JP2009027699A - Ssb signal receiver - Google Patents

Ssb signal receiver Download PDF

Info

Publication number
JP2009027699A
JP2009027699A JP2008158061A JP2008158061A JP2009027699A JP 2009027699 A JP2009027699 A JP 2009027699A JP 2008158061 A JP2008158061 A JP 2008158061A JP 2008158061 A JP2008158061 A JP 2008158061A JP 2009027699 A JP2009027699 A JP 2009027699A
Authority
JP
Japan
Prior art keywords
signal
component
ssb
carrier wave
ssb signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008158061A
Other languages
Japanese (ja)
Inventor
Yohei Katayama
洋平 片山
Hiroyuki Hamazumi
啓之 濱住
Yasuhiro Ito
泰宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2008158061A priority Critical patent/JP2009027699A/en
Publication of JP2009027699A publication Critical patent/JP2009027699A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SSB signal receiver for demodulating an original signal more correctly as compared with a conventional case and removing noises on acoustic feeling, by performing calculation with a divider other than zero at any case in division processing for obtaining a demodulation signal of an SSB signal. <P>SOLUTION: In the SSB signal receiver 1, by using a formula derived with a divisor signal S181 of a divider 190, which is not zero, the maximum amplitude of a carrier component S911 as an output signal of a noise removal circuit 900 and the maximum amplitude of an SSB signal component S912 are adjusted by amplitude ratio regulators 910, 920 (amplifier or attenuator). Here, A is the maximum amplitude of the carrier component S911, B is the maximum amplitude of the SSB signal component S912, G is an amplification degree of phase shifter 50, and ϕ is the phase shift amount. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、振幅歪を含むSSB(Single Side Band:単側波帯)信号の受信装置に関し、特に、中波放送、短波放送、無線電話、無線呼出、無線操縦、無線標識などに用いる受信装置に関するものである。   The present invention relates to an SSB (Single Side Band) signal receiving apparatus including amplitude distortion, and more particularly to a receiving apparatus used for medium wave broadcasting, short wave broadcasting, radio telephone, radio paging, radio control, radio beacon and the like. It is about.

従来、中波放送、短波放送、無線電話、無線呼出、無線操縦、無線標識などに用いるSSB信号受信装置が知られている(例えば、特許文献1を参照)。このSSB信号は、被変調波をキャリア成分、LSB成分及びUSB成分に展開した場合に、LSB成分及びUSB成分のみの側帯波信号をいう。このようなSSB信号による通信方式では、送信時にキャリア成分を含まないため、送信電力量を低減することができ、送信電力の効率化を図ることができる。   2. Description of the Related Art Conventionally, an SSB signal receiving device used for medium wave broadcasting, short wave broadcasting, wireless telephone, wireless calling, wireless control, wireless beacon and the like is known (for example, see Patent Document 1). This SSB signal refers to a sideband signal having only an LSB component and a USB component when the modulated wave is developed into a carrier component, an LSB component, and a USB component. In such a communication system using an SSB signal, a carrier component is not included at the time of transmission, so that the amount of transmission power can be reduced and the efficiency of transmission power can be improved.

図1は、従来のSSB信号受信装置の構成を示す図である。このSSB信号受信装置2は、搬送波付きのSSB信号を直交復調する装置であり、搬送波付きのSSB信号を搬送波成分の信号(以下、「搬送波成分」という。)S31とSSB信号成分の信号(以下、「SSB信号成分」という。)S32とに分離した後、これらの振幅比の調整を行うことなく、再合成、直交検波及び信号演算を行い、SSB信号の復調信号S191を出力するものである。図1において、SSB信号受信装置2は、周波数変換回路20、搬送波/信号分離回路30、増幅器40、搬送波/信号再合成回路80、直交検波回路100,110、検波信号演算回路200及び除算器190を備えている。各回路などの詳細な説明については後述する。   FIG. 1 is a diagram illustrating a configuration of a conventional SSB signal receiving apparatus. The SSB signal receiving apparatus 2 is an apparatus that orthogonally demodulates an SSB signal with a carrier wave. The SSB signal with a carrier wave is a carrier component signal (hereinafter referred to as “carrier wave component”) S31 and an SSB signal component signal (hereinafter referred to as “carrier wave component”). , Referred to as “SSB signal component”.) After being separated into S32, re-synthesis, quadrature detection and signal calculation are performed without adjusting the amplitude ratio of these, and a demodulated signal S191 of the SSB signal is output. . In FIG. 1, the SSB signal receiving apparatus 2 includes a frequency conversion circuit 20, a carrier / signal separation circuit 30, an amplifier 40, a carrier / signal recombination circuit 80, quadrature detection circuits 100 and 110, a detection signal calculation circuit 200, and a divider 190. It has. Detailed description of each circuit will be described later.

このようなSSB信号受信装置2において、除算器190は、被除数である信号S171を、除数である信号S181で除算し、その除算結果をSSB信号の復調信号S191として出力する(特許文献1、段落番号0024を参照)。   In such an SSB signal receiving apparatus 2, the divider 190 divides the signal S171 that is the dividend by the signal S181 that is the divisor, and outputs the division result as a demodulated signal S191 of the SSB signal (Patent Document 1, Paragraph 1). No. 0024).

特開2007−81653号公報JP 2007-81653 A

しかし、従来のSSB信号受信装置2は、除算器190の除算処理において除数である信号S181が零の場合、除算器190の除算結果である復調信号S191が不定となり、原信号を正確に復調することができないという問題があった。この問題を解決するために、除算器190による除算処理と併せ、複数のサンプリング値を用いて補完処理などを行うことが想定される。しかしながら、このような補完処理などを行った場合には、復調信号S191には聴感上著しい雑音を含んでしまうという欠点があった。したがって、このような補完処理などでは十分に対処することができない。   However, in the conventional SSB signal receiving apparatus 2, when the signal S181 that is the divisor in the division processing of the divider 190 is zero, the demodulated signal S191 that is the division result of the divider 190 becomes indefinite, and the original signal is accurately demodulated. There was a problem that I could not. In order to solve this problem, it is assumed that a complementing process or the like is performed using a plurality of sampling values together with the division process by the divider 190. However, when such a complementing process is performed, the demodulated signal S191 has a drawback that it contains significant noise in terms of hearing. Therefore, such a complementary process cannot be sufficiently dealt with.

そこで、本発明は、このような問題に鑑みてなされたものであり、SSB信号の復調信号を得るための除算処理において、如何なる場合も零でない除数で演算するようにし、従来よりも原信号を正確に復調し、聴感上の雑音を除去可能なSSB信号受信装置を提供することにある。   Therefore, the present invention has been made in view of such a problem. In the division processing for obtaining the demodulated signal of the SSB signal, in any case, calculation is performed with a divisor other than zero, and the original signal is more than conventional. An object of the present invention is to provide an SSB signal receiving apparatus capable of accurately demodulating and removing audible noise.

本発明者らは、前記課題を解決するために鋭意検討した結果、SSB信号の復調信号を得るための除算処理において、如何なる場合も零でない除数を生成するための手段を見出した。すなわち、SSB信号受信装置において、搬送波成分の最大振幅及びSSB信号の最大振幅を、後述する式(900)の条件を満たすように調整することにより、如何なる場合も除数が零にならないことを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a means for generating a divisor that is not zero in any case in the division processing for obtaining the demodulated signal of the SSB signal. That is, in the SSB signal receiving apparatus, it has been found that the divisor does not become zero in any case by adjusting the maximum amplitude of the carrier component and the maximum amplitude of the SSB signal so as to satisfy the condition of Expression (900) described later. .

まず、前記本発明が適用されるSSB信号受信装置の例について説明する。図2は、本発明によるSSB信号受信装置の例を説明するための図である。このSSB信号受信装置1は、搬送波が付加されたSSB信号を直交検波により復調する装置であり、周波数変換回路20、搬送波/信号分離回路30、増幅器40、雑音除去回路900、搬送波/信号再合成回路80、直交検波回路100,110、検波信号演算回路200及び除算器190を備えている。   First, an example of an SSB signal receiving apparatus to which the present invention is applied will be described. FIG. 2 is a diagram for explaining an example of the SSB signal receiving apparatus according to the present invention. This SSB signal receiver 1 is a device that demodulates an SSB signal to which a carrier wave is added by quadrature detection, and includes a frequency conversion circuit 20, a carrier wave / signal separation circuit 30, an amplifier 40, a noise removal circuit 900, a carrier wave / signal resynthesis. A circuit 80, quadrature detection circuits 100 and 110, a detection signal calculation circuit 200, and a divider 190 are provided.

周波数変換回路20は、搬送波が付加されたSSB信号について、一定の中間周波数の信号に変換する。搬送波/信号分離回路30は、中間周波数の信号から搬送波成分S31及びSSB信号成分S32を分離する。増幅器40は、搬送波成分S31の振幅を増幅して搬送波成分S41を出力する。   The frequency conversion circuit 20 converts the SSB signal to which the carrier wave is added into a signal having a certain intermediate frequency. The carrier / signal separation circuit 30 separates the carrier component S31 and the SSB signal component S32 from the intermediate frequency signal. The amplifier 40 amplifies the amplitude of the carrier wave component S31 and outputs the carrier wave component S41.

雑音除去回路900は、後述する式(900)の条件を満たすように、搬送波成分S41及びSSB信号成分S32を振幅比調整器910,920により増幅または減衰し、搬送波成分S911及びSSB信号成分S912を出力する。搬送波/信号再合成回路80は、搬送波成分S911とSSB信号成分S912とを合成器60により合成し、合成信号S61を出力する。また、搬送波成分S911を移相器50によって所定分増幅及び移相させた搬送波成分S51とSSB信号成分S912とを合成器70により合成し、合成信号S71を出力する。ここで、搬送波成分S911と搬送波成分S51とは、移相器50により、符号、振幅または移相が異なる信号である。   The noise removal circuit 900 amplifies or attenuates the carrier component S41 and the SSB signal component S32 by the amplitude ratio adjusters 910 and 920 so as to satisfy the condition of the expression (900) described later, and the carrier component S911 and the SSB signal component S912 are obtained. Output. The carrier wave / signal recombination circuit 80 combines the carrier wave component S911 and the SSB signal component S912 by the synthesizer 60, and outputs a combined signal S61. The carrier component S51 obtained by amplifying and shifting the carrier component S911 by a predetermined amount by the phase shifter 50 is combined by the combiner 70 with the combiner 70, and a combined signal S71 is output. Here, the carrier component S911 and the carrier component S51 are signals having different signs, amplitudes, or phase shifts by the phase shifter 50.

直交検波回路100,110は、合成信号S61,S71を直交検波する。検波信号演算回路200は、直交検波回路100,110から同相成分及び直交成分の直交検波信号をそれぞれ入力し、所定の演算を行い、復調信号S191を得るための被除数信号S171、及び除数信号S181を出力する。除算器190は、被除数信号S171及び除数信号S181により除算を行い、SSB信号の復調信号S191を出力する。   The quadrature detection circuits 100 and 110 perform quadrature detection on the combined signals S61 and S71. The detection signal calculation circuit 200 receives the quadrature detection signals of the in-phase component and the quadrature component from the quadrature detection circuits 100 and 110, respectively, performs a predetermined calculation, and obtains a dividend signal S171 and a divisor signal S181 for obtaining a demodulated signal S191. Output. The divider 190 divides by the dividend signal S171 and the divisor signal S181 and outputs a demodulated signal S191 of the SSB signal.

このようなSSB信号受信装置1において、本発明は、除算器190の除数信号S181が零にならないように、雑音除去回路900の出力信号である搬送波成分S911の最大振幅及びSSB信号成分S912の最大振幅を、振幅比調整器910,920(増幅器または減衰器)により調整することを特徴とする。つまり、SSB信号受信装置1は、除数信号S181が零でないとして導出した条件式(後述する式(900))を用いる。   In such an SSB signal receiving apparatus 1, the present invention is configured so that the maximum amplitude of the carrier component S 911 and the maximum of the SSB signal component S 912, which are output signals of the noise removal circuit 900, so that the divisor signal S 181 of the divider 190 does not become zero. The amplitude is adjusted by amplitude ratio adjusters 910 and 920 (amplifiers or attenuators). That is, the SSB signal receiving apparatus 1 uses a conditional expression (expression (900) described later) derived that the divisor signal S181 is not zero.

具体的には、搬送波成分S911の最大振幅をA、SSB信号成分S912の最大振幅をB、搬送波/信号再合成回路80に備えた移相器50の増幅度をG、移相量をφとした場合に、以下の式(900)の条件を満たすようにする。

Figure 2009027699
つまり、この式(900)は除数信号S181が零でないときの条件式であるから、この式(900)を満たすように、搬送波成分S911の最大振幅及びSSB信号成分S912の最大振幅を調整する。これにより、除数信号S181は零になることがない。 Specifically, the maximum amplitude of the carrier wave component S911 is A, the maximum amplitude of the SSB signal component S912 is B, the amplification degree of the phase shifter 50 provided in the carrier wave / signal recombining circuit 80 is G, and the phase shift amount is φ. In such a case, the condition of the following expression (900) is satisfied.
Figure 2009027699
That is, since this equation (900) is a conditional equation when the divisor signal S181 is not zero, the maximum amplitude of the carrier component S911 and the maximum amplitude of the SSB signal component S912 are adjusted so as to satisfy this equation (900). Thereby, the divisor signal S181 does not become zero.

すなわち、本発明によるSSB信号受信装置は、搬送波が付加されたSSB信号を直交検波により復調するSSB信号受信装置において、搬送波が付加されたSSB信号を、搬送波成分及びSSB信号成分に分離する搬送波/信号分離手段と、前記搬送波成分及びSSB信号成分に基づいて、最大振幅を調整する振幅調整手段と、前記最大振幅が調整された搬送波成分及びSSB信号成分を入力し、該搬送波成分とSSB信号成分とを合成すると共に、搬送波成分から符号、振幅または位相が異なる搬送波成分を生成し、該生成した搬送波成分とSSB信号成分とを合成し、これら2つの合成信号を出力する搬送波/信号合成手段と、前記2つの合成信号をそれぞれ直交検波して直交検波信号を出力する直交検波手段と、前記直交検波手段により出力された直交検波信号を用いて除算演算によりSSB信号の復調信号を生成する検波信号演算手段とを備え、前記振幅調整手段による搬送波成分及びSSB信号成分の最大振幅の調整により、検波信号演算手段の除算演算における除数が零にならないようにしたことを特徴とする。   That is, the SSB signal receiving apparatus according to the present invention is a SSB signal receiving apparatus that demodulates an SSB signal to which a carrier wave is added by quadrature detection. Based on the signal separation means, the amplitude adjustment means for adjusting the maximum amplitude based on the carrier wave component and the SSB signal component, the carrier wave component and the SSB signal component with the maximum amplitude adjusted, and the carrier wave component and the SSB signal component A carrier wave / signal synthesizing means for generating a carrier wave component having a different sign, amplitude or phase from the carrier wave component, synthesizing the generated carrier wave component and the SSB signal component, and outputting these two synthesized signals; A quadrature detection means for quadrature detection of each of the two combined signals and outputting a quadrature detection signal; and the quadrature detection means Detection signal calculation means for generating a demodulated signal of the SSB signal by division calculation using the orthogonal detection signal output from the signal, and detection signal calculation by adjusting the maximum amplitude of the carrier wave component and SSB signal component by the amplitude adjustment means The divisor in the division operation of the means is prevented from becoming zero.

また、本発明によるSSB信号受信装置は、前記搬送波/信号合成手段が、符号、振幅または位相が異なる搬送波成分を生成するための移相器を有し、前記振幅調整手段が、振幅調整後の搬送波成分の最大振幅をA、振幅調整後のSSB信号成分の最大振幅をB、前記移相器の増幅度をG、移相量をφとした場合に、前述した式(900)の条件を満たすように、搬送波成分の最大振幅及びSSB信号成分の最大振幅を調整することを特徴とする。   In the SSB signal receiving apparatus according to the present invention, the carrier wave / signal combining unit includes a phase shifter for generating carrier wave components having different codes, amplitudes, or phases, and the amplitude adjusting unit When the maximum amplitude of the carrier wave component is A, the maximum amplitude of the SSB signal component after amplitude adjustment is B, the amplification degree of the phase shifter is G, and the phase shift amount is φ, the condition of the above-described equation (900) is satisfied. The maximum amplitude of the carrier wave component and the maximum amplitude of the SSB signal component are adjusted so as to satisfy.

この場合、前記移相器の移相量φを、−3π/2または−π/2とすることが望ましい。また、前記移相器の移相量φを、−2π<φ≦0(但し、φ≠−π,0)とすることが望ましい。   In this case, it is desirable that the phase shift amount φ of the phase shifter is −3π / 2 or −π / 2. The phase shift amount φ of the phase shifter is preferably −2π <φ ≦ 0 (where φ ≠ −π, 0).

以上のように、本発明によれば、SSB信号の復調信号を得るための除算処理において、零でない除数で演算するようにした。これにより、復調信号は不定になることがなく、従来よりも原信号を正確に復調し、聴感上の雑音を除去することができる。   As described above, according to the present invention, the division processing for obtaining the demodulated signal of the SSB signal is performed with a divisor other than zero. As a result, the demodulated signal does not become indefinite, and the original signal can be demodulated more accurately than before, and audible noise can be removed.

以下、本発明を実施するための最良の形態について図面を用いて詳細に説明する。実施例1は、搬送波/信号再合成回路80に備えた移相器50において、増幅度G=1及び移相量φ=−3π/2(3π/2の遅相)を設定した場合の例を示し、実施例2は、移相器50において、増幅度G=1及び移相量φ=−π/2(π/2の遅相)を設定した場合の例を示し、実施例3は、実施例1及び実施例2を一般化したものであり、移相器50において、任意の増幅度Gを設定し、かつ移相量φを−2π<φ≦0(但し、φ≠−π,0)の範囲で設定した場合の例を示している。以下、実施例1〜実施例3について説明する。尚、数式の番号は、図中に示す信号Sと同一の番号で示してある。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings. The first embodiment is an example in which, in the phase shifter 50 provided in the carrier wave / signal recombining circuit 80, the amplification degree G = 1 and the phase shift amount φ = −3π / 2 (3π / 2 slow phase) are set. In the phase shifter 50, Example 2 shows an example in which the amplification degree G = 1 and the phase shift amount φ = −π / 2 (slow phase of π / 2) are set. In the phase shifter 50, an arbitrary amplification degree G is set, and the phase shift amount φ is set to −2π <φ ≦ 0 (where φ ≠ −π. , 0) is shown as an example. Hereinafter, Examples 1 to 3 will be described. Note that the numbers of the mathematical expressions are the same as those of the signal S shown in the figure.

〔実施例1〕
まず、実施例1について説明する。実施例1は、搬送波/信号再合成回路80に備えた移相器50において、増幅度G=1及び移相量φ=−3π/2(3π/2の遅相)を設定した場合の例である。図3は、本発明の実施の形態によるSSB信号受信装置(実施例1)の構成を示す図である。
[Example 1]
First, Example 1 will be described. The first embodiment is an example in which, in the phase shifter 50 provided in the carrier wave / signal recombining circuit 80, the amplification degree G = 1 and the phase shift amount φ = −3π / 2 (3π / 2 slow phase) are set. It is. FIG. 3 is a diagram showing the configuration of the SSB signal receiving apparatus (Example 1) according to the embodiment of the present invention.

〔実施例1/構成〕
まず、SSB信号受信装置1−1の構成について説明する。このSSB信号受信装置1−1は、周波数変換回路20、搬送波/信号分離回路30、増幅器40、雑音除去回路900、搬送波/信号再合成回路80、直交検波回路100,110、検波信号演算回路200−1及び除算器190を備えている。また、雑音除去回路900は、増幅器または減衰器である振幅比調整器910,920を備え、搬送波/信号再合成回路80は、移相器50及び合成器60,70を備え、直交検波回路100は、移相器101、乗算器102,103及びLPF(低域通過フィルタ)104,105を備え、直交検波回路110は、移相器111、乗算器112,113及びLPF114,115を備え、検波信号演算回路200−1は、乗算器130,140,150及び減算器170,180を備えている。
Example 1 / Configuration
First, the configuration of the SSB signal receiving device 1-1 will be described. The SSB signal receiving device 1-1 includes a frequency conversion circuit 20, a carrier wave / signal separation circuit 30, an amplifier 40, a noise removal circuit 900, a carrier wave / signal resynthesis circuit 80, quadrature detection circuits 100 and 110, and a detection signal calculation circuit 200. -1 and a divider 190 are provided. The noise removal circuit 900 includes amplitude ratio adjusters 910 and 920 that are amplifiers or attenuators. The carrier wave / signal recombination circuit 80 includes a phase shifter 50 and combiners 60 and 70. Includes a phase shifter 101, multipliers 102 and 103, and LPFs (low-pass filters) 104 and 105, and a quadrature detection circuit 110 includes a phase shifter 111, multipliers 112 and 113, and LPFs 114 and 115. The signal arithmetic circuit 200-1 includes multipliers 130, 140, 150 and subtracters 170, 180.

図1に示した従来のSSB信号受信装置2と図3に示す実施例1のSSB信号受信装置1−1とを比較すると、両装置は、周波数変換回路20、搬送波/信号分離回路30、増幅器40、直交検波回路100,110、検波信号演算回路200(200−1)及び除算器190を備えている点で共通するが、SSB信号受信装置1−1は、SSB信号受信装置2の構成に加えて雑音除去回路900を備えている点で相違する。   Comparing the conventional SSB signal receiving device 2 shown in FIG. 1 with the SSB signal receiving device 1-1 of the first embodiment shown in FIG. 3, both devices include a frequency conversion circuit 20, a carrier / signal separation circuit 30, an amplifier. 40, the quadrature detection circuits 100 and 110, the detection signal calculation circuit 200 (200-1), and the divider 190 are common, but the SSB signal reception device 1-1 has the same configuration as the SSB signal reception device 2. In addition, it is different in that a noise removal circuit 900 is provided.

SSB信号受信装置1−1が、搬送波が付加されたSSB信号を受信すると、周波数変換回路20は、その搬送波が付加されたSSB信号について、一定の中間周波数の信号に変換する。搬送波/信号分離回路30は、周波数変換回路20により周波数変換された中間周波数の信号を入力し、その信号から搬送波成分S31及びSSB信号成分S32を分離する。増幅器40は、搬送波/信号分離回路30により分離された搬送波成分S31の振幅を増幅する。   When the SSB signal receiving apparatus 1-1 receives the SSB signal to which the carrier wave is added, the frequency conversion circuit 20 converts the SSB signal to which the carrier wave is added into a signal having a certain intermediate frequency. The carrier wave / signal separation circuit 30 receives the intermediate frequency signal frequency-converted by the frequency conversion circuit 20, and separates the carrier wave component S31 and the SSB signal component S32 from the signal. The amplifier 40 amplifies the amplitude of the carrier component S31 separated by the carrier / signal separation circuit 30.

雑音除去回路900は、増幅器40により増幅された搬送波成分S41、及び、搬送波/信号分離回路30により分離されたSSB信号成分S32をそれぞれ入力し、前述した式(900)の条件に合致するように、搬送波成分S41及びSSB信号成分S32を増幅または減衰し、搬送波成分S911及びSSB信号成分S912を出力する。具体的には、振幅比調整器910は、搬送波成分S41を式(900)の条件に合致するように増幅または減衰し、搬送波成分S911を出力する。また、振幅比調整器920は、SSB信号成分S32を、式(900)の条件に合致するように増幅または減衰し、SSB信号成分S912を出力する。ここで、式(900)において、Aは搬送波成分S911の最大振幅、BはSSB信号成分S912の最大振幅、Gは搬送波/信号再合成回路80に備えた移相器50の増幅度、φは移相器50の移相量をそれぞれ示す。本実施例1の場合、G=1及びφ=−3π/2であるから、A/B>√2となる。   The noise removal circuit 900 inputs the carrier wave component S41 amplified by the amplifier 40 and the SSB signal component S32 separated by the carrier wave / signal separation circuit 30, respectively, so as to meet the condition of the above-described equation (900). The carrier component S41 and the SSB signal component S32 are amplified or attenuated, and the carrier component S911 and the SSB signal component S912 are output. Specifically, the amplitude ratio adjuster 910 amplifies or attenuates the carrier wave component S41 so as to meet the condition of Expression (900), and outputs the carrier wave component S911. In addition, the amplitude ratio adjuster 920 amplifies or attenuates the SSB signal component S32 so as to meet the condition of Expression (900), and outputs an SSB signal component S912. In Equation (900), A is the maximum amplitude of the carrier component S911, B is the maximum amplitude of the SSB signal component S912, G is the amplification factor of the phase shifter 50 provided in the carrier / signal recombining circuit 80, and φ is The amount of phase shift of the phase shifter 50 is shown respectively. In the case of the first embodiment, since G = 1 and φ = −3π / 2, A / B> √2.

雑音除去回路900の出力信号である搬送波成分S911は、搬送波/信号再合成回路80の移相器50及び合成器60、並びに、直交検波回路100の移相器101、乗算器103及び直交検波回路110の移相器111、乗算器113へそれぞれ供給される。また、雑音除去回路900の出力信号であるSSB信号成分S912は、搬送波/信号再合成回路80の合成器60,70へそれぞれ供給される。   The carrier wave component S911 that is an output signal of the noise removal circuit 900 includes a phase shifter 50 and a combiner 60 of the carrier wave / signal recombination circuit 80, and a phase shifter 101, a multiplier 103, and a quadrature detection circuit of the quadrature detection circuit 100. 110 are respectively supplied to the phase shifter 111 and the multiplier 113. Also, the SSB signal component S912 that is the output signal of the noise removal circuit 900 is supplied to the combiners 60 and 70 of the carrier wave / signal recombination circuit 80, respectively.

搬送波/信号再合成回路80は、雑音除去回路900から搬送波成分S911及びSSB信号成分S912を入力し、搬送波成分S911とSSB信号成分S912とを合成し、合成信号S61を出力すると共に、搬送波成分S911を−3π/2移相させた搬送波成分S51とSSB信号成分S912とを合成し、合成信号S71を出力する。具体的には、合成器60は、搬送波成分S911とSSB信号成分S912とを合成し、合成信号S61を出力する。移相器50は、搬送波成分S911を−3π/2分移相させて、搬送波成分S51を出力し、合成器70は、移相器50からの搬送波成分S51とSSB信号成分S912とを合成し、合成信号S71を出力する。   The carrier / signal recombining circuit 80 receives the carrier component S911 and the SSB signal component S912 from the noise removal circuit 900, combines the carrier component S911 and the SSB signal component S912, outputs a combined signal S61, and outputs the carrier component S911. Are combined with the carrier component S51 and the SSB signal component S912 shifted in phase by −3π / 2, and a combined signal S71 is output. Specifically, the combiner 60 combines the carrier component S911 and the SSB signal component S912, and outputs a combined signal S61. The phase shifter 50 shifts the carrier component S911 by -3π / 2 and outputs the carrier component S51, and the combiner 70 combines the carrier component S51 and the SSB signal component S912 from the phase shifter 50. The synthesized signal S71 is output.

搬送波/信号再合成回路80の出力信号である合成信号S61は、直交検波回路100の乗算器102,103へそれぞれ供給され、合成信号S71は、直交検波回路110の乗算器112,113へそれぞれ供給される。   The combined signal S61 that is an output signal of the carrier wave / signal recombining circuit 80 is supplied to the multipliers 102 and 103 of the quadrature detection circuit 100, and the combined signal S71 is supplied to the multipliers 112 and 113 of the quadrature detection circuit 110, respectively. Is done.

直交検波回路100は、搬送波/信号再合成回路80から合成信号S61を入力し、雑音除去回路900から搬送波成分S911を入力し、合成信号S61を直交検波して、同相成分の直交検波信号S101及び直交成分の直交検波信号S102を出力する。具体的には、乗算器102は、移相器101により搬送波成分S911を−π/2移相させた信号と合成信号S61とを乗算し、LPF104は、乗算器102により乗算された信号にフィルタ処理を施して高域周波数成分を除去し、直交成分の直交検波信号S102を出力する。また、乗算器103は、搬送波成分S911と合成信号S61とを乗算し、LPF105は、乗算器103により乗算された信号にフィルタ処理を施して高域周波数成分を除去し、同相成分の直交検波信号S101を出力する。   The quadrature detection circuit 100 receives the composite signal S61 from the carrier wave / signal recombination circuit 80, receives the carrier wave component S911 from the noise removal circuit 900, performs quadrature detection on the composite signal S61, and generates the quadrature detection signal S101 of the in-phase component. The quadrature component quadrature detection signal S102 is output. Specifically, the multiplier 102 multiplies the signal obtained by shifting the carrier component S911 by −π / 2 by the phase shifter 101 and the combined signal S61, and the LPF 104 filters the signal multiplied by the multiplier 102. Processing is performed to remove high frequency components, and quadrature detection signal S102 of quadrature components is output. The multiplier 103 multiplies the carrier wave component S911 and the combined signal S61, and the LPF 105 filters the signal multiplied by the multiplier 103 to remove a high frequency component, and a quadrature detection signal having an in-phase component. S101 is output.

直交検波回路100の出力信号である同相成分の直交検波信号S101は、検波信号演算回路200−1の乗算器130,150へそれぞれ供給され、直交成分の直交検波信号S102は、検波信号演算回路200−1の乗算器140へ供給される。   An in-phase component quadrature detection signal S101, which is an output signal of the quadrature detection circuit 100, is supplied to the multipliers 130 and 150 of the detection signal arithmetic circuit 200-1, respectively, and the quadrature component quadrature detection signal S102 is supplied to the detection signal arithmetic circuit 200. −1 multiplier 140.

直交検波回路110は、搬送波/信号再合成回路80から合成信号S71を入力し、雑音除去回路900から搬送波成分S911を入力し、合成信号S71を直交検波して、同相成分の直交検波信号S111及び直交成分の直交検波信号S112を出力する。具体的には、乗算器112は、移相器111により搬送波成分S911を−π/2移相させた信号と合成信号S71とを乗算し、LPF114は、乗算器112により乗算された信号にフィルタ処理を施して高域周波数成分を除去し、直交成分の直交検波信号S112を出力する。また、乗算器113は、搬送波成分S911と合成信号S71とを乗算し、LPF115は、乗算器113により乗算された信号にフィルタ処理を施して高域周波数成分を除去し、同相成分の直交検波信号S111を出力する。   The quadrature detection circuit 110 receives the composite signal S71 from the carrier wave / signal recombination circuit 80, receives the carrier wave component S911 from the noise removal circuit 900, performs quadrature detection on the composite signal S71, and generates the quadrature detection signal S111 of the in-phase component. The quadrature component quadrature detection signal S112 is output. Specifically, the multiplier 112 multiplies the signal obtained by shifting the carrier component S911 by −π / 2 by the phase shifter 111 and the combined signal S71, and the LPF 114 filters the signal multiplied by the multiplier 112. Processing is performed to remove the high frequency component, and the quadrature detection signal S112 of the quadrature component is output. The multiplier 113 multiplies the carrier wave component S911 and the combined signal S71, and the LPF 115 filters the signal multiplied by the multiplier 113 to remove the high-frequency component, and the quadrature detection signal of the in-phase component S111 is output.

直交検波回路110の出力信号である同相成分の直交検波信号S111は、検波信号演算回路200−1の乗算器140,150へそれぞれ供給され、直交成分の直交検波信号S112は、検波信号演算回路200−1の乗算器130へ供給される。   An in-phase component quadrature detection signal S111, which is an output signal of the quadrature detection circuit 110, is supplied to the multipliers 140 and 150 of the detection signal arithmetic circuit 200-1, respectively, and the quadrature component quadrature detection signal S112 is supplied to the detection signal arithmetic circuit 200. −1 multiplier 130.

検波信号演算回路200−1は、直交検波回路100から同相成分の直交検波信号S101及び直交成分の直交検波信号S102、並びに、直交検波回路110から同相成分の直交検波信号S111及び直交成分の直交検波信号S112を入力し、所定の演算を行い、復調信号S191を得るための被除数信号S171及び除数信号S181を出力する。具体的には、乗算器130は、同相成分の直交検波信号S101と直交成分の直交検波信号S112とを乗算し、信号S131を出力する。乗算器140は、直交成分の直交検波信号S102と同相成分の直交検波信号S111とを乗算し、信号S141を出力する。乗算器150は、同相成分の直交検波信号S101と同相成分の直交検波信号S111とを乗算し、信号S151を出力する。また、減算器170は、乗算器150により出力された信号S151から乗算器140により出力された信号S141を減算し、被除数信号S171を出力する。減算器180は、乗算器140により出力された信号S141から乗算器130により出力された信号S131を減算し、除数信号S181を出力する。   The detection signal calculation circuit 200-1 outputs the quadrature detection signal S101 and quadrature detection signal S102 of the in-phase component from the quadrature detection circuit 100, and the quadrature detection signal S111 and quadrature detection of the quadrature component from the quadrature detection circuit 110. The signal S112 is input, a predetermined calculation is performed, and a dividend signal S171 and a divisor signal S181 for obtaining a demodulated signal S191 are output. Specifically, the multiplier 130 multiplies the quadrature detection signal S101 having the in-phase component and the quadrature detection signal S112 having the quadrature component, and outputs a signal S131. The multiplier 140 multiplies the quadrature detection signal S102 having the quadrature component by the quadrature detection signal S111 having the in-phase component, and outputs a signal S141. Multiplier 150 multiplies quadrature detection signal S101 having the in-phase component and quadrature detection signal S111 having the in-phase component, and outputs signal S151. The subtractor 170 subtracts the signal S141 output from the multiplier 140 from the signal S151 output from the multiplier 150, and outputs a dividend signal S171. The subtracter 180 subtracts the signal S131 output from the multiplier 130 from the signal S141 output from the multiplier 140, and outputs a divisor signal S181.

検波信号演算回路200−1の出力信号である被除数信号S171及び除数信号S181は、除算器190へ供給される。   The dividend signal S171 and the divisor signal S181, which are output signals of the detection signal arithmetic circuit 200-1, are supplied to the divider 190.

除算器190は、検波信号演算回路200−1から被除数信号S171及び除数信号S181を入力し、除算を行い、SSB信号の復調信号S191を出力する。   Divider 190 receives dividend signal S171 and divisor signal S181 from detection signal arithmetic circuit 200-1, performs division, and outputs demodulated signal S191 of the SSB signal.

〔実施例1/信号〕
次に、図3に示したSSB信号受信装置1−1における信号について説明する。雑音除去回路900により出力される搬送波成分S911は、最大振幅を1とした場合の時間tに対する波形をcos(ωt)とし、最大振幅をAとすると、以下の式で表される。
A×cos(ωt) (911)
また、雑音除去回路900により出力されるSSB信号成分S912は、最大振幅を1とした場合の時間tに対する波形をf(t)とし、最大振幅をBとすると、以下の式で表される。
B×f(t) (912)
ここで、搬送波が付加されたSSB信号を送信する送信装置において、変調前のベースバンド信号をg(t)とし、これにヒルベルト変換を施した信号をh(t)とすると、搬送波を分離除去したSSB信号、すなわちf(t)は、以下の式で表される。
f(t)=g(t)×cos(ωt)+h(t)×sin(ωt)
したがって、合成器60により出力される合成信号S61及び合成器70により出力される合成信号S71は、移相器50の増幅度をGとし、移相量をφとすると、以下の式で表される。
Acos(ωt)+B{g(t)cos(ωt)+h(t)sin(ωt)} (61)
AGcos(ωt+φ)+B{g(t)cos(ωt)+h(t)sin(ωt)} (71)
[Example 1 / Signal]
Next, signals in the SSB signal receiving device 1-1 shown in FIG. 3 will be described. The carrier wave component S911 output from the noise removal circuit 900 is expressed by the following equation where the waveform with respect to time t when the maximum amplitude is 1 is cos (ωt) and the maximum amplitude is A.
A × cos (ωt) (911)
Also, the SSB signal component S912 output from the noise removal circuit 900 is expressed by the following equation, where f (t) is a waveform with respect to time t when the maximum amplitude is 1, and B is the maximum amplitude.
B x f (t) (912)
Here, in a transmission device that transmits an SSB signal to which a carrier wave is added, a baseband signal before modulation is represented by g (t), and a signal obtained by performing Hilbert transform on this signal is represented by h (t). The SSB signal, that is, f (t), is expressed by the following equation.
f (t) = g (t) × cos (ωt) + h (t) × sin (ωt)
Therefore, the synthesized signal S61 output from the synthesizer 60 and the synthesized signal S71 output from the synthesizer 70 are expressed by the following equations, where the amplification degree of the phase shifter 50 is G and the phase shift amount is φ. The
Acos (ωt) + B {g (t) cos (ωt) + h (t) sin (ωt)} (61)
AGcos (ωt + φ) + B {g (t) cos (ωt) + h (t) sin (ωt)} (71)

直交検波回路100により出力される同相成分の直交検波信号S101及び直交成分の直交検波信号S102、並びに、直交検波回路110による出力される同相成分の直交検波信号S111及び直交成分の直交検波信号S112は、以下の式で表される。   In-phase quadrature detection signal S101 and quadrature-component quadrature detection signal S102 output by quadrature detection circuit 100, and in-phase component quadrature detection signal S111 and quadrature-component quadrature detection signal S112 output by quadrature detection circuit 110 Is represented by the following equation.

同相成分の直交検波信号S101は、(101)=(61)×(911)であるから、

Figure 2009027699
また、直交検波回路100のLPF105により高次周波数信号(2ωtを含む項)が除去されるから、以下の式で表される。
Figure 2009027699
Since the in-phase component quadrature detection signal S101 is (101) = (61) × (911),
Figure 2009027699
Further, since the high-order frequency signal (term including 2ωt) is removed by the LPF 105 of the quadrature detection circuit 100, it is expressed by the following equation.
Figure 2009027699

直交成分の直交検波信号S102は、(102)=(61)×(911)であるから(但し、(911)は90°遅れの信号である。)、

Figure 2009027699
また、直交検波回路100のLPF104により高次周波数信号(2ωtを含む項)が除去されるから、以下の式で表される。
Figure 2009027699
Since the quadrature detection signal S102 of the quadrature component is (102) = (61) × (911) (where (911) is a signal delayed by 90 °).
Figure 2009027699
Further, since the high-order frequency signal (term including 2ωt) is removed by the LPF 104 of the quadrature detection circuit 100, it is expressed by the following equation.
Figure 2009027699

同相成分の直交検波信号S111は、(111)=(71)×(911)であるから、

Figure 2009027699
また、直交検波回路110のLPF115により高次周波数信号(2ωtを含む項)が除去されるから、以下の式で表される。
Figure 2009027699
Since the in-phase component quadrature detection signal S111 is (111) = (71) × (911),
Figure 2009027699
Further, since the high-order frequency signal (term including 2ωt) is removed by the LPF 115 of the quadrature detection circuit 110, it is expressed by the following equation.
Figure 2009027699

直交成分の直交検波信号S112は、(112)=(71)×(911)であるから(但し、(911)は90°遅れの信号である。)、

Figure 2009027699
また、直交検波回路110のLPF114により高次周波数信号(2ωtを含む項)が除去されるから、以下の式で表される。
Figure 2009027699
Since the quadrature detection signal S112 of the quadrature component is (112) = (71) × (911) (where (911) is a signal delayed by 90 °).
Figure 2009027699
Further, since the high-order frequency signal (term including 2ωt) is removed by the LPF 114 of the quadrature detection circuit 110, it is expressed by the following equation.
Figure 2009027699

したがって、除算器190の被除数信号S171は、(171-1)=(101)×(111)-(102)×(111)={(101)-(102)}×(111)であるから、以下の式で表される。

Figure 2009027699
Therefore, the dividend signal S171 of the divider 190 is (171-1) = (101) × (111) − (102) × (111) = {(101) − (102)} × (111). It is expressed by the following formula.
Figure 2009027699

また、除算器190の除数信号S181は、(181)=(102)×(111)-(101)×(112)であるから、以下の式で表される。

Figure 2009027699
Further, the divisor signal S181 of the divider 190 is (181) = (102) × (111) − (101) × (112), and is expressed by the following equation.
Figure 2009027699

実施例1では、移相器50の増幅度G=1、移相量φ=−3π/2であるから、これらを式(171−1)及び式(181)に代入すると、それぞれ以下の式で表される。

Figure 2009027699
In Example 1, since the amplification degree G = 1 of the phase shifter 50 and the phase shift amount φ = −3π / 2, when these are substituted into the equations (171-1) and (181), the following equations are respectively obtained: It is represented by
Figure 2009027699

したがって、除算器190により出力される復調信号S191は、(191-1)=(171-1’)÷(181-1’)であるから、以下の式で表される。

Figure 2009027699
Therefore, the demodulated signal S191 output from the divider 190 is (191-1) = (171-1 ′) ÷ (181-1 ′), and is expressed by the following equation.
Figure 2009027699

この式により、復調信号S191から変調前のベースバンド信号g(t)の成分が得られることがわかる。また、振幅情報を使用することなく、正確なSSB信号の復調信号が得られることがわかる。   From this equation, it can be seen that the component of the baseband signal g (t) before modulation is obtained from the demodulated signal S191. It can also be seen that an accurate SSB signal demodulated signal can be obtained without using amplitude information.

ところで、除数信号S181が零にならないための条件は、(181)≠0であるから、以下の式で表される。

Figure 2009027699
ここで、f(t)=g(t)cos(ωt)+h(t)sin(ωt)より
Figure 2009027699
で、表されるから、式(181−0)にg(t),h(t)を代入して、
Figure 2009027699
となる。ここで、f(t)は1を最大振幅とするから、時間tの変化により、
Figure 2009027699
は、
Figure 2009027699
の範囲をとり、最大値は1である。
また、sin{θ(t)+α}は、−1≦sin{θ(t)+α}≦+1の範囲の値をとり、絶対値の最大値は1である。したがって、どのようなg(t),h(t)であっても上式が成立するための条件は、以下の式で表される。
Figure 2009027699
本実施例1の場合、G=1及びφ=−3π/2であるから、A/B>√2となる。 By the way, the condition for the divisor signal S181 not to be zero is (181) ≠ 0, and is expressed by the following equation.
Figure 2009027699
Here, f (t) = g (t) cos (ωt) + h (t) sin (ωt)
Figure 2009027699
Therefore, substituting g (t) and h (t) into the equation (181-0),
Figure 2009027699
It becomes. Here, since f (t) has 1 as the maximum amplitude, the change of time t
Figure 2009027699
Is
Figure 2009027699
The maximum value is 1.
Sin {θ (t) + α} takes a value in the range of −1 ≦ sin {θ (t) + α} ≦ + 1, and the maximum absolute value is 1. Therefore, the condition for satisfying the above equation for any g (t), h (t) is expressed by the following equation.
Figure 2009027699
In the case of the first embodiment, since G = 1 and φ = −3π / 2, A / B> √2.

図7は、図3に示した実施例1のSSB信号受信装置1−1により出力される復調信号S191の波形図である。また、図6は、図1に示した従来のSSB信号受信装置2により出力される復調信号S191の波形図である。図6によれば、従来のSSB信号受信装置2の復調信号S191には著しい雑音が含まれていることがわかる。これに対し、図7によれば、実施例1のSSB信号受信装置1−1の復調信号S191には著しい雑音が含まれておらず、SSB信号受信装置1−1により除去されていることがわかる。   FIG. 7 is a waveform diagram of the demodulated signal S191 output from the SSB signal receiving device 1-1 according to the first embodiment illustrated in FIG. FIG. 6 is a waveform diagram of the demodulated signal S191 output from the conventional SSB signal receiving apparatus 2 shown in FIG. According to FIG. 6, it can be seen that the demodulated signal S191 of the conventional SSB signal receiving apparatus 2 contains significant noise. On the other hand, according to FIG. 7, the demodulated signal S191 of the SSB signal receiving apparatus 1-1 of the first embodiment does not contain significant noise and is removed by the SSB signal receiving apparatus 1-1. Recognize.

以上のように、実施例1のSSB信号受信装置1−1によれば、その設計値である移相器50の増幅度G=1及び移相量φ=−3π/2が設定される場合、雑音除去回路900の出力信号である搬送波成分S911の最大振幅A及びSSB信号成分S912の最大振幅Bの比が式(900)の条件に合致するように、雑音除去回路900の振幅比調整器910,920である増幅器の増幅度または減衰器の減衰度を設定することにより、除算器190の除数信号S181は、如何なる場合も零になることがない。したがって、除算器190の出力信号である復調信号S191は如何なる場合も不定になることがないから、従来よりも原信号を正確に復調し、聴感上の雑音を除去することができる。   As described above, according to the SSB signal receiving device 1-1 of the first embodiment, the amplification value G = 1 of the phase shifter 50 and the phase shift amount φ = −3π / 2 are set as the design values. The amplitude ratio adjuster of the noise removal circuit 900 is set so that the ratio of the maximum amplitude A of the carrier wave component S911 and the maximum amplitude B of the SSB signal component S912, which is an output signal of the noise removal circuit 900, satisfies the condition of Expression (900). By setting the amplification factor of the amplifiers 910 and 920 or the attenuation factor of the attenuator, the divisor signal S181 of the divider 190 does not become zero in any case. Therefore, since the demodulated signal S191 that is the output signal of the divider 190 does not become indefinite in any case, it is possible to demodulate the original signal more accurately than before, and to remove audible noise.

また、実施例1のSSB信号受信装置1−1によれば、移相量φ=−3π/2であるから、式(900)の右辺は最小になる。これにより、他の移相量のときに比べて、A/Bを小さくすることができるから、復調信号S191の振幅を大きくすることができる(式(191−1)を参照)。したがって、復調信号S191を用いた処理において、信号対雑音電力比を大きくすることができる。   Further, according to the SSB signal receiving device 1-1 of the first embodiment, since the phase shift amount φ = −3π / 2, the right side of the equation (900) is minimized. As a result, A / B can be reduced as compared with other phase shift amounts, so that the amplitude of the demodulated signal S191 can be increased (see equation (191-1)). Therefore, in the process using the demodulated signal S191, the signal-to-noise power ratio can be increased.

〔実施例2〕
次に、実施例2について説明する。実施例2は、搬送波/信号再合成回路80に備えた移相器50において、増幅度G=1及び移相量φ=−π/2(π/2の遅相)を設定した場合の例である。図4は、本発明の実施の形態によるSSB信号受信装置(実施例2)の構成を示す図である。
[Example 2]
Next, Example 2 will be described. The second embodiment is an example in which, in the phase shifter 50 provided in the carrier wave / signal recombining circuit 80, the amplification degree G = 1 and the phase shift amount φ = −π / 2 (slow phase of π / 2) are set. It is. FIG. 4 is a diagram showing the configuration of the SSB signal receiving apparatus (Example 2) according to the embodiment of the present invention.

〔実施例2/構成〕
まず、SSB信号受信装置1−2の構成について説明する。このSSB信号受信装置1−2は、周波数変換回路20、搬送波/信号分離回路30、増幅器40、雑音除去回路900、搬送波/信号再合成回路80、直交検波回路100,110、検波信号演算回路200−2及び除算器190を備えている。また、雑音除去回路900は、振幅比調整器910,920を備え、搬送波/信号再合成回路80は、移相器50及び合成器60,70を備え、直交検波回路100は、移相器101、乗算器102,103及びLPF104,105を備え、直交検波回路110は、移相器111、乗算器112,113及びLPF114,115を備え、検波信号演算回路200−2は、乗算器130,140,150、符号反転器160及び減算器170,180を備えている。
[Example 2 / Configuration]
First, the configuration of the SSB signal receiving device 1-2 will be described. The SSB signal receiving device 1-2 includes a frequency conversion circuit 20, a carrier wave / signal separation circuit 30, an amplifier 40, a noise removal circuit 900, a carrier wave / signal resynthesis circuit 80, quadrature detection circuits 100 and 110, and a detection signal calculation circuit 200. -2 and a divider 190. The noise removal circuit 900 includes amplitude ratio adjusters 910 and 920, the carrier wave / signal recombination circuit 80 includes a phase shifter 50 and combiners 60 and 70, and the quadrature detection circuit 100 includes a phase shifter 101. , Multipliers 102 and 103 and LPFs 104 and 105, quadrature detection circuit 110 includes phase shifter 111, multipliers 112 and 113, and LPFs 114 and 115, and detection signal calculation circuit 200-2 includes multipliers 130 and 140. 150, a sign inverter 160, and subtracters 170, 180.

図3に示した実施例1のSSB信号受信装置1−1と図4に示す実施例2のSSB信号受信装置1−2とを比較すると、両装置の基本構成は同じであるが、SSB信号受信装置1−2の検波信号演算回路200−2が符号反転器160を備えている点で相違する。この相違は、実施例1では、移相器50において増幅度G=1及び移相量φ=−3π/2が設定され、実施例2では、移相器50において増幅度G=1及び移相量φ=−π/2が設定されている点に起因するものである。以下、図4において、図3と共通する部分には図3と同一の符号を付し、その詳しい説明は省略する。尚、搬送波/信号再合成回路80の移相器50は、搬送波成分S911を−π/2分移相させて、搬送波成分S51を出力する。   When the SSB signal receiving device 1-1 of the first embodiment shown in FIG. 3 and the SSB signal receiving device 1-2 of the second embodiment shown in FIG. 4 are compared, the basic configuration of both devices is the same. The difference is that the detection signal arithmetic circuit 200-2 of the receiving device 1-2 includes a sign inverter 160. This difference is that in the first embodiment, the phase shifter 50 sets the amplification degree G = 1 and the phase shift amount φ = −3π / 2, and in the second embodiment, the phase shifter 50 sets the amplification degree G = 1 and This is because the phase amount φ = −π / 2 is set. In the following, in FIG. 4, the same reference numerals as those in FIG. The phase shifter 50 of the carrier wave / signal recombining circuit 80 shifts the carrier wave component S911 by −π / 2 and outputs the carrier wave component S51.

図4において、除数信号S181が零にならないように、雑音除去回路900が、増幅器40により増幅された搬送波成分S41、及び、搬送波/信号分離回路30による分離されたSSB信号成分S32をそれぞれ入力し、前述した式(900)の条件に合致するように、搬送波成分S32及び搬送波成分S41を増幅または減衰し、搬送波成分S911及びSSB信号成分S912を出力する点は、実施例1と同様である。この場合、G=1及びφ=−π/2であるから、A/B>√2となる。   In FIG. 4, the noise removal circuit 900 inputs the carrier wave component S41 amplified by the amplifier 40 and the SSB signal component S32 separated by the carrier wave / signal separation circuit 30 so that the divisor signal S181 does not become zero. The carrier wave component S32 and the carrier wave component S41 are amplified or attenuated so as to meet the condition of the expression (900) described above, and the carrier wave component S911 and the SSB signal component S912 are output, as in the first embodiment. In this case, since G = 1 and φ = −π / 2, A / B> √2.

また、検波信号演算回路200−2は、直交検波回路100から同相成分の直交検波信号S101及び直交成分の直交検波信号S102、並びに、直交検波回路110から同相成分の直交検波信号S111及び直交成分の直交検波信号S112を入力し、所定の演算を行い、復調信号S191を得るための被除数信号S171及び除数信号S181を出力する。具体的には、乗算器130は、同相成分の直交検波信号S101と直交成分の直交検波信号S112とを乗算し、信号S131を出力する。乗算器140は、直交成分の直交検波信号S102と同相成分の直交検波信号S111とを乗算し、信号S141を出力する。乗算器150は、同相成分の直交検波信号S101と同相成分の直交検波信号S111とを乗算し、信号S151を出力する。また、符号反転器160は、乗算器150により出力された信号S151を入力し、符号を反転し、信号S161を出力する。減算器170は、符号反転器160により出力された信号S161から乗算器140により出力された信号S141を減算し、被除数信号S171を出力する。減算器180は、乗算器140により出力された信号S141から乗算器130により出力された信号S131を減算し、除数信号S181を出力する。ここで、除数信号S181の生成ルートは、実施例1の生成ルートと同様である。したがって、除数信号S181を示す式(181)は、実施例1と同様になる。   Further, the detection signal calculation circuit 200-2 receives the in-phase component quadrature detection signal S101 and the quadrature component quadrature detection signal S102 from the quadrature detection circuit 100, and the quadrature detection circuit 110 outputs the in-phase component quadrature detection signal S111 and quadrature component. The quadrature detection signal S112 is input, a predetermined calculation is performed, and a dividend signal S171 and a divisor signal S181 for obtaining a demodulated signal S191 are output. Specifically, the multiplier 130 multiplies the quadrature detection signal S101 having the in-phase component and the quadrature detection signal S112 having the quadrature component, and outputs a signal S131. The multiplier 140 multiplies the quadrature detection signal S102 having the quadrature component by the quadrature detection signal S111 having the in-phase component, and outputs a signal S141. Multiplier 150 multiplies quadrature detection signal S101 having the in-phase component and quadrature detection signal S111 having the in-phase component, and outputs signal S151. The sign inverter 160 receives the signal S151 output from the multiplier 150, inverts the sign, and outputs a signal S161. The subtracter 170 subtracts the signal S141 output from the multiplier 140 from the signal S161 output from the sign inverter 160, and outputs a dividend signal S171. The subtracter 180 subtracts the signal S131 output from the multiplier 130 from the signal S141 output from the multiplier 140, and outputs a divisor signal S181. Here, the generation route of the divisor signal S181 is the same as the generation route of the first embodiment. Therefore, the equation (181) indicating the divisor signal S181 is the same as that in the first embodiment.

〔実施例2/信号〕
次に、図4に示したSSB信号受信装置1−2における信号について説明する。実施例1において説明した式(911)(912)(61)(71)(101)(102)(111)(112)(181)は、実施例2においても同様である。これらの式の信号は、実施例1と生成ルートが同様だからである。
[Example 2 / Signal]
Next, signals in the SSB signal receiving device 1-2 shown in FIG. 4 will be described. The expressions (911), (912), (61), (71), (101), (102), (111), (112), and (181) described in the first embodiment are the same in the second embodiment. This is because the signals of these equations have the same generation route as in the first embodiment.

実施例2において、除算器190の被除数信号S171は、(171-2)=-(101)×(111)-(102)×(111)={-(101)-(102)}×(111)であるから、以下の式で表される。

Figure 2009027699
In the second embodiment, the dividend signal S171 of the divider 190 is (171-2) = − (101) × (111) − (102) × (111) = {− (101) − (102)} × (111 ), It is expressed by the following formula.
Figure 2009027699

実施例2では、移相器50の増幅度G=1、移相量φ=−π/2であるから、これらを式(171−2)及び式(181)に代入すると、それぞれ以下の式で表される。

Figure 2009027699
In the second embodiment, since the amplification degree G = 1 of the phase shifter 50 and the phase shift amount φ = −π / 2, when these are substituted into the equations (171-2) and (181), the following equations are obtained. It is represented by
Figure 2009027699

したがって、除算器190により出力される復調信号S191は、(191-2)=(171-2’)÷(181-2’)であるから、以下の式で表される。

Figure 2009027699
Therefore, the demodulated signal S191 output from the divider 190 is (191-2) = (171-2 ′) ÷ (181-2 ′), and is expressed by the following equation.
Figure 2009027699

ここで、この復調信号S191を示す式(191−2)は、実施例1の復調信号S191を示す式(191−1)と同じである。これにより、実施例1と同様に、復調信号S191から変調前のベースバンド信号g(t)の成分が得られることがわかる。また、振幅情報を使用することなく、正確なSSB信号の復調信号が得られることがわかる。   Here, the equation (191-2) indicating the demodulated signal S191 is the same as the equation (191-1) indicating the demodulated signal S191 of the first embodiment. Thereby, it can be seen that the component of the baseband signal g (t) before modulation is obtained from the demodulated signal S191, as in the first embodiment. It can also be seen that an accurate SSB signal demodulated signal can be obtained without using amplitude information.

ところで、除数信号S181が零にならないためには、(181)≠0が必要となる。式(181)は実施例1と同様であるから、その条件は前述した式(900)で表される。本実施例2の場合、G=1及びφ=−π/2であるから、A/B>√2となる。   By the way, in order that the divisor signal S181 does not become zero, (181) ≠ 0 is necessary. Since the equation (181) is the same as that in the first embodiment, the condition is represented by the above-described equation (900). In the case of the second embodiment, since G = 1 and φ = −π / 2, A / B> √2.

以上のように、実施例2のSSB信号受信装置1−2によれば、その設計値である移相器50の増幅度G=1及び移相量φ=−π/2が設定される場合、雑音除去回路900の出力信号である搬送波成分S911の最大振幅A及びSSB信号成分S912の最大振幅Bの比が式(900)の条件に合致するように、雑音除去回路900の振幅比調整器910,920である増幅器の増幅度または減衰器の減衰度を設定することにより、除算器190の除数信号S181は、如何なる場合も零になることがない。したがって、除算器190の出力信号である復調信号S191は如何なる場合も不定になることがないから、従来よりも原信号を正確に復調し、聴感上の雑音を除去することができる。   As described above, according to the SSB signal receiving device 1-2 of the second embodiment, when the amplification degree G = 1 and the phase shift amount φ = −π / 2, which are the design values, are set. The amplitude ratio adjuster of the noise removal circuit 900 is set so that the ratio of the maximum amplitude A of the carrier wave component S911 and the maximum amplitude B of the SSB signal component S912, which is an output signal of the noise removal circuit 900, satisfies the condition of Expression (900). By setting the amplification factor of the amplifiers 910 and 920 or the attenuation factor of the attenuator, the divisor signal S181 of the divider 190 does not become zero in any case. Therefore, since the demodulated signal S191 that is the output signal of the divider 190 does not become indefinite in any case, it is possible to demodulate the original signal more accurately than before, and to remove audible noise.

また、実施例2のSSB信号受信装置1−2によれば、移相量φ=−π/2であるから、式(900)の右辺は最小になる。これにより、他の移相量のときに比べて、A/Bを小さくすることができるから、復調信号S191の振幅を大きくすることができる(式(191−2)を参照)。したがって、復調信号S191を用いた処理において、信号対雑音電力比を大きくすることができる。   Further, according to the SSB signal receiving device 1-2 of the second embodiment, since the phase shift amount φ = −π / 2, the right side of the equation (900) is minimized. As a result, A / B can be reduced as compared with other phase shift amounts, so that the amplitude of the demodulated signal S191 can be increased (see equation (191-2)). Therefore, in the process using the demodulated signal S191, the signal-to-noise power ratio can be increased.

〔実施例3〕
次に、実施例3について説明する。実施例3は、前述した実施例1及び実施例2を一般化したものであり、搬送波/信号再合成回路80に備えた移相器50において、任意の増幅度Gを設定し、かつ移相量φを−2π<φ≦0(但し、φ≠−π,0)の範囲で設定した場合の例を示している。この実施例3には、実施例1及び実施例2が含まれる。図5は、本発明の実施の形態によるSSB信号受信装置(実施例3)の構成を示す図である。
Example 3
Next, Example 3 will be described. The third embodiment is a generalization of the first and second embodiments described above. In the phase shifter 50 provided in the carrier wave / signal recombining circuit 80, an arbitrary amplification degree G is set, and the phase shift is performed. In this example, the amount φ is set in the range of −2π <φ ≦ 0 (where φ ≠ −π, 0). This Example 3 includes Example 1 and Example 2. FIG. 5 is a diagram showing the configuration of the SSB signal receiving apparatus (Example 3) according to the embodiment of the present invention.

まず、SSB信号受信装置1−3の構成について説明する。このSSB信号受信装置1−3は、周波数変換回路20、搬送波/信号分離回路30、増幅器40、雑音除去回路900、搬送波/信号再合成回路80、直交検波回路100,110、検波信号演算回路200−3及び除算器190を備えている。また、雑音除去回路900は、振幅比調整器910,920を備え、搬送波/信号再合成回路80は、移相器50及び合成器60,70を備え、直交検波回路100は、移相器101、乗算器102,103及びLPF104,105を備え、直交検波回路110は、移相器111、乗算器112,113及びLPF114,115を備え、検波信号演算回路200−3は、乗算器130,140,150、増幅器152,154、加算器156及び減算器170,180を備えている。   First, the configuration of the SSB signal receiving device 1-3 will be described. The SSB signal receiving apparatus 1-3 includes a frequency conversion circuit 20, a carrier wave / signal separation circuit 30, an amplifier 40, a noise removal circuit 900, a carrier wave / signal resynthesis circuit 80, quadrature detection circuits 100 and 110, and a detection signal calculation circuit 200. −3 and a divider 190. The noise removal circuit 900 includes amplitude ratio adjusters 910 and 920, the carrier wave / signal recombination circuit 80 includes a phase shifter 50 and combiners 60 and 70, and the quadrature detection circuit 100 includes a phase shifter 101. , Multipliers 102 and 103 and LPFs 104 and 105, quadrature detection circuit 110 includes phase shifter 111, multipliers 112 and 113, and LPFs 114 and 115, and detection signal calculation circuit 200-3 includes multipliers 130 and 140. 150, amplifiers 152 and 154, an adder 156, and subtracters 170 and 180.

図3及び図4に示した実施例1及び実施例2のSSB信号受信装置1−1,1−2と図5に示す実施例3のSSB信号受信装置1−3とを比較すると、両装置の基本構成は同じであるが、SSB信号受信装置1−3の検波信号演算回路200−3が、SSB信号受信装置1−1の検波信号演算回路200−1及びSSB信号受信装置1−2の検波信号演算回路200−2の構成を一般化している点で相違する。以下、図5において、図3及び図4と共通する部分には同一の符号を付し、その詳しい説明は省略する。尚、搬送波/信号再合成回路80の移相器50は、搬送波成分S911を増幅度G分増幅し、移相量φ分移相させて、搬送波成分S51を出力する。この場合、搬送波成分S911と搬送波成分S51とは、移相器50により、符号、振幅または移相が異なる信号になる。   When comparing the SSB signal receivers 1-1 and 1-2 of the first and second embodiments shown in FIGS. 3 and 4 with the SSB signal receiver 1-3 of the third embodiment shown in FIG. Are the same, but the detection signal calculation circuit 200-3 of the SSB signal reception device 1-3 is different from the detection signal calculation circuit 200-1 of the SSB signal reception device 1-1 and the SSB signal reception device 1-2. The difference is that the configuration of the detection signal arithmetic circuit 200-2 is generalized. Hereinafter, in FIG. 5, the same reference numerals are given to portions common to FIGS. 3 and 4, and detailed description thereof will be omitted. The phase shifter 50 of the carrier wave / signal recombining circuit 80 amplifies the carrier wave component S911 by the amplification degree G, shifts the phase by the phase shift amount φ, and outputs the carrier wave component S51. In this case, the carrier wave component S911 and the carrier wave component S51 are signals having different signs, amplitudes, or phase shifts by the phase shifter 50.

図5において、除数信号S181が零にならないように、雑音除去回路900が、増幅器40により増幅された搬送波成分S41、及び、搬送波/信号分離回路30による分離されたSSB信号成分S32をそれぞれ入力し、前述した式(900)の条件に合致するように、搬送波成分S32及び搬送波成分S41を増幅または減衰し、搬送波成分S911及びSSB信号成分S912を出力する点は、実施例1及び実施例2と同様である。   In FIG. 5, the noise removal circuit 900 inputs the carrier wave component S41 amplified by the amplifier 40 and the SSB signal component S32 separated by the carrier wave / signal separation circuit 30 so that the divisor signal S181 does not become zero. The carrier wave component S32 and the carrier wave component S41 are amplified or attenuated so as to meet the condition of the expression (900) described above, and the carrier wave component S911 and the SSB signal component S912 are output. It is the same.

また、検波信号演算回路200−3は、直交検波回路100から同相成分の直交検波信号S101及び直交成分の直交検波信号S102、並びに、直交検波回路110から同相成分の直交検波信号S111及び直交成分の直交検波信号S112を入力し、所定の演算を行い、復調信号S191を得るための被除数信号S171及び除数信号S181を出力する。具体的には、乗算器130は、同相成分の直交検波信号S101と直交成分の直交検波信号S112とを乗算し、信号S131を出力する。乗算器140は、直交成分の直交検波信号S102と同相成分の直交検波信号S111とを乗算し、信号S141を出力する。乗算器150は、同相成分の直交検波信号S101と同相成分の直交検波信号S111とを乗算し、信号S151を出力する。また、増幅器152は、乗算器150により出力された信号S151を入力し、信号S151とsinφとを乗算する。増幅器154は、乗算器130により出力された信号S131を入力し、信号S131とcosφとを乗算する。加算器156は、増幅器152により乗算された信号と増幅器154により乗算された信号とを加算し、信号S157を出力する。減算器170は、加算器156により出力された信号S157から乗算器140により出力された信号S141を減算し、被除数信号S171を出力する。減算器180は、乗算器140により出力された信号S141から乗算器130により出力された信号S131を減算し、除数信号S181を出力する。   Further, the detection signal calculation circuit 200-3 receives the quadrature detection signal S101 and quadrature detection signal S102 of the in-phase component from the quadrature detection circuit 100, and the quadrature detection signal S111 and quadrature component of the quadrature detection circuit 110. The quadrature detection signal S112 is input, a predetermined calculation is performed, and a dividend signal S171 and a divisor signal S181 for obtaining a demodulated signal S191 are output. Specifically, the multiplier 130 multiplies the quadrature detection signal S101 having the in-phase component and the quadrature detection signal S112 having the quadrature component, and outputs a signal S131. The multiplier 140 multiplies the quadrature detection signal S102 having the quadrature component by the quadrature detection signal S111 having the in-phase component, and outputs a signal S141. Multiplier 150 multiplies quadrature detection signal S101 having the in-phase component and quadrature detection signal S111 having the in-phase component, and outputs signal S151. The amplifier 152 receives the signal S151 output from the multiplier 150 and multiplies the signal S151 by sinφ. The amplifier 154 receives the signal S131 output from the multiplier 130 and multiplies the signal S131 by cos φ. The adder 156 adds the signal multiplied by the amplifier 152 and the signal multiplied by the amplifier 154, and outputs a signal S157. The subtracter 170 subtracts the signal S141 output from the multiplier 140 from the signal S157 output from the adder 156, and outputs a dividend signal S171. The subtracter 180 subtracts the signal S131 output from the multiplier 130 from the signal S141 output from the multiplier 140, and outputs a divisor signal S181.

実施例1の場合、移相量φ=−3π/2であるから、増幅器152においてsinφ=1、増幅器154においてcosφ=0となる。したがって、検波信号演算回路200−3の構成は、図3に示した検波信号演算回路200−1の構成と同様になる。また、実施例2の場合、移相量φ=−π/2であるから、増幅器152においてsinφ=−1、増幅器154においてcosφ=0となる。したがって、検波信号演算回路200−3の構成は、図4に示した検波信号演算回路200−2の構成と同様になる。   In the case of the first embodiment, since the phase shift amount φ = −3π / 2, sin φ = 1 in the amplifier 152 and cos φ = 0 in the amplifier 154. Therefore, the configuration of the detection signal arithmetic circuit 200-3 is the same as that of the detection signal arithmetic circuit 200-1 shown in FIG. In the second embodiment, since the phase shift amount φ = −π / 2, sin φ = −1 in the amplifier 152 and cos φ = 0 in the amplifier 154. Therefore, the configuration of the detection signal calculation circuit 200-3 is the same as the configuration of the detection signal calculation circuit 200-2 shown in FIG.

図5において、除数信号S181の生成ルートは、実施例1及び実施例2の生成ルートと同様であるから、除数信号S181を示す式(181)は、実施例1及び実施例2と同様になる。したがって、除数信号S181が零にならないためには、(181)≠0が必要となり、その条件は前述した式(900)で表される。尚、移相量φが−2π<φ≦0においてφ=−πまたは0のときは、式(900)は解を持たないため、SSB信号受信装置1−3では、雑音を除去することはできない。   In FIG. 5, since the generation route of the divisor signal S181 is the same as the generation route of the first and second embodiments, the equation (181) indicating the divisor signal S181 is the same as that of the first and second embodiments. . Therefore, in order that the divisor signal S181 does not become zero, (181) ≠ 0 is necessary, and the condition is expressed by the above-described equation (900). When phase shift amount φ is −2π <φ ≦ 0 and φ = −π or 0, equation (900) does not have a solution, so that the SSB signal receiving device 1-3 does not remove noise. Can not.

また、実施例1及び実施例2で説明したように、同様にして復調信号S191が生成されるから、変調前のベースバンド信号g(t)の成分を得ることができ、振幅情報を使用することなく、正確なSSB信号の復調信号を得ることができる。尚、復調信号S191を生成する式の説明は省略する。   Further, as described in the first and second embodiments, the demodulated signal S191 is generated in the same manner, so that the component of the baseband signal g (t) before modulation can be obtained and the amplitude information is used. Therefore, an accurate demodulated signal of the SSB signal can be obtained. A description of the equation for generating the demodulated signal S191 is omitted.

以上のように、実施例3のSSB信号受信装置1−3によれば、その設計値である移相器50の増幅度G及び移相量φが設定される場合、雑音除去回路900の出力信号である搬送波成分S911の最大振幅A及びSSB信号成分S912の最大振幅Bの比が式(900)の条件に合致するように、雑音除去回路900の振幅比調整器910,920である増幅器の増幅度または減衰器の減衰度を設定することにより、除算器190の除数信号S181は、如何なる場合も零になることがない。したがって、除算器190の出力信号である復調信号S191は如何なる場合も不定になることがないから、従来よりも原信号を正確に復調し、聴感上の雑音を除去することができる。   As described above, according to the SSB signal receiving apparatus 1-3 of the third embodiment, when the amplification degree G and the phase shift amount φ of the phase shifter 50 that are the design values are set, the output of the noise removal circuit 900 The amplitude ratio adjusters 910 and 920 of the noise removal circuit 900 are adjusted so that the ratio of the maximum amplitude A of the carrier wave component S911 and the maximum amplitude B of the SSB signal component S912 matches the condition of the equation (900). By setting the amplification level or the attenuation level of the attenuator, the divisor signal S181 of the divider 190 does not become zero in any case. Therefore, since the demodulated signal S191 that is the output signal of the divider 190 does not become indefinite in any case, it is possible to demodulate the original signal more accurately than before, and to remove audible noise.

尚、前述した実施例1〜実施例3のいずれの場合においても、雑音除去回路900に備えた振幅比調整器910,920は、増幅度が1より大きいときは増幅器であり、増幅度が1より小さいときは減衰器である。また、増幅器または減衰器を省略することは、当該増幅器または減衰器の増幅度を1とすることと同じである。   In any of the first to third embodiments described above, the amplitude ratio adjusters 910 and 920 included in the noise removal circuit 900 are amplifiers when the amplification degree is greater than 1, and the amplification degree is 1 When it is smaller, it is an attenuator. Omitting an amplifier or attenuator is the same as setting the amplification degree of the amplifier or attenuator to 1.

以上、実施例を挙げて本発明を説明したが、本発明は実施例1〜3に限定されるものではなく、その技術思想を逸脱しない範囲で種々変形可能である。   The present invention has been described with reference to the embodiments. However, the present invention is not limited to the first to third embodiments, and various modifications can be made without departing from the technical idea thereof.

また、実施例1〜3では、SSB信号受信装置1−1〜1−3が、図3〜図5に示した回路により構成されているが、本発明は、必ずしもハードウェアで構成する必要はなく、その一部または全部をDSP(Digital Signal Processor)またはCPU(Central Processing Unit)及び記憶装置により構成し、記憶装置にその一部または全部の機能を実現するためのプログラムを格納するようにしてもよい。この場合、その機能は、記憶装置に記憶されたプログラムをDSPまたはCPUに実行させることにより実現される。   In the first to third embodiments, the SSB signal receiving apparatuses 1-1 to 1-3 are configured by the circuits shown in FIGS. 3 to 5, but the present invention is not necessarily configured by hardware. However, a part or all of them are configured by a DSP (Digital Signal Processor) or CPU (Central Processing Unit) and a storage device, and a program for realizing a part or all of the functions is stored in the storage device. Also good. In this case, the function is realized by causing the DSP or CPU to execute a program stored in the storage device.

従来のSSB信号受信装置の構成を示す図である。It is a figure which shows the structure of the conventional SSB signal receiver. 本発明のSSB信号受信装置を説明するための図である。It is a figure for demonstrating the SSB signal receiver of this invention. 本発明の実施の形態によるSSB信号受信装置(実施例1)の構成を示す図である。It is a figure which shows the structure of the SSB signal receiver (Example 1) by embodiment of this invention. 本発明の実施の形態によるSSB信号受信装置(実施例2)の構成を示す図である。It is a figure which shows the structure of the SSB signal receiver (Example 2) by embodiment of this invention. 本発明の実施の形態によるSSB信号受信装置(実施例3)の構成を示す図である。It is a figure which shows the structure of the SSB signal receiver (Example 3) by embodiment of this invention. 従来のSSB信号受信装置による復調信号の波形図である。It is a wave form diagram of the demodulated signal by the conventional SSB signal receiver. 本発明の実施の形態によるSSB信号受信装置(実施例1)による復調信号の波形図である。It is a wave form diagram of the demodulation signal by the SSB signal receiver (Example 1) by embodiment of this invention.

符号の説明Explanation of symbols

1,2 SSB信号受信装置
20 周波数変換回路
30 搬送波/信号分離回路
40 増幅器
50 移相器
60,70 合成器
80 搬送波/信号再合成回路
100,110 直交検波回路
101,111 移相器
102,103,112,113 乗算器
104,105,114,115 LPF
130,140,150 乗算器
152,154 増幅器
156 加算器
160 符号反転器
170,180 減算器
190 除算器
200 検波信号演算回路
900 雑音除去回路
910,920 振幅比調整器
1, 2 SSB signal receiver 20 Frequency conversion circuit 30 Carrier / signal separation circuit 40 Amplifier 50 Phase shifter 60, 70 Synthesizer 80 Carrier / signal recombination circuit 100, 110 Quadrature detection circuit 101, 111 Phase shifter 102, 103 , 112, 113 Multipliers 104, 105, 114, 115 LPF
130, 140, 150 Multiplier 152, 154 Amplifier 156 Adder 160 Sign inverter 170, 180 Subtractor 190 Divider 200 Detection signal operation circuit 900 Noise removal circuit 910, 920 Amplitude ratio adjuster

Claims (4)

搬送波が付加されたSSB信号を直交検波により復調するSSB信号受信装置において、
搬送波が付加されたSSB信号を、搬送波成分及びSSB信号成分に分離する搬送波/信号分離手段と、
前記搬送波成分及びSSB信号成分に基づいて、最大振幅を調整する振幅調整手段と、
前記最大振幅が調整された搬送波成分及びSSB信号成分を入力し、該搬送波成分とSSB信号成分とを合成すると共に、搬送波成分から符号、振幅または位相が異なる搬送波成分を生成し、該生成した搬送波成分とSSB信号成分とを合成し、これら2つの合成信号を出力する搬送波/信号合成手段と、
前記2つの合成信号をそれぞれ直交検波して直交検波信号を出力する直交検波手段と、
前記直交検波手段により出力された直交検波信号を用いて除算演算によりSSB信号の復調信号を生成する検波信号演算手段とを備え、
前記振幅調整手段による搬送波成分及びSSB信号成分の最大振幅の調整により、検波信号演算手段の除算演算における除数が零にならないようにしたことを特徴とするSSB信号受信装置。
In an SSB signal receiving apparatus that demodulates an SSB signal to which a carrier wave is added by quadrature detection,
A carrier wave / signal separating means for separating the SSB signal to which the carrier wave is added into a carrier wave component and an SSB signal component;
Amplitude adjusting means for adjusting the maximum amplitude based on the carrier component and the SSB signal component;
The carrier wave component and the SSB signal component with the maximum amplitude adjusted are input, the carrier wave component and the SSB signal component are combined, a carrier wave component having a different code, amplitude, or phase is generated from the carrier wave component, and the generated carrier wave A carrier wave / signal combining means for combining the component and the SSB signal component and outputting these two combined signals;
Orthogonal detection means for orthogonally detecting the two combined signals and outputting an orthogonal detection signal;
A detection signal calculation means for generating a demodulated signal of the SSB signal by a division calculation using the quadrature detection signal output by the quadrature detection means,
An SSB signal receiving apparatus characterized in that the divisor in the division operation of the detection signal calculating means does not become zero by adjusting the maximum amplitude of the carrier wave component and the SSB signal component by the amplitude adjusting means.
請求項1に記載のSSB信号受信装置において、
前記搬送波/信号合成手段は、符号、振幅または位相が異なる搬送波成分を生成するための移相器を有し、
前記振幅調整手段は、振幅調整後の搬送波成分の最大振幅をA、振幅調整後のSSB信号成分の最大振幅をB、前記移相器の増幅度をG、移相量をφとした場合に、
Figure 2009027699
の条件を満たすように、搬送波成分の最大振幅及びSSB信号成分の最大振幅を調整することを特徴とするSSB信号受信装置。
The SSB signal receiving device according to claim 1,
The carrier wave / signal combining means has a phase shifter for generating carrier wave components having different signs, amplitudes or phases;
The amplitude adjusting unit is configured such that the maximum amplitude of the carrier component after amplitude adjustment is A, the maximum amplitude of the SSB signal component after amplitude adjustment is B, the amplification degree of the phase shifter is G, and the phase shift amount is φ. ,
Figure 2009027699
The SSB signal receiving apparatus is characterized in that the maximum amplitude of the carrier wave component and the maximum amplitude of the SSB signal component are adjusted so as to satisfy the above condition.
請求項2に記載のSSB信号受信装置において、
前記移相器の移相量φを、−3π/2または−π/2としたことを特徴とするSSB信号受信装置。
The SSB signal receiving device according to claim 2,
The SSB signal receiving apparatus characterized in that the phase shift amount φ of the phase shifter is set to -3π / 2 or -π / 2.
請求項2に記載のSSB信号受信装置において、
前記移相器の移相量φを、−2π<φ≦0(但し、φ≠−π,0)としたことを特徴とするSSB信号受信装置。
The SSB signal receiving device according to claim 2,
The SSB signal receiving apparatus characterized in that the phase shift amount φ of the phase shifter is set to −2π <φ ≦ 0 (where φ ≠ −π, 0).
JP2008158061A 2007-06-19 2008-06-17 Ssb signal receiver Pending JP2009027699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158061A JP2009027699A (en) 2007-06-19 2008-06-17 Ssb signal receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007161156 2007-06-19
JP2008158061A JP2009027699A (en) 2007-06-19 2008-06-17 Ssb signal receiver

Publications (1)

Publication Number Publication Date
JP2009027699A true JP2009027699A (en) 2009-02-05

Family

ID=40399025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158061A Pending JP2009027699A (en) 2007-06-19 2008-06-17 Ssb signal receiver

Country Status (1)

Country Link
JP (1) JP2009027699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9928822B2 (en) 2015-12-23 2018-03-27 Hyundai Motor Company Audio system, vehicle having the same, and method for controlling the audio system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9928822B2 (en) 2015-12-23 2018-03-27 Hyundai Motor Company Audio system, vehicle having the same, and method for controlling the audio system

Similar Documents

Publication Publication Date Title
JP5562030B2 (en) I / Q imbalance compensation
JP3910167B2 (en) Amplifier circuit
WO2006051776A1 (en) Amplifying circuit, radio communication circuit, radio base station device and radio terminal device
US20090213960A1 (en) Transmitter
CN102725960A (en) Method for phase and oscillator frequency estimation
JP2874511B2 (en) Balanced phase-amplitude baseband processor for quadrature detection receiver
JP2000228656A (en) Afc circuit
WO2012153373A1 (en) Amplitude/orthogonality error compensation device
WO2011086640A1 (en) Transmitter apparatus, wireless communication apparatus and transmission method
JPWO2005093979A1 (en) Wireless system and wireless communication device
JP2010213107A (en) Communication apparatus
JP2009027699A (en) Ssb signal receiver
JP2016092721A (en) Signal processor and signal processing method
JP2015046865A (en) Interference wave replica generating circuit and interference wave suppression circuit
JP6570798B2 (en) Receiving machine
JP4275657B2 (en) SSB signal receiver
JP4774388B2 (en) SSB signal receiver
JP4391881B2 (en) SSB signal receiver
US9705588B2 (en) Wireless communication system and wireless communication receiver
JPWO2003090368A1 (en) Image signal cancellation type heterodyne reception system and direct conversion orthogonal frequency division multiplex reception system
JP2012129636A (en) Frequency conversion circuit, transmitter and receiver
JP2008283296A (en) Reception device and receiving method
JP2010268396A (en) Diversity reception device and diversity reception method
JP2011244237A (en) Ssb modulation circuit
JP4458549B2 (en) Receiver