JP2009027047A - 検出装置 - Google Patents

検出装置 Download PDF

Info

Publication number
JP2009027047A
JP2009027047A JP2007190255A JP2007190255A JP2009027047A JP 2009027047 A JP2009027047 A JP 2009027047A JP 2007190255 A JP2007190255 A JP 2007190255A JP 2007190255 A JP2007190255 A JP 2007190255A JP 2009027047 A JP2009027047 A JP 2009027047A
Authority
JP
Japan
Prior art keywords
light receiving
light
receiving element
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007190255A
Other languages
English (en)
Inventor
Yoichi Nagai
陽一 永井
Yasuhiro Inoguchi
康博 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007190255A priority Critical patent/JP2009027047A/ja
Publication of JP2009027047A publication Critical patent/JP2009027047A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】受光感度や暗電流を犠牲にすることなく、汎用のCMOS回路をそのまま使用することができる受光素子アレイを備えた検出装置を提供する。
【解決手段】化合物半導体の受光素子10が配列した受光素子アレイと、CMOS回路71とを組み合わせた近赤外光の検出装置70であって、この検出装置では、受光素子アレイは、1つの化合物半導体基板51上に複数のプレーナ型受光素子10が形成されたものであり、受光素子のn型部16がその受光素子ごとに各別に形成され、CMOS回路の画素の信号入力部に、受光素子のn型部が電気的に接続されている。
【選択図】図1

Description

本発明は、検出装置に関し、より具体的には、近赤外域に受光感度を有する検出装置に関するものである。
近赤外の波長域は、動植物などの生体や環境に関連した吸収スペクトルに対応するため、受光層にIII−V族化合物半導体を用いた近赤外域の検出器の開発が盛んに行われている。たとえば受光層にInGaAsを用い、CMOS(Complementary Metal−Oxide Semiconductor)回路により光電流を出力信号に変換する検出器の試作例が発表されている(非特許文献1)。ここで、検出器は、各種センサー、撮像装置など、およそ光電変換を用いて検出する装置であれば何でもよい。上記の検出器では、フォトダイオード(PD)のpn接合に入射した光によって発生する電子/正孔対につき、PDのp部側からCMOS回路へ、信号電荷として正孔を入力する。
また受光層にInGaAsを用いた受光素子アレイにおいて、受光素子に隣接させてJFET(Junction Field Effect Transistor)によるスイッチを組み込んだ検出装置の構造が提案された(非特許文献2)。また、受光層に窒素を含むInGaAsNの受光素子を、メサ型構造で構成する提案がなされている(特許文献1、非特許文献3)。
高橋秀夫ら「近赤外用InGaAs光検出器」,OPTRONICS(1997),No.3, pp.107-113 Jiten Sarathy, et.al.,"Monolithic active pixel InGaAs focal plane arrays for near infra-red imaging", SPIE Vol.2999, pp.225-234 Jian Wei, et.al., "Gas Source Molecular Beam Epitaxy Grown InGaAs(P)N-InP Long-Wavelength (λ>1.65μm) Photodetectors Using a Solid Arsenic Source", IEEE PHOTONICS TECHNOLOGY LETTERS, Vol.13,No.4,April 2001 特開平9−219563号公報
上記の非特許文献1の近赤外用InGaAs光検出器では、通常のCMOS型撮像装置の回路がそのまま使えず、信号電荷の正孔を電子に反転する操作が必要となり、専用のCMOS回路の開発コストが増大する。また仮に、可視光を利用したCMOS型撮像装置と、上記近赤外域の宇宙自然光を用いた暗視撮像装置との両方の機能を持つ撮像装置を構成する場合、回路または電源系を別々に構成する必要がある。
また受光素子に隣接させてJFETのスイッチを配置する構成の検出装置の場合(非特許文献2)、受光部の面積を広くとれないので、十分な解像度を得ることが難しい。無理に受光部の面積を広くとると、受光素子アレイ自体が大きくなりすぎ、検出装置全体が大掛かりなものとなってしまう。また、メサ型構造で受光素子を形成する場合、メサエッチ端面にpn接合が露出するため、その形状や表面状態を厳密に制御した上で保護することが難しく、暗電流の増大を招き易い。またメサ型構造の受光素子を膨大な数アレイ化するアレイ型検出装置の場合、受光素子のエピタキシャル積層構造に変更を加えずにCMOS回路への信号電荷に電子を用いることができるかもしれないが、受光素子のすべてを均一な状態にして暗電流を抑制するのは、非常に困難である。
可視光の撮像装置では、CCD(Charge Coupled Device)撮像装置と並んでCMOS撮像装置は広く使用され、シリコン半導体によるPDからの電荷には電子が一般に用いられている。すなわちPDのn部電極からCMOSに電子の経路が形成されている。しかし、近赤外域の光検出装置では、CMOSとの組み合わせが話題となる以前より、III−V族化合物半導体に受光素子を形成する際、p型領域形成のためにZnを受光層に届くように拡散導入する処理が、広く一般に行われている。III−V族化合物半導体基板上に、受光素子アレイを形成する場合にも、上述の実績のあるZn拡散導入が用いられ、したがって複数の受光素子を配列した受光素子アレイにおいて、n部電極が共通の1つの電極になり、p部電極が各受光素子ごとに形成されることになる。このため、画素ごとの信号として、CMOSへのp導電型の信号電荷の注入が行われている。しかし、上述のように、CMOSへのp導電型の信号電荷の注入は、多くの不都合を伴う。
要約すると、現状の近赤外域のCMOS検出装置は、汎用のCMOS回路をそのまま使用することができず、また汎用のCMOS回路および受光素子のエピタキシャル積層構造をそのまま用いる構造では、受光感度や暗電流等を犠牲にする必要があった。本発明は受光感度や暗電流を犠牲にすることなく、汎用のCMOS回路をそのまま使用することができる受光素子アレイを備えた検出装置を提供することを目的とする。
本発明の検出装置は、化合物半導体の受光素子が配列した受光素子アレイと、CMOS回路とを組み合わせた近赤外光の検出装置である。この検出装置では、受光素子アレイは、1つの化合物半導体の積層体に複数のプレーナ型受光素子が形成されたものであり、受光素子のn型部がその受光素子ごとに各別に形成され、CMOS回路の画素の信号入力部に、受光素子のn型部が電気的に接続されていることを特徴とする。
上記の構成によれば、各受光素子の間に溝を有するメサ型構造をとることはなく、また各受光素子の入射面積も制限されず十分大きくとることができるので、暗電流を小さく、また受光感度を高くすることができる。その上で、信号電荷にn導電型の電子を用いる通常のCMOS型撮像装置の回路系をそのまま用いることができ、新たな反転回路等を用いる必要がない。このため近赤外域の検出装置用に特別の回路を用いる必要がないので、開発コストを抑えることができる。また、特別の反転回路などを受光素子の中に組み込む必要がないので、検出装置の小型化を実現することができる。
上記の受光素子に光電変換で生成する電子を、当該受光素子または光電子蓄積用容量に蓄積するために用いる、負電圧生成回路を前記CMOS回路に備えることができる。これによって、光電変換で生成した電子を蓄積することが容易になる。
上記の受光素子は、InP系化合物半導体の積層体に形成された共通のp型層、受光層および窓層に設けられ、近赤外域に受光感度を有するpin型受光素子であって、窓層がn型化されてpn接合が形成され、該n型化された窓層の部分がCMOS回路に電気的に接続される構成とすることができる。この構成によれば、各受光素子において光から変換された電子の信号電荷を、CMOS回路の画素対応部にインプットして検出することができる。
上記の化合物半導体の積層体の端部におけるp型層の端部から、複数の受光素子に共通のp部電極を、CMOS回路に電気的に接続することができる。これにより、各受光素子に共通の接地電位をp部電位として、受光素子アレイの配列等にほとんど影響を与えることなく、CMOS回路に用いることができる。
上記の受光層を、InGaAsまたはGa1−xInAs1−y−z−wSb(0.4≦x≦0.8、0.0001≦y≦0.12、0≦z≦0.1、0≦w≦0.01)とすることができる。これによって、近赤外域に受光感度を有する検出装置を得ることができる。受光層にInGaAsを用いた場合は、波長1.7μmにまで感度を有し、また受光層にGa1−xInAs1−y−z−wSbを用いた場合は、波長2.5μm〜3μmの長波長まで感度を有するようにできる。
上記のp型層を、InPまたはInGaAsとすることができる。これによって、受光層、窓層等の結晶性を向上させ、暗電流が小さく、ノイズレベルの低い近赤外域の検出装置を得ることができる。
本発明の検出装置によれば、受光感度や暗電流を犠牲にすることなく、汎用のCMOS回路をそのまま使用することができる。
図1は本発明の実施の形態における撮像装置の一部を示す図である。レンズなどの光学部品は省略してある。図2は、上記の撮像装置を光入射側から見た平面図である。図1は、図2におけるI−I線に沿う断面図である。図1において、この撮像装置70は、共通のInP基板51の上に形成された受光素子10がエピタキシャル層側をマルチプレクサ71に向けて、エピダウン実装されている。マルチプレクサ71は、受光素子10ごとに信号電流を受け、電圧変換・増幅をしながら、受光素子ごとの信号を順次出力したり、一時記憶しておいて後でその一つを選択して出力したりする装置である。CMOS回路によって、受光素子ごとに信号電流を受け、電圧変換・増幅する動作が構成されるので、本説明では、マルチプレクサおよびCMOS回路の語を、同じ対象をさすように用いる。各受光素子10のエピタキシャル層のn型領域16と電気的に接続されるn部電極11と、共通のInP基板51(1)に直接に位置するp型層2に設けられるp部電極12とは、ともにマルチプレクサ71に、はんだバンプなどの接合バンプ29により接続される。n部電極11にはAuGeNiを用い、またp部電極12にはAuZnを用い、それぞれオーミック接触を確保するように形成する。上記のAuZn系金属の他にTiPt系金属を用いてもよい。
InGaAsまたはGa1−xInAs1−y−z−wSb(0.4≦x≦0.8、0.0001≦y≦0.12、0≦z≦0.1、0≦w≦0.01)により形成される受光層3において発生した正孔−電子対のうち、電子はn型領域16およびn部電極11から、信号電荷としてマルチプレクサ71に送られる。マルチプレクサ71では各受光素子10における電子を各画素接続部が受けて、パルス駆動の走査によって全画素についての処理を行う。入射光は、InP基板51の裏面に形成したAR(Anti-Reflection)膜13を通して導入され、n型領域16と受光層3との界面であるpn接合から張り出す空乏層で受光される。空乏層を形成するための逆バイアス電圧は、上記のn部電極11とp部電極12との間に印加される。空乏層は容量として作用し、マルチプレクサ71の電荷蓄積期間中、光電変換された電荷を蓄積する。
n型領域16を形成するためのn型不純物は、不純物拡散マスク5の開口部から導入される。不純物拡散マスクパターン5は、その上に形成された保護膜のポリイミド膜パターン23とともにそのまま残される。受光素子であるフォトダイオード10を1つずつ含む画素またはセンサ単位は、図2に示すように、縦横25μmピッチで、横20mm、縦16mmにわたって設けられ、合計640×512=327,680個が配列される。受光素子アレイおよび各受光素子の構造については、図3を用いて、次に詳しく説明する。
図3において、受光素子アレイ50の受光素子10は、共通のInP基板51(1)に設けられている。各受光素子で近赤外光を受光することにより生じた正孔−電子対のうち電子(電荷蓄積期間中、フォトダイオード10に蓄積されている)が、上述のようにマルチプレクサ71の画素接続部に送られ、電圧変換・増幅を経て画像形成等の処理がなされる。各受光素子のサイズやピッチ、アレイの大きさを変えながら、画素数を変化させる。図3に示す受光素子10は、InP基板1の上に形成された、各受光素子に共通の複数のエピタキシャル膜を有し、また、n型領域16を形成する際に用いた、n型不純物導入用の拡散マスク5を残している。p部電極12は、図1に示すように、各受光素子10には殆ど影響しないように、InP基板の端の部分のp型層(各受光素子に共通のエピタキシャル層)に配置されており、受光素子10に共通の接地電位を与える。
次に、受光素子アレイ50の製造方法について、図1を用いて説明する。まずInP基板51(1)にOMVPE(Organo Metallic Vapor Phase Epitaxy)によりエピタキシャル積層構造を形成する。第1層目は、p型層(p層)としてZnドープInP層2を形成する。Zn濃度は1×1018個/cm程度とする。次いで、Zn濃度の低目のGaInNAs受光層3をエピタキシャル成長する。GaInNAs受光層3のZn濃度は1×1015個/cm程度とする。さらにGaInNAs受光層3の上に、Zn濃度1×1015個/cm程度のp層のInP層4をエピタキシャル成長する。
フォトルミネッセンス(PL)測定により、GaInNAs受光層3のPL光の波長は2.0μm程度とする。また同じくGaInNAs受光層3のSIMS(Secondary Ion Mass Spectroscopy)分析によるN濃度は、V族原子内で1.5at%(GaIn1−xAs1−yの表示で、y=0.015)とするのがよい。またX線回折パターンから計算されるInP基板1とGaInNAs受光層3の格子定数の差Δaは、InP基板1またはGaInNAs受光層3の格子定数aに対して、(Δa/a)=0.001程度とするのがよい。
n型領域16の形成は、不純物拡散マスクパターン5を用いて、開口部からSnを選択拡散することで行った。n型領域16の形成において、Snの導入は選択拡散法でもよいし、イオン注入法によってもよい。また、n型不純物として、Snの他に、S、Si等を用いてもよい。
図4は、受光素子のフォトダイオード10とCMOSとを組み合わせた撮像装置70の回路を示す図である。この撮像装置70では、フォトダイオード10からCMOSへの信号電荷は、電子を用いることを前提としている。すなわち、図4の回路は、電子を信号電荷として用いることを前提に構成されている。
この撮像装置70は、各画素または単位センサを駆動する垂直走査回路および水平走査回路と、単位センサの一行分の画素の信号を受ける信号保持回路と、出力アンプ等とを備えている。各画素にフォトダイオード10が配置されており、便宜上、画素を2個×2個のみ描いているが、実際には行列状に多数配列されている。各画素は、光電変換を行うフォトダイオード10と、フォトダイオード10の信号電荷(電子)を、図示しない検出部に転送する転送トランジスタQと、検出部の電位を垂直信号線に出力する増幅トランジスタQと、画素の行を選択するアドレストランジスタQと、検出部の電位をリセットするリセットトランジスタQなどで構成される。
フォトダイオード10は、そのn型領域16/n部電極(カソード)11が転送トランジスタQの一方の主電極に接続され、そのp部電極(アノード)12が接地される。転送トランジスタQの他方の主電極は、増幅トランジスタQのゲート電極に接続されるとともに、リセットトランジスタQの一方の主電極に接続される。転送トランジスタQと増幅トランジスタQとにより、信号電荷の電圧変換・増幅が行われる。転送トランジスタQのゲート電極は垂直走査回路からの垂直読出し線に接続される。増幅トランジスタQは、その一方の主電極が電源電圧に接続され、他方の主電極がアドレストランジスタQを介して垂直信号線に接続される。アドレストランジスタQのゲート電極は垂直走査回路からの垂直選択線に接続される。リセットトランジスタQは、その他方の主電極が電源電圧に接続され、そのゲート電極が垂直走査回路からのリセット線に接続される。
次に、上記の検出装置70の動作原理について概要を説明する。受光素子10における電子を用いる場合、各画素の信号読出しをするタイミング以外は、各受光素子10では光電変換を進行させ、その結果、生じた電子を蓄積しておく必要がある。このため、電子を信号電荷に用いる汎用のCMOS回路には、図4に示すように、負電圧生成回路が設けられる。各画素において、非選択時(電荷蓄積期間中)には、負荷MOSトランジスタQLのゲートに印加される動作パルス、垂直読出し線に供給される読出しパルス、垂直信号線に供給される選択パルス、リセット線に供給されるリセットパルスは、どれも低レベルである。これによって、転送トランジスタQ、アドレストランジスタQ、リセットトランジスタQが、すべてオフ状態となり、受光素子10に信号電荷の光電子が蓄積される。このとき上記の垂直読出し線に供給される読出しパルスのみは、上述の負電圧生成回路の出力を受けて負電圧となり、その結果、受光素子10のn部電極11が接続される転送トランジスタQのゲート電極に負電圧が印加され、受光素子10において光電子の蓄積が行われる状態となる。
着目している画素の非選択状態(電荷蓄積期間)においては、パルス走査により他の画素の選択状態が順次、実現されてゆく。着目している画素に対して、上記の動作パルス等を高レベルにして選択状態にすると、各受光素子10に蓄積されていた光電子が、暗電子とともに転送トランジスタQにより検出部に転送され、その画素における状態の検出処理が行われる。この後、上記の動作パルス等を低レベルにして、非選択状態として受光素子10における光電子の蓄積期間に移行する。
図5は、フォトダイオード10を含む画素の構成図である。基本的には、上記の構成と同じである。フォトダイオード10の方向は、汎用のCMOS回路と同じであり、基準電圧や、電圧の印加は変更することなく用いることができる。このため、再設計や試作を改めて行う必要がない。これに対して、従来の近赤外光のフォトダイオードを用いた撮像装置では、フォトダイオードの信号電荷に正孔を用いるため、基準電圧や電圧の印加を変更する必要がある。従来のフォトダイオードのエピタキシャル積層構造は、(InP基板/n型層/InGaAs受光層/窓層)となる。そして、不純物拡散マスクパターンの開口部を通して、窓層を経由してInGaAs受光層に届くようにp型不純物であるZnを拡散導入して、p型領域を形成する。p型領域にはp部電極がAuZnにより、またn型層にはn部電極がAuGeNiにより、それぞれオーミック接触するように形成されている。上記従来の撮像装置は、これまでの作製手段に変更を加えることなく製造することができるが、汎用のCMOS回路はそのままでは使用することができず、CMOS回路の入力における基準電圧等の回路変更を行う必要がある。たとえば光電子を蓄積するために用いた負電圧生成回路は、正電圧生成回路に変更して転送トランジスタのゲートには正電圧を印加する必要がある。
上記の検出装置では、光電子をフォトダイオードに蓄積する場合のみを説明したが、光電子をフォトダイオードではなくマルチプレクサ内の画素ごとの容量(コンデンサ)に蓄積してもよい。フォトダイオードに光電子を蓄積しないことで、フォトダイオードに印加する逆バイアス電圧を低くすることができる。またフォトダイオードへの電荷蓄積に伴う暗電流の増大を防止することができる。
上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
本発明によれば、暗電流を小さく、受光感度を確保しながら、近赤外域に受光感度を持つ受光素子アレイを用いた検出装置を得ることができる。
本発明の実施の形態における検出装置を示す部分断面図である。 図1の検出装置の平面図である。 図1の検出装置における受光素子アレイを示す平面図である。 図1の検出装置において、画素ごとに受光素子を配置した回路図である。 図4の画素におけるトランジスタの配置を示す図である。
符号の説明
1 InP基板、2 p型層、3 受光層、4 窓層、5 不純物拡散マスクパターン、10 受光素子(フォトダイオード)、11 n部電極、12 p部電極、13 AR( Anti-Reflection )膜、16 n型領域、23 保護膜、29 接合バンプ(はんだバンプ)、51 InP基板、70 検出装置、71 CMOS回路、Q 増幅トランジスタ、Q 転送トランジスタ、Q リセットトランジスタ、Q アドレストランジスタ。

Claims (6)

  1. 化合物半導体の受光素子が配列した受光素子アレイと、CMOS回路とを組み合わせた近赤外光の検出装置であって、
    前記受光素子アレイは、1つの化合物半導体の積層体に複数のプレーナ型受光素子が形成されたものであり、前記受光素子のn型部がその受光素子ごとに各別に形成され、
    前記CMOS回路の信号入力部に、前記受光素子のn型部が電気的に接続されていることを特徴とする、検出装置。
  2. 前記受光素子に光電変換で生成する電子を、当該受光素子または光電子蓄積用容量に蓄積するために用いる、負電圧生成回路を前記CMOS回路に備えることを特徴とする、請求項1に記載の検出装置。
  3. 前記受光素子は、InP系化合物半導体の積層体に形成された共通のp型層、受光層および窓層に設けられ、近赤外域に受光感度を有するpin型受光素子であり、前記窓層がn型化されてpn接合が形成され、該n型化された窓層の部分が前記CMOS回路に電気的に接続されていることを特徴とする、請求項1または2に記載の検出装置。
  4. 前記化合物半導体の積層体の端部における前記p型層の端部から、前記複数の受光素子に共通のp部電極が、前記CMOS回路に電気的に接続されていることを特徴とする、請求項3に記載の検出装置。
  5. 前記受光層が、InGaAsまたはGa1−xInAs1−y−z−wSb(0.4≦x≦0.8、0.0001≦y≦0.12、0≦z≦0.1、0≦w≦0.01)であることを特徴とする、請求項3または4に記載の検出装置。
  6. 前記p型層が、InPまたはInGaAsであることを特徴とする、請求項3〜5のいずれかに記載の検出装置。
JP2007190255A 2007-07-21 2007-07-21 検出装置 Pending JP2009027047A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190255A JP2009027047A (ja) 2007-07-21 2007-07-21 検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190255A JP2009027047A (ja) 2007-07-21 2007-07-21 検出装置

Publications (1)

Publication Number Publication Date
JP2009027047A true JP2009027047A (ja) 2009-02-05

Family

ID=40398554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190255A Pending JP2009027047A (ja) 2007-07-21 2007-07-21 検出装置

Country Status (1)

Country Link
JP (1) JP2009027047A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192838A (ja) * 2010-03-15 2011-09-29 Sumitomo Electric Ind Ltd 受光素子、受光素子アレイ、ハイブリッド型検出装置、光学センサ装置、および受光素子アレイの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192838A (ja) * 2010-03-15 2011-09-29 Sumitomo Electric Ind Ltd 受光素子、受光素子アレイ、ハイブリッド型検出装置、光学センサ装置、および受光素子アレイの製造方法

Similar Documents

Publication Publication Date Title
US9541450B2 (en) Radiation detector having a bandgap engineered absorber
US9024359B2 (en) Sub-pixel nBn detector
US7608830B1 (en) Separate absorption and detection diode for two-color operation
US7755079B2 (en) Strained-layer superlattice focal plane array having a planar structure
US7498650B2 (en) Backside illuminated CMOS image sensor with pinned photodiode
Delaunay et al. Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs–GaSb superlattices
US10854656B2 (en) Short-wave infrared detector array and method for the manufacturing thereof
US20100327387A1 (en) Avalanche Photodiode
US20080136933A1 (en) Apparatus for controlling operation of a multiple photosensor pixel image sensor
US8691614B2 (en) Direct readout focal plane array
Pejović et al. Thin-film photodetector optimization for high-performance short-wavelength infrared imaging
Rouvié et al. InGaAs focal plane array developments at III-V Lab
Reine et al. Simultaneous MW/LW Dual-Band MOVPE HgCdTe 64x64 FPAs
EP2474034B1 (en) Low energy portable low-light camera with wavelength cutoff
US10115764B2 (en) Multi-band position sensitive imaging arrays
Rafol et al. Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array
US20210341619A1 (en) High Dynamic Range Single Photon Avalanche Detector Array on Silicon with Circuitry for Light Detection and Ranging
US9685477B2 (en) Two-terminal multi-mode detector
US9728577B2 (en) Infrared image sensor
JP2009027047A (ja) 検出装置
Sood et al. Development of SiGe arrays for visible-near IR applications
JP2009283603A (ja) 検出装置、受光素子アレイおよびその製造方法
Ni et al. Toward a single-chip TECless/NUCless InGaAs SWIR camera with 120-dB intrinsic operation dynamic range
US20190355776A1 (en) Imaging device and imaging system
Martin et al. 320x240 pixel InGaAs/InP focal plane array for short-wave infrared and visible light imaging

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091222