JP2009031313A - Optical fiber characteristic measuring device and method - Google Patents

Optical fiber characteristic measuring device and method Download PDF

Info

Publication number
JP2009031313A
JP2009031313A JP2008290517A JP2008290517A JP2009031313A JP 2009031313 A JP2009031313 A JP 2009031313A JP 2008290517 A JP2008290517 A JP 2008290517A JP 2008290517 A JP2008290517 A JP 2008290517A JP 2009031313 A JP2009031313 A JP 2009031313A
Authority
JP
Japan
Prior art keywords
light
birefringence
optical fiber
vector
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008290517A
Other languages
Japanese (ja)
Other versions
JP4770913B2 (en
Inventor
Tetsuo Yano
哲夫 矢野
Emiko Fujiwara
恵美子 藤原
Shoichi Aoki
省一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008290517A priority Critical patent/JP4770913B2/en
Publication of JP2009031313A publication Critical patent/JP2009031313A/en
Application granted granted Critical
Publication of JP4770913B2 publication Critical patent/JP4770913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber characteristic measuring device and an optical fiber characteristic measuring method capable of measuring accurately the characteristic (a distribution of the magnitude of birefringence) of the optical fiber. <P>SOLUTION: This optical fiber characteristic measuring device is provided by improving an optical fiber characteristic measuring device wherein pulsed light is input into an optical fiber to be measured, and back-scattering light from the optical fiber to be measured relative to the pulsed light is detected by a light detection part to obtain a Stokes vector, and birefringence in the longitudinal direction is measured. The device is characterized by being provided with a birefringence operation part obtaining the magnitude of a linearly polarized light component and the magnitude of a circularly polarized light component of a birefringence vector based on the Stokes vector by at least three positions, and obtaining the magnitude of the birefringence. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被測定光ファイバの長手方向における特性(偏波モード分散の分布、複屈折の大きさの分布)を測定する光ファイバ特性測定装置および光ファイバ特性測定方法に関し、詳しくは、精度良く光ファイバの特性を測定できる光ファイバ特性装置および光ファイバ特性測定方法に関するものである。   The present invention relates to an optical fiber characteristic measuring device and an optical fiber characteristic measuring method for measuring characteristics in a longitudinal direction of an optical fiber to be measured (distribution of polarization mode dispersion, distribution of magnitude of birefringence). The present invention relates to an optical fiber characteristic apparatus and an optical fiber characteristic measurement method that can measure the characteristic of an optical fiber.

近年、光通信では、伝送レートの高速化の要求が高まり10[Gbps]、40[Gbps]の伝送レートが実現され始めている。しかし、伝送媒体である光ファイバには分散(材料分散、導波路分散、多モード分散、偏波モード分散)が存在するため、この分散によって生じる波形劣化が障害の原因としてクローズアップされている。そして、光ファイバにシングルモード光ファイバを用いた場合、波長分散(材料分散と導波路分散を加算したもの)、偏波モード分散が問題になる。そのうち波長分散は、分散補償ファイバ(DCF:Dispersion Compensating Fiber)、シングルモード光ファイバの波長分散と逆の特性を持つ逆分散ファイバ(RDF:Reverse Dispersion Fiber)、波長分散補償器等によって比較的容易に補償が可能であり、これらを用いた解決方法も数多く提案され一般化している。   In recent years, in optical communication, there has been an increasing demand for higher transmission rates, and transmission rates of 10 [Gbps] and 40 [Gbps] have begun to be realized. However, since dispersion (material dispersion, waveguide dispersion, multimode dispersion, polarization mode dispersion) exists in an optical fiber that is a transmission medium, waveform degradation caused by this dispersion is highlighted as a cause of failure. When a single mode optical fiber is used as the optical fiber, chromatic dispersion (added material dispersion and waveguide dispersion) and polarization mode dispersion become problems. Among them, chromatic dispersion is relatively easy with dispersion compensating fiber (DCF), reverse dispersion fiber (RDF) with reverse characteristics of chromatic dispersion of single mode optical fiber, chromatic dispersion compensator, etc. Compensation is possible, and many solutions using these have been proposed and generalized.

それに対して、偏波モード分散は、原因が多様であり、例えば、製造時、敷設条件および使用環境等によって発生する光ファイバ自体の構造欠陥、コアの楕円化、曲げ、応力(ストレス)、ねじれ等が原因として挙げられる。これらにより光ファイバ中に複屈折が生じて偏波モード分散が発生するが、光ファイバ中にランダムに存在し、変動も激しい。そのため、受動部品による補償が困難となっている。   On the other hand, polarization mode dispersion has various causes. For example, structural defects in the optical fiber itself, core ovalization, bending, stress, and twist caused by manufacturing, installation conditions, and usage environment. And so on. As a result, birefringence occurs in the optical fiber and polarization mode dispersion occurs, but it exists randomly in the optical fiber, and the fluctuation is also severe. Therefore, it is difficult to compensate with passive components.

このように受動部品による補償が困難なため、既設した光ファイバにおいては致命的な不良部分を検出して撤去したり、製造過程で不良部分を検出して市場への流出を防いだり、あるいは光ファイバを製造する際に、偏波モード分散の測定結果を製造プロセスにフィードバックして不良部分の割合を低下することが要求される。   In this way, it is difficult to compensate by passive components, so in the existing optical fiber, fatal defective parts are detected and removed, or defective parts are detected in the manufacturing process to prevent outflow to the market, or When manufacturing a fiber, it is required to feed back the measurement result of polarization mode dispersion to the manufacturing process and reduce the proportion of defective parts.

そのため、不良部分の検出等を実現するために、光ファイバの長手方向の特性の測定が重要となり、光ファイバ特性測定装置が用いられる。特に、偏波モード分散値の特性を測定する光ファイバ特性装置は、偏波モード分散測定装置と呼ばれる。そして、この偏波モード分散を測定するには、例えば、偏波モード(偏波状態)が直交する光成分を所定の距離伝送し、伝送によって生じる光成分相互間の時間差Δτを求めればよい。   Therefore, in order to realize detection of a defective portion or the like, it is important to measure the characteristics in the longitudinal direction of the optical fiber, and an optical fiber characteristic measuring device is used. In particular, an optical fiber characteristic device that measures the characteristics of a polarization mode dispersion value is called a polarization mode dispersion measurement device. In order to measure the polarization mode dispersion, for example, light components having orthogonal polarization modes (polarization states) are transmitted at a predetermined distance, and a time difference Δτ between the light components generated by the transmission is obtained.

続いて、偏波モード分散の測定方法について、図6を用いて説明する。図6は、従来の偏波モード分散測定の原理を示した図である。図6において、光ファイバ100は、例えば、シングルモード光ファイバであり、被測定光ファイバである。そして、この光ファイバ100の一端(入力側)から角周波数ω1、ω2(ω1≠ω2であり、微小に異なる)のパルス光を入力し、光ファイバ100を透過したパルス光を他端(出力側)で受光する。なお、入力側では、パルス光の偏光状態を異なる偏光状態に偏光(例えば、基準軸に対して0°、45°)して光ファイバ100に入力する。 Next, a method for measuring polarization mode dispersion will be described with reference to FIG. FIG. 6 is a diagram illustrating the principle of conventional polarization mode dispersion measurement. In FIG. 6, an optical fiber 100 is, for example, a single mode optical fiber, which is a measured optical fiber. Then, pulse light having an angular frequency ω 1 , ω 21 ≠ ω 2 and slightly different) is input from one end (input side) of the optical fiber 100, and the pulse light transmitted through the optical fiber 100 is changed to other ones. Light is received at the end (output side). On the input side, the polarization state of the pulsed light is polarized into different polarization states (for example, 0 ° and 45 ° with respect to the reference axis) and input to the optical fiber 100.

そして、出力側では、光ファイバ100からのパルス光の偏光状態を4方位(例えば、0°、45°、90°、円偏光)に分離し、各方位の光強度を検出する。さらに、各方位の光強度からストークスベクトルの成分(S0、S1、S2、S3)を求める。また、光ファイバ100の伝送をミューラー行列R(3行3列の直交行列)によって表現されることは一般的であり、ストークスベクトルとミューラー行列は下記の式で示される。   On the output side, the polarization state of the pulsed light from the optical fiber 100 is separated into four directions (for example, 0 °, 45 °, 90 °, and circularly polarized light), and the light intensity in each direction is detected. Further, Stokes vector components (S0, S1, S2, S3) are obtained from the light intensity in each direction. Further, transmission of the optical fiber 100 is generally expressed by a Mueller matrix R (a 3 × 3 orthogonal matrix), and a Stokes vector and a Mueller matrix are expressed by the following equations.

Figure 2009031313
Figure 2009031313

また、光ファイバ100に入力される光強度は既知なので、入力側における入力光のストークスベクトルS0と、出力側で求めた出力光のストークスベクトルSより、ミューラー行列Rを求めることが出来る。もちろん、角周波数ω1、ω2ごとにミューラー行列Rを求める。 Since the light intensity input to the optical fiber 100 is known, the Mueller matrix R can be obtained from the Stokes vector S 0 of the input light on the input side and the Stokes vector S of the output light obtained on the output side. Of course, the Mueller matrix R is obtained for each of the angular frequencies ω 1 and ω 2 .

複屈折を有する光ファイバ100を透過した後の出力光のストークスベクトルSは、入力光の角周波数ω1、ω2の変化に対し、偏波モード分散の影響により変化する。この変化は、一般的に偏波分散ベクトルΩと名づけられた偏光状態空間内のベクトルを用いて表され、その偏波分散ベクトルΩの大きさは、偏波モード分散に等しい。従って、角周波数ω1、ω2の変化による出力光の偏光状態の変化は、偏波分散ベクトルΩ、ミューラー行列Rを用いて、下記の式(1)で示されるように周知の関係式である(例えば、非特許文献1参照。)。 The Stokes vector S of the output light after passing through the optical fiber 100 having birefringence changes due to the influence of polarization mode dispersion with respect to changes in the angular frequencies ω 1 and ω 2 of the input light. This change is represented by using a vector in a polarization state space generally named as a polarization dispersion vector Ω, and the magnitude of the polarization dispersion vector Ω is equal to the polarization mode dispersion. Therefore, the change in the polarization state of the output light due to the change in the angular frequencies ω1 and ω2 is a well-known relational expression as shown in the following formula (1) using the polarization dispersion vector Ω and the Mueller matrix R ( For example, refer nonpatent literature 1.).

Figure 2009031313
Figure 2009031313

また、Ω1、Ω2は、それぞれ異なる直線偏光成分であり、Ω3は、円偏光成分である。なお、出力光のストークスベクトルSは、(S0、S1,S2,S3)からなる4成分のベクトルであり、対応するミューラー行列Rも4行4列となる。しかし、S0成分は非偏光成分まで含めた光の全パワーであり、偏波モード分散は光パワーの変化を無視して、偏光成分の変動のみを扱えばよい。従って、ミューラー行列Rは、偏光成分を正規化(規格化)してポアンカレ球状に表現した際のストークスベクトルの変換を表す行列となり、S0成分を省略して3行3列となる。また、独立した4方位の偏光状態で測定を行い、S0成分を差し引いている。 Further, Ω 1 and Ω 2 are different linearly polarized light components, and Ω 3 is a circularly polarized light component. Note that the Stokes vector S of the output light is a four-component vector composed of (S0, S1, S2, S3), and the corresponding Mueller matrix R also has 4 rows and 4 columns. However, the S0 component is the total power of the light including the non-polarized component, and the polarization mode dispersion is negligible for the change of the optical power, and only the variation of the polarized component needs to be handled. Therefore, the Mueller matrix R is a matrix that represents the conversion of the Stokes vector when the polarization component is normalized (normalized) and expressed in a Poincare sphere, and the S0 component is omitted and becomes 3 rows and 3 columns. In addition, the measurement is performed in four independent azimuth polarization states, and the S0 component is subtracted.

しかし、図6に示す構成では、光ファイバ100の出力端のみの偏波モード分散しか測定できない。そこで、長手方向の分布を測定するためには周知技術である光時間領域後方散乱測定法(Optical time domain reflectometry:以下OTDRと略す)を用いた一方向測定がある(例えば、特許文献1、特許文献2、非特許文献2参照。)。このOTDRは、短パルス光を入力し、このパルス光に対する後方散乱光を測定することにより、光ファイバの特性を測定すると共に、後方散乱光が戻ってくるまでの時間により反射位置も測定する。   However, with the configuration shown in FIG. 6, only polarization mode dispersion of only the output end of the optical fiber 100 can be measured. Therefore, in order to measure the distribution in the longitudinal direction, there is a unidirectional measurement using a known technique, optical time domain reflectometry (hereinafter abbreviated as OTDR) (for example, Patent Document 1, Patent). Reference 2 and non-patent reference 2). The OTDR measures the characteristics of the optical fiber by inputting short pulse light and measuring the backscattered light with respect to the pulsed light, and also measures the reflection position according to the time until the backscattered light returns.

続いて、図7、図8に従来の光ファイバ特性測定装置の構成図を示す。ここで、図6と同一のものは同一符号を付し、説明を省略する。図7、図8において、光源部10は、波長可変光源11、パルス発生部12を有し、角周波数ω1、ω2のパルス光を出力する。波長可変光源11は連続光出力部であり、角周波数ω1、ω2を可変制御し、所望の角周波数ω1、ω2の連続光を出力する。パルス発生部12は、波長可変光源11からの連続光を所望のパルス幅のパルス光に変換して出力する。 Next, FIG. 7 and FIG. 8 are configuration diagrams of a conventional optical fiber characteristic measuring apparatus. Here, the same components as those in FIG. 7 and 8, the light source unit 10 includes a wavelength tunable light source 11 and a pulse generation unit 12, and outputs pulsed light having angular frequencies ω 1 and ω 2 . Variable wavelength light source 11 is a continuous light output unit, the angular frequency omega 1, the omega 2 is variably controlled to output the desired angular frequency omega 1, omega 2 of the continuous light. The pulse generator 12 converts the continuous light from the wavelength tunable light source 11 into pulse light having a desired pulse width and outputs it.

偏光可変部20は、光源部10からの各パルス光の偏光状態を任意に可変に偏光(少なくとも2つの異なる偏光状態に偏光する)し、出力する。方向性結合器30は、偏光可変部20で偏光されたパルス光を光ファイバ100に出力すると共に、光ファイバ100からの戻り光、すなわち後方散乱光が入力される。光検出部40は、方向性結合器30からの後方散乱光を、光源部10が出力するパルス光に同期して後方散乱光の光強度を少なくとも4方位の偏光状態に分離して検出し、角周波数ω1、ω2ごとに規格化ストークスベクトルを求める。 The polarization variable section 20 arbitrarily variably polarizes the polarization state of each pulsed light from the light source section 10 (polarizes it into at least two different polarization states) and outputs it. The directional coupler 30 outputs the pulsed light polarized by the polarization variable unit 20 to the optical fiber 100 and the return light from the optical fiber 100, that is, the backscattered light. The light detection unit 40 detects the backscattered light from the directional coupler 30 by separating the light intensity of the backscattered light into at least four azimuth polarization states in synchronization with the pulsed light output from the light source unit 10, A normalized Stokes vector is obtained for each of the angular frequencies ω 1 and ω 2 .

演算部50は、行列演算手段51、偏波分散ベクトル演算手段52、直線偏光演算手段53、分散値演算手段54を有し、光検出部40が求めたストークスベクトルに基づいて後方散乱光による偏波分散ベクトルΩBを算出し、これを用いて単方向の偏波分散ベクトルΩの直線偏光成分を求め、さらに偏波モード分散を求める。 The calculation unit 50 includes a matrix calculation unit 51, a polarization dispersion vector calculation unit 52, a linear polarization calculation unit 53, and a dispersion value calculation unit 54. Based on the Stokes vector obtained by the light detection unit 40, the calculation unit 50 generates a deviation due to backscattered light. A wave dispersion vector Ω B is calculated, and using this, a linearly polarized component of the unidirectional polarization dispersion vector Ω is obtained, and further, polarization mode dispersion is obtained.

行列演算手段51は、角周波数ω1、ω2ごとに規格化ストークスベクトルからミューラー行列を求める。偏波分散ベクトル演算手段52は、行列演算手段51が求めたミューラー行列から、角周波数における後方散乱光による偏波分散ベクトルΩBを求める。直線偏光演算手段53は、偏波分散ベクトル演算手段52が求めた後方散乱光による偏波分散ベクトルΩBから、単方向の偏波分散ベクトルΩの直線偏光成分(Ω1、Ω2)の大きさを求める。分散値演算手段53は、直線偏光成分の大きさから偏波モード分散値を求める。 The matrix calculation means 51 obtains a Mueller matrix from the normalized Stokes vector for each of the angular frequencies ω 1 and ω 2 . The polarization dispersion vector computing means 52 obtains the polarization dispersion vector Ω B due to the backscattered light at the angular frequency from the Mueller matrix obtained by the matrix computing means 51. The linear polarization calculation means 53 is the magnitude of the linear polarization component (Ω 1 , Ω 2 ) of the unidirectional polarization dispersion vector Ω from the polarization dispersion vector Ω B by the backscattered light obtained by the polarization dispersion vector calculation means 52. I ask for it. The dispersion value calculation means 53 obtains a polarization mode dispersion value from the magnitude of the linearly polarized light component.

制御部60は、光源部10にパルス光の角周波数ω1、ω2、パルス幅、パルス間隔の指示、偏光可変部20に偏光状態の指示、光検出部40に検出する偏光状態の指示およびパルス光との同期、演算部50に演算の指示を行う。 The control unit 60 instructs the light source unit 10 to indicate the angular frequencies ω 1 and ω 2 of the pulsed light, the pulse width and the pulse interval, instructs the polarization variable unit 20 to indicate the polarization state, and instructs the light detection unit 40 to indicate the polarization state to be detected. Synchronizes with the pulsed light, and instructs the calculation unit 50 to calculate.

このような装置の動作を説明する。
制御部60が、波長可変光源11に角周波数ω1で連続光を出力させ、パルス発生部12に所望のパルス幅、パルス間隔でパルス光を出力させる。さらに、制御部60が、偏光可変部20にパルス光の偏光状態を、例えば、0°にして方向性結合器30を介して、被測定光ファイバ100に出力させる。
The operation of such an apparatus will be described.
The control unit 60 causes the wavelength variable light source 11 to output continuous light at an angular frequency ω 1 and causes the pulse generation unit 12 to output pulsed light with a desired pulse width and pulse interval. Further, the control unit 60 causes the polarization variable unit 20 to change the polarization state of the pulsed light to, for example, 0 ° and output the measured optical fiber 100 via the directional coupler 30.

そして、被測定光ファイバ100からの戻り光である後方散乱光が、方向性結合器30を介して、光検出部40に入力される。光検出部40が、制御部60からの指示により4方位(例えば、0°、45°、90°、円偏光)の光強度を検出する。   Then, backscattered light that is return light from the optical fiber 100 to be measured is input to the light detection unit 40 via the directional coupler 30. The light detection unit 40 detects the light intensity in four directions (for example, 0 °, 45 °, 90 °, circularly polarized light) according to an instruction from the control unit 60.

同様にして、制御部60の指示により、角周波数ω1で偏光状態が45°、角周波数ω2で偏光状態0°、45°それぞれに対して、4方位の光強度を検出する。そして、光検出部40が、角周波数ω1、ω2ごとにストークスベクトルSBを求める。 Similarly, in accordance with an instruction from the control section 60, the polarization state 45 ° at the angular frequency omega 1, the polarization state 0 ° at the angular frequency omega 2, with respect to 45 °, respectively, for detecting the light intensity of the four directions. Then, the light detection unit 40 obtains a Stokes vector S B for each of the angular frequencies ω 1 and ω 2 .

そして、ストーベクトルSBが求まると、制御部60が演算部50に偏波モード分散の演算を指示する。これにより、演算部50がストークスベクトルSBを光検出部40から読み出し、行列演算手段51が、ストークスベクトルSBから後方散乱光によるミューラー行列RBを求める。 When the stove vector S B is obtained, the control unit 60 instructs the calculation unit 50 to calculate the polarization mode dispersion. Accordingly, the arithmetic unit 50 reads out the Stokes vector S B from the light detection unit 40, the matrix calculating unit 51 calculates the Mueller matrix R B of the back scattered light from the Stokes vector S B.

そして、偏波分散ベクトル演算手段52が、ミューラー行列RBから後方散乱光による偏波分散ベクトルΩBを求める。すなわち、被測定光ファイバ100からの後方散乱光の光強度を測定した場合、ミューラー行列RB、ストークスベクトルSBより式(1)と同様に下記の式(2)の関係がある。 The polarization dispersion vector calculating unit 52 calculates the polarization dispersion vector Omega B by back scattered light from the Mueller matrix R B. That is, a relationship of when measuring the light intensity of the backscattered light from the measured optical fiber 100, the Mueller matrix R B, similarly the following formula in the formula (1) from Stokes vector S B (2).

Figure 2009031313
Figure 2009031313

後方散乱光による偏波分散ベクトルΩBを表す偏波分散行列ΩBとすれば、式(1)、式(2)より下記の式(3)を得る。 If the polarization dispersion matrix Ω B representing the polarization dispersion vector Ω B by the backscattered light is used, the following equation (3) is obtained from the equations (1) and (2).

Figure 2009031313
Figure 2009031313

このように偏波分散ベクトル演算手段52が、偏波分散ベクトルΩBを求める。
さらに直線偏光演算手段53が、単方向の偏波分散ベクトルΩの直線偏光成分の大きさを求める。すなわち、ミューラー行列Rと後方散乱光によるミューラー行列RBの関係は、行列Mを用いて、下記の式(4)によって表されることは一般的に周知である。
In this way, the polarization dispersion vector calculation means 52 obtains the polarization dispersion vector Ω B.
Further, the linear polarization calculation means 53 obtains the magnitude of the linear polarization component of the unidirectional polarization dispersion vector Ω. That is, the relationship of the Mueller matrix R B by Mueller matrix R and backscattered light, using the matrix M, it is generally known that represented by the following formula (4).

Figure 2009031313
Figure 2009031313

よって、式(4)を式(3)に代入することで。後方散乱光の偏光分散ベクトルΩB、単方向のミューラー行列Rと単方向の偏波分散ベクトルΩの直線偏光成分ベクトルΩLは、下記の式(5)の関係式となる。 Therefore, by substituting equation (4) into equation (3). The polarization dispersion vector Ω B of the backscattered light, the linear polarization component vector Ω L of the unidirectional Mueller matrix R and the unidirectional polarization dispersion vector Ω is expressed by the following equation (5).

Figure 2009031313
Figure 2009031313

これによって、後方散乱光による偏波分散ベクトルΩBの大きさ(ΔτB)を求める場合、行列M、ミューラー行列Rは直交行列なので、式(5)の右辺の、MR(転置行列)はベクトルの大きさを変えない。よって、下記の式となる。 Thus, when obtaining the magnitude (Δτ B ) of the polarization dispersion vector Ω B due to the backscattered light, since the matrix M and the Mueller matrix R are orthogonal matrices, the MR (transpose matrix) on the right side of the equation (5) is a vector. Does not change the size. Therefore, the following equation is obtained.

Figure 2009031313
Figure 2009031313

このように直線偏光演算手段53が、単方向の偏波分散ベクトルΩの直線偏光成分(Ω1、Ω2)の大きさを求める。さらに、偏波分散ベクトルΩの各成分Ω1〜Ω3の分布は、ガウス分布であるという統計的仮定を置くと後方散乱光による偏波分散ベクトルΩBの大きさ(ΔτB)と求める偏波モード分散である偏波分散ベクトルΩの大きさ(Δτ)との関係は、下記の式で表される。 In this manner, the linear polarization calculation means 53 obtains the magnitude of the linear polarization components (Ω 1 , Ω 2 ) of the unidirectional polarization dispersion vector Ω. Furthermore, the distribution of each component Ω 1 to Ω 3 of the polarization dispersion vector Ω is assumed to be a Gaussian distribution, and the magnitude (Δτ B ) of the polarization dispersion vector Ω B due to the backscattered light is calculated. The relationship with the magnitude (Δτ) of the polarization dispersion vector Ω, which is wave mode dispersion, is expressed by the following equation.

Figure 2009031313
Figure 2009031313

なお、<ΔτB>は、様々な条件下で多数回測定した値の統計的平均値である。
従って、分散値演算手段54が、後方散乱光より得られた偏波分散ベクトルΩBから偏波モード分散の値を求める(例えば、非特許文献3参照)。
Note that <Δτ B > is a statistical average value of values measured many times under various conditions.
Therefore, the dispersion value calculation means 54 obtains the polarization mode dispersion value from the polarization dispersion vector Ω B obtained from the backscattered light (see, for example, Non-Patent Document 3).

G.J.Foschini,C.D.Poole,「Statistical theory of polarization dispersion in single mode fibers」,JOURNAL OF LIGHTWAVE TECHNOLOGY,(米国),Laser & Electro-Optics Society(LEOS),1991年11月,vol.9,(No.11),pp.1439-1456GJFoschini, CDPoole, “Statistical theory of polarization dispersion in single mode fibers”, JOURNAL OF LIGHTWAVE TECHNOLOGY, (USA), Laser & Electro-Optics Society (LEOS), November 1991, vol.9, (No.11 ), Pp.1439-1456 A.J.Rogers,「Polarization optical time domain reflectometry」,Electronics letters,(英国),The Institution of Electrical Engineers(IEE),1980年,Vol.16、No.13、pp.489-490A.J.Rogers, “Polarization optical time domain reflectometry”, Electronics letters, (UK), The Institution of Electrical Engineers (IEE), 1980, Vol. 16, No. 13, pp. 489-490 Fabrizio Corsi、Andrea Galtarossa、Luca Palmieri,「Polarization Mode Dispersion Characterization of Single-Mode Optical Fiber Using Backscattering Technique」,JOURNAL OF LIGHTWAVE TECHNOLOGY,(米国), Laser & Electro-Optics Society(LEOS),1998年10月,VOL.16,No.10,pp.1832-1843Fabrizio Corsi, Andrea Galtarossa, Luca Palmieri, “Polarization Mode Dispersion Characterization of Single-Mode Optical Fiber Using Backscattering Technique”, JOURNAL OF LIGHTWAVE TECHNOLOGY, (USA), Laser & Electro-Optics Society (LEOS), October 1998, VOL .16, No.10, pp.1832-1843 特開2003−106942号公報(段落番号0024−0066、第1−9図)JP 2003-106942 (paragraph numbers 0024-0066, FIG. 1-9) 特表2000−510246号公報Special Table 2000-510246

このように、2波長(角周波数ω1、ω2)のパルス光に対する後方散乱光から、偏波分散ベクトルΩBの大きさ(ΔτB)を求め、さらに偏波モード分散(Δτ)の測定を行う。 As described above, the magnitude (Δτ B ) of the polarization dispersion vector Ω B is obtained from the backscattered light with respect to the pulse light of two wavelengths (angular frequencies ω 1 , ω 2 ), and the polarization mode dispersion (Δτ) is measured. I do.

しかしながら、図7、図8に示す装置では、J.N.Ross,「Birefringence measurement in optical fibers by polarization-optical time-domain reflectometry」,Applied Optics,(米国),Optical Society of America(OSA),1982年10月,Vol.21、No.19、pp.3489−3495にも示されているように、被測定光ファイバ100内の複屈折の円偏光成分を簡単かつ直接検出できないという問題がある。式(5)からも明らかなように、直線偏光成分(Ω1、Ω2)の効果のみとなり、円偏光成分Ω3の効果が消去されてしまう。従って、後方散乱光による偏波分散ベクトルΩBの大きさ(ΔτB)と偏波モード分散(Δτ)を比較すると下記の式となる。 However, in the apparatus shown in FIGS. 7 and 8, JNRoss, “Birefringence measurement in optical fibers by polarization-optical time-domain reflectometry”, Applied Optics, (USA), Optical Society of America (OSA), October 1982, As shown in Vol. 21, No. 19, pp. 3489-3495, there is a problem that the birefringent circularly polarized component in the optical fiber 100 to be measured cannot be easily and directly detected. As apparent from the equation (5), only the effect of the linearly polarized light components (Ω 1 , Ω 2 ) is obtained, and the effect of the circularly polarized light component Ω 3 is eliminated. Therefore, when the magnitude of the polarization dispersion vector Ω B (Δτ B ) due to the backscattered light and the polarization mode dispersion (Δτ) are compared, the following equation is obtained.

Figure 2009031313
Figure 2009031313

当然、後方散乱光から得られる偏波分散ベクトルΩBには、単方向における偏波分散ベクトルΩの直線偏光成分(Ω1、Ω2)のみしか含まれていない。また、OTDRが被測定光ファイバ100を往復した光の測定を行っているが、単純にΔτ=ΔτB/2として求めると、精度良く偏波モード分散(Δτ)を求めることができない。例えば、被測定ファイバ100のねじり等によって、円偏光成分Ω3が大きくなると、偏波モード分散(Δτ)が小さめの値となる可能性がある。 Naturally, the polarization dispersion vector Ω B obtained from the backscattered light includes only the linearly polarized components (Ω 1 , Ω 2 ) of the polarization dispersion vector Ω in a single direction. Further, although the OTDR measures the light traveling back and forth through the optical fiber 100 to be measured, if it is simply obtained as Δτ = Δτ B / 2, the polarization mode dispersion (Δτ) cannot be obtained with high accuracy. For example, if the circularly polarized light component Ω 3 increases due to torsion of the measured fiber 100 or the like, the polarization mode dispersion (Δτ) may become a smaller value.

また、上記の式で示したように、後方散乱光により得られた偏波分散ベクトルΩBの大きさの平均<ΔτB>に0.64(≒2/π、この数値は、例えば、F.Curti、B.Daino、Q.Mao、F.Matera、C.G.Someda,「Concatenation of Polarization Dispersion in Single-Mode Fibres」,Electronics letters,(英国),The Institution of Electrical Engineers(IEE),1989年2月,Vol.25、No.4、pp.290-292に記載されている)を掛けて求めるのが一般的だが、これは多くの数値シミュレーションや統計から得られた値であるため、全ての被測定光ファイバ100に対して有効とはいえず、精度良く偏波モード分散、すなわち光ファイバの特性を求めることが難しいという問題があった。 Further, as shown in the above formula, the average <Δτ B > of the polarization dispersion vector Ω B obtained by the backscattered light is 0.64 (≈2 / π, and this value is, for example, F Curti, B.Daino, Q.Mao, F.Matera, CGSomeda, “Concatenation of Polarization Dispersion in Single-Mode Fibers”, Electronics letters, (UK), The Institution of Electrical Engineers (IEE), February 1989, Vol.25, No.4, pp.290-292) is generally used, but since this is a value obtained from many numerical simulations and statistics, all measured values are measured. There is a problem that it is not effective for the optical fiber 100, and it is difficult to accurately obtain polarization mode dispersion, that is, characteristics of the optical fiber.

そこで本発明の目的は、被測定光ファイバの特性を精度良く測定する光ファイバ特性測定装置および光ファイバ特性測定方法を実現することにある。   Accordingly, an object of the present invention is to realize an optical fiber characteristic measuring apparatus and an optical fiber characteristic measuring method for accurately measuring characteristics of an optical fiber to be measured.

請求項記載の発明は、
パルス光を被測定光ファイバに入力し、このパルス光に対する被測定光ファイバからの後方散乱光を光検出部が検出してストークスベクトルを求め、長手方向における複屈折を測定する光ファイバ特性測定装置において、
前記パルス光を出力する光源部と、
少なくとも3箇所の位置による前記ストークスベクトルに基づいて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求め、複屈折の大きさを求める複屈折演算部と
を設けたことを特徴とするものである。
The invention described in claim 1
An optical fiber characteristic measuring device that inputs pulsed light into the optical fiber to be measured, detects the backscattered light from the optical fiber to be measured with respect to the pulsed light, obtains the Stokes vector, and measures the birefringence in the longitudinal direction In
A light source unit that outputs the pulsed light;
A birefringence calculation unit is provided for determining the magnitude of the birefringence by obtaining the magnitude of the linearly polarized component and the magnitude of the circularly polarized component of the birefringence vector based on the Stokes vectors obtained from at least three positions. To do.

請求項記載の発明は、
被測定光ファイバの長手方向における複屈折の大きさを測定する光ファイバ特性測定装置において、
パルス光を出力する光源部と、
この光源部から出力された各パルス光を、少なくとも2つの異なる偏光状態に偏光して出力する偏光可変部と、
この偏光可変部で偏光されたパルス光を前記被測定光ファイバに出力し、この出力したパルス光に対する後方散乱光が入力される方向性結合器と、
この方向性結合器から前記被測定光ファイバの長手方向に対して少なくとも3箇所の位置からの後方散乱光の光強度を検出し、前記パルス光に同期して、偏波状態がそれぞれ異なる少なくとも4方位の光強度を検出し、規格化ストークスベクトルを求める光検出部と、
この光検出部が求めた規格化ストークスベクトルに基づいて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求め、複屈折の大きさを求める複屈折演算部と
を設けたことを特徴とするものである。
The invention according to claim 2
In an optical fiber characteristic measuring apparatus that measures the magnitude of birefringence in the longitudinal direction of an optical fiber to be measured,
A light source unit that outputs pulsed light;
A polarization variable section that polarizes and outputs each pulsed light output from the light source section into at least two different polarization states;
A directional coupler that outputs the pulsed light polarized by the polarization variable unit to the optical fiber to be measured, and receives backscattered light with respect to the output pulsed light;
The light intensity of the backscattered light from at least three positions with respect to the longitudinal direction of the optical fiber to be measured is detected from the directional coupler, and at least four different polarization states are synchronized with the pulsed light. A light detector that detects the light intensity of the azimuth and obtains a normalized Stokes vector;
A birefringence calculation unit for obtaining the magnitude of the birefringence by obtaining the magnitude of the linearly polarized component and the magnitude of the circularly polarized component of the birefringence vector based on the normalized Stokes vector obtained by the light detection unit is provided. It is a feature.

請求項記載の発明は、請求項1または2記載の発明において、
光源部は、
連続光を出力する連続光出力部と、
この連続光出力部から連続光の所望のパルス幅に変換するパルス発生部と
を有することを特徴とするものである。
The invention according to claim 3 is the invention according to claim 1 or 2 ,
The light source
A continuous light output unit that outputs continuous light;
And a pulse generation unit for converting the continuous light output unit to a desired pulse width of continuous light.

請求項記載の発明は、請求項1〜3のいずれかに記載の発明において、
複屈折演算部は、
各位置ごとに前記規格化ストークスベクトルからミューラー行列を求める行列演算手段と、
前記行列演算手段が求めたミューラー行列から、各位置によって後方散乱光による複屈折ベクトルを求める複屈折ベクトル演算手段と、
この複屈折ベクトル演算手段が求めた後方散乱光による複屈折ベクトルから複屈折ベクトルの直線偏光成分の大きさを求める直線偏光演算手段と、
前記複屈折ベクトル演算手段が求めた後方散乱光による複屈折ベクトルの差分から複屈折ベクトルの円偏光成分の大きさを求める円偏光演算手段と、
この円偏光演算手段の円偏光成分の大きさと前記直線偏光演算手段の直線偏光成分の大きさとから複屈折の大きさを求める複屈折値演算手段と
を設けたことを特徴とするものである。
The invention according to claim 4 is the invention according to any one of claims 1 to 3 ,
Birefringence calculating unit,
Matrix computing means for obtaining a Mueller matrix from the normalized Stokes vector for each position;
From the Mueller matrix obtained by the matrix computing means, birefringence vector computing means for obtaining a birefringence vector due to backscattered light by each position;
Linear polarization calculation means for obtaining the magnitude of the linearly polarized light component of the birefringence vector from the birefringence vector by the backscattered light obtained by the birefringence vector calculation means;
Circular polarization calculation means for obtaining the size of the circularly polarized component of the birefringence vector from the difference of the birefringence vector due to the backscattered light obtained by the birefringence vector calculation means;
Birefringence value calculating means for obtaining the magnitude of birefringence from the size of the circularly polarized light component of the circularly polarized light calculating means and the size of the linearly polarized light component of the linearly polarized light calculating means is provided.

請求項記載の発明は、
被測定光ファイバの長手方向における複屈折を測定する光ファイバ特性測定方法において、
光源部がパルス光を出力する手順と、
この光源部から出力されたパルス光に対して少なくとも2つの異なる偏光状態に偏光して、前記被測定光ファイバに入力する手順と、
前記光源部が出力するパルス光に同期し、前記光ファイバに入力したパルス光に対する後方散乱光の光強度を、少なくとも4方位の偏光状態に分離して検出し、前記被測定光ファイバの長手方向に対して少なくとも3箇所の位置における規格化ストークスベクトルを求める手順と、
前記光検出部が求めた位置ごとの規格化ストークスベクトルに基づいて、複屈折ベクトルの直線偏光成分と円偏光成分とを求める手順と、
前記複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとから複屈折を求める手順と
を設けたことを特徴とするものである。
The invention according to claim 5
In the optical fiber characteristic measurement method for measuring the birefringence in the longitudinal direction of the optical fiber to be measured,
The light source unit outputs pulse light;
A procedure of polarizing the pulsed light output from the light source unit into at least two different polarization states and inputting the polarized light to the optical fiber to be measured;
In synchronization with the pulsed light output from the light source unit, the light intensity of the backscattered light with respect to the pulsed light input to the optical fiber is detected separately in at least four directions of polarization, and the longitudinal direction of the optical fiber to be measured A procedure for obtaining normalized Stokes vectors at least at three positions with respect to
A procedure for obtaining a linearly polarized component and a circularly polarized component of a birefringence vector based on the normalized Stokes vector for each position obtained by the light detection unit,
A procedure for obtaining birefringence from the magnitude of the linearly polarized light component and the magnitude of the circularly polarized light component of the birefringence vector is provided.

以上説明したことから明らかなように、本発明によれば次のような効果がある。
請求項1、3、4によれば、
光検出部が、少なくとも3種類の異なる位置のそれぞれからの後方散乱光から規格化ストークスベクトルを求める。そして演算部が、規格化ストークスベクトルに基づいて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求めるので、数値シミュレーションや統計から得られた結果を用いて、複屈折の大きさを演算する必要がない。これにより、精度良く複屈折の測定を行うことが出来る。
As is apparent from the above description, the present invention has the following effects.
According to claims 1, 3, and 4 ,
A light detection unit obtains a normalized Stokes vector from backscattered light from each of at least three different positions. The calculation unit, because on the basis of the normalized Stokes vector determining the magnitude of the size and circularly polarized light component of the linearly polarized light component of the birefringence vector, using the results obtained from numerical simulation and statistics, the magnitude of birefringence There is no need to calculate. Thereby, birefringence can be accurately measured.

請求項2〜4によれば、
光源部から出力されるパルス光に対して、少なくとも3種類の異なる位置のそれぞれからの後方散乱光を、検出部が少なくとも4方位の偏光状態に分離して検出し、規格化ストークスベクトルを求める。そして演算部が、規格化ストークスベクトルに基づいて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求めるので、数値シミュレーションや統計から得られた結果を用いて、複屈折を演算する必要がない。これにより、精度良く複屈折の測定を行うことが出来る。
According to claims 2 to 4 ,
With respect to the pulsed light output from the light source unit, the backscattered light from each of at least three different positions is detected and separated into at least four azimuth polarization states to obtain a normalized Stokes vector. Then, the calculation unit calculates the magnitude of the linearly polarized light component and the circularly polarized light component of the birefringence vector based on the normalized Stokes vector, so that the birefringence is calculated using the results obtained from numerical simulation and statistics. There is no need. Thereby, birefringence can be accurately measured.

請求項によれば、
光源部から出力されるパルス光に対して、少なくとも3種類の異なる位置のそれぞれからの後方散乱光を、少なくとも4方位の偏光状態に分離して検出し、規格化ストークスベクトルを求める。そして、規格化ストークスベクトルに基づいて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求めるので、数値シミュレーションや統計から得られた結果を用いて、複屈折を演算する必要がない。これにより、精度良く複屈折の測定を行うことが出来る。
According to claim 5,
For the pulsed light output from the light source unit, backscattered light from each of at least three different positions is separated and detected in at least four azimuth polarization states to obtain a normalized Stokes vector. Then, since the magnitude of the linearly polarized component and the magnitude of the circularly polarized component of the birefringence vector are obtained based on the normalized Stokes vector, it is not necessary to calculate birefringence using the results obtained from numerical simulation and statistics. . Thereby, birefringence can be accurately measured.

以下図面を用いて本発明の実施の形態を説明する。
[第1の実施例]
図1、図2は本発明の第1の実施例を示す構成図である。ここで、図7、図8と同一のものは同一符号を付し、説明を省略する。図1において、光源部10の代わりに光源部70が設けられる。また、演算部50の代わりに演算部80が設けられる。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
1 and 2 are block diagrams showing a first embodiment of the present invention. Here, the same components as those in FIGS. 7 and 8 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 1, a light source unit 70 is provided instead of the light source unit 10. Further, a calculation unit 80 is provided instead of the calculation unit 50.

光源部70は、波長可変光源71、パルス発生部72を有し、少なくとも3種類の異なる角周波数のパルス光、例えば、角周波数ω1、ω2、ω3(但し、ω1、ω2、ω3の角周波数はそれぞれ微小に異なり、角周波数間隔Δω)の3種類のパルス光を出力する。波長可変光源71は連続光出力部であり、角周波数ω1、ω2、ω3を可変制御し、所望の角周波数ω1、ω2、ω3の連続光を出力する。パルス発生部72は、波長可変光源71からの連続光を所望のパルス幅のパルス光に変換して、偏光可変部20に出力する。 Light source unit 70, the wavelength tunable light source 71 has a pulse generator 72, at least three different angular frequency of the pulsed light, for example, the angular frequencies ω 1, ω 2, ω 3 ( where, omega 1, omega 2, The angular frequency of ω 3 is slightly different from each other, and three types of pulsed light with an angular frequency interval Δω) are output. Variable wavelength light source 71 is a continuous light output unit, the angular frequency ω 1, ω 2, ω 3 were variably controlled, desired angular frequency omega 1, omega 2, and outputs the omega 3 continuous light. The pulse generator 72 converts the continuous light from the wavelength variable light source 71 into pulse light having a desired pulse width and outputs the pulse light to the polarization variable unit 20.

図2において、演算部80は、行列演算手段81、偏波分散ベクトル演算手段82、直線偏光演算手段83、円偏光演算手段84、分散値演算手段85を有し、光検出部40が求めたストークスベクトルに基づいて後方散乱光による偏波分散ベクトルΩBを算出し、これを用いて単方向の偏波分散ベクトルΩの直線偏光成分の大きさと円偏光成分の大きさとを求め、これらの大きさから偏波モード分散を求める。 In FIG. 2, the calculation unit 80 includes a matrix calculation unit 81, a polarization dispersion vector calculation unit 82, a linear polarization calculation unit 83, a circular polarization calculation unit 84, and a dispersion value calculation unit 85, which are obtained by the light detection unit 40. calculating the polarization dispersion vector Omega B by back scattered light on the basis of the Stokes vector, obtains the magnitude of the size and circularly polarized light component of the linearly polarized light component in a single direction of polarization dispersion vector Omega with this, these size Then, polarization mode dispersion is obtained.

行列演算手段81は、角周波数ω1、ω2、ω3ごとに規格化ストークスベクトルからミューラー行列を求める。偏波分散ベクトル演算手段82は、行列演算手段81が求めたミューラー行列から、角周波数によって後方散乱光による偏波分散ベクトルΩBを求める。直線偏光演算手段83は、偏波分散ベクトル演算手段82が求めた後方散乱光による偏波分散ベクトルΩBから、単方向の偏波分散ベクトルΩの直線偏光成分(Ω1、Ω2)の大きさを求める。円偏光演算手段84は、偏波分散ベクトル演算手段82が求めた後方散乱光による偏波分散ベクトルΩBの差分から単方向の偏波分散ベクトルΩの円偏光成分(Ω3)の大きさを求める。分散値演算手段85は、円偏光演算手段84の円偏光成分の大きさと直線偏光演算手段83の直線偏光成分の大きさとから偏波モード分散の値を求める。 The matrix calculation means 81 obtains a Mueller matrix from the normalized Stokes vector for each of the angular frequencies ω 1 , ω 2 , and ω 3 . Polarization dispersion vector calculating means 82, the Mueller matrix matrix calculating unit 81 is determined, determining the polarization dispersion vector Omega B by back scattered light by the angular frequency. The linearly polarized light calculating means 83 calculates the magnitude of the linearly polarized component (Ω 1 , Ω 2 ) of the unidirectional polarization dispersion vector Ω from the polarization dispersion vector Ω B by the backscattered light obtained by the polarization dispersion vector calculating means 82. I ask for it. The circular polarization calculation means 84 calculates the magnitude of the circular polarization component (Ω 3 ) of the unidirectional polarization dispersion vector Ω from the difference of the polarization dispersion vector Ω B by the backscattered light obtained by the polarization dispersion vector calculation means 82. Ask. The dispersion value calculation means 85 obtains the polarization mode dispersion value from the magnitude of the circular polarization component of the circular polarization calculation means 84 and the magnitude of the linear polarization component of the linear polarization calculation means 83.

このような装置の動作を説明する。
図3は、図1、図2に示す装置の動作を示したフローチャートである。
制御部60が、光源部70の波長可変光源71に角周波数ω1で連続光を出力させ、パルス発生部72に所望のパルス幅、パルス間隔でパルス光を出力させる(S10)。さらに、制御部60が、偏光可変部20にパルス光の偏光状態を、例えば、0°にして方向性結合器30を介して、被測定光ファイバ100に出力させる(S11)。
The operation of such an apparatus will be described.
FIG. 3 is a flowchart showing the operation of the apparatus shown in FIGS.
The control unit 60 causes the variable wavelength light source 71 of the light source unit 70 to output continuous light at the angular frequency ω 1 and causes the pulse generation unit 72 to output pulsed light with a desired pulse width and pulse interval (S10). Further, the control unit 60 causes the polarization variable unit 20 to change the polarization state of the pulsed light to, for example, 0 ° and output it to the measured optical fiber 100 via the directional coupler 30 (S11).

そして、被測定光ファイバ100からの戻り光である後方散乱光が、方向性結合器30を介して、光検出部40に入力される。光検出部40が、制御部60からの指示により、光源部70のパルス光に同期して、4方位(例えば、0°、45°、90°、円偏光)の光強度を検出する。例えば、1/2波長板等の偏光素子、1/4波長板等の位相素子、受光素子を組み合わせて後方散乱光を4方位の偏光状態に分離して、光強度を検出する。(S12)。   Then, backscattered light that is return light from the optical fiber 100 to be measured is input to the light detection unit 40 via the directional coupler 30. The light detection unit 40 detects the light intensity in four directions (for example, 0 °, 45 °, 90 °, circularly polarized light) in synchronization with the pulsed light from the light source unit 70 according to an instruction from the control unit 60. For example, the light intensity is detected by separating the backscattered light into four azimuth polarization states by combining a polarizing element such as a half-wave plate, a phase element such as a quarter-wave plate, and a light receiving element. (S12).

そして、一つの角周波数ω1に対して、一つの偏光状態0°しか測定していない場合、制御部60が、偏光可変部20にパルス光の偏光状態を、例えば、45°にして方向性結合器30を介して、被測定光ファイバ100に出力させ光強度の検出を行わせる(S13、S11、S12)。 When only one polarization state 0 ° is measured with respect to one angular frequency ω 1 , the control unit 60 sets the polarization state of the pulsed light to 45 °, for example, to the polarization variable unit 20 and directivity is set. The light intensity is detected by outputting to the optical fiber 100 to be measured through the coupler 30 (S13, S11, S12).

また、一つの角周波数ω1に対して、異なる偏光状態0°、45°の検出が終了した場合、未検出の角周波数ω2、ω3に対しても、同様に光強度の検出、測定を行わせる(S14、S11〜S13)。つまり、被測定光ファイバ100に入力されるパルス光の種類は、角周波数ω1で偏光状態0°、45°、角周波数ω2で偏光状態0°、45°、角周波数ω3で偏光状態0°、45°の6種となる。 Further, when the detection of different polarization states 0 ° and 45 ° is completed for one angular frequency ω 1 , the light intensity is similarly detected and measured for the undetected angular frequencies ω 2 and ω 3 . (S14, S11 to S13). That is, the types of pulsed light input to the optical fiber 100 to be measured are the polarization states of 0 ° and 45 ° at the angular frequency ω 1 , the polarization states of 0 ° and 45 ° at the angular frequency ω 2 , and the polarization state at the angular frequency ω 3. There are six types of 0 ° and 45 °.

さらに、、全ての角周波数ω1〜ω3の光強度の検出が終了した場合、光検出部40が、角周波数ω1、ω2、ω3ごとにストークスベクトルSBを求める(S14、S15)。 Furthermore ,, if the detection of the light intensity of all the angular frequency ω 13 ended, the light detector 40, the angular frequency omega 1, omega 2, determine the Stokes vector S B per omega 3 (S14, S15 ).

そして、ストーベクトルSBが求まると、制御部60が演算部80に偏波モード分散の演算を指示する。これにより、演算部80がストークスベクトルSBを光検出部40から読み出し、行列演算手段81が、行列演算手段51と同様にストークスベクトルSBから後方散乱光によるミューラー行列RBを求める(S16)。なお、光検出器40が角周波数ω1、ω2、ω3のストークスベクトルSBを全て求めた後に、行列演算手段81がそれぞれのミューラー行列RBを求めているが、角周波数ω1、ω2、ω3のストークスベクトルSBが求まるごとに、行列演算手段81がミューラー行列RBを求めてよい。 When the stove vector S B is obtained, the control unit 60 instructs the calculation unit 80 to calculate the polarization mode dispersion. Accordingly, the arithmetic unit 80 reads the Stokes vector S B from the light detection unit 40, the matrix calculating unit 81 calculates the Mueller matrix R B of the back scattered light from the Stokes vector S B as well as the matrix calculating unit 51 (S16) . The optical detector 40 is the angular frequency omega 1, omega 2, after obtaining all omega 3 Stokes vector S B, the matrix is calculating unit 81 is seeking each Mueller matrix R B, the angular frequency omega 1, Each time the Stokes vectors S B of ω 2 and ω 3 are obtained, the matrix calculation means 81 may obtain the Mueller matrix R B.

そして、偏波分散ベクトル演算手段82が、偏波分散ベクトル演算手段52と同様に、ミューラー行列RBから角周波数ω1〜ω3によって後方散乱光による偏波分散ベクトルΩBを求める。例えば、ω1、ω2の組み合わせ、ω2、ω3の組み合わせでそれぞれを求める。(S17)。さらに、直線偏光演算手段83が、直線偏光演算手段53と同様に、単方向の偏波分散ベクトルΩの直線偏光成分(Ω1、Ω2)の大きさを求める(S18)。 Then, similarly to the polarization dispersion vector calculation means 52, the polarization dispersion vector calculation means 82 obtains the polarization dispersion vector Ω B due to the backscattered light from the Mueller matrix R B by the angular frequencies ω1 to ω3. For example, each is obtained by a combination of ω 1 and ω 2 and a combination of ω 2 and ω 3 . (S17). Further, like the linear polarization calculation means 53, the linear polarization calculation means 83 obtains the magnitude of the linear polarization components (Ω 1 , Ω 2 ) of the unidirectional polarization dispersion vector Ω (S18).

そして、円偏光演算手段84が、偏波分散ベクトル演算手段82が求めた後方散乱光による偏波分散ベクトルΩBの差分から単方向の偏波分散ベクトルΩの円偏光成分(Ω3)の大きさを求める。すなわち、OTDRを用いた一方向による一般的な測定で得られた後方散乱光による偏波分散ベクトルΩBは、前述したように式(5)で表されるが、この式(5)を微分すると下記の式で表される。 Then, the circular polarization calculation means 84 calculates the magnitude of the circular polarization component (Ω 3 ) of the unidirectional polarization dispersion vector Ω from the difference of the polarization dispersion vector Ω B by the backscattered light obtained by the polarization dispersion vector calculation means 82. I ask for it. That is, the polarization dispersion vector Omega B by backscattered light obtained in the general measurement by way of using the OTDR is represented by the formula (5) as described above, differentiating the equation (5) Then, it is expressed by the following formula.

Figure 2009031313
Figure 2009031313

また、上記の式に対し、ωの微小な間隔に対して、単方向の偏波分散ベクトルΩまたは直線偏光成分ベクトルΩLは一定であると仮定できる。よって、下記の式となる。 In addition, for the above equation, it can be assumed that the unidirectional polarization dispersion vector Ω or the linear polarization component vector Ω L is constant for a small interval of ω. Therefore, the following equation is obtained.

Figure 2009031313
Figure 2009031313

ゆえに、下記の式(6)の関係式を得られる。   Therefore, the following relational expression (6) can be obtained.

Figure 2009031313
Figure 2009031313

一方、偏波分散ベクトルΩを表す偏波分散行列Ωとミューラー行列Rとは式(1)で示され、そしてミューラー行列Rは直交行列なので、下記の式となる。   On the other hand, the polarization dispersion matrix Ω representing the polarization dispersion vector Ω and the Mueller matrix R are expressed by the equation (1), and the Mueller matrix R is an orthogonal matrix, so the following equation is obtained.

Figure 2009031313
Figure 2009031313

また、偏波分散行列Ωは、反対対称行列であることから、上記の式は下記の式となる。   Further, since the polarization dispersion matrix Ω is an opposite symmetric matrix, the above equation becomes the following equation.

Figure 2009031313
Figure 2009031313

Figure 2009031313
Figure 2009031313

と書ける。従って式(6)は、偏波分散ベクトルΩの円偏光成分ベクトルΩCより、下記の式で書ける。 Can be written. Therefore, equation (6) can be written by the following equation from the circularly polarized component vector Ω C of the polarization dispersion vector Ω.

Figure 2009031313
Figure 2009031313

Figure 2009031313
Figure 2009031313

よって、式(5)をふまえると、明らかに下記の式と表される。   Therefore, when the equation (5) is taken into account, the following equation is clearly expressed.

Figure 2009031313
Figure 2009031313

以上より、偏波分散ベクトルΩBにより下記の式で表される。 From the above, the polarization dispersion vector Ω B is expressed by the following equation.

Figure 2009031313
Figure 2009031313

すなわち、円偏光成分の大きさ|Ω3|は、下記の式(7)で表される。 That is, the magnitude | Ω 3 | of the circularly polarized light component is expressed by the following formula (7).

Figure 2009031313
Figure 2009031313

以上のように円偏光演算手段84が、偏波分散ベクトル演算手段82が求めた偏波分散ベクトルΩBを更に微分し、微分した大きさを偏波分散ベクトルΩBの大きさで除算することにより、偏波モード分散のうちの円偏光成分による大きさを求める(S19)。そして、分散値演算手段85が、円偏光演算手段84の円偏光成分の大きさと直線偏光演算手段83の直線偏光成分の大きさとから偏波モード分散(Δτ)の値を求める(S20)。さらに、被測定光ファイバ100の長手方向の各位置で、偏波モード分散を求め、被測定光ファイバ100の長手方向の偏波モード分散の分布を求めてもよい。 As described above, the circular polarization calculation means 84 further differentiates the polarization dispersion vector Ω B obtained by the polarization dispersion vector calculation means 82, and divides the differentiated magnitude by the magnitude of the polarization dispersion vector Ω B. Thus, the magnitude of the circular polarization component in the polarization mode dispersion is obtained (S19). Then, the dispersion value calculation means 85 obtains the value of the polarization mode dispersion (Δτ) from the magnitude of the circular polarization component of the circular polarization calculation means 84 and the magnitude of the linear polarization component of the linear polarization calculation means 83 (S20). Furthermore, the polarization mode dispersion may be obtained at each position in the longitudinal direction of the optical fiber 100 to be measured, and the distribution of the polarization mode dispersion in the longitudinal direction of the optical fiber 100 to be measured may be obtained.

このように、光源部70から出力される角周波数ω1〜ω3のパルス光それぞれに対する後方散乱光を、検出部40が少なくとも4方位の偏光状態に分離して検出し、規格化ストークスベクトルを求める。そして演算部80が、ストークスベクトルに基づいて偏波分散ベクトルΩの直線偏光成分の大きさと円偏光成分の大きさとを求めるので、数値シミュレーションや統計から得られた結果を用いて、偏波モード分散を演算する必要がない。これにより、精度良く偏波モード分散の測定を行うことが出来る。 As described above, the detection unit 40 detects the backscattered light with respect to each of the pulse lights having the angular frequencies ω 1 to ω 3 output from the light source unit 70 and separates them into polarization states in at least four directions, and calculates the normalized Stokes vector. Ask. Then, since the calculation unit 80 obtains the magnitude of the linearly polarized component and the magnitude of the circularly polarized component of the polarization dispersion vector Ω based on the Stokes vector, the polarization mode dispersion is obtained using the results obtained from numerical simulation and statistics. There is no need to calculate. Thereby, the polarization mode dispersion can be accurately measured.

[第2の実施例]
図1、図2に示す装置において、偏波モード分散の測定を行う実施例を説明したが、偏波モード分散は、光ファイバ中の複屈折によって生ずる。すなわち、被測定光ファイバ100の長手方向における特性の一つである複屈折の大きさの測定も重要であり、図4は本発明の第2の実施例を示す構成図である。ここで、図1と同一のものは同一符号を付し、説明を省略する。
[Second Embodiment]
In the apparatus shown in FIG. 1 and FIG. 2, the embodiment for measuring the polarization mode dispersion has been described. However, the polarization mode dispersion is caused by birefringence in the optical fiber. That is, measurement of the magnitude of birefringence, which is one of the characteristics in the longitudinal direction of the optical fiber 100 to be measured, is also important, and FIG. 4 is a configuration diagram showing a second embodiment of the present invention. Here, the same components as those in FIG.

図4において、複屈折演算部90が新たに設けられ、複屈折演算部90は、光検出部40が、被測定光ファイバ100の長手方向に対して、少なくとも3箇所の位置z1、z2、z3(但し、z1、z2、z3の位置はそれぞれ微小に異なり、微小位置間隔Δz)からの光強度を検出し、位置ごとに求めた規格化ストークスベクトルに基づいて、後方散乱光による複屈折ベクトルを算出し、これを用いて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求め、これらの大きさから被測定光ファイバ100の長手方向の複屈折の大きさを求める。   In FIG. 4, a birefringence calculation unit 90 is newly provided, and the birefringence calculation unit 90 includes at least three positions z1, z2, and z3 with respect to the longitudinal direction of the optical fiber 100 to be measured. (However, the positions of z1, z2, and z3 are slightly different, and the light intensity from the minute position interval Δz) is detected, and the birefringence vector due to the backscattered light is calculated based on the normalized Stokes vector obtained for each position. The magnitude of the linearly polarized light component and the magnitude of the circularly polarized light component of the birefringence vector are obtained by using this, and the magnitude of the birefringence in the longitudinal direction of the measured optical fiber 100 is obtained from these magnitudes.

また、図5に複屈折演算部90の構成図を示す。図5において、複屈折演算部90は、
行列演算手段91、複屈折ベクトル演算手段92、直線偏光演算手段93、円偏光演算手段94、複屈折値演算手段95を有する。行列演算手段91は、位置ごとに規格化ストークスベクトルからミューラー行列を求める。複屈折ベクトル演算手段92は、行列演算手段91が求めたミューラー行列から、位置によって後方散乱光による複屈折ベクトルを求める。直線偏光演算手段93は、複屈折ベクトル演算手段92が求めた後方散乱光による複屈折ベクトルから単方向の複屈折ベクトルの直線偏光成分の大きさを求める。円偏光演算手段94は、複屈折ベクトル演算手段92が求めた後方散乱光による複屈折ベクトルの差分から単方向の複屈折ベクトルの円偏光成分の大きさを求める。複屈折値演算手段95は、円偏光演算手段94の円偏光成分の大きさと直線偏光演算手段93の直線偏光成分の大きさとから単方向の複屈折の大きさを求める
FIG. 5 shows a configuration diagram of the birefringence calculation unit 90. In FIG. 5, the birefringence calculating unit 90
It has a matrix calculation means 91, a birefringence vector calculation means 92, a linear polarization calculation means 93, a circular polarization calculation means 94, and a birefringence value calculation means 95. The matrix calculation means 91 obtains a Mueller matrix from the normalized Stokes vector for each position. The birefringence vector computing unit 92 obtains the birefringence vector due to the backscattered light according to the position from the Mueller matrix obtained by the matrix computing unit 91. The linearly polarized light calculating means 93 obtains the magnitude of the linearly polarized light component of the unidirectional birefringence vector from the birefringence vector by the backscattered light obtained by the birefringence vector computing means 92. The circularly polarized light calculating means 94 obtains the magnitude of the circularly polarized light component of the unidirectional birefringent vector from the difference between the birefringent vectors by the backscattered light obtained by the birefringent vector computing means 92. The birefringence value calculating means 95 obtains the magnitude of unidirectional birefringence from the size of the circularly polarized light component of the circularly polarized light calculating means 94 and the size of the linearly polarized light component of the linearly polarized light calculating means 93.

このような装置の動作を説明する。
光検出部40が、制御部60からの指示により、光源部70のパルス光(角周波数ω1〜ω3のうち、例えば、角周波数ω1)に同期して、このパルス光に対する後方散乱光の光強度を少なくとも4方位(例えば、0°、45°、90°、円偏光)の偏光状態に分離して検出する。なお、被測定光ファイバ100の長手方向に対して、少なくとも3箇所の異なる位置z1、z2、z3からの後方散乱光それぞれに対して光強度の検出を行う。そして、各位置z1〜z3における、規格化ストークスベクトルを求める。
The operation of such an apparatus will be described.
In response to an instruction from the control unit 60, the light detection unit 40 synchronizes with the pulsed light of the light source unit 70 (for example, the angular frequency ω1 among the angular frequencies ω1 to ω3), and the light intensity of the backscattered light with respect to the pulsed light Are detected by separating them into polarization states of at least four directions (for example, 0 °, 45 °, 90 °, circularly polarized light). The light intensity is detected for each of the backscattered light from at least three different positions z1, z2, and z3 with respect to the longitudinal direction of the optical fiber 100 to be measured. Then, a normalized Stokes vector at each position z1 to z3 is obtained.

そして、制御部60が複屈折演算部90に複屈折の演算を指示する。これにより、複屈折演算部90がストークスベクトルSBを光検出部40から読み出し、行列演算手段91が、ストークスベクトルSBのストークスベクトルから後方散乱光によるミューラー行列RBを求める。さらに、複屈折ベクトル演算手段92が、ミューラー行列RBから後方散乱光による複屈折ベクトルβBを求める。すなわち、ストークスベクトルSの変化を被測定光ファイバ100の長さ方向の変化として考えると、下記の式(8)で示せるので、偏波分散ベクトルΩBと同様に複屈折ベクトルβBを求める。 Then, the control unit 60 instructs the birefringence calculation unit 90 to calculate birefringence. Accordingly, the birefringence calculating unit 90 reads the Stokes vector S B from the light detection unit 40, matrix calculation means 91 calculates the Mueller matrix R B of the back scattered light from the Stokes vector of the Stokes vector S B. Further, the birefringence vector calculating unit 92 obtains a birefringence vector beta B of the back scattered light from the Mueller matrix R B. That is, considering the change in the Stokes vector S as the change in the length direction of the optical fiber 100 to be measured, it can be expressed by the following equation (8), and thus the birefringence vector β B is obtained in the same manner as the polarization dispersion vector Ω B.

Figure 2009031313
Figure 2009031313

さらに、直線偏光演算手段93が、複屈折ベクトル演算手段92が求めた後方散乱光による複屈折ベクトルβBから単方向の複屈折ベクトルβの直線偏光成分の大きさを求める。すなわち式(8)における複屈折ベクトルβは、局所的な複屈折を偏光状態空間に表すものである。従って、式(1)、式(8)を比較すれば明らかなように、複屈折ベクトルβは、偏波分散ベクトルΩと同用に取り扱うことができ、例えば、Fabrizio Corsi,Andrea Galtarossa,Luca Palmieri,「Beat Length Characterization Based on Backscattering Analysis in Randomly Perturbed Single-Mode Fibers」,JOURNAL OF LIGHTWAVE TECHNOLOGY ,(米国),Laser & Electro-Optics Society(LEOS),1999年7月,VOL.17,NO.7,pp.1172-1178に記載されているように、後方散乱光によって得られた複屈折ベクトルβBと単方向の複屈折ベクトルβの直線偏光成分ベクトルβLとは、式(5)と同様に下記の式で表される。 Further, the linear polarization calculation means 93 obtains the magnitude of the linear polarization component of the unidirectional birefringence vector β from the birefringence vector β B by the backscattered light obtained by the birefringence vector calculation means 92. That is, the birefringence vector β in Equation (8) represents local birefringence in the polarization state space. Therefore, as is clear from the comparison between the equations (1) and (8), the birefringence vector β can be handled in the same way as the polarization dispersion vector Ω, for example, Fabrizio Corsi, Andrea Galtarossa, Luca Palmieri , “Beat Length Characterization Based on Backscattering Analysis in Randomly Perturbed Single-Mode Fibers”, JOURNAL OF LIGHTWAVE TECHNOLOGY, (USA), Laser & Electro-Optics Society (LEOS), July 1999, VOL.17, NO.7, As described in pp.1172-1178, the birefringence vector β B obtained by the backscattered light and the linearly polarized component vector β L of the unidirectional birefringence vector β are the same as in the equation (5). It is represented by the following formula.

Figure 2009031313
Figure 2009031313

このように、直線偏光演算手段93が、単方向の複屈折ベクトルβの直線偏光成分(β1、β2)の大きさを求める。もちろん、偏波分散ベクトルΩBの場合と同様に、円偏光成分β3の効果は、消滅している。そこで、円偏光演算手段94が、複屈折ベクトル演算手段92が求めた後方散乱光による複屈折ベクトルβBから単方向の複屈折ベクトルβの偏光成分の大きさを求める。すなわち、偏波分散ベクトルΩBにおいて行った式(7)の演算と同様に、円偏光成分の大きさは、下記の式(9)で示せる。 In this way, the linear polarization calculation means 93 obtains the magnitude of the linear polarization component (β 1 , β 2 ) of the unidirectional birefringence vector β. Of course, as in the case of the polarization dispersion vector Ω B , the effect of the circular polarization component β 3 has disappeared. Therefore, the circular polarization calculating means 94 obtains the magnitude of the circularly polarized component of the unidirectional birefringence vector β from the birefringence vector β B by the backscattered light obtained by the birefringence vector computing means 92. That is, the magnitude of the circularly polarized light component can be expressed by the following equation (9), similarly to the calculation of equation (7) performed for the polarization dispersion vector Ω B.

Figure 2009031313
Figure 2009031313

また、光源部70からのパルス光が光検出部40で検出されるまでの動作と、演算部80の動作は、図1に示す装置と同様なので説明を省略する。   The operation until the pulse light from the light source unit 70 is detected by the light detection unit 40 and the operation of the calculation unit 80 are the same as those in the apparatus shown in FIG.

以上のように、円偏光演算手段94が、複屈折ベクトル演算手段92が求めた複屈折ベクトルβBを更に微分し、微分した大きさを複屈折ベクトルβBの大きさで除算することにより、複屈折のうちの円偏光成分による大きさを求める。そして、複屈折値演算手段95が、円偏光演算手段94の円偏光成分の大きさと直線偏光演算手段93の直線偏光成分の大きさとから複屈折を求める。さらに、被測定光ファイバ100の長手方向の所望の位置を中心に3点(z1、z2、z3)の光強度から、所望の位置の複屈折を求め、被測定光ファイバ100の長手方向の複屈折の分布を求めてもよい。 As described above, the circular polarization calculation means 94 further differentiates the birefringence vector β B obtained by the birefringence vector calculation means 92, and divides the differentiated magnitude by the magnitude of the birefringence vector β B. The magnitude | size by the circularly polarized light component of birefringence is calculated | required. Then, the birefringence value calculating means 95 calculates birefringence from the magnitude of the circularly polarized light component of the circularly polarized light calculating means 94 and the magnitude of the linearly polarized light component of the linearly polarized light calculating means 93. Further, the birefringence at the desired position is obtained from the light intensity at three points (z1, z2, and z3) around the desired position in the longitudinal direction of the optical fiber 100 to be measured, and the birefringence in the longitudinal direction of the optical fiber 100 to be measured is obtained. A refraction distribution may be obtained.

このように、光源部70から出力される角周波数ω1のパルス光に対する異なる位置z1、z2、z3のそれぞれからの後方散乱光を、検出部40が少なくとも4方位の偏光状態に分離して検出し、規格化ストークスベクトルを求める。そして演算部90が、ストークスベクトルに基づいて複屈折ベクトルβの直線偏光成分の大きさと円偏光成分の大きさとを求めるので、数値シミュレーションや統計から得られた結果を用いて、複屈折を演算する必要がない。これにより、精度良く複屈折の測定を行うことが出来る。 As described above, the detection unit 40 detects the backscattered light from each of the different positions z1, z2, and z3 with respect to the pulsed light having the angular frequency ω 1 output from the light source unit 70 into at least four azimuth polarization states. Then, a normalized Stokes vector is obtained. Then, since the calculation unit 90 obtains the magnitude of the linearly polarized component and the magnitude of the circularly polarized component of the birefringence vector β based on the Stokes vector, the birefringence is calculated using the results obtained from numerical simulation and statistics. There is no need. Thereby, birefringence can be accurately measured.

なお、本発明はこれに限定されるものではなく、以下のようなものでもよい。
図4に示す装置において、演算部80と複屈折演算部90とを設ける構成を示したが、複屈折のみを求める場合、演算部80を設ける必要はない。この場合、光源部70は、一つの角周波数のみを出力してもよい。
In addition, this invention is not limited to this, The following may be sufficient.
In the apparatus shown in FIG. 4, the configuration in which the calculation unit 80 and the birefringence calculation unit 90 are provided is shown. However, when only the birefringence is obtained, the calculation unit 80 is not necessary. In this case, the light source unit 70 may output only one angular frequency.

また、図1、図4に示す装置において、波長可変光源71が、角周波数ω1〜ω3を順次変えて出力する構成を示したが、波長可変光源71を3台設け、角周波数ω1〜ω3を同時に出力してもよい。この場合、波長可変光源71とパルス発生部72との間に合波器を設け、方向性結合器30と光検出部40との間に分波器を設けるとよい。 Further, FIG. 1, in the apparatus shown in FIG. 4, the wavelength tunable light source 71, is shown sequentially varied outputs constituting the angular frequency omega 1 ~Omega 3, provided three wavelength tunable light source 71, the angular frequency omega 1 ˜ω 3 may be output simultaneously. In this case, a multiplexer may be provided between the wavelength tunable light source 71 and the pulse generator 72, and a duplexer may be provided between the directional coupler 30 and the light detector 40.

また、波長可変光源71が異なる角周波数(少なくとも3種類)の連続光を出力する構成を示したが、波長可変光源71の代わりに固定波長を出力する光源を少なくとも3個設ける構成としてもよい。   Further, although the configuration in which the wavelength variable light source 71 outputs continuous light having different angular frequencies (at least three types) is shown, at least three light sources that output a fixed wavelength may be provided instead of the wavelength variable light source 71.

さらに、偏光可変部20は、2種類の偏光状態にパルス光を偏光する構成を示したが、複数種類の偏光状態にパルス光を偏光してもよい。   Furthermore, although the polarization variable unit 20 has been configured to polarize the pulsed light in two types of polarization states, the pulsed light may be polarized in a plurality of types of polarization states.

本発明の第1の実施例を示した構成図である。It is the block diagram which showed the 1st Example of this invention. 図1に示す装置における演算部80の構成を示した図である。It is the figure which showed the structure of the calculating part 80 in the apparatus shown in FIG. 図1に示す装置の動作を示したフローチャートである。It is the flowchart which showed operation | movement of the apparatus shown in FIG. 本発明の第2の実施例を示した構成図である。It is the block diagram which showed the 2nd Example of this invention. 図4に示す装置における複屈折演算部90の構成を示した図である。It is the figure which showed the structure of the birefringence calculating part 90 in the apparatus shown in FIG. 従来の光ファイバ特性測定装置の第1の構成を示した図である。It is the figure which showed the 1st structure of the conventional optical fiber characteristic measuring apparatus. 従来の光ファイバ特性測定装置の第2の構成を示した図である。It is the figure which showed the 2nd structure of the conventional optical fiber characteristic measuring apparatus. 図7に示す装置における演算部50の構成を示した図である。It is the figure which showed the structure of the calculating part 50 in the apparatus shown in FIG.

符号の説明Explanation of symbols

20 偏光可変部
30 方向性結合器
40 光検出部
70 光源部
71 波長可変光源
72 パルス発生部
80 演算部
81、91 行列演算手段
82 偏波分散ベクトル演算手段
83、93 直線偏光演算手段
84、94 円偏光演算手段
85 分散値演算手段
90 複屈折演算部
92 複屈折ベクトル演算手段
95 複屈折演算手段
DESCRIPTION OF SYMBOLS 20 Polarization variable part 30 Directional coupler 40 Light detection part 70 Light source part 71 Wavelength variable light source 72 Pulse generation part 80 Calculation part 81, 91 Matrix calculation means 82 Polarization dispersion vector calculation means 83, 93 Linear polarization calculation means 84, 94 Circular polarization calculation means 85 Dispersion value calculation means 90 Birefringence calculation section 92 Birefringence vector calculation means 95 Birefringence calculation means

Claims (5)

パルス光を被測定光ファイバに入力し、このパルス光に対する被測定光ファイバからの後方散乱光を光検出部が検出してストークスベクトルを求め、長手方向における複屈折を測定する光ファイバ特性測定装置において、
前記パルス光を出力する光源部と、
少なくとも3箇所の位置による前記ストークスベクトルに基づいて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求め、複屈折の大きさを求める複屈折演算部と
を設けたことを特徴とする光ファイバ特性測定装置。
An optical fiber characteristic measuring device that inputs pulsed light into the optical fiber to be measured, detects the backscattered light from the optical fiber to be measured with respect to the pulsed light, obtains the Stokes vector, and measures the birefringence in the longitudinal direction In
A light source unit that outputs the pulsed light;
A birefringence calculation unit is provided for determining the magnitude of the birefringence by obtaining the magnitude of the linearly polarized component and the magnitude of the circularly polarized component of the birefringence vector based on the Stokes vectors obtained from at least three positions. Optical fiber characteristic measuring device.
被測定光ファイバの長手方向における複屈折の大きさを測定する光ファイバ特性測定装置において、
パルス光を出力する光源部と、
この光源部から出力された各パルス光を、少なくとも2つの異なる偏光状態に偏光して出力する偏光可変部と、
この偏光可変部で偏光されたパルス光を前記被測定光ファイバに出力し、この出力したパルス光に対する後方散乱光が入力される方向性結合器と、
この方向性結合器から前記被測定光ファイバの長手方向に対して少なくとも3箇所の位置からの後方散乱光の光強度を検出し、前記パルス光に同期して、偏波状態がそれぞれ異なる少なくとも4方位の光強度を検出し、規格化ストークスベクトルを求める光検出部と、
この光検出部が求めた規格化ストークスベクトルに基づいて複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとを求め、複屈折の大きさを求める複屈折演算部と
を設けたことを特徴とする光ファイバ特性測定装置。
In an optical fiber characteristic measuring apparatus that measures the magnitude of birefringence in the longitudinal direction of an optical fiber to be measured,
A light source unit that outputs pulsed light;
A polarization variable section that polarizes and outputs each pulsed light output from the light source section into at least two different polarization states;
A directional coupler that outputs the pulsed light polarized by the polarization variable unit to the optical fiber to be measured, and receives backscattered light with respect to the output pulsed light;
The light intensity of the backscattered light from at least three positions with respect to the longitudinal direction of the optical fiber to be measured is detected from the directional coupler, and at least four different polarization states are synchronized with the pulsed light. A light detector that detects the light intensity of the azimuth and obtains a normalized Stokes vector;
A birefringence calculation unit for obtaining the magnitude of the birefringence by obtaining the magnitude of the linearly polarized component and the magnitude of the circularly polarized component of the birefringence vector based on the normalized Stokes vector obtained by the light detection unit is provided. A characteristic optical fiber characteristic measuring device.
光源部は、
連続光を出力する連続光出力部と、
この連続光出力部から連続光の所望のパルス幅に変換するパルス発生部と
を有することを特徴とする請求項1または2記載の光ファイバ特性測定装置。
The light source
A continuous light output unit that outputs continuous light;
3. The optical fiber characteristic measuring apparatus according to claim 1, further comprising a pulse generating unit for converting the continuous light output unit into a desired pulse width of continuous light.
複屈折演算部は、
各位置ごとに前記規格化ストークスベクトルからミューラー行列を求める行列演算手段と、
前記行列演算手段が求めたミューラー行列から、各位置によって後方散乱光による複屈折ベクトルを求める複屈折ベクトル演算手段と、
この複屈折ベクトル演算手段が求めた後方散乱光による複屈折ベクトルから複屈折ベクトルの直線偏光成分の大きさを求める直線偏光演算手段と、
前記複屈折ベクトル演算手段が求めた後方散乱光による複屈折ベクトルの差分から複屈折ベクトルの円偏光成分の大きさを求める円偏光演算手段と、
この円偏光演算手段の円偏光成分の大きさと前記直線偏光演算手段の直線偏光成分の大きさとから複屈折の大きさを求める複屈折値演算手段と
を設けたことを特徴とする請求項1〜3のいずれかに記載の光ファイバ特性測定装置。
The birefringence calculator is
Matrix computing means for obtaining a Mueller matrix from the normalized Stokes vector for each position;
From the Mueller matrix obtained by the matrix computing means, birefringence vector computing means for obtaining a birefringence vector due to backscattered light by each position;
Linear polarization calculation means for obtaining the magnitude of the linearly polarized light component of the birefringence vector from the birefringence vector by the backscattered light obtained by the birefringence vector calculation means;
Circular polarization calculation means for obtaining the size of the circularly polarized component of the birefringence vector from the difference of the birefringence vector due to the backscattered light obtained by the birefringence vector calculation means;
The birefringence value calculating means for obtaining the birefringence magnitude from the size of the circularly polarized light component of the circularly polarized light calculating means and the size of the linearly polarized light component of the linearly polarized light calculating means is provided . 4. The optical fiber characteristic measuring device according to any one of 3 above.
被測定光ファイバの長手方向における複屈折を測定する光ファイバ特性測定方法において、
光源部がパルス光を出力する手順と、
この光源部から出力されたパルス光に対して少なくとも2つの異なる偏光状態に偏光して、前記被測定光ファイバに入力する手順と、
前記光源部が出力するパルス光に同期し、前記光ファイバに入力したパルス光に対する後方散乱光の光強度を、少なくとも4方位の偏光状態に分離して検出し、前記被測定光ファイバの長手方向に対して少なくとも3箇所の位置における規格化ストークスベクトルを求める手順と、
前記光検出部が求めた位置ごとの規格化ストークスベクトルに基づいて、複屈折ベクトルの直線偏光成分と円偏光成分とを求める手順と、
前記複屈折ベクトルの直線偏光成分の大きさと円偏光成分の大きさとから複屈折を求める手順と
を設けたことを特徴とする光ファイバ特性測定方法。
In the optical fiber characteristic measurement method for measuring the birefringence in the longitudinal direction of the optical fiber to be measured,
The light source unit outputs pulse light;
A procedure of polarizing the pulsed light output from the light source unit into at least two different polarization states and inputting the polarized light to the optical fiber to be measured;
In synchronization with the pulsed light output from the light source unit, the light intensity of the backscattered light with respect to the pulsed light input to the optical fiber is detected separately in at least four directions of polarization, and the longitudinal direction of the optical fiber to be measured A procedure for obtaining normalized Stokes vectors at least at three positions with respect to
A procedure for obtaining a linearly polarized component and a circularly polarized component of a birefringence vector based on the normalized Stokes vector for each position obtained by the light detection unit,
A method for measuring optical fiber characteristics, comprising: a step of obtaining birefringence from a magnitude of a linearly polarized component and a magnitude of a circularly polarized component of the birefringence vector.
JP2008290517A 2008-11-13 2008-11-13 Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method Expired - Lifetime JP4770913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290517A JP4770913B2 (en) 2008-11-13 2008-11-13 Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290517A JP4770913B2 (en) 2008-11-13 2008-11-13 Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003278744A Division JP4241252B2 (en) 2003-07-24 2003-07-24 Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2009031313A true JP2009031313A (en) 2009-02-12
JP4770913B2 JP4770913B2 (en) 2011-09-14

Family

ID=40401923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290517A Expired - Lifetime JP4770913B2 (en) 2008-11-13 2008-11-13 Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method

Country Status (1)

Country Link
JP (1) JP4770913B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972827A (en) * 1995-06-30 1997-03-18 Furukawa Electric Co Ltd:The Method and apparatus for measurement of polarization mode dispersion
JP2001050860A (en) * 1999-08-11 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Waveguide type polarization condition measuring apparatus
JP2001507802A (en) * 1997-01-08 2001-06-12 ヨーク センサーズ リミテッド Optical time domain reflection measurement method and apparatus
JP2002048680A (en) * 2000-08-01 2002-02-15 Anritsu Corp Polarization mode dispersion distribution measuring method and apparatus for optical fiber
JP2003106942A (en) * 2001-09-28 2003-04-09 Anritsu Corp Device for measuring polarized wave mode dispersion and distribution
JP2003294580A (en) * 2002-03-29 2003-10-15 Furukawa Electric Co Ltd:The Polarization mode variance measurement method
JP2004108918A (en) * 2002-09-18 2004-04-08 Central Res Inst Of Electric Power Ind Polarization fluctuation detector
JP2004170382A (en) * 2002-07-26 2004-06-17 Nippon Telegr & Teleph Corp <Ntt> Optical spectrum measuring instrument and polarization state measuring instrument
JP2004525388A (en) * 2001-05-18 2004-08-19 ユニバーシティ オブ サリー Backscatter polarization analysis of optical fibers
JP2004333336A (en) * 2003-05-08 2004-11-25 Anritsu Corp Polarization mode dispersion measuring device of optical fiber and measuring method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972827A (en) * 1995-06-30 1997-03-18 Furukawa Electric Co Ltd:The Method and apparatus for measurement of polarization mode dispersion
JP2001507802A (en) * 1997-01-08 2001-06-12 ヨーク センサーズ リミテッド Optical time domain reflection measurement method and apparatus
JP2001050860A (en) * 1999-08-11 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Waveguide type polarization condition measuring apparatus
JP2002048680A (en) * 2000-08-01 2002-02-15 Anritsu Corp Polarization mode dispersion distribution measuring method and apparatus for optical fiber
JP2004525388A (en) * 2001-05-18 2004-08-19 ユニバーシティ オブ サリー Backscatter polarization analysis of optical fibers
JP2003106942A (en) * 2001-09-28 2003-04-09 Anritsu Corp Device for measuring polarized wave mode dispersion and distribution
JP2003294580A (en) * 2002-03-29 2003-10-15 Furukawa Electric Co Ltd:The Polarization mode variance measurement method
JP2004170382A (en) * 2002-07-26 2004-06-17 Nippon Telegr & Teleph Corp <Ntt> Optical spectrum measuring instrument and polarization state measuring instrument
JP2004108918A (en) * 2002-09-18 2004-04-08 Central Res Inst Of Electric Power Ind Polarization fluctuation detector
JP2004333336A (en) * 2003-05-08 2004-11-25 Anritsu Corp Polarization mode dispersion measuring device of optical fiber and measuring method

Also Published As

Publication number Publication date
JP4770913B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4241252B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
US8452135B2 (en) Method and apparatus for measuring fiber twist by polarization tracking
ITPD970025A1 (en) REFLECTOMETRIC INSTRUMENT FOR THE MEASUREMENT OF BIRIFRANGENCE DISTRIBUTED IN SINGLE-MODE FIBER OPTICS
JP7401548B2 (en) Distributed sensing device
EP2907249A1 (en) An optical frequency domain reflectometry (ofdr) system
US20160266005A1 (en) Methods and apparatus for simultaneous optical parameter measurements
Calvani et al. Polarization measurements on single-mode fibers
US7602499B2 (en) Measuring polarization mode dispersion
JP6018429B2 (en) Optical fiber analyzing apparatus and optical fiber analyzing method
CN107764517B (en) Method for eliminating second-order pseudo coupling point of interference signal of white light interferometer
JP4770913B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
US20080037925A1 (en) DGD compensating apparatus
Wang et al. Characterization of optical fibers supporting OAM states using fiber Bragg gratings
JP5235189B2 (en) Optical fiber refractive index measuring device and optical fiber refractive index measuring method
CN104482959A (en) Optic fiber strain-stress simultaneous measurement device
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
JP5663515B2 (en) Optical measuring device and optical measuring method
JP3998460B2 (en) Method for determining characteristics of optical device and inspection device
Travagnin et al. Multi-path interference in a bend-insensitive fiber
Kim et al. Distributed Analysis on the Spatial Mode Structure in a PANDA-Type Few-Mode Fiber By Brillouin Dynamic Gratings
Zhang et al. High-Sensitivity Temperature Sensor Based on Transmissive Solc-Like Filter and Cascaded Fiber Bragg Grating
RU2664692C1 (en) Measuring phase noise of narrow-band laser based on the mach-zehnder interferometer consisting of the rm-fiber
Banerjee et al. Simulation of temperature sensor based on photonic crystal fiber using Sagnac interferometer
Kun et al. A novel method of automatic polarization measurement and its application to the higher-order PMD measurement
Broadway et al. Intrinsic fabry-perot sensors for magnetic field detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term