JP2009027928A - Method for evaluating cancer metastasis ability and three-dimensional double membrane structure for evaluating cancer metastasis ability - Google Patents

Method for evaluating cancer metastasis ability and three-dimensional double membrane structure for evaluating cancer metastasis ability Download PDF

Info

Publication number
JP2009027928A
JP2009027928A JP2007191837A JP2007191837A JP2009027928A JP 2009027928 A JP2009027928 A JP 2009027928A JP 2007191837 A JP2007191837 A JP 2007191837A JP 2007191837 A JP2007191837 A JP 2007191837A JP 2009027928 A JP2009027928 A JP 2009027928A
Authority
JP
Japan
Prior art keywords
chamber
membrane
cells
cancer
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191837A
Other languages
Japanese (ja)
Other versions
JP5330657B2 (en
Inventor
Yasushi Tagawa
泰 田川
Kunihiko Tanaka
邦彦 田中
Chiasa Hirakawa
稚麻 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHARMACO CELL CO Ltd
Original Assignee
PHARMACO CELL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHARMACO CELL CO Ltd filed Critical PHARMACO CELL CO Ltd
Priority to JP2007191837A priority Critical patent/JP5330657B2/en
Publication of JP2009027928A publication Critical patent/JP2009027928A/en
Application granted granted Critical
Publication of JP5330657B2 publication Critical patent/JP5330657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating cancer metastasis ability, in which normal cells in vitro intervene and which is approximate in vivo. <P>SOLUTION: This method for evaluating the cancer metastasis ability is characterized by: (procedure 1) sequentially sticking fibroblasts to the lower side of the membrane of the first chamber having the fine pore membrane through which cancer cells can pass, sowing vascular endothelial cells on the upper side of the membrane, and making the sheet of the fibroblasts on the lower side of the membrane and the sheet of the vascular endothelial cells on the upper side of the membrane, respectively; (procedure 2) sowing cancer cells on the sheet of the vascular endothelial cells on the upper side of the membrane, disposing the first chamber obtained in the procedure 1 in the second chamber having a fine pore membrane through which the cancer cells disposed on the culture plate from the upper side can not pass, and culturing the cells in a culture solution in a state that the layers are overlapped at a distance; (procedure 3) taking out the overlapped first chamber, sowing the prescribed number of cells having electric resistance on the membrane of the second chamber having the fine pore membrane through which the left cancer cells can not pass; (procedure 4) culturing the second chamber; and then (procedure 5) measuring the electric resistance of the second chamber with an electric resistance-measuring instrument. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は癌転移能評価方法に関する。また、本発明は癌転移能評価のための三次元二重膜構造に関する。   The present invention relates to a method for evaluating cancer metastasis. The present invention also relates to a three-dimensional bilayer structure for evaluating cancer metastasis ability.

癌の早期発見や新規抗癌剤の開発により、生存率の改善が少しずつ認められはじめた癌種も有る。しかし、大部分の固形癌は人類にとっていまだ難解な病気である。その大きな原因は手術で完全摘出されても、予防医学とは無縁の病態メカニズムで、再発・転移を起す。この忌まわしい転移巣に対し、化学療法、放射線療法、免疫療法、分子標的療法を試みるも、癌死する症例が後を絶たない。この癌の転移防止と対策のためには、生体に近似したin vitro系の転移実験モデルは有力な武器となる。   Some cancer types have started to see improvements in survival rates little by little due to early detection of cancer and the development of new anticancer drugs. However, most solid cancers are still esoteric for humanity. The major cause is recurrence and metastasis due to a pathological mechanism unrelated to preventive medicine even if it is completely removed by surgery. Even though chemotherapy, radiation therapy, immunotherapy, and molecular targeted therapy are tried for this abhorrent metastasis, there are many cases of cancer death. In order to prevent and take measures against this cancer metastasis, an in vitro metastasis model that is close to the living body is a powerful weapon.

癌の転移形成は、癌細胞の原発巣から離脱および周辺組織への浸潤、脈管内への進入、移動、遠隔組織の微小血管への着床、脈管外への脱出および転移部位での増殖などの複雑な過程を経て成立している。
斉木育夫.,1995 :癌転移の分子機構と治療への応用.Molecular Medicine,32(4).372-379 村田 純.,1995 :細胞運動促進因子と癌転移. Molecular Medicine,32(4).392-397
Cancer metastasis involves cancer cell withdrawal from the primary lesion and invasion of surrounding tissues, entry into the vessel, migration, implantation of distant tissue into microvessels, escape to the extravasation, and proliferation at the site of metastasis. It has been established through a complicated process.
Ikuo Saiki., 1995: Molecular mechanism of cancer metastasis and its application to therapy. Molecular Medicine, 32 (4) .372-379 Jun Murata., 1995: Cell motility promoting factor and cancer metastasis. Molecular Medicine, 32 (4) .392-397

このため、転移過程における正常細胞である宿主細胞の役割は原発巣での癌浸潤過程より複雑に関与し、転移メカニズムを解明するには、この正常細胞を除外して転移を語れないと指摘されている。
Brooks PC.,1996 :Cell adhesion molecules in angiogenesis.Can.Met.Rev,15.189-194
For this reason, it is pointed out that the role of host cells that are normal cells in the metastasis process is involved more complicatedly than the cancer invasion process in the primary lesion, and in order to elucidate the metastasis mechanism, metastasis cannot be told by excluding this normal cell ing.
Brooks PC., 1996: Cell adhesion molecules in angiogenesis.Can.Met.Rev, 15.189-194

以上の経過より、癌転移、特に遠隔転移モデルは複数の正常細胞の介在を除外しては成り立たたないものと理解される。そのため、in vivoによる動物での転移能研究が主流であり、   From the above process, it is understood that cancer metastasis, in particular, a distant metastasis model cannot be established except for the intervention of a plurality of normal cells. Therefore, in vivo metastasis research in animals is the mainstream,

In vivoによる転移能研究には、ラットやマウスへの皮下移植、腹腔内移植、脾臓内注入、尾静脈などからの侵襲的癌細胞移入などがおこなわれている。また、その都度、屠殺するため経時的経過観察は困難である。
Lue JY et al.,2003 :Establishment of red fluorescent protein-tagged HeLa tumor metastasis models:Determination of DsRed2 insertion effects and comparison of metastatic patterns after subcutaneous,intraperitoneal,or intravenous injection. Clin Exp Metastasis,20.121-133
In vivo metastatic potential studies include subcutaneous transplantation into rats and mice, intraperitoneal transplantation, intrasplenic injection, and invasive cancer cell transfer from the tail vein. Moreover, since it is slaughtered each time, follow-up over time is difficult.
Lue JY et al., 2003: Establishment of red fluorescent protein-tagged HeLa tumor metastasis models: Determination of DsRed2 insertion effects and comparison of metastatic patterns after subcutaneous, intraperitoneal, or intravenous injection.Clin Exp Metastasis, 20.121-133

臨床における転移巣のComputed Tomography(CT)画像は多くの転移巣で円形陰影を呈し、動物実験における尾静脈からの移入による肺転移巣は肺内転移コロニーとして算出され評価される。
斉木育夫.,1995 :. 癌転移の分子機構と治療への応用. Molecular Medicine,32(4).372-379
Computed tomography (CT) images of clinical metastases show circular shadows at many metastases, and lung metastases resulting from transfer from the tail vein in animal experiments are calculated and evaluated as intrapulmonary metastasis colonies.
Ikuo Saiki., 1995:. Molecular mechanism of cancer metastasis and its application to therapy. Molecular Medicine, 32 (4) .372-379

したがって、本発明の第1の目的は実験に動物を使用しないin vitroにおける正常細胞の介在する、より生体に近似した癌転移能評価方法を提供することであり、また、本発明の第2の目的はin vitroにおける癌転移能評価方法のためのモデルを提供することである。
Accordingly, a first object of the present invention is to provide a method for evaluating cancer metastasis ability that is closer to a living body and that is mediated by normal cells in vitro without using animals for experiments, and the second object of the present invention. The purpose is to provide a model for in vitro cancer metastasis assessment method.

上記第1の目的を達成するため、請求項1に記載の本発明に係る癌転移能評価方法、すなわち、(手順1) 癌細胞が通ることができる細孔膜を有する第1のチャンバーの膜下面に線維芽細胞を貼り付け、その後に、当該膜上面に血管内皮細胞を播種し、当該膜下面に線維芽細胞のシートを作製するとともに当該膜上面に血管内皮細胞のシートを作製すること、
(手順2)次に、当該膜上面の血管内皮細胞のシート上に所定の細胞数の癌細胞を播種し、その後に、培養プレートの中に配置した、癌細胞が通ることができない細孔膜を有する第2のチャンバーに、上方から、手順1で得た第1のチャンバーを挿入配置し、間隔を置いて重層した状態で所定時間静置培養すること、
(手順3)その後、重層した第1のチャンバーを取り出し、残った、癌細胞が通ることができない細孔膜第2のチャンバーの当該膜上に電気抵抗を有する細胞を所定数播種すること、
(手順4)その後、手順3で得た、当該第2のチャンバーを一定期間静置培養すること、
(手順5)続いて、手順4で得た、当該第2のチャンバーの電気抵抗(Transepithelial electrical resistance:TEERと略)値を電気抵抗測定器で測定すること、を順次行うことを特徴とする癌転移能評価方法によって、達成される。
本明細書において、「癌細胞が通ることができる細孔膜」の細孔の寸法は、癌細胞の種類によって異なるが、5.0〜12.0マイクロメーターである。すなわち、癌細胞によって、その細胞の寸法や変形能が異なるため、当該細孔寸法は異なる。また、「癌細胞が通ることができない細孔膜」の細孔の寸法は、おおよそ4.0マイクロメーター以下であり、好ましくは0.4マイクロメーター前後である。
In order to achieve the first object, the method for evaluating cancer metastasis according to the present invention according to claim 1, that is, (Procedure 1) is a membrane of a first chamber having a pore membrane through which cancer cells can pass. Affixing fibroblasts to the lower surface, and then seeding vascular endothelial cells on the upper surface of the membrane, creating a sheet of fibroblasts on the lower surface of the membrane and creating a sheet of vascular endothelial cells on the upper surface of the membrane,
(Procedure 2) Next, a porous membrane in which cancer cells of a predetermined number of cells are seeded on a sheet of vascular endothelial cells on the upper surface of the membrane and then placed in a culture plate, through which cancer cells cannot pass The first chamber obtained in the procedure 1 is inserted and placed in the second chamber having the above from above, and statically cultured for a predetermined time in a state of being layered at intervals.
(Procedure 3) Thereafter, the stacked first chamber is taken out, and a predetermined number of cells having electrical resistance are seeded on the membrane in the second chamber of the porous membrane where the remaining cancer cells cannot pass,
(Procedure 4) Then, static culture of the second chamber obtained in Procedure 3 for a certain period of time,
(Procedure 5) Subsequently, a cancer characterized by sequentially measuring the electrical resistance (Transepithelial electrical resistance: abbreviated as TEER) value of the second chamber obtained in Procedure 4 with an electrical resistance measuring instrument. This is achieved by the metastatic ability evaluation method.
In the present specification, the pore size of the “pore membrane through which cancer cells can pass” is 5.0 to 12.0 micrometers, although it varies depending on the type of cancer cells. That is, since the size and deformability of the cells differ depending on the cancer cell, the pore size differs. Further, the pore size of the “porous membrane through which cancer cells cannot pass” is approximately 4.0 micrometers or less, and preferably around 0.4 micrometers.

上記第2の目的は、請求項2に記載の本発明に係る癌転移能評価方法のための三次元二重膜構造、すなわち、細孔を有する膜下面に線維芽細胞のシートを作製するとともに、膜上面に血管内皮細胞のシートを作製した後に、当該血管内皮細胞のシートの上に、所定細胞数の癌細胞を播種した、癌細胞が通ることができる細孔膜を有する第1のチャンバーと、癌細胞が通ることができない細孔膜を有する第2のチャンバーと、培養液を収納した培養プレートと、を含み、 当該培養プレートの中に当該第2のチャンバーを配置し、この当該第2のチャンバーの中に、上方から、当該第1のチャンバーを間隔を置いて重層配置して、また、培養プレートを第2のチャンバーとの間に間隔を置く、癌転移能評価のための三次元二重膜構造によって達成される。
本明細書において、第1のチャンバーの細孔膜と第2のチャンバーの細孔膜との間隔はおよそ0.8〜1.2ミリメーターであり、第2のチャンバーの細孔膜と培養プレートとの間隔は0.8〜1.2ミリメーターである。
The second object is to produce a sheet of fibroblasts on the lower surface of the three-dimensional bilayer structure for the cancer metastasis evaluation method according to the present invention as defined in claim 2, that is, a membrane having pores. A first chamber having a pore membrane through which cancer cells can pass, in which a vascular endothelial cell sheet is prepared on the upper surface of the membrane, and a predetermined number of cancer cells are seeded on the vascular endothelial cell sheet. And a second chamber having a porous membrane through which cancer cells cannot pass, and a culture plate containing a culture solution, the second chamber being disposed in the culture plate, The third chamber for evaluating cancer metastasis capacity, wherein the first chamber is placed in an overlapping manner in the two chambers from above, and the culture plate is spaced from the second chamber. Achieved by original double membrane structure Is done.
In this specification, the interval between the pore membrane of the first chamber and the pore membrane of the second chamber is about 0.8 to 1.2 millimeters, and the interval between the pore membrane of the second chamber and the culture plate is 0.8 to 1.2 millimeters.

In vitroの系において、癌細胞が三次元構築した血管内皮細胞や他の正常細胞の細胞接着間を開離または崩壊、移動し、この癌細胞の増殖活性を評価できる本発明に係るin vitroモデルによると、遠隔転移の予測は当然ながら、実験の便宜性、動物愛護、経済的効果の問題以外にも、in vivoで難解な基礎研究や経時的研究が容易に可能となる。このことは、さらに遠隔転移の生物学的機構解明や転移予防の臨床治療へと迅速に進展していくものと期待される。   An in vitro model according to the present invention that can evaluate the proliferative activity of cancer cells by separating, disrupting, or migrating between cell adhesions of vascular endothelial cells and other normal cells that are three-dimensionally constructed by cancer cells in an in vitro system According to the report, it is natural that prediction of distant metastasis can be easily conducted in vivo, in addition to the problems of experimental convenience, animal welfare, and economic effects. This is expected to make rapid progress toward further elucidation of the biological mechanism of distant metastasis and clinical treatment of metastasis prevention.

本発明に係る癌移転評価方法によると、評価時間を大幅に短縮することができる。そのため、新薬開発において、動物実験の前に行なう大量・短時間の実験による評価として、本発明に係る癌転移評価方法や二重膜構造は利用することができる。   According to the cancer relocation evaluation method according to the present invention, the evaluation time can be greatly shortened. Therefore, in the development of new drugs, the cancer metastasis evaluation method and the bilayer structure according to the present invention can be used as an evaluation by a large-scale and short-time experiment performed before an animal experiment.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

1.材料と方法
[細胞株と培養]
本実験に使用した細胞株は、正常細胞由来の細胞株として、ラット血管内皮細胞であるGP8、マウス線維芽細胞であるNIH3T3、電気抵抗を有するイヌ腎上皮細胞由来であるMDCKの3細胞株である。癌細胞由来の細胞株としては、SW480(ヒト大腸癌由来)、SW620(ヒト大腸癌由来)の2細胞株である。癌細胞株であるHeLa(ヒト子宮頚癌由来)は陽性コントロールとして採用した。計6種類の細胞株を利用した。
1. Materials and methods [Cell lines and culture]
The cell lines used in this experiment are 3 cell lines derived from normal cells derived from GP8, a rat vascular endothelial cell, NIH3T3, a mouse fibroblast, and MDCK, a canine renal epithelial cell having electrical resistance. is there. As cell lines derived from cancer cells, there are two cell lines, SW480 (derived from human colon cancer) and SW620 (derived from human colon cancer). A cancer cell line HeLa (derived from human cervical cancer) was employed as a positive control. A total of 6 cell lines were used.

今回のin vitro転移実験に使用した2種類の癌細胞株は、同一患者の異なる部位から樹立された大腸癌細胞株を選択した。つまり、SW480は大腸癌の原発巣より樹立された癌細胞株で、SW620は同一患者のリンパ節転移巣より樹立された癌細胞株である。SW480は低転移細胞株、SW620は高転移細胞株である。
Hewitt RE et al.,2000 :Validation of a model of colon cancer progression.J Pathol,192.446-454
The two types of cancer cell lines used in this in vitro metastasis experiment were selected from colon cancer cell lines established from different sites in the same patient. That is, SW480 is a cancer cell line established from the primary lesion of colon cancer, and SW620 is a cancer cell line established from the lymph node metastasis of the same patient. SW480 is a low metastasis cell line and SW620 is a high metastasis cell line.
Hewitt RE et al., 2000: Validation of a model of colon cancer progression. J Pathol, 192.446-454

本実験における総ての細胞株の継代培養ならびに実験培地はDulbecco's Modified Eagle's Medium(DMEMと略: Sigma(商標))に10%胎児牛血清(FBSと略: GIBCO(商標))を添加した培養液(培地)を使用し、37℃の5%CO2インキュベータ内にて、25cm2 細胞培養フラスコ(Cornig社製)で継代培養した。GP8においてはG418 300μg/mlを培地に添加し継代培養した。培地交換は3日目にリン酸緩衝生理食塩水(PBSと略)で洗浄後、0.05%トリプシン-EDTA(GIBCO(商標))で細胞を剥離し継代培養した。細胞数の調整は0.05%トリプシン-EDTAで細胞単離後、単個細胞になるように振盪、トリパンブルー染色による血球計算盤で生細胞数を計出した(トリパンブルー排出試験)。マイコプラズマ感染は不感染であることを確認し、実験に供した。 All cell lines in this experiment were subcultured and the experimental medium was Dulbecco's Modified Eagle's Medium (DMEM, abbreviation: Sigma ™) plus 10% fetal calf serum (FBS, abbreviation: GIBCO ™) Using the solution (medium), the cells were subcultured in a 25 cm 2 cell culture flask (Cornig) in a 5% CO 2 incubator at 37 ° C. In GP8, G418 300 μg / ml was added to the medium and subcultured. On the third day, the medium was washed with phosphate buffered saline (abbreviated as PBS), and the cells were detached with 0.05% trypsin-EDTA (GIBCO (trademark)) and subcultured. The cell number was adjusted with 0.05% trypsin-EDTA, then shaken so as to become single cells, and the number of viable cells was counted with a hemocytometer by trypan blue staining (trypan blue discharge test). It was confirmed that mycoplasma infection was non-infected and was used for the experiment.

[材料]
三次元二重膜構造チャンバーのモデル作成は、12 穴培養プレート内に、2個の細孔膜円筒型チャンバーが組み合わされるように工夫した。今回使用した実験材料を紹介する。
[material]
The modeling of the three-dimensional double membrane structure chamber was devised so that two porous membrane cylindrical chambers were combined in a 12-well culture plate. The experimental materials used this time are introduced.

図1は、本実施例で用いられるTranswell(登録商標) 3422チャンバーと3460チャンバーの写真である。3422チャンバーはポリカーボネイト 膜(白色を呈す)で8.0マイクロメーターの 細孔径を有する(図1の上部、左部)。3460チャンバーはポリエステル 膜(白色を呈す)で0.4マイクロメーターの 細孔径を有する(図1の上部、右部)。3422チャンバーは写真のごとく3460チャンバー内に的確に重層して挿入可能である(図1の下部)。   FIG. 1 is a photograph of Transwell (registered trademark) 3422 and 3460 chambers used in this example. The 3422 chamber is a polycarbonate membrane (showing white) and has a pore size of 8.0 micrometers (upper left in Fig. 1). The 3460 chamber is a polyester membrane (shows white) and has a pore size of 0.4 micrometers (upper and right in Fig. 1). The 3422 chamber can be inserted into the 3460 chamber precisely as shown in the picture (lower part of Fig. 1).

その作製のための2種類のチャンバーは、(1)直径6.5ミリメーター で8.0マイクロメーター の細孔径の膜(ポリカーボネイト膜)を有するTranswell 3422(登録商標)insert(Corning社製)のチャンバーと(2)直径12.0ミリメーターで0.4マイクロメーター の細孔径の膜(ポリエステル膜)を有するTranswell(登録商標)insert 3460(Corning社製)のチャンバーを使用した。3422チャンバーは24穴培養プレートに納められており、3460チャンバーは12 穴培養プレートに納められている。3422チャンバーは12 穴培養プレート内の3460チャンバー内に重層し的確に納まった。3422チャンバーを3460チャンバーの上に重ね合わせる時、両者の膜間隔は約1.0ミリメーターであった。また、3460チャンバー膜と12穴培養プレート底面までの間隔は1.0ミリメーターであった。3422チャンバーは本発明における「第1のチャンバー」の実施例であり、3460チャンバーは本発明における「第2のチャンバー」の実施例であり、12穴培養プレートは本発明における「培養プレート」の実施例である。   Two types of chambers for the production were (1) a chamber of Transwell 3422 (registered trademark) (made by Corning) having a membrane (polycarbonate membrane) having a diameter of 6.5 millimeters and a pore size of 8.0 micrometers (2) ) A chamber of Transwell (registered trademark) insert 3460 (Corning) having a membrane (polyester membrane) having a diameter of 12.0 mm and a pore size of 0.4 micrometers was used. The 3422 chamber is housed in a 24-well culture plate and the 3460 chamber is housed in a 12-well culture plate. The 3422 chamber overlaid the 3460 chamber in the 12-well culture plate and was properly placed. When the 3422 chamber was overlaid on the 3460 chamber, the distance between the two membranes was about 1.0 millimeter. The distance between the 3460 chamber membrane and the bottom of the 12-well culture plate was 1.0 millimeter. The 3422 chamber is an example of the “first chamber” in the present invention, the 3460 chamber is an example of the “second chamber” in the present invention, and the 12-well culture plate is an implementation of the “culture plate” in the present invention. It is an example.

図2は本実施例で用いられる三次元二膜構造チャンバーモデルによる構造を示す概略図である。本実施例における3422チャンバー(第1のチャンバー1)を3460チャンバー(第2のチャンバー2)の上に重ね合わせたものを12穴培養プレート(培養プレート3)の中に収納した状態を示す概略断面図である。   FIG. 2 is a schematic diagram showing a structure based on a three-dimensional two-film structure chamber model used in this example. Schematic cross section showing a state in which the 3422 chamber (first chamber 1) overlaid on the 3460 chamber (second chamber 2) is stored in a 12-well culture plate (culture plate 3) in this example. FIG.

100ミリメーター細胞培養皿(Falkon社製)は3422チャンバー1cの膜下面に細胞を貼り付け操作時、さらに、35ミリメーター 細胞培養皿(Falcon社製)は顕微鏡による形態観察の時に使用した。   The 100 mm cell culture dish (Falkon) was used for attaching cells to the lower surface of the membrane of the 3422 chamber 1c, and the 35 mm cell culture dish (Falcon) was used for morphological observation with a microscope.

他種類の細胞が介在(共存)する培養時の細胞コロニー同定のための蛍光染色液は、生細胞で染色でき、毒性の低いRhodamine123(Sigma(商標))をDMEM+10%FBSで溶解して使用した。倒立顕微鏡はOlympus CK 40(オリンパス社製)を使用し、Olympus U-RFLT 50(オリンパス社製)にて蛍光励起を行い、細胞コロニーを観察した。写真はOlympus PM10SP(オリンパス社製)で撮影した。   Fluorescent staining solution for identification of cell colonies during culture in which other types of cells intervene (coexist) can be stained with live cells, and Rhodamine123 (Sigma (trademark)) with low toxicity is dissolved in DMEM + 10% FBS. used. The inverted microscope used Olympus CK 40 (manufactured by Olympus), was subjected to fluorescence excitation with Olympus U-RFLT 50 (manufactured by Olympus), and cell colonies were observed. The photo was taken with Olympus PM10SP (Olympus).

TEER値測定はRecorder OutputのEVOM(商標)(World Precision Instruments社製)とENDOHM-12(World Precision Instruments社製)を使用した。TEER値の単位はΩ・cm2である。測定方法はマニュアルに従った。図3は本実施例で用いられる電気抵抗測定器の構造を示す概略図である。 TEER value measurement was performed using Recorder Output EVOM (trademark) (manufactured by World Precision Instruments) and ENDOHM-12 (manufactured by World Precision Instruments). The unit of TEER value is Ω · cm 2 . The measurement method followed the manual. FIG. 3 is a schematic view showing the structure of the electrical resistance measuring instrument used in this embodiment.

[方法]
基礎実験1、2では1試料( n = 1 )とし、基礎実験3、本発明の実験は3試料( n = 3 )で行った。
[Method]
In basic experiments 1 and 2, one sample (n = 1) was used, and in basic experiment 3, the experiment of the present invention was performed with three samples (n = 3).

1)基礎実験1(Rhodamine123排出時間)
MDCKの介在する培養下における癌細胞同定のために、前記0014欄の6種類の細胞を35ミリメーター細胞培養皿に培養し、蛍光色素であるRhodamine123の完全に消退する時間を検討した。方法は、培養液にRhodamine123を滴下して、暗所にて30分間細胞培養・染色、30分後に、この検体をPBSで2回洗浄し、Rhodamine123を除去、新しい培地に交換、経時的に24時間まで蛍光顕微鏡で観察を行った。蛍光が蛍光顕微鏡で完全に見えなくなる時間を各細胞のRhodamine123排出時間とした。
1) Basic experiment 1 (Rhodamine 123 discharge time)
In order to identify cancer cells in a culture mediated by MDCK, the six types of cells in column 0014 were cultured in a 35 mm cell culture dish, and the time for complete disappearance of Rhodamine 123, a fluorescent dye, was examined. In the method, Rhodamine 123 was added dropwise to the culture medium, and the cells were cultured and stained for 30 minutes in the dark. After 30 minutes, this specimen was washed twice with PBS, Rhodamine 123 was removed, and the medium was replaced with a new medium. Observation was carried out with a fluorescence microscope until time. The time during which the fluorescence was completely invisible with a fluorescence microscope was defined as the Rhodamine 123 excretion time of each cell.

2)基礎実験2(MDCKの癌細胞コロニー形成に与える影響)
癌細胞はMDCK介在下に存在することになる。そこで、MDCKの癌細胞コロニー形成にあたえる影響を検討した。MDCKと癌細胞HeLaを35ミリメーター細胞培養皿内で検討した。
2) Basic experiment 2 (Effect of MDCK on cancer cell colony formation)
Cancer cells will be mediated by MDCK. Therefore, the influence of MDCK on cancer cell colony formation was examined. MDCK and cancer cells HeLa were examined in a 35 mm cell culture dish.

当該培養皿へ、HeLaを1×104、5×103、1×103、5×102、1×102個播種した検体(HeLa 単独例)、24時間後に上記細胞数のHeLa存在下の細胞培養皿内へMDCKを播種した検体(HeLa+MDCK例)の2種類を作成し、培養7日目にRhodamine123染色を行い、光学顕微鏡と蛍光顕微鏡にて形態観察し、比較した。 Specimens seeded with 1 × 10 4 , 5 × 10 3 , 1 × 10 3 , 5 × 10 2 , 1 × 10 2 HeLa on the culture dish (HeLa alone), and the presence of HeLa in the above number of cells after 24 hours Two types of specimens (HeLa + MDCK example) seeded with MDCK in the lower cell culture dish were prepared, Rhodamine 123 staining was performed on the seventh day of culture, and the morphology was observed with an optical microscope and a fluorescence microscope, and compared.

3)基礎実験3(NIH3T3、GP8がMDCKのTEER値に及ぼす影響)
3422チャンバーの膜下面1cと上面1bに敷き込むNIH3T3とGP8の細胞動態(行動)と電気抵抗を有するMDCKとの関係を検討した。
3) Basic Experiment 3 (Influence of NIH3T3 and GP8 on TECK value of MDCK)
The relationship between the cell dynamics (behavior) of NIH3T3 and GP8 laid on the lower surface 1c and upper surface 1b of the 3422 chamber and MDCK having electrical resistance was examined.

まず、3422チャンバー上面1bに1×105個のNIH3T3もしくはGP8を播種し、このチャンバーを12穴培養プレート(培養プレート3)の3460チャンバー内に重層し、2日後3422チャンバーを除去し、残った3460チャンバーの膜上面2bにMDCKを2×105個播種、7日間静置培養した。その間、培養液の交換は2回行った。MDCK播種後7日目に3460チャンバーのTEER値を測定し、Rhodamine123染色によるMDCK介在下のNIH3T3とGP8の細胞行動を観察した。 First, 1 × 10 5 NIH3T3 or GP8 was seeded on the upper surface 1b of the 3422 chamber, this chamber was overlaid in the 3460 chamber of the 12-well culture plate (culture plate 3), and the 3422 chamber was removed after 2 days. On the upper surface 2b of the 3460 chamber, 2 × 10 5 MDCKs were seeded and statically cultured for 7 days. Meanwhile, the culture medium was exchanged twice. Seven days after MDCK seeding, TEER values in 3460 chambers were measured, and cell behavior of NIH3T3 and GP8 mediated by MDCK was observed by Rhodamine123 staining.

4)本発明の実験(三次元二重膜構造チャンバーモデルにおけるTEER値の変化と癌細胞コロニー観察)
図4A,Bは本発明に係る今回の実験をモデルとした癌転移能評価方法の実施例手順を示す概略図である。また、本発明に係る三次元二重膜構造チャンバー構造の作成手順を示す概略図である。手順1から手順7は実験の経時的順序を示す。手順7の後に、3460チャンバーを取り出し、この3460チャンバーの電気抵抗を測定、評価をおこなった。また、癌細胞コロニーの観察を行った。
4) Experiment of the present invention (change in TEER value and observation of cancer cell colonies in a three-dimensional double membrane chamber model)
4A and 4B are schematic diagrams showing an example procedure of a cancer metastasis evaluation method modeled on the present experiment according to the present invention. Moreover, it is the schematic which shows the preparation procedure of the three-dimensional double membrane structure chamber structure which concerns on this invention. Procedures 1 to 7 show the order of the experiments over time. After step 7, the 3460 chamber was removed and the electrical resistance of the 3460 chamber was measured and evaluated. In addition, cancer cell colonies were observed.

手順1
24穴培養プレートから3422チャンバーを取り出し、当該チャンバーを100ミリメーター細胞培養皿上に反転して置き、上になった3422チャンバー膜下面にNIH3T3を滴下(1×105個:50マイクロリットル)、4時間培養することで3422チャンバー膜下面にNIH3T3を貼り付けた。
Step 1
Remove the 3422 chamber from the 24-well culture plate, place the chamber upside down on a 100 mm cell culture dish, and drop NIH3T3 (1 × 10 5 pieces: 50 microliters) on the bottom of the 3422 chamber membrane on the top, NIH3T3 was attached to the lower surface of the 3422 chamber membrane by culturing for 4 hours.

手順2
この3422チャンバーを培養液の入った24穴培養プレートへ元のように戻し、24時間静置培養。次に、この3422チャンバーの膜上面にGP8を播種(2×10 5個:100マイクロリットル)した。
Step 2
This 3422 chamber was returned to the 24-well culture plate containing the culture solution as it was, and left for 24 hours. Next, GP8 was seeded on the upper surface of the membrane of the 3422 chamber (2 × 10 5 cells: 100 microliters).

手順3
72時間静置培養後、3422チャンバーの膜を上下に挟み込ように、細胞が密着した状態のNIH3T3シート(膜下面)とGP8シート(膜上面)を作製した。
Step 3
After 72 hours of static culture, NIH3T3 sheets (membrane lower surface) and GP8 sheets (membrane upper surface) in a state where cells were in close contact were prepared so that the membrane in the 3422 chamber was sandwiched up and down.

手順4
この24穴培養プレートにある3422チャンバー内上面に、調整した細胞数の癌細胞を播種した。
Step 4
The adjusted number of cancer cells was seeded on the upper surface of the 3422 chamber of the 24-well culture plate.

手順5
その直後、培養液の入った12穴培養プレート内にある3460チャンバー内に3422チャンバーを移し替え挿入することで、2つのチャンバーを重層した。
重層した状態で48時間静置培養した。
Step 5
Immediately after that, the two chambers were overlaid by transferring and inserting the 3422 chamber into the 3460 chamber in the 12-well culture plate containing the culture solution.
The culture was allowed to stand for 48 hours in a layered state.

手順6
その後、3422チャンバーを3460チャンバーより除去し、残った3460チャンバーの膜上面に電気抵抗を有するMDCKを2×105個播種、培養液を追加した。
Step 6
Thereafter, the 3422 chamber was removed from the 3460 chamber, 2 × 10 5 MDCK having electric resistance were seeded on the upper surface of the membrane of the remaining 3460 chamber, and a culture solution was added.

手順7
MDCKの細胞密着状態作製(MDCKシート)と癌細胞コロニー形成のため、7日間静置培養した。その間、3460チャンバー内の培養液の1/2交換を2回行った。
Step 7
The cells were statically cultured for 7 days for preparation of MDCK cell adhesion (MDCK sheet) and formation of cancer cell colonies. Meanwhile, 1/2 exchange of the culture solution in the 3460 chamber was performed twice.

この7日目に、3460チャンバーのTEER値を、図3に示す電気抵抗測定器を使用し、測定した。さらに、Rhodamine123染色による癌細胞コロニーの観察を行った。   On this 7th day, the TEER value of the 3460 chamber was measured using the electrical resistance measuring instrument shown in FIG. Furthermore, cancer cell colonies were observed by Rhodamine123 staining.

[統計処理]
統計解析ソフトはStat.View Ver.4.0を使用し、統計処理はt検定で行った。統計学的有意差はP<0.05とした。
[Statistical processing]
Statistical analysis software was Stat.View Ver.4.0, and statistical processing was performed by t-test. Statistical significance was P <0.05.

[結果]
・ 基礎実験1(Rhodamine123排出時間)
表1は、基礎実験1で使用した6種類0014欄の細胞株のRhodamine123蛍光色素排出時間を示す。縦は細胞株の種類、横は時間( h )の推移である(○:蛍光顕微鏡で細胞内に蛍光染色の確認ができた時間、×:蛍光顕微鏡で細胞内に蛍光染色の確認できなくなった時間を意味する)。
[result]
・ Basic experiment 1 (Rhodamine 123 discharge time)
Table 1 shows the Rhodamine 123 fluorescent dye excretion time of the six types of cell lines of 0014 column used in the basic experiment 1. The vertical is the cell line type, the horizontal is the time (h) transition (○: the time when the fluorescent staining was confirmed in the cells with the fluorescence microscope, ×: the fluorescence staining could not be confirmed within the cells with the fluorescence microscope Means time).

この結果より、MDCKの介在下における癌細胞コロニーの同定には、MDCKのRhodamine123蛍光が3時間以上経過した時点で完全に消失することより、癌細胞コロニーの蛍光観察ができることを明かとした。そのため、以後の癌細胞コロニー観察はRhodamine123染色除去より3〜4時間目とした。   From this result, it was clarified that for the identification of cancer cell colonies under the intervention of MDCK, the fluorescence of cancer cell colonies can be observed by the disappearance of Rhodamine123 fluorescence of MDCK completely after 3 hours. Therefore, the subsequent cancer cell colony observation was performed 3 to 4 hours after the removal of Rhodamine123 staining.

2)基礎実験2(MDCKの癌細胞コロニー形成に与える影響)
癌細胞HeLa単独例とHeLa+MDCK例の10個以上で構成されるHeLaの癌細胞コロニー数は、それぞれ、1×104個播種で941個と1099個、5×103個播種で303個と366個、1×103個播種では76個と56個、5×102個播種では14個と10個であった。HeLa単独例の1×104個を播種した検体では癌細胞コロニーのお互いの癒合(重なり合い)が認められたが、MDCKを介在させたHeLa+MDCK例では癌細胞コロニー間の癒合は認められなかった。
2) Basic experiment 2 (Effect of MDCK on colony formation of cancer cells)
The number of cancer cell colonies of HeLa consisting of 10 or more cancer cell HeLa alone cases and HeLa + MDCK cases is 941 and 1099 when seeding 1 × 10 4 and 303 when seeding 5 × 10 3 respectively. 366, 1 × 10 3 seeding was 76 and 56, and 5 × 10 2 seeding was 14 and 10. In the specimens seeded with 1 × 10 4 HeLa alone, cancer cell colonies were found to coalesce with each other, but in MDLa-mediated HeLa + MDCK cases, no cancer cell colonies were found to fuse. It was.

以上の結果より、HeLaの癌細胞コロニー形成はMDCKの介在によって、コロニー形成数に影響されないこと、ならびにMDCKの介在によりHeLaのコロニーが癒合せず、明らかな癌細胞コロニー数の算出できることが判明した。   From the above results, it was found that the cancer cell colony formation of HeLa is not affected by the number of colonies formed by MDCK, and that the colony of HeLa does not heal by MDCK and the number of cancer cell colonies can be calculated clearly .

3)基礎実験3(NIH3T3、GP8がMDCKのTEER値に及ぼす影響)
電気抵抗を有するMDCKのみの検体と3422チャンバーより落下したNIH3T3介在のMDCK検体には、両検体の3460チャンバーにおけるTEER値に差を認めなかった。 同様の操作をGP8で行った。GP8は3422チャンバーから、落下し、MDCKの介在下で、Rhodamine123染色コロニーを形成した。ただし、コロニーは小さな構成細胞コロニーと樹枝状形態(コロニーを形成していない細胞群)であった。このことは、GP8は3460チャンバーのMDCKのTEER値に影響を及ぼした。
3) Basic Experiment 3 (Influence of NIH3T3 and GP8 on TECK value of MDCK)
There was no difference in the TEER values between the 3460 chambers of the MDCK samples with electrical resistance and the NIH3T3-mediated MDCK samples dropped from the 3422 chamber. The same operation was performed with GP8. GP8 dropped from the 3422 chamber and formed Rhodamine123-stained colonies in the presence of MDCK. However, the colonies were small constituent cell colonies and dendritic morphology (cell groups that did not form colonies). This affected GP8's TECK value of 3460 chamber MDCK.

この結果より、GP8では3422チャンバーの8.0マイクロメーターの細孔径を通過するため、3460チャンバーへの進入を阻止する工夫が必要と考えられた。CP8を3422チャンバー膜上面に播種する前に、3422チャンバーの膜下面にNIH3T3を敷き込むことで、MDCKのTEER値は7540±319.1Ω・cm2(平均値±SE)を示した。3422チャンバーにいずれの細胞(NIH3T3、GP8)も播種しない時のMDCKのTEER値は7679±180.3Ω・cm2であり、上記と差を認めなかった。この結果はGP8の膜下面への移動をNIH3T3で阻止でき、GP8のMDCKに対する影響は解決した。 Based on these results, GP8 passes through the pore size of 8.02 micrometers in the 3422 chamber, so it was considered necessary to devise measures to prevent entry into the 3460 chamber. Before CP8 was seeded on the upper surface of the 3422 chamber membrane, NIH3T3 was laid on the lower surface of the 3422 chamber membrane, and the MDCK TEER value was 7540 ± 319.1 Ω · cm 2 (average ± SE). When no cells (NIH3T3, GP8) were seeded in the 3422 chamber, the MDCK TEER value was 7679 ± 180.3 Ω · cm 2 , which was not different from the above. This result showed that NIH3T3 could prevent GP8 from moving to the lower surface of the film, and the effect of GP8 on MDCK was resolved.

4)本発明の実験(三次元二重膜構造チャンバーモデルにおけるTEER値の変化と癌細胞コロニー観察)
NIH3T3、GP8、MDCKの正常細胞由来の細胞が存在する三次元二重膜構造チャンバーのモデルを使用して、2.5×105個の癌細胞による、電気抵抗を有すMDCK介在3460チャンバーのTEER値変化と癌細胞コロニー観察を行った。
4) Experiment of the present invention (change in TEER value and observation of cancer cell colonies in a three-dimensional double membrane chamber model)
TEER value of MDCK-mediated 3460 chamber with electrical resistance by 2.5 × 10 5 cancer cells using a 3D bilayer membrane chamber model with cells derived from NIH3T3, GP8 and MDCK normal cells Changes and cancer cell colony observation were performed.

3422チャンバーにNIH3T3シート(膜下面)とGP8シート(膜上面)を作製した後に、3422チャンバーに癌細胞を播種しなかった3460チャンバー(コントロール検体(白抜き星マーク))におけるMDCKのTEER値は7540±319.1Ω・cm2(平均値±SE)であった。3422チャンバーにいずれの細胞(NIH3T3、GP8)も存在しない状態での3460チャンバーにおけるMDCKのTEER値は7679±180.3Ω・cm2であり、コントロール検体(白抜き星マーク)と大差なかった。一方、NIH3T3とGP8の存在する3422チャンバーに癌細胞を播種した検体を測定すると、HeLa播種のMDCK 介在チャンバー(MDCK+HeLa検体)では3507±1001Ω・cm2、SW480播種のMDCK介在チャンバー(MDCK+SW480検体)では7643±602.0Ω・cm2、SW620播種のMDCK介在チャンバー(MDCK+SW620検体)では4417±649.5Ω・cm2であった。コントロール検体とMDCK+HeLa検体ならびにMDCK+SW620検体との間に、P<0.05の統計学的有意差を認めた。なお、MDCK+SW480検体とMDCK+SW620検体の間にも統計学的有意差を認め、高転移細胞株であるSW620は、低転移細胞株であるSW480より、有意にMDCKのTEERの低値を示した(図5)。
表2は、図5と同様の実験内容であるが、本発明モデルに使用した各々3試料の実験結果を詳細に示したものである。各癌細胞株による、MDCKのTEER値に与える影響と癌細胞コロニー形成の一覧表を示している。電気抵抗の測定は図3に示すごとく行った。癌細胞コロニーの数はRhodamine123染色除去後の3〜4時間目に蛍光顕微鏡で観察し算出した。(表2のコントロールは図5のコントロール(白抜き星マーク)と同じ条件である。TEERは電気抵抗値で、単位はΩ・cm2:コロニー細胞数は1つの癌細胞コロニーのコロニー構成細胞数20〜49個,50個以上で2つに分け、その個数で表示している)。
After the NIH3T3 sheet (membrane bottom surface) and GP8 sheet (membrane top surface) were prepared in the 3422 chamber, the MDCK TEER value was 7540 in the 3460 chamber (control sample (open star mark)) in which no cancer cells were seeded in the 3422 chamber. It was ± 319.1Ω · cm 2 (average value ± SE). The MDCK TEER value in the 3460 chamber in the absence of any cells (NIH3T3, GP8) in the 3422 chamber was 7679 ± 180.3 Ω · cm 2 , which was not significantly different from the control sample (open star mark). On the other hand, when the specimens in which cancer cells were seeded in the 3422 chamber containing NIH3T3 and GP8 were measured, the MDCK-mediated chamber (MDCK + HeLa specimen) seeded with HeLa was 3507 ± 1001Ω · cm 2 , and the MDCK-mediated chamber (MDCK + SW480 specimen) seeded with SW480 was 7643 ± 602.0Ω · cm 2, SW620 MDCK intervening chamber (MDCK + SW620 samples) seeding was at 4417 ± 649.5Ω · cm 2. A statistically significant difference of P <0.05 was observed between the control sample, the MDCK + HeLa sample, and the MDCK + SW620 sample. A statistically significant difference was also observed between the MDCK + SW480 specimen and the MDCK + SW620 specimen. SW620, a high metastasis cell line, showed a significantly lower MDCK TEER than SW480, a low metastasis cell line (Fig. 5).
Table 2 shows the details of the experiment similar to FIG. 5, but shows the experimental results of three samples used in the model of the present invention in detail. The table below shows the influence of each cancer cell line on the MDCK TEER value and the formation of cancer cell colonies. The electrical resistance was measured as shown in FIG. The number of cancer cell colonies was calculated by observing with a fluorescence microscope 3 to 4 hours after the removal of Rhodamine123 staining. (The control in Table 2 is the same as the control in FIG. 5 (open star mark). TEER is an electrical resistance value, the unit is Ω · cm 2 : the number of colony cells is the number of colony constituting cells of one cancer cell colony. 20 to 49 pieces, 50 or more pieces are divided into two, and the number is displayed).

MDCK介在3460チャンバー上で、光学顕微鏡と蛍光顕微鏡で癌細胞コロニーを観察した。光顕顕微鏡では、MDCKの介在により癌細胞コロニーと紛らわしいMDCKの細胞塊(図6:赤矢印)が存在したが、Rhodamine123染色での蛍光顕微鏡では、明らかな癌細胞コロニーを捕らえることができた(図6:白矢印)。観察の結果は、HeLaとSW480癌細胞コロニーの細胞凝集はやや粗であり、HeLaにおいては50個以上構成コロニーと20個以上構成コロニーが認められ、SW480では50個以上構成コロニーは無く、20個以上構成コロニーも少なかった。一方、SW620癌細胞コロニーの細胞凝集は比較的密であり、50個以上構成コロニーはほとんど無く、20個以上構成コロニーが多数認められた(図6)。この観察結果は、高転移細胞株であるSW620が、低転移細胞株であるSW480より、有意にMDCKのTEERの低値を示した結果と矛盾するものではなかった。
Cancer cell colonies were observed with an optical microscope and a fluorescence microscope on an MDCK-mediated 3460 chamber. In the light microscope, MDCK cell mass (Figure 6: red arrow) that was confused with cancer cell colonies was present due to the MDCK intervention, but with the fluorescence microscope with Rhodamine123 staining, clear cancer cell colonies could be captured (Fig. 6). 6: White arrow). As a result of the observation, the cell aggregation of HeLa and SW480 cancer cell colonies is somewhat coarse, and in HeLa, more than 50 constituent colonies and 20 or more constituent colonies are observed, and in SW480 there are no more than 50 constituent colonies, 20 There were few constituent colonies. On the other hand, the cell aggregation of SW620 cancer cell colonies was relatively dense, and there were almost no 50 or more constituent colonies, and many 20 or more constituent colonies were observed (FIG. 6). This observation was not inconsistent with the result that SW620, a high metastasis cell line, showed significantly lower MDCK TEER than SW480, a low metastasis cell line.

[考察]
遠隔転移は、癌細胞が原発巣で増殖浸潤、脈管侵襲して、その後も非常に複雑な過程を経て、転移巣(コロニー)形成へと成立していくと言われている。
斉木育夫.,1995 :癌転移の分子機構と治療への応用.Molecular Medicine,32(4).372-379
[Discussion]
Distant metastasis is said to be established as metastasis (colony) formation through a very complicated process after cancer cells proliferate and infiltrate at the primary lesion and invade the vessel.
Ikuo Saiki., 1995: Molecular mechanism of cancer metastasis and its application to therapy. Molecular Medicine, 32 (4) .372-379

しかし、細胞レベルより癌細胞動態を考えると、浸潤(進入)能、移動(運動)能、増殖(適応)能が備わっていることが遠隔転移の必要条件となる。また、正常細胞による転移防止を考えると、癌細胞は正常細胞と基質の接着ならびに正常細胞と正常細胞の細胞間接着をいかに開離または崩壊して乗り越え、異なる組織環境において転移巣(コロニー)を形成するかである。発明者らはこの遠隔転移の後期過程である血管内再侵入と組織適応(増殖)に着目して、正常細胞由来の3細胞株(血管内皮細胞、線維芽細胞、電気抵抗を有するMDCK)が介在する2種類(8.0マイクロメーター細孔膜円筒型、 0.4マイクロメーター細孔膜円筒型)の細孔膜円筒型チャンバーを利用することで、in vitroによる遠隔転移モデルである三次元二重膜構造チャンバーモデルを発明した。本実験の対象となる転移モデルは、遠隔転移メカニズムの後期過程(毛細血管内皮への接着、血管外脱失、標的器官内組織での転移コロニー形成)の評価モデルと理解される。   However, considering cancer cell dynamics from the cellular level, it is necessary for distant metastasis to have invasion (invasion) ability, migration (movement) ability, and proliferation (adaptation) ability. In addition, considering the prevention of metastasis by normal cells, cancer cells overcome and overcome the adhesion between normal cells and the substrate and the adhesion between normal cells and normal cells to overcome metastases (colony) in different tissue environments. It is to form. The inventors focused on intravascular re-entry and tissue adaptation (proliferation), which are the late processes of this distant metastasis, and three cell lines derived from normal cells (vascular endothelial cells, fibroblasts, MDCK with electrical resistance) Three-dimensional double-membrane structure, which is a model for remote transfer in vitro, by using two types of intervening pore membrane cylindrical chambers (8.0 micrometer pore membrane cylindrical type, 0.4 micrometer pore membrane cylindrical type) Invented the chamber model. The metastasis model that is the subject of this experiment is understood as an evaluation model of the late stage of metastasis mechanism (adhesion to capillary endothelium, extravasation, metastasis colonization in target organ tissue).

MDCKと悪性細胞(癌細胞等)の共存(介在)培養における、MDCKのTEER値測定による電気抵抗減弱アッセイ(Electrical Resistance Breakdown Assay)はLudwigらにより既に考案されている。
Ludwig T et al.,2002 :The electrical resistance breakdown assay determines the role of proteinases in tumor cell invasion.Am J Physiol Renal Physiol,283.319-327 Ludwig T et al.,2004 :Platinum complex cytotoxicity tested by the electrical resistance breakdown assay. Cell Physio Biochem,14.425-430 Ludwig T et al.,2005 :Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors. J Cell Physiol,202.690-697
Ludwig et al. Have already devised an Electrical Resistance Breakdown Assay by measuring MDCK's TEER value in coexistence (mediated) culture of MDCK and malignant cells (cancer cells, etc.).
Ludwig T et al., 2002: The electrical resistance breakdown assay determines the role of proteinases in tumor cell invasion. Am J Physiol Renal Physiol, 283.319-327 Ludwig T et al., 2004: Platinum complex cytotoxicity tested by the electrical resistance breakdown assay.Cell Physio Biochem, 14.425-430 Ludwig T et al., 2005: Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors. J Cell Physiol, 202.690-697

彼らは1種類の細孔膜円筒型チャンバー(0.4マイクロメーターの 細孔径)の膜上面または下面にMDCKシートを作成し、膜上面に悪性細胞を播種することで、悪性細胞の悪性度ならびに抗癌剤感受性を、MDCKのTEER値の変動で評価しようとする試みが成されている。この実験系は癌細胞より分泌されるMatrix Metalloproteinases(MMPs)によるMDCKのTEER値変動から悪性度を評価するもので、転移能モデルではなく浸潤能モデルと理解される。
Ludwig T et al.,2005 :Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors. J Cell Physiol,202.690-697
They created an MDCK sheet on the upper or lower surface of one type of porous membrane cylindrical chamber (0.4 micrometer pore diameter), and seeded the upper surface of the membrane with malignant cells, so that the malignant cells were malignant and sensitive to anticancer drugs. Attempts have been made to evaluate this by the variation of the MDCK TEER value. This experimental system evaluates malignancy based on changes in MDCK TEER levels by Matrix Metalloproteinases (MMPs) secreted from cancer cells, and is understood as an invasion model rather than a metastasis model.
Ludwig T et al., 2005: Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors. J Cell Physiol, 202.690-697

発明者らのモデルは癌細胞が正常細胞間の接着を開離または崩壊し、さらに8.0マイクロメーターの細孔径を有する膜を移動し、さらに膜下面より遊離して、次の異なる正常細胞であるMDCKの存在する環境下でコロニーとして増殖することで、MDCKのTEER値を低下させる客観的評価モデルであり、Ludwigらの実験系とは明らかに異なる。   Our model is the next different normal cell where cancer cells break or break the adhesion between normal cells, move through a membrane with a pore size of 8.0 micrometers, and further release from the lower surface of the membrane It is an objective evaluation model that reduces the TECK level of MDCK by growing as a colony in the presence of MDCK, which is clearly different from the experimental system of Ludwig et al.

本モデルの構造上の特徴は正常細胞由来の細胞株の細胞選択と配置の理論といえる。今回使用した実験検体を例にして要約すると、
(1)ラット血管内皮由来細胞(GP8):3422チャンバーの膜上面にシート状になるように配置した。これは癌細胞が血管内皮細胞と接着・再進入する転移後期過程を実験の初期段階とするためである。
(2)マウス線維芽由来細胞(NIH3T3):3422チャンバーの下面に貼り付けた。その理由は癌細胞と血管内皮細胞の飼育層(Feeder layer)としての意義があり、
Nishinakamura R et al.,2006 :Essential roles of Sall family genes in kidney development. J Physiol Sci, 56(2).131-136 Gregoire L et al.,1998 :Organotypic culture of human ovarian surface epithelial cells: a potential model for ovarian carcinogenesis.In vitro Cell Dev Biol Anim, 34(8). 636-639血管内皮細胞(GP8)が下面に移動するのを阻止する目的でもある。なお、転移好発部位である肺、肝臓、骨には線維芽細胞が存在している事実である。(3)イヌ腎上皮由来細胞(MDCK):3460チャンバーの上面に敷いた。このMDCKは細胞間のタイトジャンクションが強く、安定した高い、電気抵抗であるTEER値を測定することができるためである。 Ludwig T et al.,2002 :The electrical resistance breakdown assay determines the role of proteinases in tumor cell invasion.Am J Physiol Renal Physiol,283.319-327さらに、癌細胞と異なる細胞であることより、MDCKの存在によりin vivoで認められる転移巣に類似したコロニー形成を期待したためである。また、MDCKの存在により正常細胞由来NIH3T3の増殖抑制が加わり(細胞・細胞接触抑制(Cell-Cell Contact Inhibition)による)、MDCKの電気抵抗値に影響を与えなかったことである。以上から、より生理的な三次元構造をもった後期転移過程の新規評価モデルを作成できた。
The structural feature of this model is the theory of cell selection and arrangement of normal cell lines. Summarizing the experimental samples used this time as an example,
(1) Rat vascular endothelium-derived cells (GP8): Arranged so as to form a sheet on the upper surface of the membrane of the 3422 chamber. This is because the late stage of metastasis, in which cancer cells adhere to and reenter vascular endothelial cells, is the initial stage of the experiment.
(2) Mouse fibroblast-derived cell (NIH3T3): Affixed to the lower surface of the 3422 chamber. The reason is significant as a feeder layer of cancer cells and vascular endothelial cells,
Nishinakamura R et al., 2006: Essential roles of Sall family genes in kidney development.J Physiol Sci, 56 (2) .131-136 Gregoire L et al., 1998: Organotypic culture of human ovarian surface epithelial cells: a potential model for ovarian carcinogenesis.In vitro Cell Dev Biol Anim, 34 (8) .636-639 Vascular endothelial cells (GP8) migrate to the lower surface It is also the purpose of preventing this. In addition, it is the fact that fibroblasts are present in the lung, liver, and bone that are metastatic sites. (3) Canine kidney epithelium-derived cells (MDCK): placed on the upper surface of the 3460 chamber. This is because MDCK has a strong tight junction between cells and can measure a stable and high TEER value which is electric resistance. Ludwig T et al., 2002: The electrical resistance breakdown assay determines the role of proteinases in tumor cell invasion.Am J Physiol Renal Physiol, 283.319-327 This is because the formation of a colony similar to the metastatic foci observed in FIG. In addition, the presence of MDCK inhibited the growth of normal cell-derived NIH3T3 (by cell-cell contact inhibition) and did not affect the electrical resistance of MDCK. From the above, a new evaluation model of the late metastasis process with a more physiological three-dimensional structure could be created.

癌細胞株の選択に関して、HeLaを陽性コントロールとした理由は、コロニー形成能が認められる以外に、
Lue JY et al.,2003 :Establishment of red fluorescent protein-tagged HeLa tumor metastasis models:Determination of DsRed2 insertion effects and comparison of metastatic patterns after subcutaneous,intraperitoneal,or intravenous injection. Clin Exp Metastasis,20.121-133発明者らと同様に、Transwell(登録商標)の8.0マイクロメーター の細孔径膜を有するチャンバーを使用して、HeLaの遊走能が確認されているからである。 Zhang L et al.,2007 :Effect of matrine on HeLa cell adhesion and migration. Euro J Pharmaco,563.69-76
Regarding the selection of cancer cell lines, the reason why HeLa was used as a positive control was that colony forming ability was recognized,
Lue JY et al., 2003: Establishment of red fluorescent protein-tagged HeLa tumor metastasis models: Determination of DsRed2 insertion effects and comparison of metastatic patterns after subcutaneous, intraperitoneal, or intravenous injection.Clin Exp Metastasis, 20.121-133 Similarly, the migration ability of HeLa has been confirmed using a chamber having a pore size membrane of 8.0 micrometers of Transwell (registered trademark). Zhang L et al., 2007: Effect of matrine on HeLa cell adhesion and migration.Euro J Pharmaco, 563.69-76

なお、Transwellの0.4マイクロメーターの細孔径膜 チャンバー上において、MDCKとHeLaの共存培養がMDCKのTEER値を低下させる事実である。
Ludwig T et al.,2005 :Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors. J Cell Physiol,202.690-697
In addition, the co-culture of MDCK and HeLa on Transwell's 0.4 micrometer pore membrane chamber is the fact that the TEER value of MDCK decreases.
Ludwig T et al., 2005: Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors. J Cell Physiol, 202.690-697

転移評価の実験検体として選択したSW480とSW680は、同一患者から樹立された貴重な原発巣と転移巣からの癌細胞株であり、両者は臨床でも明らかに悪性度が異なる。なお、in vivoの動物実験においても、低転移細胞株SW480はいずれの部位にも転移を認めず、高転移細胞株SW620は肝転移を認めた報告があるため、今回の実験に使用した。今回の実験結果では高転移細胞株SW620が低転移細胞株SW480よりもMDCKのTEER値を低下させた。
Hewitt RE et al.,2000 :Validation of a model of colon cancer progression.J Pathol,192.446-454
SW480 and SW680, which were selected as experimental specimens for metastasis evaluation, are precious primary and metastatic cancer cell lines established from the same patient. In in vivo animal experiments, the low metastasis cell line SW480 did not show metastasis at any site, and the high metastasis cell line SW620 was reported to show liver metastasis, so it was used in this experiment. In this experimental result, the high metastasis cell line SW620 decreased the MDCK TEER value than the low metastasis cell line SW480.
Hewitt RE et al., 2000: Validation of a model of colon cancer progression. J Pathol, 192.446-454

コロニー形成能のみの評価であれば、正常細胞である宿主細胞の介在しない軟寒天内コロニー形成法で十分であるが、
Zhang RD et al.,1991 :Malignant potential of cells isolated from lymph node or brain metastasis of melanoma patients and implications for prognosis. Cancer Res, 51(8). 2029-2035転移モデルには宿主細胞の介在が要求される。本法は癌細胞にとって生物学的に障害物となる血管内皮細胞と線維芽細胞の細胞間接着を開離または崩壊し、チャンバーの細孔膜下面より落下した遊離癌細胞のコロニー形成能をMDCKのTEER値で客観的に評価するもので、従来の転移モデル(Nakayama et al 1998)より、生体に近似した三次元構造を呈しているといえる。 Nakayama Y et al.,1998 :Alterative express of the collagenase and adhesion molecules in the highly metastatic clones of human colonic cancer cell lines. Clin Exp Metastasis,16(5).461-469
For evaluation of colony-forming ability only, a soft agar colony formation method without the intervention of host cells that are normal cells is sufficient,
Zhang RD et al., 1991: Malignant potential of cells isolated from lymph node or brain metastasis of melanoma patients and implications for prognosis.Cancer Res, 51 (8). 2029-2035 metastasis model requires host cell intervention . This method breaks or collapses the cell-cell adhesion between vascular endothelial cells and fibroblasts, which are biological obstacles for cancer cells, and the colony-forming ability of free cancer cells that fall from the lower surface of the pore membrane of the chamber is MDCK This TEER value is objectively evaluated, and it can be said that it exhibits a three-dimensional structure approximating that of a living body based on the conventional transfer model (Nakayama et al 1998). Nakayama Y et al., 1998: Alterative express of the collagenase and adhesion molecules in the highly metastatic clones of human colonic cancer cell lines.Clin Exp Metastasis, 16 (5) .461-469

本実施例で用いられるTranswell(登録商標) 3422チャンバーと3460チャンバーの写真である。It is a photograph of Transwell (registered trademark) 3422 chamber and 3460 chamber used in this example. 本実施例で用いられる三次元二膜構造チャンバーの構造を示す概略図である。It is the schematic which shows the structure of the three-dimensional bilayer structure chamber used by a present Example. 本実施例で用いられる電気抵抗測定器の構造を示す概略図である。It is the schematic which shows the structure of the electrical resistance measuring device used by a present Example. 本発明に係る癌転移能評価方法の実施例手順を示す概略図である。It is the schematic which shows the Example procedure of the cancer metastatic ability evaluation method which concerns on this invention. 本発明に係る癌転移能評価方法の実施例手順を示す概略図である。It is the schematic which shows the Example procedure of the cancer metastatic ability evaluation method which concerns on this invention. 本実施例における各種癌細胞株の電気抵抗(TEER)値に与える影響と癌転移評価を示すグラフである。It is a graph which shows the influence which it has on the electrical resistance (TEER) value of various cancer cell lines in a present Example, and cancer metastasis evaluation. 本実施例での、MDCK介在の各癌細胞培養下における、各癌細胞コロニーの同定を示す写真である。光学顕微鏡(左図)と蛍光顕微鏡(右図)の写真である(×100)。It is a photograph which shows the identification of each cancer cell colony under each cancer cell culture by MDCK in a present Example. It is a photograph (* 100) of an optical microscope (left figure) and a fluorescence microscope (right figure).

符号の説明Explanation of symbols

1 第1のチャンバー
1a 細孔膜
1b 膜上面
1c 膜下面
2 第2のチャンバー
2a 細孔膜
2b 膜上面
2c 膜下面
3 培養プレート
4 培養液
5 電極
6 電極
7 電線コード
8 電線コード
DESCRIPTION OF SYMBOLS 1 1st chamber 1a Porous membrane 1b Membrane upper surface 1c Membrane lower surface 2 2nd chamber 2a Porous membrane 2b Membrane upper surface 2c Membrane lower surface 3 Culture plate 4 Culture solution 5 Electrode 6 Electrode 7 Wire cord 8 Wire cord

Claims (2)

(手順1) 癌細胞が通ることができる細孔膜を有する第1のチャンバーの膜下面に線維芽細胞を貼り付け、その後に、当該膜上面に血管内皮細胞を播種し、当該膜下面に線維芽細胞のシートを作製するとともに当該膜上面に血管内皮細胞のシートを作製すること、
(手順2)次に、手順1で得た当該膜上面の血管内皮細胞のシート上に所定の細胞数の癌細胞を播種し、その後に、培養プレートの中に配置した、癌細胞が通ることができない細孔膜を有する、第2のチャンバーに、上方から、手順1で得た第1のチャンバーを配置し、間隔を置いて重層した状態で培養液中で培養すること、
(手順3)その後、重層した第1のチャンバーを取り出し、残った、癌細胞が通ることができない細孔膜を有する第2のチャンバーの膜の上に電気抵抗を有する細胞を所定数播種すること、
(手順4)その後、手順3で得た、当該第2のチャンバーを一定期間培養すること、
(手順5)続いて、手順4で得た、当該第2のチャンバーの電気抵抗値を電気抵抗測定器で測定することを、順次行うことを特徴とする癌転移能評価方法。
(Procedure 1) Fibroblasts are attached to the lower surface of the membrane of the first chamber having a porous membrane through which cancer cells can pass, and then vascular endothelial cells are seeded on the upper surface of the membrane, and fibers are then applied to the lower surface of the membrane. Producing a sheet of blast cells and producing a sheet of vascular endothelial cells on the upper surface of the membrane,
(Procedure 2) Next, cancer cells of a predetermined number of cells are seeded on the vascular endothelial cell sheet on the upper surface of the membrane obtained in Procedure 1, and then the cancer cells placed in the culture plate pass. Placing the first chamber obtained in step 1 from above in a second chamber having a pore membrane that cannot be cultured, and culturing in a culture solution in a state of being layered at intervals,
(Procedure 3) Then, the stacked first chamber is taken out, and a predetermined number of cells having electrical resistance are seeded on the remaining membrane of the second chamber having a pore membrane through which cancer cells cannot pass. ,
(Procedure 4) Thereafter, culturing the second chamber obtained in Procedure 3 for a certain period of time,
(Procedure 5) Subsequently, the method for evaluating the ability of cancer metastasis, comprising sequentially measuring the electrical resistance value of the second chamber obtained in Procedure 4 with an electrical resistance measuring instrument.
膜下面に線維芽細胞のシートを作製するとともに、膜上面に血管内皮細胞のシートを作製した後に、当該血管内皮細胞シートの上に、所定細胞数の癌細胞を播種した、癌細胞が通ることができる細孔膜を有する第1のチャンバーと、癌細胞が通ることができない細孔膜を有する第2のチャンバーと、培養液を収納した培養プレートを含み、
当該培養プレートの中に第2のチャンバーを配置し、この当該第2のチャンバーの中に、上方から、当該第1のチャンバーを第2のチャンバーと間隔を置いて重層配置して、また、培養プレートと第2のチャンバーとの間にも間隔を置く、癌転移能評価のための三次元二重膜構造。
A sheet of fibroblasts is prepared on the lower surface of the membrane and a sheet of vascular endothelial cells is prepared on the upper surface of the membrane, and then cancer cells of a predetermined number of cells are seeded on the vascular endothelial cell sheet. A first chamber having a pore membrane capable of undergoing cancer treatment, a second chamber having a pore membrane through which cancer cells cannot pass, and a culture plate containing a culture solution,
A second chamber is arranged in the culture plate, and the first chamber is placed in the second chamber from above with a space from the second chamber. A three-dimensional bilayer structure for assessing cancer metastatic potential, with an interval between the plate and the second chamber.
JP2007191837A 2007-07-24 2007-07-24 Cancer metastasis evaluation method and three-dimensional double membrane structure for cancer metastasis evaluation Active JP5330657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191837A JP5330657B2 (en) 2007-07-24 2007-07-24 Cancer metastasis evaluation method and three-dimensional double membrane structure for cancer metastasis evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191837A JP5330657B2 (en) 2007-07-24 2007-07-24 Cancer metastasis evaluation method and three-dimensional double membrane structure for cancer metastasis evaluation

Publications (2)

Publication Number Publication Date
JP2009027928A true JP2009027928A (en) 2009-02-12
JP5330657B2 JP5330657B2 (en) 2013-10-30

Family

ID=40399179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191837A Active JP5330657B2 (en) 2007-07-24 2007-07-24 Cancer metastasis evaluation method and three-dimensional double membrane structure for cancer metastasis evaluation

Country Status (1)

Country Link
JP (1) JP5330657B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526522A (en) * 2009-05-15 2012-11-01 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Bioreactor system
JP2016535591A (en) * 2013-10-21 2016-11-17 ヘモシアー・リミテッド・ライアビリティ・カンパニーHemoShear, LLC In vitro model for tumor microenvironment
CN107523483A (en) * 2017-09-29 2017-12-29 天津医科大学总医院 Detect the device and method of tumor stem cell balling-up ability and travel motion ability
CN109082379A (en) * 2018-09-29 2018-12-25 五邑大学 It is a kind of for highly emulating the in vitro culture device of Nasopharyngeal neoplasms
WO2020174897A1 (en) 2019-02-26 2020-09-03 株式会社Screenホールディングス Electrode substrate, measurement device, removal tool, and measurement method
KR20220096652A (en) 2020-12-31 2022-07-07 서울대학교병원 System for measuring cancer cell metastasis and method for measuring cancer cell metastasis using the same
US11587230B2 (en) 2019-11-12 2023-02-21 Hitachi, Ltd Cell sheet evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003293A (en) * 2004-06-21 2006-01-05 Norio Nagao Method for measuring ability to inhibit carcinoma metastasis and measuring instrument thereof
JP2007166915A (en) * 2005-12-19 2007-07-05 Masami Niwa In vitro model of blood brain barrier, in vitro model of morbid blood brain barrier, method for screening drug by using the same, method for analyzing morbid blood brain barrier function and method for analyzing cause of disease

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003293A (en) * 2004-06-21 2006-01-05 Norio Nagao Method for measuring ability to inhibit carcinoma metastasis and measuring instrument thereof
JP2007166915A (en) * 2005-12-19 2007-07-05 Masami Niwa In vitro model of blood brain barrier, in vitro model of morbid blood brain barrier, method for screening drug by using the same, method for analyzing morbid blood brain barrier function and method for analyzing cause of disease

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526522A (en) * 2009-05-15 2012-11-01 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Bioreactor system
JP2016535591A (en) * 2013-10-21 2016-11-17 ヘモシアー・リミテッド・ライアビリティ・カンパニーHemoShear, LLC In vitro model for tumor microenvironment
US10221394B2 (en) 2013-10-21 2019-03-05 Hemoshear, Llc In vitro model for a tumor microenvironment
US11008549B2 (en) 2013-10-21 2021-05-18 Hemoshear, Llc In vitro model for a tumor microenvironment
CN107523483A (en) * 2017-09-29 2017-12-29 天津医科大学总医院 Detect the device and method of tumor stem cell balling-up ability and travel motion ability
CN107523483B (en) * 2017-09-29 2024-04-26 天津医科大学总医院 Device and method for detecting balling capacity and migration movement capacity of tumor stem cells
CN109082379A (en) * 2018-09-29 2018-12-25 五邑大学 It is a kind of for highly emulating the in vitro culture device of Nasopharyngeal neoplasms
WO2020174897A1 (en) 2019-02-26 2020-09-03 株式会社Screenホールディングス Electrode substrate, measurement device, removal tool, and measurement method
US11587230B2 (en) 2019-11-12 2023-02-21 Hitachi, Ltd Cell sheet evaluation method
KR20220096652A (en) 2020-12-31 2022-07-07 서울대학교병원 System for measuring cancer cell metastasis and method for measuring cancer cell metastasis using the same
WO2022146097A1 (en) 2020-12-31 2022-07-07 서울대학교병원 System for measuring metastatic potential of cancer cells and method for measuring metastatic potential of cancer cells by using same

Also Published As

Publication number Publication date
JP5330657B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
Yoshida Applications of patient-derived tumor xenograft models and tumor organoids
JP5330657B2 (en) Cancer metastasis evaluation method and three-dimensional double membrane structure for cancer metastasis evaluation
Chen et al. 3D printed in vitro tumor tissue model of colorectal cancer
Choi et al. Cancer-initiating cells in human pancreatic cancer organoids are maintained by interactions with endothelial cells
Hu et al. The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers
JP2022069652A (en) Anti-cancer drug assessment method
Chanvorachote et al. Caveolin-1 regulates metastatic behaviors of anoikis resistant lung cancer cells
CN108495931A (en) A method of changing macrophage differentiation and is immunized
Ermis et al. Tunable hybrid hydrogels with multicellular spheroids for modeling desmoplastic pancreatic cancer
de Bem Prunes et al. The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma
Yu et al. ERBB2 gene expression silencing involved in ovarian cancer cell migration and invasion through mediating MAPK1/MAPK3 signaling pathway.
Chim et al. Tumor-associated macrophages induce inflammation and drug resistance in a mechanically tunable engineered model of osteosarcoma
WO2019094107A2 (en) Human in vitro orthotopic and metastatic models of cancer
Jia et al. Instructive hydrogels for primary tumor cell culture: current status and outlook
Zhang et al. Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression
EP3006941A1 (en) Method for screening cancer metastasis inhibitor using culture of cells or spheroidically aggregated cells in which lysyl-trna synthetase is regulated to be expressed or unexpressed
Song et al. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential
JP7081483B2 (en) Evaluation method of angiogenesis inhibitory activity of the test compound
Pan et al. Matrix stiffness triggers chemoresistance through elevated autophagy in pancreatic ductal adenocarcinoma
ZOU et al. Establishment and characteristics of two syngeneic human osteosarcoma cell lines from primary tumor and skip metastases 1
KR101195112B1 (en) The Method for isolating and cultivating Tumor endothelial cell
Wu et al. Evaluation of the effect of fibroblasts on melanoma metastasis using a biomimetic co-culture model
Nguyen et al. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids
Song et al. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids
JP6685554B2 (en) Method for culturing normal cells of oral tissue and odontoma cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5330657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250