JP2009031082A - Ultrasonic apparatus for detecting edge position - Google Patents

Ultrasonic apparatus for detecting edge position Download PDF

Info

Publication number
JP2009031082A
JP2009031082A JP2007194260A JP2007194260A JP2009031082A JP 2009031082 A JP2009031082 A JP 2009031082A JP 2007194260 A JP2007194260 A JP 2007194260A JP 2007194260 A JP2007194260 A JP 2007194260A JP 2009031082 A JP2009031082 A JP 2009031082A
Authority
JP
Japan
Prior art keywords
elements
oscillation
detection
reception
edge position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007194260A
Other languages
Japanese (ja)
Inventor
Yoshinori Iwasaki
吉則 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP2007194260A priority Critical patent/JP2009031082A/en
Publication of JP2009031082A publication Critical patent/JP2009031082A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic apparatus for detecting edge position, capable of easily enlarging the acoustic separation between adjacent elements and having a high degree of freedom in the number and arrangement of elements. <P>SOLUTION: The ultrasonic apparatus for detecting edge position is provided with: an oscillation part 1 for oscillating ultrasonic waves; a reception part 2 for receiving ultrasonic waves oscillated from the oscillation part 1; and a detection processing part 3 for processing the detection of the edge positions of an object 10 to be detected inserted between the oscillation part 1 and the reception part 2 on the basis of results of reception by the reception part 2. The oscillation part 1 is provided with a plurality of oscillation elements 6 for oscillating ultrasonic waves, and each oscillation element 6 is provided with a matching layer 12 and a core 13 joined to the matching layer 12. The matching layers 12 of the oscillation elements 6 are separated from one another. The reception part 2 is provided with a plurality of reception elements 7 for receiving ultrasonic waves, and each reception element 7 is provided with a matching layer 12 and a core 13 joined to the matching layer 12. The matching layers 12 of the reception elements 7 are separated from one another. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、超音波式エッジ位置検出装置に関する。   The present invention relates to an ultrasonic edge position detection device.

被検出物のエッジ位置(端部位置)を検出するための装置として、超音波式エッジ位置検出装置が知られている。   As an apparatus for detecting an edge position (end position) of an object to be detected, an ultrasonic edge position detection apparatus is known.

超音波式エッジ位置検出装置を開示した先行技術文献としては、例えば、特許文献1がある。   As a prior art document disclosing an ultrasonic edge position detection device, for example, there is Patent Document 1.

図11は特許文献1の超音波式エッジ位置検出装置の発振部及び受信部の構成を示す斜視図である。   FIG. 11 is a perspective view showing the configuration of the oscillating unit and the receiving unit of the ultrasonic edge position detecting device of Patent Document 1. In FIG.

図11に示すように、特許文献1の超音波式エッジ位置検出装置の発振部及び受信部は、整合層1001を共通なベースとしてコア1002を千鳥状に配置してなる。
米国特許第5834877号公報明細書
As shown in FIG. 11, the oscillating unit and the receiving unit of the ultrasonic edge position detection device of Patent Document 1 are configured by arranging the cores 1002 in a staggered manner using the matching layer 1001 as a common base.
US Pat. No. 5,834,877

特許文献1の超音波式エッジ位置検出装置では、整合層1001が各コア1002に対して共通であるため、隣り合う素子どうしで音響的なセパレーションをとることが困難であるという問題や、素子の個数及び配置に制約が生じるという問題があった。   In the ultrasonic edge position detection device of Patent Document 1, since the matching layer 1001 is common to each core 1002, there is a problem that it is difficult to achieve acoustic separation between adjacent elements, There was a problem that the number and arrangement were restricted.

本発明は、上記のような問題点を解決するためになされたもので、隣り合う素子どうしで音響的なセパレーションを高めることが容易であり、素子の個数及び配置の自由度が高い超音波式エッジ位置検出装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is easy to enhance acoustic separation between adjacent elements, and an ultrasonic type having a high number of elements and a high degree of freedom in arrangement. An object is to provide an edge position detection device.

上記課題を解決するため、本発明の超音波式エッジ位置検出装置は、超音波を発振する発振部と、前記発振部から発振される超音波を受信する受信部と、前記発振部と前記受信部との間に挿入される被検出物のエッジ位置を、前記受信部による受信信号に基づいて検出する処理を行う検出処理部と、を備える超音波式エッジ位置検出装置において、前記発振部には、超音波を発振する発振素子が複数備えられ、各発振素子は、整合層と、該整合層に接合されたコアと、を備え、各発振素子の整合層は互いに分離され、前記受信部には、超音波を受信する受信素子が複数備えられ、各受信素子は、整合層と、該整合層に接合されたコアと、を備え、各受信素子の整合層は互いに分離されていることを特徴としている。   In order to solve the above problems, an ultrasonic edge position detection device according to the present invention includes an oscillating unit that oscillates ultrasonic waves, a receiving unit that receives ultrasonic waves oscillated from the oscillating unit, the oscillating unit, and the receiving unit. In the ultrasonic type edge position detection device comprising: a detection processing unit that performs a process of detecting an edge position of an object to be detected inserted between the detection unit and the detection unit based on a reception signal from the reception unit. Includes a plurality of oscillating elements that oscillate ultrasonic waves, and each oscillating element includes a matching layer and a core bonded to the matching layer, and the matching layers of the oscillating elements are separated from each other, and the receiving unit Includes a plurality of receiving elements for receiving ultrasonic waves, each receiving element includes a matching layer and a core bonded to the matching layer, and the matching layers of the receiving elements are separated from each other. It is characterized by.

本発明によれば、整合層が、各発振素子毎に分離され、また、各受信素子毎に分離されているので、隣り合う素子どうしで音響的なセパレーションを高めることが容易であるとともに、素子の個数及び配置の自由度を高めることが可能となる。   According to the present invention, since the matching layer is separated for each oscillation element and for each reception element, it is easy to enhance acoustic separation between adjacent elements, and It is possible to increase the number and the degree of freedom of arrangement.

以下、図面を参照して、本発明に係る実施形態について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は実施形態に係る超音波式エッジ位置検出装置100の構成を示す正面図である。   FIG. 1 is a front view showing a configuration of an ultrasonic edge position detection apparatus 100 according to the embodiment.

本実施形態に係る超音波式エッジ位置検出装置100は、被検出物10の端部(エッジ)の位置を検出するものであり、図1に示すように、上側に位置する上側部分100Aと、下側に位置する下側部分100Bと、これら両部分100A、100Bを相互に接続する中間部分100Cと、からなり、断面コ字形状の全体形状を有している。   The ultrasonic edge position detection apparatus 100 according to the present embodiment detects the position of the end (edge) of the detection object 10, and as shown in FIG. It consists of a lower part 100B located on the lower side and an intermediate part 100C that connects these parts 100A and 100B to each other, and has an overall U-shaped cross section.

上側部分100Aと下側部分100Bとの間の空間は、被検出物10が挿入される挿入領域100Dを構成している。   A space between the upper portion 100A and the lower portion 100B constitutes an insertion region 100D into which the detection object 10 is inserted.

例えば、下側部分100Bには、超音波を発振する発振部1が備えられ、上側部分100Aには、発振部1から発振される超音波を受信する受信部2と、CPUなどからなり受信部2による受信結果に基づいて被検出物のエッジ位置の検出処理を行う検出処理部3と、が備えられている。   For example, the lower part 100B is provided with an oscillating unit 1 that oscillates ultrasonic waves, and the upper part 100A includes a receiving unit 2 that receives ultrasonic waves oscillated from the oscillating unit 1 and a CPU. And a detection processing unit 3 that performs detection processing of the edge position of the detected object based on the reception result of 2.

なお、図1においては発振部1が下側で受信部2が上側の例を示しているが、発振部1が上側で受信部2が下側でも良い。   Although FIG. 1 shows an example in which the oscillation unit 1 is on the lower side and the reception unit 2 is on the upper side, the oscillation unit 1 may be on the upper side and the reception unit 2 may be on the lower side.

図2は発振部1及び受信部2がそれぞれ備える素子取付用ベース4を示す平面図である。   FIG. 2 is a plan view showing the element mounting base 4 provided in each of the oscillation unit 1 and the reception unit 2.

図2に示すように素子取付用ベース4は、素子(発振素子、受信素子)が取り付けられるポケット5を複数備えている。   As shown in FIG. 2, the element mounting base 4 includes a plurality of pockets 5 in which elements (oscillation elements, receiving elements) are mounted.

図1に示すように、発振部1の素子取付用ベース4の各ポケット5には、超音波を発振する発振素子6が取り付けられている。   As shown in FIG. 1, an oscillation element 6 that oscillates an ultrasonic wave is attached to each pocket 5 of the element mounting base 4 of the oscillation unit 1.

同様に、受信部2の素子取付用ベース4の各ポケット5には、発振素子6から発振された超音波を受信する受信素子7が取り付けられている。   Similarly, a receiving element 7 that receives ultrasonic waves oscillated from the oscillating element 6 is attached to each pocket 5 of the element mounting base 4 of the receiving unit 2.

そして、発振部1の発振素子6と受信部2の受信素子7とが互いに対向するように、発振部1及び受信部2が配置されている。   The oscillation unit 1 and the reception unit 2 are arranged so that the oscillation element 6 of the oscillation unit 1 and the reception element 7 of the reception unit 2 face each other.

ここで、発振部1の素子取付用ベース4のポケット5は、発振素子6どうしが、千鳥状に配置され、かつ、発振素子6どうしの間隔ができるだけ狭くなるように、配設されている。   Here, the pockets 5 of the element mounting base 4 of the oscillating unit 1 are arranged so that the oscillating elements 6 are arranged in a staggered manner and the interval between the oscillating elements 6 is as narrow as possible.

同様に、受信部2の素子取付用ベース4のポケット5は、受信素子7どうしが、千鳥状に配置され、かつ、受信素子7どうしの間隔ができるだけ狭くなるように、配設されている。   Similarly, the pockets 5 of the element mounting base 4 of the receiving unit 2 are arranged so that the receiving elements 7 are arranged in a staggered manner and the interval between the receiving elements 7 is as narrow as possible.

このように、発振素子6並びに受信素子7を、千鳥状に、素子どうしの間隔を短くして並べる理由は、各素子6,7が個々に検出可能な視野を途切れることなく繋げていくためである(電気的には、各受信素子7の検出信号(受信信号)を互いにオーバーラップさせ、全体視野における検出信号として演算するためである)。   As described above, the reason why the oscillation elements 6 and the reception elements 7 are arranged in a staggered manner with a short interval between the elements is to connect the visual fields that the elements 6 and 7 can individually detect without interruption. (Electrically, the detection signals (reception signals) of the respective receiving elements 7 are overlapped with each other and are calculated as detection signals in the entire visual field).

図3は発振素子6及び受信素子7を示す斜視図である。   FIG. 3 is a perspective view showing the oscillation element 6 and the reception element 7.

図3に示すように、発振素子6及び受信素子7は、丸形の筒状の形状のケース11を有し、発振又は受信部で空気に接している部分には、整合層12が使用される。   As shown in FIG. 3, the oscillation element 6 and the reception element 7 have a round cylindrical case 11, and a matching layer 12 is used in a portion in contact with air in the oscillation or reception unit. The

また、ケース11の内部にはコア13が配置され、このコア13は整合層12と接着されている。   A core 13 is disposed inside the case 11, and the core 13 is bonded to the matching layer 12.

コア13は、電気エネルギーと機械的な運動エネルギーとを相互に変換する素子である。コア13としては、セラミック圧電素子が知られている。   The core 13 is an element that mutually converts electrical energy and mechanical kinetic energy. A ceramic piezoelectric element is known as the core 13.

ケース11の下面からは、一対のリード14が導出されている。   A pair of leads 14 is led out from the lower surface of the case 11.

ここで、素子としては、例えば、自己固定型及び非固定型があり、更に、自己固定型と非固定型のそれぞれについて、丸型及び角型がある。   Here, examples of the element include a self-fixing type and a non-fixing type, and further, there are a round type and a square type for each of the self-fixing type and the non-fixing type.

図3に示すのは、非固定型の丸型である。   FIG. 3 shows a non-fixed round shape.

図4には、自己固定型で丸型の素子6,7を示す。   FIG. 4 shows self-fixing and round elements 6 and 7.

図4に示す素子6,7は、丸型のコア15と、このコア15よりも広い角型の整合層16と、を備え、この整合層16を素子取付用ベース4に対し、ビスなどの止着部材を用いて固定できるようになっている。   The elements 6 and 7 shown in FIG. 4 include a round core 15 and a rectangular matching layer 16 wider than the core 15, and the matching layer 16 is connected to the element mounting base 4 by screws or the like. It can be fixed using a fastening member.

図5には、非固定型で角型の素子6,7を示す。   FIG. 5 shows non-fixed and square elements 6 and 7.

図5に示す素子6,7は、角型のコア17と、このコア17と重なるような形状・寸法の角型の整合層18と、を備えている。   The elements 6 and 7 shown in FIG. 5 include a square core 17 and a square matching layer 18 having a shape and dimensions that overlap the core 17.

図6には、自己固定型で角型の素子6,7を示す。   FIG. 6 shows self-fixing and square elements 6 and 7.

図6に示す素子6,7は、角型のコア17と、このコア17よりも広い角型の整合層19と、を備え、この整合層19を素子取付用ベース4に対し、ビスなどの止着部材を用いて固定できるようになっている。   The elements 6 and 7 shown in FIG. 6 include a square core 17 and a square matching layer 19 wider than the core 17, and the matching layer 19 is connected to the element mounting base 4 with screws or the like. It can be fixed using a fastening member.

図3乃至図6に示す何れの素子6,7の場合にも、従来の素子(図11)とは異なり、各素子毎に、コア及び整合層を備える。すなわち、整合層が各素子毎に分離されている。そして、各素子6,7は、遮音性の高い素子取付用ベース4に配置される。   In any of the elements 6 and 7 shown in FIGS. 3 to 6, unlike the conventional element (FIG. 11), each element includes a core and a matching layer. That is, the matching layer is separated for each element. And each element 6 and 7 is arrange | positioned at the element mounting base 4 with high sound-insulation property.

このようにコアを整合層とともに分離することの利点は、隣の素子と音響的なセパレーションを高めることが容易で、複数の素子を発振・受信する場合に効果が大きいことである。更に、素子の個数、配置が自由なので、多種のアプリケーションに共通で使用することが可能である。   The advantage of separating the core together with the matching layer in this way is that it is easy to enhance acoustic separation from the adjacent elements, and is effective in oscillating and receiving a plurality of elements. Furthermore, since the number and arrangement of elements are free, they can be used in common for various applications.

また、図3乃至図6に示す素子のうち、図5及び図6に示すような角型のコア17を有する素子は、以下に説明するように一素子あたりの視野特性がエッジ検出にふさわしいという利点を有する他、素子の配列が容易であるという利点を有する。   Further, among the elements shown in FIGS. 3 to 6, the element having the square core 17 as shown in FIGS. 5 and 6 has a visual field characteristic per element suitable for edge detection as described below. In addition to the advantages, it has the advantage of easy arrangement of elements.

図7は角型のコア17を有する素子を用いた場合の被検出物のエッジ位置(挿入量)と検出量の関係を示す図、図8は丸型のコアを有する素子を用いた場合の被検出物のエッジ位置(挿入量)と検出量の関係を示す図である。   FIG. 7 is a diagram showing the relationship between the edge position (insertion amount) of the detected object and the detection amount when an element having a square core 17 is used, and FIG. 8 is a case where an element having a round core is used. It is a figure which shows the relationship between the edge position (insertion amount) of a to-be-detected object, and detection amount.

被検出物のエッジ位置と検出量の関係は、受信される超音波の変化の仕方に大きく関連している。その関係を示すグラフは、図8に示すように、コアが丸型の場合は直線にはなり得ず、S字状の変化特性を示す。   The relationship between the edge position of the object to be detected and the detection amount is greatly related to how the received ultrasonic wave changes. As shown in FIG. 8, the graph showing the relationship cannot be a straight line when the core is round, and shows an S-shaped change characteristic.

対して、コアが角型の場合は、図7に示すように、被検出物のエッジ位置と検出量の関係を示すグラフにおける直線部が大きい。丸型と角型では、被検出物エッジ位置と、検出面積の関係は、角型の方が直線になる。   On the other hand, when the core is rectangular, as shown in FIG. 7, the straight line portion in the graph showing the relationship between the edge position of the detected object and the detected amount is large. In the round shape and the square shape, the relationship between the detected object edge position and the detection area is more straight in the square shape.

なお、角型の素子を用いる場合、発振素子6と受信素子7の双方をそれぞれ角型の素子としても良いし、発振素子6と受信素子7の何れか一方のみを角型の素子としても良い。   When a square element is used, both the oscillation element 6 and the reception element 7 may be square elements, or only one of the oscillation element 6 and the reception element 7 may be a square element. .

図9は素子の配列の一例を示す図である。   FIG. 9 is a diagram showing an example of the arrangement of elements.

図9に示すように、複数の素子を横方向(この場合2列)に並べた場合、角型の方が、各素子の間隔を詰めやすい。従って、各素子の検出信号を扱うとき、直線部が長いため、全視野領域において、直線性を向上することが容易である。   As shown in FIG. 9, when a plurality of elements are arranged in the horizontal direction (in this case, two rows), the rectangular shape is easier to close the intervals between the elements. Therefore, when the detection signal of each element is handled, since the straight portion is long, it is easy to improve the linearity in the entire visual field region.

図9に示すように、発振側及び受信側に素子を10個ずつ配列した場合において、素子No.6の位置に被検出物のエッジがあるとき、当素子の視野内でエッジ位置を検出する。   As shown in FIG. 9, when 10 elements are arranged on the oscillation side and the reception side, the element No. When the edge of the object to be detected is at position 6, the edge position is detected within the field of view of the element.

ここで、超音波を扱う素子は、一般的に周囲の環境の変動に影響され易いため、常にエッジを検出していない素子(No.1)を設けて全素子の基準用(リファレンス用)として検出させておく。   Here, since an element that handles ultrasonic waves is generally easily affected by changes in the surrounding environment, an element (No. 1) that does not always detect an edge is provided to serve as a reference for all elements (for reference). Let me detect it.

また、エッジを検出している素子(No.6)の両隣(No.5、No.7)の素子も同時に検出させておく。   Further, the elements on both sides (No. 5, No. 7) of the element (No. 6) that detects the edge are also detected at the same time.

上記の素子No.1、5、7は、補正用として用いられる。   The above element No. 1, 5, and 7 are used for correction.

素子No.1とNo.7で、被検出物の検出量0%と100%を常に測定しており、検出信号のスケール基準とされる。   Element No. 1 and No. 7, the detection amounts 0% and 100% of the detection object are always measured, and are used as the scale reference of the detection signal.

検出量100%の素子(No.7)の働きについては、極薄のフィルムや不織布など、超音波が透過しやすい被検出物を対象とする場合、素子No.7の検出量は100%にならない。   Regarding the function of the element (No. 7) having a detection amount of 100%, when an object to be detected that easily transmits ultrasonic waves, such as an ultra-thin film or a non-woven fabric, is used, the element No. The detected amount of 7 is not 100%.

検出量0%の素子(No.1)の検出値との比較により、全閉(例えば、No.7)〜全開(No.1)のスケーリングを常に更新していくことにより、エッジ検出素子(No.6)の検出値を正しいエッジ位置として測定させることができる。   By constantly updating the scaling from fully closed (for example, No. 7) to fully open (No. 1) by comparison with the detection value of the element (No. 1) having a detection amount of 0%, the edge detection element ( The detection value of No. 6) can be measured as a correct edge position.

各素子には個々に性能上のバラツキがあるが、被検出物を取り除き全素子の全開時(検出量0%)の値を測定しておき、基準素子(No.1)との検出値の比率をメモリなどに格納しておき、実際の動作時に、エッジ検出素子(No.6)と基準素子(No.1)の実測値に、その格納した値を用いて補正を施すことにより、素子毎のバラツキは解消される。   Each element varies in performance individually, but removes the object to be detected, measures the value when all elements are fully opened (detection amount 0%), and detects the value detected with the reference element (No. 1). By storing the ratio in a memory or the like and correcting the measured values of the edge detection element (No. 6) and the reference element (No. 1) using the stored values during actual operation, Each variation is eliminated.

このように、検出処理部3は、被検出物10のエッジ位置を検出する受信素子(No.6)による検出値(受信信号)を、被検出物の検出割合が0%の受信素子(No.1)による検出値と、被検出物の検出割合が100%の受信素子(No.7)による検出値と、に基づいて補正する。   In this way, the detection processing unit 3 uses the detection value (received signal) by the receiving element (No. 6) that detects the edge position of the detected object 10 as the receiving element (No. .1) and the detection value by the receiving element (No. 7) having a detection rate of the detection object of 100% are corrected.

エッジ検出素子(No.6)の両隣の素子(No.5、No.7)を測定状態とさせておくことの他の目的としては、エッジ検出素子(No.6)の妥当性を確認することがある。すなわち、両隣の素子(No.5、No.7)の検出値を常に測定し、エッジ検出素子を移動させる場合の条件判断に使用される。また、両隣の素子を活性化させておくことにより、エッジ検出素子の移動直後から正確な測定をさせることができる。   As another purpose of keeping the elements (No. 5, No. 7) on both sides of the edge detection element (No. 6) in the measurement state, the validity of the edge detection element (No. 6) is confirmed. Sometimes. That is, the detection values of the adjacent elements (No. 5 and No. 7) are always measured and used for condition determination when the edge detection element is moved. In addition, by activating both adjacent elements, accurate measurement can be performed immediately after the movement of the edge detection element.

次に、発振素子の駆動方法と、受信信号の処理方法について説明する。   Next, a method for driving the oscillation element and a method for processing the received signal will be described.

図10は検出動作を説明するための図であり、発振素子6からの発振・駆動信号と受信素子7による受信信号の経時変化を示す。   FIG. 10 is a diagram for explaining the detection operation, and shows the temporal change of the oscillation / drive signal from the oscillation element 6 and the reception signal by the reception element 7.

超音波の周波数としては、一般的に40KHz〜400KHzが使用される。   As the ultrasonic frequency, 40 KHz to 400 KHz is generally used.

波形は一般的に矩形波が用いられるが、極性の切り替わり時に高エネルギーの高調波が発生しやすく、また超音波エネルギーとなる効率も悪い。   A rectangular wave is generally used as the waveform, but high-energy harmonics are likely to be generated when the polarity is switched, and the efficiency of converting to ultrasonic energy is poor.

このため、本実施形態では、三角波を使用する。正弦波(sin波)が理想であるが、ハードウェアやソフトウェアで達成させる場合、シンプルなものになりにくい。三角波は単純なハードウェアで実現でき、発生する超音波も正弦波の場合に近く損失も少ない。   For this reason, in this embodiment, a triangular wave is used. A sine wave (sin wave) is ideal, but when it is achieved by hardware or software, it is difficult to be simple. Triangular waves can be realized with simple hardware, and the generated ultrasonic waves are similar to those of sine waves and have little loss.

超音波の発生形態は、バーストモードを用いる。   A burst mode is used as the ultrasonic wave generation form.

受信信号は、検波、LPF(ローパスフィルタ)処理され、図10に示すように、その信号の立ち上がりの傾きを測定し評価する。このように信号の立ち上がりの傾きを測定し評価する方法については、本出願人による特開2003−97933号公報に詳しい。   The received signal is subjected to detection and LPF (low pass filter) processing, and the rising slope of the signal is measured and evaluated as shown in FIG. A method for measuring and evaluating the rising slope of the signal in this way is detailed in Japanese Patent Application Laid-Open No. 2003-97933 by the present applicant.

検出量100%(全閉状態)の場合、信号の立ち上がりの傾きはゼロとなる。   When the detection amount is 100% (fully closed state), the slope of the rising edge of the signal is zero.

以上のような実施形態によれば、被検出物の端部(エッジ)位置を、広視野内で検出することができる。   According to the embodiment as described above, the end (edge) position of the object to be detected can be detected within a wide field of view.

しかも、整合層が、各発振素子毎に分離され、また、各受信素子毎に分離されているので、隣り合う素子どうしで音響的なセパレーションを高めることが容易であるとともに、素子の個数及び配置の自由度を高めることが可能となる。   Moreover, since the matching layer is separated for each oscillation element and for each reception element, it is easy to increase acoustic separation between adjacent elements, and the number and arrangement of elements. It is possible to increase the degree of freedom.

なお、上記の実施形態では、発振側と受信側の素子を分けた例を説明したが、発振・受信を兼用する場合もある。   In the above embodiment, the example in which the elements on the oscillation side and the reception side are separated has been described. However, the oscillation and reception may be used in some cases.

実施形態に係る超音波式エッジ位置検出装置の構成を示す正面図である。It is a front view which shows the structure of the ultrasonic type edge position detection apparatus which concerns on embodiment. 素子取付用ベースを示す平面図である。It is a top view which shows the element attachment base. 素子の一例を示す斜視図である。It is a perspective view which shows an example of an element. 素子の一例を示す斜視図である。It is a perspective view which shows an example of an element. 素子の一例を示す斜視図である。It is a perspective view which shows an example of an element. 素子の一例を示す斜視図である。It is a perspective view which shows an example of an element. 角型のコアを有する素子を用いた場合の被検出物のエッジ位置(挿入量)と検出量の関係を示す図である。It is a figure which shows the relationship between the edge position (insertion amount) of a to-be-detected object and detection amount at the time of using the element which has a square-shaped core. 丸型のコアを有する素子を用いた場合の被検出物のエッジ位置(挿入量)と検出量の関係を示す図である。It is a figure which shows the relationship between the edge position (insertion amount) of a to-be-detected object at the time of using the element which has a round core, and detection amount. 素子の配列の一例を示す図である。It is a figure which shows an example of the arrangement | sequence of an element. 検出動作を説明するための図である。It is a figure for demonstrating a detection operation. 従来の素子を示す斜視図である。It is a perspective view which shows the conventional element.

符号の説明Explanation of symbols

100 超音波式エッジ位置検出装置
1 発振部
2 受信部
3 検出処理部
6 発振素子
7 受信素子
12 整合層
13 コア
15 コア
16 整合層
17 コア
18 整合層
19 整合層
DESCRIPTION OF SYMBOLS 100 Ultrasonic edge position detection apparatus 1 Oscillation part 2 Reception part 3 Detection processing part 6 Oscillation element 7 Reception element 12 Matching layer 13 Core 15 Core 16 Matching layer 17 Core 18 Matching layer 19 Matching layer

Claims (3)

超音波を発振する発振部と、
前記発振部から発振される超音波を受信する受信部と、
前記発振部と前記受信部との間に挿入される被検出物のエッジ位置を、前記受信部による受信信号に基づいて検出する処理を行う検出処理部と、
を備える超音波式エッジ位置検出装置において、
前記発振部には、超音波を発振する発振素子が複数備えられ、
各発振素子は、整合層と、該整合層に接合されたコアと、を備え、
各発振素子の整合層は互いに分離され、
前記受信部には、超音波を受信する受信素子が複数備えられ、
各受信素子は、整合層と、該整合層に接合されたコアと、を備え、
各受信素子の整合層は互いに分離されていることを特徴とする超音波式エッジ位置検出装置。
An oscillator that oscillates ultrasonic waves;
A receiver for receiving ultrasonic waves oscillated from the oscillator;
A detection processing unit that performs processing for detecting an edge position of an object to be detected inserted between the oscillating unit and the receiving unit based on a received signal by the receiving unit;
In an ultrasonic edge position detection device comprising:
The oscillation unit includes a plurality of oscillation elements that oscillate ultrasonic waves,
Each oscillation element includes a matching layer and a core bonded to the matching layer,
The matching layers of each oscillation element are separated from each other,
The receiving unit includes a plurality of receiving elements for receiving ultrasonic waves,
Each receiving element includes a matching layer and a core bonded to the matching layer,
An ultrasonic edge position detecting device, wherein matching layers of each receiving element are separated from each other.
前記検出処理部は、被検出物のエッジ位置を検出する受信素子による受信信号を、被検出物の検出割合が0%の受信素子による受信信号と、被検出物の検出割合が100%の受信素子による受信信号と、に基づいて補正することを特徴とする請求項1に記載の超音波式エッジ位置検出装置。   The detection processing unit receives a reception signal from a receiving element that detects an edge position of the detection object, a reception signal from a reception element having a detection rate of 0%, and a detection rate of the detection object of 100%. The ultrasonic edge position detection apparatus according to claim 1, wherein correction is performed based on a reception signal from the element. 前記発振素子と前記受信素子の少なくとも何れか一方は、角型をなしていることを特徴とする請求項1又は2に記載の超音波式エッジ位置検出装置。   3. The ultrasonic edge position detection device according to claim 1, wherein at least one of the oscillation element and the reception element has a square shape. 4.
JP2007194260A 2007-07-26 2007-07-26 Ultrasonic apparatus for detecting edge position Pending JP2009031082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194260A JP2009031082A (en) 2007-07-26 2007-07-26 Ultrasonic apparatus for detecting edge position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194260A JP2009031082A (en) 2007-07-26 2007-07-26 Ultrasonic apparatus for detecting edge position

Publications (1)

Publication Number Publication Date
JP2009031082A true JP2009031082A (en) 2009-02-12

Family

ID=40401751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194260A Pending JP2009031082A (en) 2007-07-26 2007-07-26 Ultrasonic apparatus for detecting edge position

Country Status (1)

Country Link
JP (1) JP2009031082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038680A (en) * 2008-08-04 2010-02-18 Nireco Corp Ultrasonic thickness detector and ultrasonic edge position detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072414A (en) * 1989-07-31 1991-12-10 Accuweb, Inc. Ultrasonic web edge detection method and apparatus
JP2003097933A (en) * 2001-09-25 2003-04-03 Nireco Corp Ultrasonic detector for detecting edge position of web
US20060048577A1 (en) * 2004-08-19 2006-03-09 Haque Md M Ultrasonic sensor system for web-guiding apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072414A (en) * 1989-07-31 1991-12-10 Accuweb, Inc. Ultrasonic web edge detection method and apparatus
JP2003097933A (en) * 2001-09-25 2003-04-03 Nireco Corp Ultrasonic detector for detecting edge position of web
US20060048577A1 (en) * 2004-08-19 2006-03-09 Haque Md M Ultrasonic sensor system for web-guiding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038680A (en) * 2008-08-04 2010-02-18 Nireco Corp Ultrasonic thickness detector and ultrasonic edge position detector

Similar Documents

Publication Publication Date Title
US8305074B2 (en) Magnetostrictive transducer and apparatus and method for monitoring structural health using the same
JP2010169499A (en) Position sensor
JP2014533009A5 (en)
CN109444262B (en) Oblique incidence type electromagnetic acoustic sensor based on oblique static magnetic field
US7965018B2 (en) Acoustic sensor with piezo-arrangement film
TWI429884B (en) Vibration detecting device
CN110152964B (en) Directional magnetic concentrator type lamb wave electromagnetic acoustic transducer
JP2009031082A (en) Ultrasonic apparatus for detecting edge position
JP2010263770A (en) Device for controlling vibratory drive unit
WO2011043362A1 (en) Ultrasonic transmission device, ultrasonic propagation time measurement system and ultrasonic propagation time measurement method
JP2003344361A (en) Eddy current flaw detection probe and eddy current flow detector
JP3886843B2 (en) Electromagnetic ultrasonic transducer
JP5240895B2 (en) Ultrasonic edge position detector
WO2011142380A1 (en) Temperature sensor
JP2006308439A (en) Flow measuring device of fluid
JP5008203B2 (en) Ultrasonic thickness detection device and ultrasonic edge position detection device
JP3324720B2 (en) Flow velocity measuring device
JP2008058211A (en) Density sensor
CN110548664B (en) Variable-mode magnetic concentrator type lamb wave electromagnetic acoustic transducer
CN111487285A (en) Transverse field excited film bulk wave resonator humidity sensor
JP2009281975A (en) Surface acoustic wave device and sensor
JP2007212209A (en) Surface potential sensor
JP4114424B2 (en) Ultrasonic transducer
US20200191627A1 (en) Measuring device for determining a fluid variable
JPS6133523A (en) Position orienting device utilizing elastic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130131

A131 Notification of reasons for refusal

Effective date: 20130329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130718