the image formation test of 5000 sheets of 10% halftone images continuously in an environment of low temperature and low humidity (8 ° C., 20% RH), and the 5000 sheet image formation test. Then, the following ghost, fog, streak and image flow were evaluated for the initial image quality after being left for 24 hours in a low temperature and low humidity (8 ° C., 20% RH) environment.
The results are shown in Table 2.

この低温低湿環境下での画質評価に続いて、高温高湿(28℃、85%RH)の環境下にて10%ハーフトーン画像を連続して5000枚の画像形成テストを行なった5000枚目印字直後の画質、及び、5000枚画像形成テストを実施した後、高温高湿(28℃、85%RH)環境下で24時間放置した後の最初の画質について以下のゴースト、カブリ、スジ、画像流れを評価した。
その結果を表3に示した。
なお、画像形成テストには、富士ゼロックスオフィスサプライ製 P紙(A3サイズ)を用いた。
Following the image quality evaluation in this low-temperature and low-humidity environment, the 5000th image formation test was performed on 5000 sheets of 10% halftone images continuously in a high-temperature and high-humidity environment (28 ° C., 85% RH). The following ghost, fog, streak, and image for the image quality immediately after printing and the initial image quality after leaving the image in the high-temperature and high-humidity (28 ° C., 85% RH) environment for 24 hours after performing the 5000 sheet image formation test. The flow was evaluated.
The results are shown in Table 3.
In the image forming test, P paper (A3 size) manufactured by Fuji Xerox Office Supply was used.

(ゴースト評価)
ゴーストは、図6(A)に示したGと黒領域を有するパターンのチャートをプリントし、黒領域部分にGの文字の現れ具合を目視にて評価した。
A:図6(A)のように良好乃至軽微である。
B:図6(B)のように若干目立つ程度である
C:図6(C)のようにはっきり確認されることを示す。
(Ghost evaluation)
For the ghost, a chart of a pattern having G and a black area shown in FIG. 6A was printed, and the appearance of the letter G in the black area was visually evaluated.
A: Good or slight as shown in FIG.
B: Slightly conspicuous as shown in FIG. 6 (B) C: It is clearly confirmed as shown in FIG. 6 (C).

(カブリ評価)
カブリ評価は上述のゴースト評価と同じサンプルを用いて白地部のトナー付着程度を目視にて観察し判断した。
A:良好。
B:うっすらとカブリあり(画質上問題なし)。
C:画質上問題となるカブリあり。
(Fog evaluation)
The fog evaluation was performed by visually observing and judging the degree of toner adhesion on the white background using the same sample as the ghost evaluation described above.
A: Good.
B: There is a slight fog (no problem in image quality).
C: There is fogging that causes a problem in image quality.

(スジ評価)
スジ評価は上述のゴースト評価と同じサンプルを用いて目視にて判断した。
A:良好。
B:部分的にスジの発生あり。
C:画質上問題となるスジ発生。
(Streak evaluation)
The streak evaluation was judged visually using the same sample as the ghost evaluation described above.
A: Good.
B: Streaks are partially generated.
C: Streaks that cause image quality problems.

(画像流れ評価)
画像流れは上述のゴースト評価と同じサンプルを用い、上記低温低湿及び高温高湿での画像形成テストにおいて黒領域部分の濃度低下を目視にて判断した。
A:良好。
B:連続的にプリントテストしている時は問題ないが、24時間放置後に発生。
C:連続的にプリントテストしている時にも発生。
(Image flow evaluation)
For the image flow, the same sample as the above-described ghost evaluation was used, and in the image formation test at the low temperature and low humidity and the high temperature and high humidity, the density reduction of the black region portion was visually determined.
A: Good.
B: No problem during continuous print test, but occurs after standing for 24 hours.
C: Occurs during continuous print test.

[保護層の接着性評価]
保護層の接着性は、画像形成テスト後の感光体に2mm角で5個×5個(合計25個)の切れ目をカッターナイフで付け、3M社製メンディングテープを貼り付け、接着面に対して90度方向に剥離した時の残存数で評価した。その結果を表2に示した。
A:21個以上残存。
B:11個以上20個以下残存。
C:10個以下残存。
[Evaluation of protective layer adhesion]
The protective layer has an adhesive property of 5 × 5 (25 in total) cuts with a cutter knife on the photoconductor after the image formation test, and a 3M mending tape is applied to the adhesive surface. The remaining number when peeled in the direction of 90 degrees was evaluated. The results are shown in Table 2.
A: 21 or more remained.
B: 11 to 20 remaining.
C: 10 or less remained.

[トルク測定]
上述のようにして作製した電子写真感光体を富士ゼロックス社製、DocuCentre Color 400CPに装着し、各色画像濃度20%全面画像をプリントした。その後、ドラムカートリッジを取り出し、ドラムカートリッジの感光体に、手動トルクゲージ(BTG90CN−S:株式会社東日製作所)を取り付け、このトルクゲージを静止状態から回転状態まで回し、その間の最大トルクの測定を低温低湿(8℃、20%RH)環境下において3回行い、平均値を感光体トルクとした。その結果は、表2に示す。
[Torque measurement]
The electrophotographic photosensitive member produced as described above was mounted on a DocuCentre Color 400CP manufactured by Fuji Xerox Co., Ltd., and an entire image having a color image density of 20% was printed. After that, the drum cartridge is taken out, and a manual torque gauge (BTG90CN-S: Tohnichi Manufacturing Co., Ltd.) is attached to the drum cartridge photoconductor. The torque gauge is rotated from the stationary state to the rotating state, and the maximum torque during that time is measured. The test was carried out three times in a low-temperature and low-humidity (8 ° C., 20% RH) environment, and the average value was defined as the photoreceptor torque. The results are shown in Table 2.

<実施例2乃至13>
表1に従って、グアナミン樹脂(一般式(A)で示される化合物)、電荷輸送材料(一般式(I)で示される化合物)、添加剤、触媒、及びこれらの使用量を変更した以外は、実施例1と同様に感光体2乃至13を作製し、同様の評価を行った。結果を表2、3に示した。
<Examples 2 to 13>
According to Table 1, except that the guanamine resin (compound represented by the general formula (A)), the charge transport material (compound represented by the general formula (I)), the additive, the catalyst, and the use amount thereof were changed. Photoconductors 2 to 13 were prepared in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Tables 2 and 3.

<実施例14>
電荷輸送層の作製を以下のように行った以外は、実施例1と同様に保護層を有する感光体14を作製し、同様の評価を行った。結果を表2、3に示した。
<Example 14>
A photoconductor 14 having a protective layer was prepared in the same manner as in Example 1 except that the charge transport layer was prepared as follows, and the same evaluation was performed. The results are shown in Tables 2 and 3.

(電荷輸送層の作製)
下記化合物(α)45質量部及びビスフェノールZポリカーボネート樹脂(粘度平均分子量:4万)55質量部をクロルベンゼン800質量部に加えて溶解し,電荷輸送層用塗布液を得た。この塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って膜厚が17μmの電荷輸送層を形成した。
(Preparation of charge transport layer)
45 parts by mass of the following compound (α) and 55 parts by mass of bisphenol Z polycarbonate resin (viscosity average molecular weight: 40,000) were added to 800 parts by mass of chlorobenzene and dissolved to obtain a coating solution for a charge transport layer. This coating solution was applied onto the charge generation layer and dried at 130 ° C. for 45 minutes to form a charge transport layer having a thickness of 17 μm.

<実施例15>
電荷輸送層の作製を以下のように行った以外は、実施例1と同様に保護層を有する感光体15を作製し、同様の評価を行った。結果を表2、3に示した。
<Example 15>
A photoconductor 15 having a protective layer was produced in the same manner as in Example 1 except that the charge transport layer was produced as follows, and the same evaluation was performed. The results are shown in Tables 2 and 3.

(電荷輸送層の作製)
下記化合物(β)50質量部及びビスフェノールZポリカーボネート樹脂(粘度平均分子量:5万)50質量部をクロルベンゼン800質量部に加えて溶解し,電荷輸送層用塗布液を得た。この塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って膜厚が15μmの電荷輸送層を形成した。
(Preparation of charge transport layer)
50 parts by mass of the following compound (β) and 50 parts by mass of bisphenol Z polycarbonate resin (viscosity average molecular weight: 50,000) were added to 800 parts by mass of chlorobenzene and dissolved to obtain a coating solution for a charge transport layer. This coating solution was applied onto the charge generation layer and dried at 130 ° C. for 45 minutes to form a charge transport layer having a thickness of 15 μm.

<実施例16>
電荷輸送層の作製を以下のように行った以外は、実施例1と同様に保護層を有する感光体15を作製し、同様の評価を行った。結果を表2、3に示した。
<Example 16>
A photoconductor 15 having a protective layer was produced in the same manner as in Example 1 except that the charge transport layer was produced as follows, and the same evaluation was performed. The results are shown in Tables 2 and 3.

(電荷輸送層の作製)
下記化合物(γ)50質量部及びビスフェノールZポリカーボネート樹脂(粘度平均分子量:8万)50質量部をクロルベンゼン800質量部に加えて溶解し,電荷輸送層用塗布液を得た。この塗布液を電荷発生層上に塗布し、130℃、45分の乾燥を行って膜厚が15μmの電荷輸送層を形成した。
(Preparation of charge transport layer)
50 parts by mass of the following compound (γ) and 50 parts by mass of bisphenol Z polycarbonate resin (viscosity average molecular weight: 80,000) were added to 800 parts by mass of chlorobenzene and dissolved to obtain a coating solution for a charge transport layer. This coating solution was applied onto the charge generation layer and dried at 130 ° C. for 45 minutes to form a charge transport layer having a thickness of 15 μm.

<実施例17乃至23>
表1に従って、グアナミン樹脂(一般式(A)で示される化合物)、電荷輸送材料(一般式(I)で示される化合物)、添加剤、触媒、及びこれらの使用量を変更した以外は、実施例1と同様に感光体17乃至23を作製し、同様の評価を行った。結果を表2、3に示した。
<Examples 17 to 23>
According to Table 1, except that the guanamine resin (compound represented by the general formula (A)), the charge transport material (compound represented by the general formula (I)), the additive, the catalyst, and the use amount thereof were changed. Photoconductors 17 to 23 were prepared in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Tables 2 and 3.

<比較例1乃至4>
保護層を設けなかった以外は、実施例1、14、15、16と同様に比較感光体1乃至4を作製し、実施例1と同様に評価した。それらの結果を表2、3に示した。
<Comparative Examples 1 to 4>
Comparative photoreceptors 1 to 4 were prepared in the same manner as in Examples 1, 14, 15, and 16 except that the protective layer was not provided, and evaluated in the same manner as in Example 1. The results are shown in Tables 2 and 3.

<比較例5乃至7>
アンチモンドープをした酸化スズの被覆膜を有する導電粒子(S−1、三菱マテリアル(株)製)からなる粉体60質量部と、酸化チタン(titone R−1T、堺化学(株)製)30質量部と、レゾール型フェノール樹脂(フェノライトJ−325、大日本インキ化学工業(株)製、固形分70質量%)60質量部と、2−メトキシ−1−プロパノール50質量部と、メタノール50質量部とからなる溶液を約20時間、ボールミルで分散した。この分散液を実施例1、15、16の電荷輸送層上に塗布し、膜厚5μmの保護層を形成し、比較感光体5乃至8の感光体を作製し、実施例1と同様に評価した。それらの結果を表2、3に示した。
<Comparative Examples 5 to 7>
60 parts by mass of powder composed of conductive particles (S-1, manufactured by Mitsubishi Materials Corporation) having a coating film of tin oxide doped with antimony, and titanium oxide (titone R-1T, manufactured by Sakai Chemical Co., Ltd.) 30 parts by mass, 60 parts by mass of resol type phenolic resin (Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70% by mass), 50 parts by mass of 2-methoxy-1-propanol, and methanol A solution consisting of 50 parts by mass was dispersed with a ball mill for about 20 hours. This dispersion was applied onto the charge transport layers of Examples 1, 15, and 16 to form a protective layer having a thickness of 5 μm, and photoconductors of comparative photoconductors 5 to 8 were produced. Evaluation was made in the same manner as in Example 1. did. The results are shown in Tables 2 and 3.

<比較例8>
下記化合物(Δ)を6質量部、グアナミン樹脂G−6を7質量部、ブチラール樹脂を0.5質量部、ビスグリシジルビスフェノールAを0.5質量部、ビフェニルテトラカルボン酸を0.5質量部、メチルフェニルポリシロキサン0.03質量部、サノールLS2626を0.2質量部、をイソプロパノ−ル7質量部に溶解させた。この塗布液を実施例1と同様に電荷輸送層の上に浸漬塗布法により塗布し、室温で30分風乾した後、150℃で1時間加熱処理して硬化させ、膜厚約7μmの保護層を形成し、比較感光体8を作製し、実施例1と同様に評価した。それらの結果を表2、3に示した。
なお、得られた比較感光体は、高温高湿(28℃、85%RH)の環境下にて10000枚の画像形成テストを行なった後、感光体表面を観察したところ、スクラッチ状に表面層の剥がれている部分が観察された。
また、電荷輸送層を形成した感光体を、保護層用塗布液に1時間浸漬し続けたのち、保護層用塗布液に紫外線(356nm)を照射したところ、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミンが保護層用塗布液に溶出したために青色蛍光が観測された。
<Comparative Example 8>
6 parts by mass of the following compound (Δ), 7 parts by mass of guanamine resin G-6, 0.5 parts by mass of butyral resin, 0.5 parts by mass of bisglycidyl bisphenol A, and 0.5 parts by mass of biphenyltetracarboxylic acid 0.03 part by mass of methylphenylpolysiloxane and 0.2 part by mass of Sanol LS2626 were dissolved in 7 parts by mass of isopropanol. This coating solution was applied onto the charge transport layer by the dip coating method in the same manner as in Example 1 and air-dried at room temperature for 30 minutes, and then cured by heat treatment at 150 ° C. for 1 hour to form a protective layer having a thickness of about 7 μm. A comparative photoconductor 8 was produced and evaluated in the same manner as in Example 1. The results are shown in Tables 2 and 3.
The obtained comparative photoconductor was subjected to 10,000 image forming tests in an environment of high temperature and high humidity (28 ° C., 85% RH), and the surface of the photoconductor was observed. The peeled part was observed.
Further, after the photoreceptor having the charge transport layer formed thereon was kept immersed in the protective layer coating solution for 1 hour, the protective layer coating solution was irradiated with ultraviolet rays (356 nm), and N, N′-diphenyl-N, Since N′-bis (3-methylphenyl)-[1,1 ′] biphenyl-4,4′-diamine was eluted into the protective layer coating solution, blue fluorescence was observed.

<実施例24乃至27>
電子写真感光体は、実施例1、9、13、23で作製した電子写真感光体を用い、評価装置として、富士ゼロックス社製、Docu Center Color 400CP機をベースにし、現像器を摺擦部における現像剤ロール(現像剤保持体)と電子写真感光体の移動方向が逆方向となるように設定(以下「アゲインスト方式」という場合がある)した現像器を設置したものを用いた。そして、現像ロール周速:182mm/sec(プロセススピードの1.75倍)に設定し、ウィズ方式及びアゲインスト方式において現像ロール上の単位面積当たりの現像剤量が同一になるよう現像ロールと規制ブレードとの間隔を調整した。この組み合わせで実施例1と同様のテストを行い、得られた結果を表2、表3に示した。
<Examples 24 to 27>
The electrophotographic photosensitive member is the electrophotographic photosensitive member produced in Examples 1, 9, 13, and 23. The evaluation device is based on a Docu Center Color 400CP machine manufactured by Fuji Xerox Co., Ltd. A developer provided with a developing device set so that the moving direction of the developer roll (developer holder) and the electrophotographic photosensitive member is opposite (hereinafter sometimes referred to as “against method”) was used. The developing roll peripheral speed is set to 182 mm / sec (1.75 times the process speed), and the developing roll and the regulation are set so that the developer amount per unit area on the developing roll is the same in the width method and the against method. The distance from the blade was adjusted. The same test as in Example 1 was performed with this combination, and the results obtained are shown in Tables 2 and 3.

表1において、S−1は、三菱マテリアル(株)製のアンチモンドープをした酸化スズの被覆膜を有する導電粒子である商品名S-1を表し、PTFEはダイキン工業社製のPTFE粒子である商品名:ルブロンL-2を表し、ブチラール樹脂(BM-1)は積水化学社製のブチラール樹脂である商品名:エスレックBM-1を表し、サノールLS770は、三共ライフテック社製、酸化防止剤である商品名サノールLS770を表す。フェノール樹脂は、群栄化学社製PL−4852、メラミン樹脂は、三和ケミカル社製MW−30を表す。   In Table 1, S-1 represents a trade name S-1 which is a conductive particle having an antimony-doped tin oxide coating film manufactured by Mitsubishi Materials Corporation, and PTFE is a PTFE particle manufactured by Daikin Industries, Ltd. Trade name: Lubron L-2, butyral resin (BM-1) is a butyral resin made by Sekisui Chemical Co., Ltd. Trade name: ESREC BM-1, Sanol LS770, made by Sankyo Lifetech, antioxidant The trade name SANOL LS770 which is an agent is represented. The phenol resin represents PL-4852 manufactured by Gunei Chemical Co., and the melamine resin represents MW-30 manufactured by Sanwa Chemical Co., Ltd.

実施形態に係る電子写真感光体を示す概略部分断面図である。1 is a schematic partial cross-sectional view showing an electrophotographic photosensitive member according to an embodiment. 実施形態に係る電子写真感光体を示す概略部分断面図である。1 is a schematic partial cross-sectional view showing an electrophotographic photosensitive member according to an embodiment. 実施形態に係る電子写真感光体を示す概略部分断面図である。1 is a schematic partial cross-sectional view showing an electrophotographic photosensitive member according to an embodiment. 実施形態に係る画像形成装置を示す概略構成図である。1 is a schematic configuration diagram illustrating an image forming apparatus according to an embodiment. 他の実施形態に係る画像形成装置を示す概略構成図である。It is a schematic block diagram which shows the image forming apparatus which concerns on other embodiment. (A)乃至(C)はそれぞれゴースト評価の基準を示す説明図である。(A) thru | or (C) are explanatory drawings which respectively show the reference | standard of ghost evaluation.

符号の説明Explanation of symbols

1 下引層
2 電荷発生層
3 電荷輸送層
4 導電性基体
5 保護層
6 単層型感光層
7 電子写真感光体
8 帯電装置
9 露光装置
11 現像装置
13 クリーニング装置
14 潤滑材
40 転写装置
50 中間転写体
100 画像形成装置
120 画像形成装置
132 繊維状部材(ロール状)
133 繊維状部材(平ブラシ状)
DESCRIPTION OF SYMBOLS 1 Undercoat layer 2 Charge generation layer 3 Charge transport layer 4 Conductive substrate 5 Protective layer 6 Single layer type photosensitive layer 7 Electrophotographic photoreceptor 8 Charging device 9 Exposure device 11 Development device 13 Cleaning device 14 Lubricant 40 Transfer device 50 Intermediate Transfer body 100 Image forming apparatus 120 Image forming apparatus 132 Fibrous member (roll shape)
133 Fibrous member (flat brush shape)

Claims (13)

導電性基体と、
前記導電性基体表面に設けた感光層と、
を有し、
前記感光層の最表面層が、グアナミン化合物と、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種とを用いた架橋物を含んで構成されことを特徴とする電子写真感光体。
A conductive substrate;
A photosensitive layer provided on the surface of the conductive substrate;
Have
The outermost surface layer of the photosensitive layer is a guanamine compound and at least one kind of charge transporting material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. An electrophotographic photosensitive member comprising a cross-linked product using
前記グアナミン化合物が、下記一般式(A)で示される化合物及びその多量体の少なくとも1種であることを特徴とする請求項1に記載の電子写真感光体。

(前記一般式(A)中、Rは、炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基、炭素数6以上10以下の置換若しくは未置換のフェニル基、又は炭素数4以上10以下の置換若しくは未置換の脂環式炭化水素基を示す。R乃至Rは、それぞれ独立に水素、−CH−OH、又は−CH−O−Rを示す。Rは、水素、又は炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基を示す。)
2. The electrophotographic photoreceptor according to claim 1, wherein the guanamine compound is at least one of a compound represented by the following general formula (A) and a multimer thereof.

(In the general formula (A), R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, or 4 carbon atoms. The substituted or unsubstituted alicyclic hydrocarbon group is 10 or more and R 2 to R 5 each independently represents hydrogen, —CH 2 —OH, or —CH 2 —O—R 6 , R 6. Represents hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms.)
前記一般式(A)において、Rが炭素数6以上10以下の置換若しくは未置換のフェニル基示し、R乃至Rが−CH−O−Rを示すことを特徴とする請求項2に記載の電子写真感光体。 In the general formula (A), R 1 represents a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, and R 2 to R 5 represent —CH 2 —O—R 6. 2. The electrophotographic photosensitive member according to 2. 前記一般式(A)において、Rがメチル基又はn-ブチル基から選ばれることを特徴とする請求項2または3に記載の電子写真感光体。 4. The electrophotographic photosensitive member according to claim 2, wherein, in the general formula (A), R 6 is selected from a methyl group and an n-butyl group. 前記電荷輸送性材料が、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基を少なくとも3つ持つ電荷輸送性材料であることを特徴とする請求項1乃至4のいずれか1項に記載の電子写真感光体。 The charge transporting material is a charge transporting material having at least three substituents selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. 5. The electrophotographic photosensitive member according to any one of 4 above. 前記電荷輸送性材料が、下記一般式(I)で示される化合物であることを特徴とする請求項1乃至3のいずれか1項に記載の電子写真感光体。
F−((−R−X)n1−Y)n2 (I)
(一般式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基、R及びRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基、n1は0又は1を示し、n2は1以上4以下の整数を示す。Xは酸素、NH、又は硫黄原子を示し、Yは−OH、−OCH、−NH、−SH、又は−COOHを示す。)
The electrophotographic photosensitive member according to claim 1, wherein the charge transporting material is a compound represented by the following general formula (I).
F - ((- R 7 -X ) n1 R 8 -Y) n2 (I)
(In general formula (I), F is an organic group derived from a compound having a hole transporting ability, and R 7 and R 8 are each independently a linear or branched alkylene group having 1 to 5 carbon atoms. , N1 represents 0 or 1, n2 represents an integer of 1 to 4, X represents an oxygen, NH, or sulfur atom, Y represents —OH, —OCH 3 , —NH 2 , —SH, or — COOH is shown.)
前記一般式(I)で示される化合物において、n2が3又は4を示すことを特徴とする請求項6に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 6, wherein n2 represents 3 or 4 in the compound represented by the general formula (I). 請求項1乃至7のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体を帯電させる帯電手段、前記電子写真感光体に形成された静電潜像をトナーにより現像する現像手段、及び、前記電子写真感光体の表面に残存したトナーを除去するトナー除去手段からなる群より選ばれる少なくとも一種と、を備えることを特徴とするプロセスカートリッジ。
An electrophotographic photoreceptor according to any one of claims 1 to 7,
Charging means for charging the electrophotographic photosensitive member, developing means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with toner, and toner removal for removing toner remaining on the surface of the electrophotographic photosensitive member A process cartridge comprising: at least one selected from the group consisting of means.
前記現像手段が、前記電子写真感光体の移動方向に対して逆方向に移動する現像剤保持体を有することを特徴とする請求項8に記載のプロセスカートリッジ。   9. The process cartridge according to claim 8, wherein the developing unit includes a developer holding member that moves in a direction opposite to a moving direction of the electrophotographic photosensitive member. 請求項1乃至7のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体を帯電させる帯電手段と、
帯電した前記電子写真感光体に静電潜像形成する静電潜像手段と、
前記電子写真感光体に形成された静電潜像をトナーにより現像する現像手段と、
前記トナー像を被転写体に転写する転写手段と、
を備えることを特徴とする画像形成装置。
An electrophotographic photoreceptor according to any one of claims 1 to 7,
Charging means for charging the electrophotographic photoreceptor;
Electrostatic latent image means for forming an electrostatic latent image on the charged electrophotographic photosensitive member;
Developing means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with toner;
Transfer means for transferring the toner image to a transfer object;
An image forming apparatus comprising:
前記現像手段が、前記電子写真感光体の移動方向に対して逆方向に移動する現像剤保持体を有することを特徴とする請求項10に記載の画像形成装置。   The image forming apparatus according to claim 10, wherein the developing unit includes a developer holder that moves in a direction opposite to a moving direction of the electrophotographic photosensitive member. グアナミン化合物と、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種とを少なくとも含む皮膜形成用塗布液。 Coating solution for forming a film, comprising at least a guanamine compound and at least one charge transporting material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. . 導電性基体と、
前記導電性基体表面に設けた感光層と、
を有し、
前記感光層の最表面層が、グアナミン化合物と、−OH、−OCH、−NH、−SH、及び−COOHから選択される置換基の少なくとも1つを持つ電荷輸送性材料の少なくとも1種とを含む皮膜形成用塗布液を塗布し架橋物としたものを含んで構成されことを特徴とする電子写真感光体。
A conductive substrate;
A photosensitive layer provided on the surface of the conductive substrate;
Have
The outermost surface layer of the photosensitive layer is a guanamine compound and at least one kind of charge transporting material having at least one substituent selected from —OH, —OCH 3 , —NH 2 , —SH, and —COOH. An electrophotographic photosensitive member comprising: a film formed by coating a coating solution for forming a film containing
JP2007328748A 2007-06-28 2007-12-20 Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution Pending JP2009031721A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007328748A JP2009031721A (en) 2007-06-28 2007-12-20 Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
US12/049,718 US8679709B2 (en) 2007-06-28 2008-03-17 Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
CN2008100925153A CN101334593B (en) 2007-06-28 2008-04-18 Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007170785 2007-06-28
JP2007328748A JP2009031721A (en) 2007-06-28 2007-12-20 Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution

Publications (1)

Publication Number Publication Date
JP2009031721A true JP2009031721A (en) 2009-02-12

Family

ID=40197263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328748A Pending JP2009031721A (en) 2007-06-28 2007-12-20 Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution

Country Status (2)

Country Link
JP (1) JP2009031721A (en)
CN (1) CN101334593B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191164A (en) * 2009-02-18 2010-09-02 Fuji Xerox Co Ltd Image forming apparatus
JP2010204272A (en) * 2009-03-02 2010-09-16 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2010211031A (en) * 2009-03-11 2010-09-24 Fuji Xerox Co Ltd Process cartridge, and image forming apparatus
JP2010224304A (en) * 2009-03-24 2010-10-07 Fuji Xerox Co Ltd Electrophotographic photosensitive member, process cartridge, and image forming device
JP2010231086A (en) * 2009-03-27 2010-10-14 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP2014197173A (en) * 2013-03-07 2014-10-16 キヤノン株式会社 Electrophotographic photoreceptor, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound
US9829810B2 (en) 2015-11-06 2017-11-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method for producing electrophotographic photosensitive member
US10935898B2 (en) 2018-10-17 2021-03-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US11029615B2 (en) 2019-07-29 2021-06-08 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659643B2 (en) * 2010-09-10 2015-01-28 富士ゼロックス株式会社 Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP5659692B2 (en) 2010-10-22 2015-01-28 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5673129B2 (en) * 2011-01-21 2015-02-18 富士ゼロックス株式会社 Charge transport film, organic electronic device, electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5741017B2 (en) * 2011-01-28 2015-07-01 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2013200504A (en) * 2012-03-26 2013-10-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, image formation device, and process cartridge
CN104035294B (en) * 2013-03-07 2017-09-22 佳能株式会社 Electrophotographic photosensitive element, electronic photographing device, handle box and condensed polycyclc aromatic compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195961A (en) * 2004-01-08 2005-07-21 Ricoh Co Ltd Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge
JP2006267652A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399425A (en) * 1988-07-07 1995-03-21 E. I. Du Pont De Nemours And Company Metallized polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195961A (en) * 2004-01-08 2005-07-21 Ricoh Co Ltd Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge
JP2006267652A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191164A (en) * 2009-02-18 2010-09-02 Fuji Xerox Co Ltd Image forming apparatus
JP2010204272A (en) * 2009-03-02 2010-09-16 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2010211031A (en) * 2009-03-11 2010-09-24 Fuji Xerox Co Ltd Process cartridge, and image forming apparatus
JP2010224304A (en) * 2009-03-24 2010-10-07 Fuji Xerox Co Ltd Electrophotographic photosensitive member, process cartridge, and image forming device
JP2010231086A (en) * 2009-03-27 2010-10-14 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
US8535861B2 (en) 2009-03-27 2013-09-17 Fuji Xerox Co., Ltd. Image forming apparatus and process cartridge
JP2014197173A (en) * 2013-03-07 2014-10-16 キヤノン株式会社 Electrophotographic photoreceptor, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound
US9829810B2 (en) 2015-11-06 2017-11-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method for producing electrophotographic photosensitive member
US10935898B2 (en) 2018-10-17 2021-03-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US11029615B2 (en) 2019-07-29 2021-06-08 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Also Published As

Publication number Publication date
CN101334593A (en) 2008-12-31
CN101334593B (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4618311B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US8679709B2 (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
JP2009031721A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
JP2010181540A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP4702448B2 (en) Electrophotographic photosensitive member and manufacturing method thereof, process cartridge, and image forming apparatus.
JP2010079130A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US20110171570A1 (en) Electrophotographic photoreceptor, method of producing same, process cartridge, and image forming apparatus
JP5724518B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2010224173A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2007264214A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and coating agent composition
JP5493349B2 (en) Image forming apparatus and process cartridge
JP2008096923A (en) Image forming apparatus and process cartridge
JP5024279B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2009198707A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2009229740A (en) Image forming apparatus and process cartridge
JP5125486B2 (en) Image forming method, process cartridge, and image forming apparatus
JP2013057810A (en) Electrophotographic photoreceptor, method of producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2010211031A (en) Process cartridge, and image forming apparatus
JP5345831B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2012203253A (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP4910847B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and coating liquid for film formation
JP5672900B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5298595B2 (en) Image forming apparatus and process cartridge
JP2009229739A (en) Image forming apparatus and process cartridge
JP4877338B2 (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413