JP2009027442A - Optical receiving circuit - Google Patents

Optical receiving circuit Download PDF

Info

Publication number
JP2009027442A
JP2009027442A JP2007188338A JP2007188338A JP2009027442A JP 2009027442 A JP2009027442 A JP 2009027442A JP 2007188338 A JP2007188338 A JP 2007188338A JP 2007188338 A JP2007188338 A JP 2007188338A JP 2009027442 A JP2009027442 A JP 2009027442A
Authority
JP
Japan
Prior art keywords
signal
optical
unit
received
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188338A
Other languages
Japanese (ja)
Other versions
JP4763664B2 (en
Inventor
Akihide Sano
明秀 佐野
Takayuki Kobayashi
孝行 小林
Yutaka Miyamoto
宮本  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007188338A priority Critical patent/JP4763664B2/en
Publication of JP2009027442A publication Critical patent/JP2009027442A/en
Application granted granted Critical
Publication of JP4763664B2 publication Critical patent/JP4763664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform the synchronous detection of a QAM signal without using a pilot signal, in an optical receiving circuit. <P>SOLUTION: The optical receiving circuit performs heterodyne detection using local oscillation light having a wavelength nearly equal to the wavelength of a received signal, samples the detected output with a clock signal extracted from the received optical signal, selects a symbol having a prescribed amplitude from the sampling output, finds the phase difference between a carrier of the received optical signal and the local oscillation light on the basis of a sampling output corresponding to the selected symbol, and demodulates data from the phase difference and the sampling output. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、変調符号として直交振幅変調(Quadrature Amplitude
Modulation:QAM)方式を用いる多値光送受信技術に関する。
In the present invention, quadrature amplitude modulation (Quadrature Amplitude) is used as a modulation code.
The present invention relates to a multilevel optical transmission / reception technology using Modulation (QAM).

基幹系光伝送システムにおいては、1本の光ファイバ中に複数の波長を多重化して伝送するWDM伝送技術が適用されており、経済的かつ大容量の情報伝送が実現されている。   In the backbone optical transmission system, a WDM transmission technique for multiplexing and transmitting a plurality of wavelengths in one optical fiber is applied, and economical and large-capacity information transmission is realized.

従来のWDM伝送装置で用いられる変復調方式としては、従来、光強度のオン・オフによる2値の強度変調を行い、受信側ではフォトダイオードにより直接検波するIM−DD(Intensity Modulation Direct Detection)方式が一般的であった。   As a modulation / demodulation method used in a conventional WDM transmission apparatus, conventionally, there is an IM-DD (Intensity Modulation Direct Detection) method in which binary intensity modulation is performed by turning on / off light intensity and detection is directly performed by a photodiode on the receiving side. It was general.

近年、限られた光伝送帯域を有効に利用して周波数利用効率を向上させるために、多値光送受信技術が検討されている。これまで、シンボル速度が1GSymbol/sの64−QAM変調方式を用いた伝送などが報告されている(例えば、非特許文献1参照)。   In recent years, multilevel optical transmission / reception techniques have been studied in order to effectively use a limited optical transmission band and improve frequency utilization efficiency. Up to now, transmission using a 64-QAM modulation method with a symbol rate of 1 GSymbol / s has been reported (for example, see Non-Patent Document 1).

電子情報通信学会、「電子情報通信学会2007年総合大会講演論文集」、2007年3月20日〜23日、B−10−69、P408IEICE, "Proceedings of the 2007 IEICE General Conference", March 20-23, 2007, B-10-69, P408

しかしながら、従来の多値光送受信技術においては以下のような課題がある。受信側に関しては、同期検波が必要となるが、例えば非特許文献1記載の技術では、パイロット信号を主信号に重畳して伝送し、受信側の局部発振光源をこのパイロット信号に位相同期することにより、ヘテロダイン受信を行っている。   However, the conventional multilevel optical transmission / reception technology has the following problems. For the receiving side, synchronous detection is required. For example, in the technique described in Non-Patent Document 1, a pilot signal is transmitted by being superimposed on the main signal, and the local oscillation light source on the receiving side is phase-synchronized with the pilot signal. Therefore, heterodyne reception is performed.

このようなパイロット信号を重畳する伝送方式では、パイロット信号用に余分な帯域を確保する必要があり、周波数利用効率の低下が避けられないという課題がある。   In such a transmission method for superimposing pilot signals, it is necessary to secure an extra band for the pilot signals, and there is a problem that a decrease in frequency utilization efficiency is inevitable.

本発明は、このような背景を考慮してなされたもので、パイロット信号を用いることなく、QAM信号の同期検波を可能とする光受信回路を提供することを目的とする。   The present invention has been made in view of such a background, and an object of the present invention is to provide an optical receiving circuit that enables synchronous detection of a QAM signal without using a pilot signal.

本発明は光受信回路であって、本発明の特徴とするところは、受信光信号の波長にほぼ等しい波長の局部発振光を出力する局部発振光源と、受信信号と局部発振光とを混合して出力する光90°ハイブリッドカプラと、この光90°ハイブリッドカプラからの出力信号を光信号から電気信号に変換する第一のOE変換部と、この第一のOE変換部により光信号から電気信号に変換された受信信号の同相成分および直交成分の振幅レベルを判定し、それぞれの振幅レベルをバイナリデータに変換して出力するデータ識別部と、前記光90°ハイブリッドカプラの前段に設けられ、受信光信号を分岐する光分岐部と、この光分岐部により分岐された一方の受信光信号を電気信号に変換する第二のOE変換部と、この第二のOE変換部により光信号から電気信号に変換された受信信号のシンボル周波数に等しいクロック信号を抽出するクロック抽出部と、このクロック抽出部の出力クロック信号により前記データ識別部に入力される受信信号をサンプリングする手段とを備えたことを特徴とする。   The present invention is an optical receiver circuit, and a feature of the present invention is that a local oscillation light source that outputs a local oscillation light having a wavelength substantially equal to the wavelength of the reception optical signal, a reception signal and the local oscillation light are mixed. Output optical 90 ° hybrid coupler, a first OE converter that converts an output signal from the optical 90 ° hybrid coupler from an optical signal to an electrical signal, and an electrical signal from the optical signal by the first OE converter. A data identification unit that determines the amplitude levels of the in-phase component and the quadrature component of the received signal converted into, converts each amplitude level into binary data and outputs the binary level, and is provided in front of the optical 90 ° hybrid coupler, An optical branching unit for branching the optical signal, a second OE conversion unit for converting one received optical signal branched by the optical branching unit into an electrical signal, and an optical signal generated by the second OE conversion unit. A clock extractor for extracting a clock signal equal to the symbol frequency of the received signal converted into an electrical signal; and means for sampling the received signal input to the data identifying unit by the output clock signal of the clock extractor It is characterized by that.

これによれば、パイロット信号を用いることなく、QAM信号の同期検波を可能とするため、周波数利用効率の低下を回避することができる。   According to this, since the synchronous detection of the QAM signal can be performed without using the pilot signal, it is possible to avoid a decrease in frequency use efficiency.

また、前記データ識別部に入力される受信信号の振幅を求める振幅判定部と、この振幅判定部の出力が予め定められている範囲にあるシンボルのみを選別し、この選別されたシンボルに対する前記サンプリングする手段の出力から搬送波位相と前記局部発振光源との位相差を求める搬送波位相再生部とを備えることができる。これにより、データが正常に復調できるシンボルを選別することができる。   In addition, an amplitude determination unit for obtaining the amplitude of the received signal input to the data identification unit, and only the symbols whose output from the amplitude determination unit is within a predetermined range are selected, and the sampling for the selected symbols is performed. A carrier phase regenerator that obtains a phase difference between the carrier phase and the local oscillation light source from the output of the means for performing the processing. As a result, it is possible to select symbols whose data can be demodulated normally.

さらに、データを正常に復調できる振幅の範囲を拡張するために、前記データ識別部により出力されるデータ信号に対し、論理反転またはチャネル切替えを行う手段を備えることができる。   Furthermore, in order to extend the range of the amplitude at which data can be normally demodulated, a means for performing logic inversion or channel switching on the data signal output from the data identification unit can be provided.

さらに、前記サンプリングする手段は、前記第一のOE変換部から出力されるアナログ信号の受信信号をディジタル信号の受信信号に変換して前記データ識別部に入力する手段を含むこともできる。   Further, the sampling means may include means for converting an analog signal received signal output from the first OE converter into a digital signal received signal and inputting the digital signal to the data identifying section.

本発明によれば、パイロット信号を用いることなく、QAM信号の同期検波を可能とすることができるため、周波数利用効率の低下を回避することができる。   According to the present invention, since synchronous detection of a QAM signal can be performed without using a pilot signal, it is possible to avoid a decrease in frequency utilization efficiency.

本実施例の光受信回路の構成を図1に示す。本実施例の光受信回路は、図1に示すように、受信光信号を2経路に分岐する光分岐部2と、受信光信号とほぼ同じ波長の連続光を出力する局部発振光源1と、分岐された光信号の一方と局部発振光源1の光信号とを合波する光90°ハイブリッドカプラ3と、光90°ハイブリッドカプラ3からの光信号を受信して電気信号に変換するバランスドOEコンバータであるOE変換部4−1および4−2と、OE変換部4−1および4−2からのアナログ電気信号をディジタル信号にサンプリングするアナログ・ディジタル変換部(以下ではAD変換部と記す)5−1および5−2と、分岐した光信号の他方を二乗検波するOEコンバータ8と、OEコンバータ8から出力された電気信号からシンボル速度に等しいクロック周波数を抽出するクロック抽出部9と、AD変換部5−1および5−2から出力されるディジタル信号から受信信号の振幅を判定する振幅判定部11と、AD変換部5−1および5−2から出力されるディジタル信号から光搬送波の位相を再生する搬送波位相再生部12と、搬送波位相再生部12の出力から受信信号の同相成分および直交成分の振幅値を計算し、閾値判定を行ってディジタルデータを出力するデータ識別部6と、データ識別部6から出力されるバイナリデータについて、出力データの論理反転およびチャネル切替えを行うチャネル切替・論理反転部7とを備える。   The configuration of the optical receiving circuit of this embodiment is shown in FIG. As shown in FIG. 1, the optical receiver circuit of this embodiment includes an optical branching unit 2 that branches a received optical signal into two paths, a local oscillation light source 1 that outputs continuous light having substantially the same wavelength as the received optical signal, An optical 90 ° hybrid coupler 3 that combines one of the branched optical signals and the optical signal of the local oscillation light source 1, and a balanced OE that receives the optical signal from the optical 90 ° hybrid coupler 3 and converts it into an electrical signal. OE converters 4-1 and 4-2 that are converters, and an analog / digital converter that samples analog electric signals from OE converters 4-1 and 4-2 into digital signals (hereinafter referred to as AD converters) 5-1 and 5-2, an OE converter 8 that squarely detects the other of the branched optical signals, and a clock frequency that extracts a clock frequency equal to the symbol rate from the electrical signal output from the OE converter 8. Output from the digital signal extraction unit 9, the AD conversion units 5-1 and 5-2, the amplitude determination unit 11 that determines the amplitude of the received signal, and the AD conversion units 5-1 and 5-2. A carrier phase recovery unit 12 that recovers the phase of the optical carrier from the digital signal to be output, calculates the amplitude values of the in-phase component and the quadrature component of the received signal from the output of the carrier phase recovery unit 12, and outputs the digital data by performing threshold determination And a channel switching / logic inverting unit 7 that performs logical inversion and channel switching of output data for binary data output from the data identifying unit 6.

ここで、特徴とするところは、クロック抽出部9を設けて受信信号から抽出したクロック信号をAD変換部5−1および5−2に与えて受信シンボルのアイ開口が最大になる点で受信信号をサンプリングするところと、振幅判定部11を設けて所定の振幅のシンボルを選別して搬送波位相の再生を行うところと、チャネル切替・論理反転部7を設けて出力のバイナリデータの論理反転とチャネル切替えを可能とするところにある。   Here, the feature is that the clock signal extraction unit 9 is provided and the clock signal extracted from the reception signal is given to the AD conversion units 5-1 and 5-2, so that the received signal has the maximum eye opening. Sampling, selecting an amplitude determination unit 11 to select a symbol having a predetermined amplitude and reproducing the carrier phase, and providing a channel switching / logic inversion unit 7 to invert the logic of the output binary data and the channel It is in a place where switching is possible.

次に、本実施例の動作を、受信信号が16−QAM信号である場合を例にとって図3を参照して説明する。図3は本実施例におけるデータ識別部6およびチャネル切替・論理反転部7の動作を示すフローチャートである。   Next, the operation of the present embodiment will be described with reference to FIG. 3 taking as an example the case where the received signal is a 16-QAM signal. FIG. 3 is a flowchart showing the operations of the data identification unit 6 and the channel switching / logic inversion unit 7 in this embodiment.

16−QAM信号を受信するためには、受信側で搬送波位相を再生し、光振幅の同相成分および直交成分を判別する必要がある。本実施例では、受信信号(S)とほぼ等しい周波数の局部発振光源(L)1を光90°ハイブリッドカプラ3で混合する(光90°ハイブリッドカプラ3は、空間光学系や平面導波路技術などにより実現されている)。ここで、受信信号と局部発振光との光周波数差は、シンボルレートに比べて十分低いことが必要である。   In order to receive the 16-QAM signal, it is necessary to reproduce the carrier wave phase on the receiving side and discriminate the in-phase component and the quadrature component of the optical amplitude. In this embodiment, a local oscillation light source (L) 1 having a frequency substantially equal to the received signal (S) is mixed by an optical 90 ° hybrid coupler 3 (the optical 90 ° hybrid coupler 3 is a spatial optical system, a planar waveguide technology, etc. Is realized). Here, the optical frequency difference between the received signal and the local oscillation light needs to be sufficiently lower than the symbol rate.

受信信号および局部発振光を
S(t)=E(t)ejω0t+φ0(t)
L(t)=EL0jω0t (式1)
と表す。ここで、ω0は搬送波および局部発振光源1の光角周波数、φ0(t)は搬送波光位相と局部発振光との位相差、E(t)は16−QAM符号で変調された光電界であり、E(t)=Ex(t)+jEy(t),Ex(t),Ey(t)∈{−3E0,−E0,E0,3E0}と表される。
光90°ハイブリッドカプラ3の出力では、
1(t)=(S(t)+L(t))/2
2(t)=(S(t)−L(t))/2
3(t)=(S(t)+jL(t))/2
4(t)=(S(t)−jL(t))/2 (式2)
となる。ここで、E1およびE2をOE変換部4−1に、E3およびE4をOE変換部4−2により検波する。このとき、2つのOE変換部4−1および4−2の出力電流I1およびI2は、I(t)=I1(t)+jI2(t)とすると
I(t)=4REL0E(t)exp{jφ0(t)} (式3)
と表される。ここで、RはOE変換部4−1および4−2の応答を表す係数である。従って、搬送波光位相と局部発振光との位相差φ0(t)がわかれば、
E(t)= (1/4REL0)I(t)exp{−jφ0(t)} (式4)
式4から受信シンボルE(t)を復調することができる。
The received signal and the local oscillation light are expressed as S (t) = E (t) e jω0t + φ0 (t)
L (t) = E L0 e jω0t (Formula 1)
It expresses. Here, ω 0 is the optical angular frequency of the carrier wave and the local oscillation light source 1, φ 0 (t) is the phase difference between the carrier wave phase and the local oscillation light, and E (t) is the optical electric field modulated by the 16-QAM code. And E (t) = E x (t) + jE y (t), E x (t), E y (t) ∈ {−3E 0 , −E 0 , E 0 , 3E 0 } .
At the output of the optical 90 ° hybrid coupler 3,
E 1 (t) = (S (t) + L (t)) / 2
E 2 (t) = (S (t) −L (t)) / 2
E 3 (t) = (S (t) + jL (t)) / 2
E 4 (t) = (S (t) −jL (t)) / 2 (Formula 2)
It becomes. Here, E 1 and E 2 are detected by the OE conversion unit 4-1, and E 3 and E 4 are detected by the OE conversion unit 4-2. At this time, if the output currents I 1 and I 2 of the two OE conversion units 4-1 and 4-2 are I (t) = I 1 (t) + jI 2 (t), I (t) = 4RE L0 E (T) exp {jφ 0 (t)} (Formula 3)
It is expressed. Here, R is a coefficient representing the response of the OE conversion units 4-1 and 4-2. Therefore, if the phase difference φ 0 (t) between the carrier light phase and the local oscillation light is known,
E (t) = (1/4 RE L0 ) I (t) exp {−jφ 0 (t)} (Formula 4)
From Equation 4, the received symbol E (t) can be demodulated.

搬送波と局部発振光との位相差φ0(t)は、次のようにして求めることができる。図2に示したように、16−QAM符号で変調された光信号の振幅および位相は様々な値をとるが、図2の塗り潰しで示したように、光強度が2E0 2および18E0 2となる場合には、位相偏移はπ/4、3π/4、5π/4、7π/4のいずれかをとる。ここで、位相偏移がπ/4、3π/4、5π/4、7π/4のいずれかをとる場合をグループA、それ以外をグループBとする。 The phase difference φ 0 (t) between the carrier wave and the local oscillation light can be obtained as follows. As shown in FIG. 2, the amplitude and phase of the optical signal modulated by the 16-QAM code take various values, but the light intensity is 2E 0 2 and 18E 0 2 as shown by the solid lines in FIG. In this case, the phase shift is any one of π / 4, 3π / 4, 5π / 4, and 7π / 4. Here, the case where the phase shift takes any one of π / 4, 3π / 4, 5π / 4, and 7π / 4 is referred to as group A, and the others are referred to as group B.

まず、AD変換部5−1および5−2によりAD変換された出力信号に対し、振幅判定部11により受信シンボルがグループA(光強度が2E0 2および18E0 2となるシンボル)か、グループBかを判定する(S1、S2)。受信シンボルがグループAに属する場合には、式3の両辺を4乗すると、E(t)の位相項は定数となるため、
φ0(tk)=(1/4)arg[{I1(ta)+jI2(ta)}4] (式5)
により搬送波位相と局部発振光との位相差φ0(t)を求めることができる(S3)。ここで、taはグループAに属するシンボルのサンプリング時刻を表している。
First, with respect to the output signal AD-converted by the AD converters 5-1 and 5-2, the amplitude determination unit 11 determines whether the received symbol is group A (symbol whose light intensity is 2E 0 2 and 18E 0 2 ) B is determined (S1, S2). When the received symbol belongs to group A, if both sides of Equation 3 are raised to the fourth power, the phase term of E (t) becomes a constant.
φ 0 (t k ) = (1/4) arg [{I 1 (t a ) + jI 2 (t a )} 4 ] (Formula 5)
Thus, the phase difference φ 0 (t) between the carrier wave phase and the local oscillation light can be obtained (S3). Here, t a represents the sampling time of symbols belonging to group A.

また、位相差φ0(t)には光源の位相雑音が含まれているため、グループAに属する数シンボル分にわたって平均化することにより、位相雑音による不確定性を低減することができる。 Since the phase difference φ 0 (t) includes the phase noise of the light source, the uncertainty due to the phase noise can be reduced by averaging over several symbols belonging to the group A.

また、グループBのシンボル(位相偏移がπ/4、3π/4、5π/4、7π/4以外のシンボル)に対しては、例えば、グループAに属する直前のシンボルにおけるφ0(t)の値を用いる(S4)。以上で得られたφ0(t)を用いて、式4によりE(t)を復調することにより、同相成分、直交成分のデータが得られる(S5)。式5より得られるφ0(t)は
−π/4<φ0(t)≦π/4
の範囲の値を取る。実際の位相差がこの範囲内であった場合には正常にデータを復調することができる。しかし、実際の位相差φ0r(t)は、0から2πの範囲の任意の値を取るため、実際の位相差が上記の範囲以外の場合には、復調後のE(t)は、同相成分と直交成分とが入れ替わったり、正負が反転して正常なデータが復調されない。これを回避するために、データ識別部6の出力にチャネル切替・論理反転部7が必要となる。チャネル切替・論理反転部7では、φ0r(t)が以下の4つの範囲をとる場合に分けて復調処理を行う。
For symbols of group B (symbols other than phase shifts of π / 4, 3π / 4, 5π / 4, 7π / 4), for example, φ 0 (t) in the immediately preceding symbol belonging to group A Is used (S4). Using φ 0 (t) obtained above, E (t) is demodulated by Equation 4 to obtain in-phase component and quadrature component data (S5). Φ 0 (t) obtained from Equation 5 is −π / 4 <φ 0 (t) ≦ π / 4.
Take a value in the range. If the actual phase difference is within this range, data can be demodulated normally. However, since the actual phase difference φ 0r (t) takes an arbitrary value in the range of 0 to 2π, when the actual phase difference is outside the above range, E (t) after demodulation is equal to the in-phase The component and the orthogonal component are interchanged, and the sign is reversed, so that normal data is not demodulated. In order to avoid this, a channel switching / logic inversion unit 7 is required at the output of the data identification unit 6. The channel switching / logic inversion unit 7 performs the demodulation process separately when φ 0r (t) takes the following four ranges.

π/4<φ0r(t)≦π/4
π/4<φ0r(t)≦3π/4
3π/4<φ0r(t)≦5π/4
5π/4<φ0r(t)≦7π/4
まず、
π/4<φ0r(t)≦π/4
であれば、式4から計算したE(t)により正常なデータが復調される(S6)。正常なデータが復調されない場合には、同相成分と直交成分を切り替える(S7)。
5π/4<φ0r(t)≦7π/4
であれば、これにより正常なデータが復調される(S8)。正常なデータが復調されない場合には、同相成分のみ論理反転する(S9)。
π / 4 <φ 0r (t) ≦ π / 4
π / 4 <φ 0r (t) ≦ 3π / 4
3π / 4 <φ 0r (t) ≦ 5π / 4
5π / 4 <φ 0r (t) ≦ 7π / 4
First,
π / 4 <φ 0r (t) ≦ π / 4
If so, normal data is demodulated by E (t) calculated from Equation 4 (S6). When normal data is not demodulated, the in-phase component and the quadrature component are switched (S7).
5π / 4 <φ 0r (t) ≦ 7π / 4
If so, normal data is demodulated (S8). If normal data is not demodulated, only the in-phase component is logically inverted (S9).

π/4<φ0r(t)≦3π/4
であれば、これにより正常なデータが復調される(S10)。正常なデータが復調されない場合には、同相成分と直交成分を再び切替え、同相成分のみを論理反転する(S11)。
π / 4 <φ 0r (t) ≦ 3π / 4
If so, normal data is demodulated (S10). When normal data is not demodulated, the in-phase component and the quadrature component are switched again, and only the in-phase component is logically inverted (S11).

3π/4<φ0r(t)≦5π/4
であれば、これにより正常なデータが復調される(S12)。これでも復調されない場合には、異常終了となる。
なお、復調されたデータが正常かどうかをもって判定する。実際には、既知の信号を受信し、正しいデータが復調されるように、チャネル切替・論理反転部7の操作の設定を行ってもよい。
3π / 4 <φ 0r (t) ≦ 5π / 4
If so, normal data is demodulated (S12). If it is not demodulated, the process ends abnormally.
The determination is based on whether the demodulated data is normal. Actually, the operation of the channel switching / logic inversion unit 7 may be set so that a known signal is received and correct data is demodulated.

また、チャネル切替・論理反転部7では、16−QAMの場合には、2ビットグレイコードの論理反転であり、上位ビットのみを反転する操作を行えばよい。実際には、既知の信号を受信し、正しいデータが復調されるように、チャネル切替・論理反転部7の操作の設定を行う。   Further, in the case of 16-QAM, the channel switching / logic inversion unit 7 is a logic inversion of a 2-bit gray code, and an operation for inverting only the upper bits may be performed. Actually, the operation of the channel switching / logic inversion unit 7 is set so that a known signal is received and correct data is demodulated.

以上の説明では、16−QAM信号に対する適用例を説明した。次に、本実施例の光受信回路を64−QAM信号に適用する場合について説明する。図4に、64−QAM信号のコンスタレーション図を示す。64−QAM信号の場合にも、位相偏移量がπ/4、3π/4、5π/4、7π/4である点において、前述の演算により搬送波と局部発振光との位相差を求め、その結果からQAM信号を復調することができる。ただし、図4からわかるように、I1、I2の二乗和から得られる光強度が50E0 2の場合(図中点線で示す)、π/4、3π/4、5π/4、7π/4以外の点も存在するため、このレベルは除外する必要がある。 In the above description, the application example with respect to 16-QAM signal was demonstrated. Next, a case where the optical receiving circuit of this embodiment is applied to a 64-QAM signal will be described. FIG. 4 shows a constellation diagram of the 64-QAM signal. In the case of a 64-QAM signal, the phase difference between the carrier wave and the local oscillation light is obtained by the above-described calculation at the point where the phase shift amount is π / 4, 3π / 4, 5π / 4, 7π / 4, From the result, the QAM signal can be demodulated. However, as can be seen from FIG. 4, when the light intensity obtained from the sum of squares of I 1 and I 2 is 50E 0 2 (indicated by a dotted line in the figure), π / 4, 3π / 4, 5π / 4, 7π / Since there are points other than 4, this level must be excluded.

なお、これまでの説明では、OE変換部4−1および4−2はバランスドOEコンバータとして説明したが、式2のE1またはE2のいずれか一方と、E3またはE4のいずれか一方のみを通常のOEコンバータで受信しても同様の復調は可能である。 In the above description, the OE conversion units 4-1 and 4-2 have been described as balanced OE converters. However, either E 1 or E 2 in Formula 2 and either E 3 or E 4 are used. Similar demodulation is possible even if only one of them is received by a normal OE converter.

(その他の実施例)
上記実施例の光受信回路では、検波出力をAD変換部5−1および5−2によりディジタル信号に変換し、このディジタル信号を用いて以降の処理を行っているが、これらの処理では、検波出力を受信光信号から抽出したクロック信号でサンプリングした信号を用いればよく、サンプリングした信号は、アナログ信号であってもディジタル信号であっても構わない。
(Other examples)
In the optical receiver circuit of the above embodiment, the detection output is converted into a digital signal by the AD conversion units 5-1 and 5-2, and the subsequent processing is performed using this digital signal. A signal sampled with a clock signal extracted from the received optical signal may be used. The sampled signal may be an analog signal or a digital signal.

本発明は、周波数利用効率の低下を回避することができるため、通信品質の向上に利用できる。   Since the present invention can avoid a decrease in frequency use efficiency, it can be used to improve communication quality.

本実施例の光受信回路の構成図。The block diagram of the optical receiver circuit of a present Example. 受信光信号(16−QAM)のコンスタレーション図。The constellation diagram of a received optical signal (16-QAM). データ識別部およびチャネル切替・論理反転部の動作を示すフローチャート。The flowchart which shows operation | movement of a data identification part and a channel switching and logic inversion part. 受信光信号(64−QAM)のコンスタレーション図。The constellation diagram of a received optical signal (64-QAM).

符号の説明Explanation of symbols

1 局部発振光源
2 光分岐部
3 光90°ハイブリッドカプラ
4−1、4−2 OE変換部
5−1、5−2 AD変換部
6 データ識別部
7 チャネル切替・論理反転部
8 OEコンバータ
9 クロック抽出部
10 位相調整部
11 振幅判定部
12 搬送波位相再生部
DESCRIPTION OF SYMBOLS 1 Local oscillation light source 2 Optical branching part 3 Optical 90 degree hybrid coupler 4-1, 4-2 OE conversion part 5-1, 5-2 AD conversion part 6 Data identification part 7 Channel switching and logic inversion part 8 OE converter 9 Clock Extraction unit 10 Phase adjustment unit 11 Amplitude determination unit 12 Carrier phase recovery unit

Claims (4)

受信光信号の波長にほぼ等しい波長の局部発振光を出力する局部発振光源と、
受信信号と局部発振光とを混合して出力する光90°ハイブリッドカプラと、
この光90°ハイブリッドカプラからの出力信号を光信号から電気信号に変換する第一のOE変換部と、
この第一のOE変換部により光信号から電気信号に変換された受信信号の同相成分および直交成分の振幅レベルを判定し、それぞれの振幅レベルをバイナリデータに変換して出力するデータ識別部と、
前記光90°ハイブリッドカプラの前段に設けられ、受信光信号を分岐する光分岐部と、
この光分岐部により分岐された一方の受信光信号を電気信号に変換する第二のOE変換部と、
この第二のOE変換部により光信号から電気信号に変換された受信信号のシンボル周波数に等しいクロック信号を抽出するクロック抽出部と、
このクロック抽出部の出力クロック信号により前記データ識別部に入力される受信信号をサンプリングする手段と
を備えた光受信回路。
A local oscillation light source that outputs local oscillation light having a wavelength substantially equal to the wavelength of the received optical signal;
An optical 90 ° hybrid coupler that mixes and outputs a received signal and local oscillation light;
A first OE converter that converts an output signal from the optical 90 ° hybrid coupler from an optical signal to an electrical signal;
A data identification unit that determines the amplitude levels of the in-phase component and the quadrature component of the reception signal converted from the optical signal to the electrical signal by the first OE conversion unit, converts each amplitude level into binary data, and outputs the binary data;
An optical branching unit that is provided in a preceding stage of the optical 90 ° hybrid coupler and branches a received optical signal;
A second OE conversion unit that converts one received optical signal branched by the optical branching unit into an electrical signal;
A clock extraction unit for extracting a clock signal equal to the symbol frequency of the reception signal converted from the optical signal to the electric signal by the second OE conversion unit;
Means for sampling a reception signal input to the data identification unit by an output clock signal of the clock extraction unit.
前記データ識別部に入力される受信信号の振幅を求める振幅判定部と、
この振幅判定部の出力が予め定められている範囲にあるシンボルのみを選別し、この選別されたシンボルに対する前記サンプリングする手段の出力から搬送波位相と前記局部発振光源との位相差を求める搬送波位相再生部と
を備えた請求項1記載の光受信回路。
An amplitude determination unit for obtaining an amplitude of a reception signal input to the data identification unit;
Carrier phase recovery that selects only symbols whose output of the amplitude determination unit is within a predetermined range and obtains the phase difference between the carrier phase and the local oscillation light source from the output of the sampling means for the selected symbol The optical receiver circuit according to claim 1, further comprising:
前記データ識別部により出力されるデータ信号に対し、論理反転またはチャネル切替えを行う手段を備えた請求項1または2記載の光受信回路。   3. The optical receiver circuit according to claim 1, further comprising means for performing logic inversion or channel switching on a data signal output from the data identification unit. 前記サンプリングする手段は、前記第一のOE変換部から出力されるアナログ信号の受信信号をディジタル信号の受信信号に変換して前記データ識別部に入力する手段を含む請求項1ないし3のいずれかに記載の光受信回路。   The sampling means includes means for converting an analog signal received signal output from the first OE converter into a digital signal received signal and inputting the digital signal to the data identification section. An optical receiver circuit according to 1.
JP2007188338A 2007-07-19 2007-07-19 Optical receiver circuit Expired - Fee Related JP4763664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188338A JP4763664B2 (en) 2007-07-19 2007-07-19 Optical receiver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188338A JP4763664B2 (en) 2007-07-19 2007-07-19 Optical receiver circuit

Publications (2)

Publication Number Publication Date
JP2009027442A true JP2009027442A (en) 2009-02-05
JP4763664B2 JP4763664B2 (en) 2011-08-31

Family

ID=40398832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188338A Expired - Fee Related JP4763664B2 (en) 2007-07-19 2007-07-19 Optical receiver circuit

Country Status (1)

Country Link
JP (1) JP4763664B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199657A (en) * 2010-03-19 2011-10-06 National Institute Of Information & Communication Technology Optical sampling demodulation method for optical msk modulation/optional shift amount cpfsk
CN103067331A (en) * 2012-12-12 2013-04-24 华中科技大学 Quadrature amplitude modulation (QAM) light vector signal production and distance heterodyne detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199657A (en) * 2010-03-19 2011-10-06 National Institute Of Information & Communication Technology Optical sampling demodulation method for optical msk modulation/optional shift amount cpfsk
CN103067331A (en) * 2012-12-12 2013-04-24 华中科技大学 Quadrature amplitude modulation (QAM) light vector signal production and distance heterodyne detection device
CN103067331B (en) * 2012-12-12 2015-05-20 华中科技大学 Quadrature amplitude modulation (QAM) light vector signal production and distance heterodyne detection device

Also Published As

Publication number Publication date
JP4763664B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5458313B2 (en) Optical multi-value transmission system
JP5374596B2 (en) Correction of local oscillator frequency offset of coherent optical signal receiver
EP2047615B1 (en) Method and apparatus for the generation and detection of optical differential varied-multilevel phase-shift keying with pulse amplitude modulation (odvmpsk/pam) signals
EP1741212B1 (en) Device and method for decoding an optical multi-level dpsk signal
JP2006295603A (en) Optical receiver
US8873953B2 (en) Multiple-symbol polarization switching for differential-detection modulation formats
JP2008167126A (en) Optical digital transmission system and method
JP5522572B2 (en) Optical sampling demodulation method of optical MSK modulation / arbitrary deviation amount CPFSK
JP5598958B2 (en) Dividing optical phase tracking demodulator
JP5099506B2 (en) Optical QAM signal demodulation method and demodulator
JP4763664B2 (en) Optical receiver circuit
US20090086215A1 (en) Polarization-Multiplexed Multilevel Differential Phase Shift Keyed Signal Detector
US20090220249A1 (en) Demodulation circuit
JP2008160372A (en) Optical reception device using dqpsk demodulation method, and dqps demodulation method
Al-Bermani et al. Synchronous demodulation of coherent 16-QAM with feedforward carrier recovery
US20230344522A1 (en) Coherent optical reception device and coherent optical reception method
CN104009807A (en) Demodulation device and method for achieving coherent light communication through channel switching
CN113966583B (en) Encoding and decoding communication traffic in pulse amplitude modulation format and optical device therefor
JPH11205241A (en) Afc circuit for phase diversity receiver for optical psk signal
JP2001177587A (en) Synchronizing system for digital modulation/ demodulation
US20240223298A1 (en) Receiving apparatus, transmitting apparatus, transmission system, receiving method and transmitting method
Chiba et al. Adaptive symbol discrimination method for distorted multilevel optical signal and its application to decoding of high-speed optical quadrature amplitude modulation
CN114978340A (en) Coherent detection method, device and system
EP2748996B1 (en) A method of converting an optical communications signal and an optical receiver
Thulasi et al. Enhancement of Noise Reduction in Phase Amplitude Signal for Combinatorial Circuits through DQPSK

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees