JP2009025317A - Rotation angle detecting device - Google Patents

Rotation angle detecting device Download PDF

Info

Publication number
JP2009025317A
JP2009025317A JP2008283246A JP2008283246A JP2009025317A JP 2009025317 A JP2009025317 A JP 2009025317A JP 2008283246 A JP2008283246 A JP 2008283246A JP 2008283246 A JP2008283246 A JP 2008283246A JP 2009025317 A JP2009025317 A JP 2009025317A
Authority
JP
Japan
Prior art keywords
magnetic flux
magnet
magnetic
rotation angle
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008283246A
Other languages
Japanese (ja)
Other versions
JP4321665B2 (en
Inventor
Akitoshi Mizutani
彰利 水谷
Takahisa Ban
隆央 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008283246A priority Critical patent/JP4321665B2/en
Publication of JP2009025317A publication Critical patent/JP2009025317A/en
Application granted granted Critical
Publication of JP4321665B2 publication Critical patent/JP4321665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of errors in detecting rotation angles, even when the set position of a magnetic detection element is misaligned in the x-axis direction, by eliminating the decrease or increase of the magnetic flux density passing through the magnetic detection element due to the misalignment. <P>SOLUTION: A flux projecting magnet 6 and a flux receiving magnet 7 are made up so that the thickness along the arc direction, when viewed from z-axis direction, is thick at the center of the arc B1 and thin at the ends of the arc B2. Therefore, the distances from the inner peripheral surfaces of the flux projecting magnet 6 and flux receiving magnet 7 to a Hall element 2 become gradually larger toward the ends B2. Even when the Hall element 2 is misaligned in the x-axis direction due to assembling errors, changes in the magnetic flux density passing through the Hall element 2 due to the misalignment can be lost by the flux projecting magnet 6 and the flux receiving magnet 7 which are made thinner in the misaligned direction, and the errors in detecting the rotation angles can be prevented. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2つの部材(例えば、回転部材と非回転部材)の相対回転角度を検出する回転角度検出装置に関する。   The present invention relates to a rotation angle detection device that detects a relative rotation angle between two members (for example, a rotation member and a non-rotation member).

(従来の技術)
従来の回転角度検出装置の概略構造を図20(a)、(b)を参照して説明する。
回転角度検出装置は、回転軸(以下、Z軸と称す)上に配置された磁気検出素子J1 (例えば、ホールICに内蔵されるホール素子)と、この磁気検出素子J1 に向けて磁束を与える半円筒形状の磁束付与磁石J2 と、この磁束付与磁石J2 から磁気検出素子J1 に向けて与えられた磁束を吸引する半円筒形状の磁束吸引磁石J3 とを具備する。
磁束付与磁石J2 と磁束吸引磁石J3 は、円筒形状を呈したヨークJ4 の内周面に固定されたものであり、Z軸に垂直な方向の厚さ、即ち磁束付与磁石J2 と磁束吸引磁石J3 の厚みは一定であった。
一方、磁気検出素子J1 は、磁束付与磁石J2 と磁束吸引磁石J3 に囲まれた状態で支持される。
(Conventional technology)
A schematic structure of a conventional rotation angle detection device will be described with reference to FIGS.
The rotation angle detection device provides a magnetic detection element J1 (for example, a Hall element incorporated in the Hall IC) disposed on a rotation axis (hereinafter referred to as the Z-axis) and applies a magnetic flux toward the magnetic detection element J1. A semi-cylindrical magnetic flux applying magnet J2 and a semi-cylindrical magnetic flux attracting magnet J3 for attracting a magnetic flux applied from the magnetic flux applying magnet J2 toward the magnetic detecting element J1 are provided.
The magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3 are fixed to the inner peripheral surface of the yoke J4 having a cylindrical shape, and the thickness in the direction perpendicular to the Z axis, that is, the magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3. The thickness of was constant.
On the other hand, the magnetic detection element J1 is supported in a state surrounded by the magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3.

磁束発生手段(磁束付与磁石J2 および磁束吸引磁石J3 )と、磁気検出素子J1 との相対回転角度が変化すると、磁気検出素子J1 の磁気検出面と直交する方向の磁束密度が変化する。
具体的には、図21(a)に示す相対回転角度(この回転角度を0°とする)から、図21(b)に示す相対回転角度(この回転角度を90°とする)へ磁束発生手段を回転させることにより、磁気検出素子J1 の磁気検出面と直交する方向の磁束密度は図22に示されるように変化する。
磁気検出素子J1 は、磁気検出面と直交する方向の磁束密度に応じた出力信号を発生するため、回転角度検出装置は、磁気検出素子J1 の出力信号に基づいて、磁束発生手段側の部材と、磁気検出素子J1 側の部材との相対回転角度を検出することができる(例えば、特許文献1〜4参照)。
When the relative rotation angle between the magnetic flux generating means (the magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3) and the magnetic detection element J1 changes, the magnetic flux density in the direction perpendicular to the magnetic detection surface of the magnetic detection element J1 changes.
Specifically, the magnetic flux is generated from the relative rotation angle shown in FIG. 21A (this rotation angle is 0 °) to the relative rotation angle shown in FIG. 21B (this rotation angle is 90 °). By rotating the means, the magnetic flux density in the direction orthogonal to the magnetic detection surface of the magnetic detection element J1 changes as shown in FIG.
Since the magnetic detection element J1 generates an output signal corresponding to the magnetic flux density in the direction orthogonal to the magnetic detection surface, the rotation angle detection device is connected to the magnetic flux generation means side member based on the output signal of the magnetic detection element J1. The relative rotation angle with the member on the magnetic detection element J1 side can be detected (see, for example, Patent Documents 1 to 4).

(従来の技術の不具合)
上記構成を採用する従来の回転角度検出装置は、次の問題を有していた。
(1)例えば、図21(b)に示す回転角度90°の状態で、磁気検出素子J1 の設置位置が、磁気検出素子J1 の磁気不感方向(以下、X軸方向)にずれた場合、磁束付与磁石J2 および磁束吸引磁石J3 と、磁気検出素子J1 との距離が接近する。すると、図23の破線に示す理想の磁束密度(磁気検出素子J1 の設置位置がX軸方向へずれても変化のない磁束密度)に対し、図23の実線A’に示されるように、磁気検出素子J1 を通過する磁束密度が増加する。
このように、組付け時の誤差等によって、磁気検出素子J1 の設定位置がX軸方向にずれると、磁気検出素子J1 を通過する磁束密度が増加して、磁気検出素子J1 から所定以上の出力が発生し、回転角度の検出誤差が発生する。
(Trouble of conventional technology)
The conventional rotation angle detection device that employs the above configuration has the following problems.
(1) For example, when the installation position of the magnetic detection element J1 is shifted in the magnetic insensitive direction (hereinafter referred to as the X-axis direction) of the magnetic detection element J1 with the rotation angle of 90 ° shown in FIG. The distances between the applying magnet J2 and the magnetic flux attracting magnet J3 and the magnetic detection element J1 approach each other. Then, with respect to the ideal magnetic flux density shown in the broken line in FIG. 23 (the magnetic flux density that does not change even if the installation position of the magnetic detection element J1 is shifted in the X-axis direction), as shown by the solid line A ′ in FIG. The magnetic flux density passing through the detection element J1 increases.
As described above, when the set position of the magnetic detection element J1 is shifted in the X-axis direction due to an error during assembly or the like, the magnetic flux density passing through the magnetic detection element J1 increases, and an output exceeding a predetermined value is output from the magnetic detection element J1. Occurs, and a rotation angle detection error occurs.

(2)上記では、磁束付与磁石J2 および磁束吸引磁石J3 を、それぞれ1つの磁石で構成する例を示した。これに対して、図24に示すように、磁束付与磁石J2 と磁束吸引磁石J3 のそれぞれを2つの平板磁石で構成して、Z軸方向から見て回転方向に略円弧状に配置した場合について説明する。
この場合、図24に示す回転角度90°の状態で、磁気検出素子J1 の設置位置が、磁気検出素子J1 のX軸方向にずれた場合、磁束付与磁石J2 および磁束吸引磁石J3 と、磁気検出素子J1 との距離が接近する。すると、上記(1)と同様、図23の破線に示す理想の磁束密度に対し、図23の実線A’に示されるように、磁気検出素子J1 を通過する磁束密度が増加する。
このように、組付け時の誤差等によって、磁気検出素子J1 の設定位置がX軸方向にずれると、磁気検出素子J1 を通過する磁束密度が増加して、磁気検出素子J1 から所定以上の出力が発生し、回転角度の検出誤差が発生する。
(2) In the above, the example in which the magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3 are each constituted by one magnet has been shown. On the other hand, as shown in FIG. 24, each of the magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3 is composed of two flat magnets and arranged in a substantially arc shape in the rotational direction when viewed from the Z-axis direction. explain.
In this case, when the installation position of the magnetic detection element J1 is shifted in the X-axis direction of the magnetic detection element J1 with the rotation angle of 90 ° shown in FIG. 24, the magnetic flux application magnet J2 and the magnetic flux attracting magnet J3 The distance to element J1 approaches. Then, as in (1) above, the magnetic flux density passing through the magnetic detecting element J1 increases as shown by the solid line A ′ in FIG. 23 with respect to the ideal magnetic flux density shown in the broken line in FIG.
As described above, when the set position of the magnetic detection element J1 is shifted in the X-axis direction due to an error during assembly or the like, the magnetic flux density passing through the magnetic detection element J1 increases, and an output exceeding a predetermined value is output from the magnetic detection element J1. Occurs, and a rotation angle detection error occurs.

(3)さらに、図25に示すように、磁束付与磁石J2 と磁束吸引磁石J3 のそれぞれを1つの平板磁石で構成して、Z軸方向から見て平行に配置する場合について説明する。 磁束付与磁石J2 と磁束吸引磁石J3 は、X軸方向の両端側で漏れ磁束が大きくなる。このため、図25(a)に示す回転角度90°の状態で、磁気検出素子J1 の設置位置が、X軸方向にずれると、磁気検出素子J1 の位置が漏れ磁束の大きい側へ移動する。即ち、図26の破線に示す理想の磁束密度(磁気検出素子J1 の設置位置がX軸方向へずれても変化のない磁束密度)に対し、図26の実線B’に示されるように、磁気検出素子J1 の設置位置が中央からX軸方向へずれることによって磁気検出素子J1 を通過する磁束密度が低下する。
このように、組付け時の誤差等によって、磁気検出素子J1 の設定位置がX軸方向にずれると、磁気検出素子J1 を通過する磁束密度が低下して、磁気検出素子J1 から所定の出力が得られなくなり、回転角度の検出誤差が発生する。
(3) Further, as shown in FIG. 25, a case will be described in which each of the magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3 is constituted by one flat magnet and arranged in parallel when viewed from the Z-axis direction. The magnetic flux applying magnet J2 and the magnetic flux attracting magnet J3 have a large leakage flux at both ends in the X-axis direction. For this reason, if the installation position of the magnetic detection element J1 shifts in the X-axis direction in the state of the rotation angle of 90 ° shown in FIG. 25A, the position of the magnetic detection element J1 moves to the side where the leakage magnetic flux is large. That is, for the ideal magnetic flux density indicated by the broken line in FIG. 26 (the magnetic flux density that does not change even if the installation position of the magnetic detection element J1 is shifted in the X-axis direction), as shown by the solid line B ′ in FIG. The density of the magnetic flux passing through the magnetic detection element J1 decreases as the installation position of the detection element J1 deviates from the center in the X-axis direction.
As described above, when the set position of the magnetic detection element J1 is shifted in the X-axis direction due to an error during assembly, the magnetic flux density passing through the magnetic detection element J1 is reduced, and a predetermined output is output from the magnetic detection element J1. As a result, the rotation angle detection error occurs.

(4)磁束付与磁石J2 と磁束吸引磁石J3 は、Z軸方向の両端側で漏れ磁束が大きくなる。このため、例えば、図20(b)に示す状態で、磁気検出素子J1 の設置位置が、Z軸方向にずれると、磁気検出素子J1 の位置が漏れ磁束の大きい側へ移動する。即ち、図27の破線に示す理想の磁束密度(磁気検出素子J1 の設置位置がZ軸方向へずれても変化のない磁束密度)に対し、図27の実線C’に示されるように、磁気検出素子J1 の設置位置が中央からZ軸方向へずれることによって磁気検出素子J1 を通過する磁束密度が低下する。
このように、組付け時の誤差等によって、磁気検出素子J1 の設定位置がZ軸方向にずれると、磁気検出素子J1 を通過する磁束密度が低下して、磁気検出素子J1 から所定の出力が得られなくなり、回転角度の検出誤差が発生する。
特許第3206204号公報 特開平2−122205号公報 特開平2−298815号公報 特開昭64−37607号公報
(4) The magnetic flux application magnet J2 and the magnetic flux attracting magnet J3 have a large leakage flux at both ends in the Z-axis direction. For this reason, for example, in the state shown in FIG. 20B, if the installation position of the magnetic detection element J1 is shifted in the Z-axis direction, the position of the magnetic detection element J1 moves to the side where the leakage magnetic flux is large. That is, for the ideal magnetic flux density indicated by the broken line in FIG. 27 (the magnetic flux density that does not change even if the installation position of the magnetic detection element J1 is shifted in the Z-axis direction), as shown by the solid line C ′ in FIG. When the installation position of the detection element J1 is shifted from the center in the Z-axis direction, the magnetic flux density passing through the magnetic detection element J1 is lowered.
As described above, when the set position of the magnetic detection element J1 is shifted in the Z-axis direction due to an error during assembly, the magnetic flux density passing through the magnetic detection element J1 is reduced, and a predetermined output is output from the magnetic detection element J1. As a result, the rotation angle detection error occurs.
Japanese Patent No. 3206204 JP-A-2-122205 JP-A-2-298815 JP-A 64-37607

本発明は上記の事情に鑑みてなされたものであり、次の目的を有する。
その目的(第1の目的)は、X軸方向に磁気検出素子の設置位置がずれた場合であっても、そのずれによる磁気検出素子を通過する磁束密度の増加または低下をなくし、回転角度の検出誤差の発生を防ぐ。
他の目的(第2の目的)として、さらにZ軸方向に磁気検出素子の設置位置がずれても、回転角度の検出誤差の発生を防ぐ。即ち、Z軸方向に磁気検出素子の設置位置がずれたり、X軸方向に磁気検出素子の設置位置がずれた場合であっても、回転角度の検出誤差の発生を防ぐ。
The present invention has been made in view of the above circumstances, and has the following objects.
The purpose (first object) is to eliminate the increase or decrease of the magnetic flux density passing through the magnetic detection element due to the deviation even when the installation position of the magnetic detection element is shifted in the X-axis direction. Prevents detection errors.
As another object (second object), even if the installation position of the magnetic detection element is further shifted in the Z-axis direction, the occurrence of a rotation angle detection error is prevented. That is, even if the installation position of the magnetic detection element is shifted in the Z-axis direction or the installation position of the magnetic detection element is shifted in the X-axis direction, the occurrence of a rotation angle detection error is prevented.

〔請求項1の手段〕
請求項1の手段を採用する回転角度検出装置は、磁束付与磁石と磁束吸引磁石が、Z軸方向から見て回転方向に沿う円弧状を呈する場合、磁束付与磁石および磁束吸引磁石の少なくとも一方のZ軸方向から見た厚みを、中央が厚く、端側が薄く設けるものである。
このように設けられることにより、磁気検出素子の設置位置がX軸方向にずれた場合、端側が薄く設けられた磁石(磁束付与磁石および磁束吸引磁石の少なくとも一方)によって、ずれによる磁気検出素子を通過する磁束密度の増加をなくすことができ、結果的に回転角度の検出誤差の発生を防ぐことができる。
即ち、上記第1の目的を達成することができる。
[Means of Claim 1]
In the rotation angle detection apparatus employing the means of claim 1, when the magnetic flux applying magnet and the magnetic flux attracting magnet have an arc shape along the rotational direction when viewed from the Z-axis direction, at least one of the magnetic flux applying magnet and the magnetic flux attracting magnet. The thickness seen from the Z-axis direction is such that the center is thick and the end side is thin.
By providing in this way, when the installation position of the magnetic detection element is shifted in the X-axis direction, a magnet (at least one of a magnetic flux applying magnet and a magnetic flux attracting magnet) having a thin end side is used to shift the magnetic detection element due to the shift. It is possible to eliminate an increase in the density of magnetic flux passing therethrough, and as a result, it is possible to prevent occurrence of a rotation angle detection error.
That is, the first object can be achieved.

〔請求項2の手段〕
請求項2の手段を採用する回転角度検出装置は、磁束付与磁石と磁束吸引磁石が、Z軸方向から見て平行に配置される場合、磁束付与磁石および磁束吸引磁石の少なくとも一方のZ軸方向から見た厚みを、中央が薄く、端側が厚く設けるものである。
このように設けられることにより、磁気検出素子の設置位置がX軸方向にずれた場合、ずれた方向に厚くなった磁石(磁束付与磁石および磁束吸引磁石の少なくとも一方)によって、ずれによる磁気検出素子を通過する磁束密度の低下をなくすことができ、結果的に回転角度の検出誤差の発生を防ぐことができる。
即ち、上記第1の目的を達成することができる。
[Means of claim 2]
In the rotation angle detection device employing the means of claim 2, when the magnetic flux applying magnet and the magnetic flux attracting magnet are arranged in parallel when viewed from the Z axis direction, at least one of the magnetic flux applying magnet and the magnetic flux attracting magnet is in the Z axis direction. From the viewpoint of thickness, the center is thin and the end side is thick.
By providing in this way, when the installation position of the magnetic detection element is shifted in the X-axis direction, the magnetism detection element due to the shift is caused by a magnet (at least one of a magnetic flux applying magnet and a magnetic flux attracting magnet) that is thick in the shifted direction. As a result, it is possible to prevent a decrease in the rotational angle detection error.
That is, the first object can be achieved.

〔請求項3の手段〕
請求項3の手段を採用する回転角度検出装置は、磁束付与磁石と磁束吸引磁石が、Z軸と平行に配置され、且つZ軸方向から見て平行に配置される場合、磁束付与磁石および磁束吸引磁石の少なくとも一方のZ軸方向に沿う厚みを、磁気検出素子の設定位置の周囲が薄く、磁気検出素子の設定位置より離れる側が厚く設けるとともに、磁束付与磁石および磁束吸引磁石の少なくとも一方のZ軸方向から見た厚みを、中央が薄く、端側が厚く設けるものである。
[Means of claim 3]
The rotation angle detecting device adopting the means of claim 3 is provided in the case where the magnetic flux applying magnet and the magnetic flux attracting magnet are arranged in parallel with the Z axis and in parallel when viewed from the Z axis direction. The thickness along the Z-axis direction of at least one of the attraction magnets is provided so that the periphery of the setting position of the magnetic detection element is thin and the side away from the setting position of the magnetic detection element is thick, and at least one Z of the magnetic flux applying magnet and the magnetic flux attraction magnet The thickness viewed from the axial direction is such that the center is thin and the end side is thick.

このように設けられることにより、磁気検出素子の設置位置がZ軸方向にずれた場合、ずれた方向に厚くなった磁石(磁束付与磁石および磁束吸引磁石の少なくとも一方)によって、ずれによる磁気検出素子を通過する磁束密度の低下をなくすことができ、結果的に回転角度の検出誤差の発生を防ぐことができる。
また、磁気検出素子の設置位置がX軸方向にずれた場合、ずれた方向に厚くなった磁石(磁束付与磁石および磁束吸引磁石の少なくとも一方)によって、ずれによる磁気検出素子を通過する磁束密度の低下をなくすことができ、結果的に回転角度の検出誤差の発生を防ぐことができる。
即ち、上記第2の目的を達成することができる。
By providing in this way, when the installation position of the magnetic detection element is shifted in the Z-axis direction, the magnetism detection element due to the shift is generated by a magnet (at least one of a magnetic flux applying magnet and a magnetic flux attracting magnet) that is thick in the shifted direction. As a result, it is possible to prevent a decrease in the rotational angle detection error.
Further, when the installation position of the magnetic detection element is shifted in the X-axis direction, the magnetic flux density passing through the magnetic detection element due to the shift is increased by a magnet (at least one of a magnetic flux applying magnet and a magnetic flux attracting magnet) thickened in the shifted direction. The decrease can be eliminated, and as a result, the occurrence of a rotation angle detection error can be prevented.
That is, the second object can be achieved.

〔請求項4の手段〕
請求項4の手段を採用する回転角度検出装置の磁束付与磁石および磁束吸引磁石は、それぞれ半円筒形状を呈する1つの磁石によって構成され、磁束付与磁石と磁束吸引磁石で直径方向に分割された略円筒形状を呈するものである。
[Means of claim 4]
The magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device adopting the means of claim 4 are each constituted by one magnet having a semi-cylindrical shape, and are substantially divided in the diameter direction by the magnetic flux applying magnet and the magnetic flux attracting magnet. It exhibits a cylindrical shape.

〔請求項5の手段〕
請求項5の手段を採用する回転角度検出装置の磁束付与磁石および磁束吸引磁石は、それぞれ複数の磁石がZ軸方向から見て回転方向へ円弧状に並んで配置されることによって構成されるものである。
[Means of claim 5]
The magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detection device adopting the means of claim 5 are each configured by arranging a plurality of magnets arranged in an arc shape in the rotation direction when viewed from the Z-axis direction. It is.

〔請求項6の手段〕
請求項6の手段を採用する回転角度検出装置の磁束付与磁石および磁束吸引磁石は、それぞれ1つの磁石によって構成され、Z軸と平行に配置され、且つZ軸方向から見て平行に配置されるものである。
[Means of claim 6]
The magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device adopting the means of claim 6 are each constituted by one magnet, arranged in parallel with the Z axis, and arranged in parallel when viewed from the Z axis direction. Is.

〔請求項7の手段〕
請求項7の手段を採用する回転角度検出装置は、磁束発生手段のZ軸方向の中央に磁気検出素子が設置される場合、磁束付与磁石および磁束吸引磁石の少なくとも一方のZ軸方向に沿う厚みを、Z軸方向の中央が薄く、Z軸方向の両端側が厚く設けるものである。
[Means of Claim 7]
In the rotation angle detecting device employing the means of claim 7, when the magnetic detection element is installed at the center in the Z-axis direction of the magnetic flux generating means, the thickness along the Z-axis direction of at least one of the magnetic flux applying magnet and the magnetic flux attracting magnet. The center in the Z-axis direction is thin, and both end sides in the Z-axis direction are thick.

〔請求項8の手段〕
請求項8の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石のZ軸方向に沿う厚みの変化は、Z軸方向の中央部分のみに設けられるものである。
[Means of Claim 8]
The change in the thickness along the Z-axis direction of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device adopting the means of claim 8 is provided only in the central portion in the Z-axis direction.

〔請求項9の手段〕
請求項9の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の厚みの変化は、磁気検出素子の設置位置がずれるのに応じて変化する磁気検出素子を通過する磁束密度の変化幅に基づいて設けられるものである。
[Means of Claim 9]
The change in the thickness of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device adopting the means of claim 9 changes according to the change of the magnetic flux density passing through the magnetic detecting element that changes according to the shift of the installation position of the magnetic detecting element. It is provided based on the width.

〔請求項10の手段〕
請求項10の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の厚みの変化は、内面を窪ませて設けられるものである。
[Means of Claim 10]
The change in the thickness of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device employing the means of claim 10 is provided with the inner surface recessed.

〔請求項11の手段〕
請求項11の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の厚みの変化は、外面を窪ませて設けられるものである。
[Means of Claim 11]
The change in the thickness of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device employing the means of claim 11 is provided with the outer surface recessed.

〔請求項12の手段〕
請求項12の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の少なくとも一方は、回転軸方向から見た内面が、多次曲線を有する曲面に設けられるものである。
[Means of Claim 12]
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device adopting the means of claim 12 is such that the inner surface viewed from the direction of the rotation axis is provided on a curved surface having a multi-order curve.

〔請求項13の手段〕
請求項13の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の少なくとも一方は、回転軸方向から見た外面が、多次曲線を有する曲面に設けられるものである。
[Means of Claim 13]
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device employing the means of claim 13 is such that the outer surface viewed from the rotation axis direction is provided on a curved surface having a multi-order curve.

〔請求項14の手段〕
請求項14の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の少なくとも一方は、回転軸方向から見た内面が、多次曲線を有する曲面に設けられるとともに、回転軸方向から見た外面が、多次曲線を有する曲面に設けられるものである。
[Means of Claim 14]
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotational angle detection device employing the means of claim 14 has an inner surface viewed from the rotational axis direction on a curved surface having a multi-order curve, and viewed from the rotational axis direction. The outer surface is provided on a curved surface having a multi-order curve.

〔請求項15の手段〕
請求項15の手段を採用する回転角度検出装置の回転軸方向から見た内面、外面の少なくとも一方の多次曲線は、回転軸方向から見た左右の曲率変化が異なり、左右非対称に設けられるものである。
[Means of Claim 15]
The multi-degree curve of at least one of the inner surface and the outer surface as viewed from the direction of the rotation axis of the rotation angle detecting device employing the means of claim 15 is different in the left and right curvature changes as viewed from the direction of the rotation axis, and is provided left-right asymmetrically. It is.

〔請求項16の手段〕
請求項16の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の少なくとも一方は、回転軸方向に沿う内面が、多次曲線を有する曲面に設けられるものである。
[Means of claim 16]
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device adopting the means of claim 16 has an inner surface along the rotation axis direction provided on a curved surface having a multi-order curve.

〔請求項17の手段〕
請求項17の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の少なくとも一方は、回転軸方向に沿う外面が、多次曲線を有する曲面に設けられるものである。
[Means of Claim 17]
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detecting device adopting the means of claim 17 is such that the outer surface along the rotation axis direction is provided on a curved surface having a multi-order curve.

〔請求項18の手段〕
請求項18の手段を採用する回転角度検出装置の磁束付与磁石、磁束吸引磁石の少なくとも一方は、回転軸方向に沿う内面が、多次曲線を有する曲面に設けられるとともに、回転軸方向に沿う外面が、多次曲線を有する曲面に設けられるものである。
[Means of Claim 18]
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet of the rotation angle detection device employing the means of claim 18 has an inner surface along the rotation axis direction provided on a curved surface having a multi-order curve, and an outer surface along the rotation axis direction. Are provided on a curved surface having a multi-order curve.

〔請求項19の手段〕
請求項19の手段を採用する回転角度検出装置の回転軸方向に沿う内面、外面の少なくとも一方の多次曲線は、回転軸に直交する方向から見た磁気検出素子の設定位置の左右の曲率変化が異なり、回転軸に直交する方向から見た磁気検出素子の設定位置を基準にした左右非対称に設けられるものである。
[Means of Claim 19]
21. A multi-degree curve of at least one of an inner surface and an outer surface along the rotation axis direction of the rotation angle detection device employing the means of claim 19 is a left-right curvature change of a set position of the magnetic detection element viewed from a direction orthogonal to the rotation axis. However, they are provided asymmetrically with reference to the set position of the magnetic detection element viewed from the direction orthogonal to the rotation axis.

本発明の最良の形態を、複数の実施例と変形例を用いて説明する。
なお、実施例1、2は第1発明(請求項1)に対応した実施例であり、実施例3は第2発明(請求項2)に対応した実施例であり、実施例4〜8は第3発明(請求項3)に対応した実施例である。
また、実施例9〜12は、請求項12〜請求項19に対応した実施例である。
The best mode of the present invention will be described using a plurality of embodiments and modifications.
Examples 1 and 2 are examples corresponding to the first invention (Claim 1), Example 3 is an example corresponding to the second invention (Claim 2), and Examples 4 to 8 are This is an embodiment corresponding to the third invention (Claim 3).
Examples 9-12 are examples corresponding to claims 12-19.

図1〜図3を用いて実施例1を説明する。まず、図1を参照して回転角度検出装置の基本構成を説明する。なお、図1(a)は回転角度検出装置をZ軸方向から見た図であり、図1(b)は回転角度検出装置のZ軸方向に沿う断面図である。
この実施例に示す回転角度検出装置は、例えばスロットルバルブの回転角度(開度)を検出するためのものであり、スロットルバルブと図示しない部材を介して一体に回転するロータ1(回転部材)と、ホール素子2(磁気検出素子の一例)を内蔵するホールIC3とを備える。このホールIC3は、図示しない固定部材(非回転部材)によって支持されて、ホール素子2がロータ1のZ軸上に配置される。
A first embodiment will be described with reference to FIGS. First, the basic configuration of the rotation angle detection device will be described with reference to FIG. 1A is a view of the rotation angle detection device viewed from the Z-axis direction, and FIG. 1B is a cross-sectional view of the rotation angle detection device along the Z-axis direction.
The rotation angle detection device shown in this embodiment is for detecting the rotation angle (opening degree) of a throttle valve, for example, and a rotor 1 (rotation member) that rotates integrally with a throttle valve via a member (not shown). And Hall IC 3 incorporating Hall element 2 (an example of a magnetic detection element). The Hall IC 3 is supported by a fixing member (non-rotating member) (not shown), and the Hall element 2 is disposed on the Z axis of the rotor 1.

ロータ1は、ホールIC3の周囲に同芯的に配置されたものであり、円筒形状を呈したヨーク4と、ホールIC3を通過する磁束を発生させる磁束発生手段5とを備える。
この磁束発生手段5は、ホール素子2に磁束を与える磁束付与磁石6と、磁束付与磁石6からホール素子2に向けて与えられた磁束を吸引する磁束吸引磁石7とによって構成される。即ち、磁束付与磁石6の内周面がN極の極性で、磁束吸引磁石7の内周面がS極の極性を持つように配置されている。
The rotor 1 is arranged concentrically around the Hall IC 3 and includes a yoke 4 having a cylindrical shape and magnetic flux generation means 5 that generates a magnetic flux passing through the Hall IC 3.
The magnetic flux generation means 5 includes a magnetic flux applying magnet 6 that applies a magnetic flux to the Hall element 2 and a magnetic flux attracting magnet 7 that attracts the magnetic flux applied from the magnetic flux applying magnet 6 toward the Hall element 2. That is, the inner peripheral surface of the magnetic flux applying magnet 6 is arranged so as to have an N-pole polarity, and the inner peripheral surface of the magnetic flux attracting magnet 7 is arranged so as to have an S-pole polarity.

磁束付与磁石6と磁束吸引磁石7は、ホール素子2の両側に距離を隔てて対向配置される。この実施例の磁束付与磁石6と磁束吸引磁石7は、それぞれ半円筒形状を呈するものであり、磁束付与磁石6と磁束吸引磁石7によって直径方向に分割された略円筒形状を呈する。そして、磁束付与磁石6と磁束吸引磁石7の円弧端が対向する部分には所定のエアギャップが形成される。そして、磁束付与磁石6と磁束吸引磁石7は、ヨーク4内に固定されて、ホール素子2を囲んで配置される。   The magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are arranged opposite to each other with a distance on both sides of the Hall element 2. The magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 of this embodiment each have a semi-cylindrical shape, and have a substantially cylindrical shape divided in the diameter direction by the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7. A predetermined air gap is formed at a portion where the arc ends of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 face each other. The magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are fixed inside the yoke 4 and are disposed so as to surround the Hall element 2.

ロータ1の中心に同芯的に配置されたホールIC3は、ホール素子2と信号処理回路等を一体化した周知のICであり、ホール素子2の磁気検出面に対して直交する方向の磁束密度に応じた電圧信号を出力する。   The Hall IC 3 concentrically disposed at the center of the rotor 1 is a well-known IC in which the Hall element 2 and a signal processing circuit are integrated, and the magnetic flux density in the direction orthogonal to the magnetic detection surface of the Hall element 2 A voltage signal corresponding to is output.

上記構成における回転角度検出装置の作動を、図2を参照して説明する。
なお、以下では、図1に示されるように、ロータ1の回転軸をZ軸とし、このZ軸と直交する方向で、且つホール素子2の磁気不感方向(磁気検出面に沿う方向)をX軸とし、上記Z軸と直交する方向で、且つホール素子2の磁気検出方向(磁気検出面に直交する方向)をY軸として説明する。
ここで、磁束付与磁石6と磁束吸引磁石7との間のエアギャップの中心がY軸方向に向くロータ1の回転角度を0°、磁束付与磁石6と磁束吸引磁石7との間のエアギャップの中心がX軸方向に向くロータ1の回転角度を90°(図1参照)とする。
The operation of the rotation angle detection device having the above configuration will be described with reference to FIG.
In the following, as shown in FIG. 1, the rotation axis of the rotor 1 is the Z axis, and the magnetic insensitive direction (direction along the magnetic detection surface) of the Hall element 2 is defined as X in the direction orthogonal to the Z axis. In the following description, the axis is the direction perpendicular to the Z axis, and the magnetic detection direction of the Hall element 2 (the direction perpendicular to the magnetic detection surface) is the Y axis.
Here, the rotation angle of the rotor 1 in which the center of the air gap between the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 faces in the Y-axis direction is 0 °, and the air gap between the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 The rotation angle of the rotor 1 whose center is oriented in the X-axis direction is 90 ° (see FIG. 1).

回転角度検出装置は、磁束付与磁石6→ホールIC3(ホール素子2)→磁束吸引磁石7という経路で磁束が流れる磁気回路が形成される。そして、スロットルバルブとともにロータ1が回転すると、ホール素子2の磁気検出面と直交する磁束が変化する。
即ち、図1(a)に示すように、磁束付与磁石6と磁束吸引磁石7との間のエアギャップの中心がX軸方向に向く位置(回転角度90°)の時にホール素子2の磁気検出面に直交する磁束密度が最大になり、ロータ1の回転角度が90°より増加しても、逆に90°より減少しても、回転角度に応じてホール素子2の磁気検出面に直交する磁束量が減少する。
そして、磁束付与磁石6と磁束吸引磁石7との間のエアギャップの中心がY軸方向に向く位置(回転角度0°)では、ホール素子2の磁気検出面と直交する磁束が0になる。
In the rotation angle detection device, a magnetic circuit is formed in which magnetic flux flows through a path of magnetic flux applying magnet 6 → Hall IC 3 (Hall element 2) → Flux attracting magnet 7. When the rotor 1 rotates together with the throttle valve, the magnetic flux orthogonal to the magnetic detection surface of the hall element 2 changes.
That is, as shown in FIG. 1A, when the center of the air gap between the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is in the position (rotation angle 90 °) in the X-axis direction, the magnetic detection of the Hall element 2 is detected. The magnetic flux density orthogonal to the surface is maximized, and even if the rotation angle of the rotor 1 increases from 90 ° or conversely decreases from 90 °, it is orthogonal to the magnetic detection surface of the Hall element 2 depending on the rotation angle. The amount of magnetic flux decreases.
Then, at the position where the center of the air gap between the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 faces in the Y-axis direction (rotation angle 0 °), the magnetic flux orthogonal to the magnetic detection surface of the Hall element 2 becomes zero.

さらに、回転角度が0°よりもマイナス側に回転すると、回転角度に応じてホール素子2の磁気検出面と直交する反対方向の磁束量が増加する。そして、ロータ1の回転角度が−90°の時にホール素子2の磁気検出面と直交する逆向きの磁束密度が最大になる。
回転角度が−90°よりもさらにマイナス側に回転すると、回転角度に応じて磁気検出面と直交する反対方向の磁束量が減少を始め、ホール素子2を通過する逆向きの磁束密度が減少する。
Furthermore, when the rotation angle rotates to the minus side from 0 °, the amount of magnetic flux in the opposite direction perpendicular to the magnetic detection surface of the Hall element 2 increases according to the rotation angle. When the rotation angle of the rotor 1 is −90 °, the magnetic flux density in the reverse direction orthogonal to the magnetic detection surface of the Hall element 2 is maximized.
When the rotation angle rotates further to the minus side than −90 °, the amount of magnetic flux in the opposite direction perpendicular to the magnetic detection surface starts to decrease according to the rotation angle, and the reverse magnetic flux density passing through the Hall element 2 decreases. .

[実施例の特徴]
スロットルバルブの開度を検出する回転角度検出装置では、微小開度(アイドリング付近)を高い精度で検出する要求があるために、磁束密度0付近をスロットルバルブの0°位置として使用する場合がある。このため、スロットルバルブの開度を検出する回転角度検出装置は、通常、回転角度0°〜90°の範囲において使用される。
[Features of Example]
In a rotation angle detection device that detects the opening of a throttle valve, there is a need to detect a minute opening (near idling) with high accuracy, and therefore, the vicinity of a magnetic flux density of 0 may be used as the 0 ° position of the throttle valve. . For this reason, the rotation angle detection device for detecting the opening degree of the throttle valve is normally used in a rotation angle range of 0 ° to 90 °.

背景技術の項の(1)でも説明したように、ロータ1の回転角度90°の状態で、ホール素子2の設置位置がX軸方向へずれた場合、磁束付与磁石6および磁束吸引磁石7と、ホール素子2との距離が接近するため、ホール素子2を通過する磁束密度が増加する(図3の実線A’参照)。このため、組付け時の誤差等によって、ホール素子2の設定位置がX軸方向にずれると、ホール素子2を通過する磁束密度が増加して、ホール素子2から所定以上の出力が発生し、回転角度の検出誤差を招いてしまう。   As described in (1) of the background art section, when the installation position of the Hall element 2 is shifted in the X-axis direction in a state where the rotation angle of the rotor 1 is 90 °, the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 Since the distance from the Hall element 2 approaches, the magnetic flux density passing through the Hall element 2 increases (see solid line A ′ in FIG. 3). For this reason, when the setting position of the Hall element 2 is shifted in the X-axis direction due to an error during assembly, the magnetic flux density passing through the Hall element 2 is increased, and an output of a predetermined level or more is generated from the Hall element 2. This will cause a detection error of the rotation angle.

そこでこの実施例1では、上記の不具合を解決するために、磁束付与磁石6と磁束吸引磁石7をZ軸方向から見た厚み、即ち円弧方向(回転方向と同義)に沿う厚みを、図1(a)に示すように、円弧方向の中央B1 が厚く、円弧方向の端B2 側が薄くなるように設けている。これにより、磁束付与磁石6と磁束吸引磁石7の内周面とホール素子2との距離が、端B2 に向かうにつれて次第に大きくなるように構成される。この磁束付与磁石6および磁束吸引磁石7の厚みの変化は、ホール素子2の設置位置がX軸方向へずれるのに応じて変化するホール素子2を通過する磁束密度の変化幅に基づいて設定される。つまり、ホール素子2の設置位置がX軸方向へずれても、ホール素子2を通過する磁束密度が変化しないように設定される。   Therefore, in Example 1, in order to solve the above-described problem, the thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 viewed from the Z-axis direction, that is, the thickness along the arc direction (synonymous with the rotation direction) is shown in FIG. As shown in (a), the center B1 in the arc direction is thick and the end B2 side in the arc direction is thin. Thus, the distance between the inner peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 and the Hall element 2 is configured to gradually increase toward the end B2. The change in the thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is set based on the change width of the magnetic flux density passing through the Hall element 2 that changes according to the installation position of the Hall element 2 being shifted in the X-axis direction. The That is, the magnetic flux density passing through the Hall element 2 is set so as not to change even if the installation position of the Hall element 2 is shifted in the X-axis direction.

本実施例の回転角度検出装置は、上記のように設けられることにより、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置が磁束付与磁石6と磁束吸引磁石7の中心からX軸方向へずれても、ずれた方向に薄くなった磁束付与磁石6と磁束吸引磁石7によって、ずれによるホール素子2を通過する磁束密度の増加をなくすことができる。具体的には、図3の実線Aに示されるように、ホール素子2の設置位置が中央からX軸方向へずれても磁束密度は増加せず、ほぼ理想の磁束密度を得ることができる。
即ち、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置がX軸方向へずれても磁束密度が変化しないため、回転角度の検出誤差の発生を防ぐことができる。
The rotation angle detection device of the present embodiment is provided as described above, so that the installation position of the Hall element 2 becomes X from the center of the magnetic flux application magnet 6 and the magnetic flux attraction magnet 7 due to an assembly error of the rotation angle detection device. Even if it shifts in the axial direction, the increase in magnetic flux density passing through the Hall element 2 due to the shift can be eliminated by the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 which are thinned in the shifted direction. Specifically, as shown by a solid line A in FIG. 3, the magnetic flux density does not increase even when the installation position of the Hall element 2 is shifted from the center in the X-axis direction, and an almost ideal magnetic flux density can be obtained.
That is, because the magnetic flux density does not change even if the installation position of the Hall element 2 is shifted in the X-axis direction due to an assembly error of the rotation angle detection device, the occurrence of a rotation angle detection error can be prevented.

なお、この実施例1では、磁束付与磁石6および磁束吸引磁石7の円弧方向の端B2 側を薄くする手段として、磁束付与磁石6および磁束吸引磁石7の内周面を削った形状(内面を窪ませた形状)に設けた例を示したが、逆に、磁束付与磁石6および磁束吸引磁石7の外周面を削った形状(外面を窪ませた形状)に設けても、同様の効果を得ることができる。   In Example 1, as a means for thinning the end B2 in the arc direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7, the shape (the inner surface of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is shaved. Although the example provided in the recessed shape) is shown, conversely, the same effect can be obtained even if the outer peripheral surface of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is sharpened (the outer surface is recessed). Obtainable.

また、この実施例1では、磁束付与磁石6および磁束吸引磁石7の両方の厚みを変化させる例を示したが、磁束付与磁石6または磁束吸引磁石7の一方のみの厚みを変化させても良い。例えば、図4に示すように、磁束付与磁石6または磁束吸引磁石7の一方のみの円弧方向の中央B1 を厚く、円弧方向の端B2 側を薄く設けて、磁束付与磁石6または磁束吸引磁石7の他方の円弧方向に沿う厚みを一定に設けても良い。即ち、磁束付与磁石6と磁束吸引磁石7のZ軸側の曲率をそれぞれ変えても良い。このように設けても、同様の効果を得ることができる。   In the first embodiment, the thickness of both the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is changed. However, only one of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 may be changed in thickness. . For example, as shown in FIG. 4, only one of the magnetic flux applying magnet 6 or the magnetic flux attracting magnet 7 is provided with a thick center B1 in the arc direction and a thin end B2 in the arc direction. A thickness along the other arc direction may be constant. That is, the curvatures on the Z-axis side of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 may be changed. Even if it provides in this way, the same effect can be acquired.

図5を用いて実施例2を説明する。この図5(a)は回転角度検出装置をZ軸方向から見た図であり、図5(b)は回転角度検出装置のZ軸方向に沿う断面図である。なお、この実施例2以降における実施例1と同一符号は、特に説明を加えない限り同一機能物を示すものである。
上記の各実施例では、半円筒形を呈する磁束付与磁石6および磁束吸引磁石7を例に示した。それに対してこの実施例2は、図5(a)に示すように、磁束付与磁石6を複数(この実施例では2つ)の磁石6aを組み合わせてZ軸方向から見て略円弧状を呈するように配置するとともに、磁束吸引磁石7も複数(この実施例では2つ)の磁石7aを組み合わせてZ軸方向から見て略円弧状を呈するように配置したものである。
Example 2 will be described with reference to FIG. FIG. 5A is a view of the rotation angle detection device viewed from the Z-axis direction, and FIG. 5B is a cross-sectional view of the rotation angle detection device along the Z-axis direction. In addition, the same code | symbol as Example 1 in this Example 2 or later shows the same function thing unless it adds special description.
In each of the above embodiments, the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 having a semi-cylindrical shape are shown as examples. On the other hand, in the second embodiment, as shown in FIG. 5A, the magnetic flux applying magnets 6 are combined with a plurality of (in this embodiment, two) magnets 6a to form a substantially arc shape when viewed from the Z-axis direction. The magnetic flux attracting magnets 7 are also arranged so as to form a substantially arc shape when viewed from the Z-axis direction by combining a plurality of (two in this embodiment) magnets 7a.

背景技術の項の(2)でも説明したように、ロータ1の回転角度90°の状態で、ホール素子2の設置位置がX軸方向へずれた場合、磁束付与磁石6および磁束吸引磁石7と、ホール素子2との距離が接近するため、ホール素子2を通過する磁束密度が増加する(図3の実線A’参照)。このため、組付け時の誤差等によって、ホール素子2の設定位置がX軸方向にずれると、ホール素子2を通過する磁束密度が増加して、ホール素子2から所定以上の出力が発生し、回転角度の検出誤差を招いてしまう。   As described in (2) of the background art section, when the installation position of the Hall element 2 is shifted in the X-axis direction in a state where the rotation angle of the rotor 1 is 90 °, the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 Since the distance from the Hall element 2 approaches, the magnetic flux density passing through the Hall element 2 increases (see solid line A ′ in FIG. 3). For this reason, when the setting position of the Hall element 2 is shifted in the X-axis direction due to an error during assembly, the magnetic flux density passing through the Hall element 2 is increased, and an output of a predetermined level or more is generated from the Hall element 2. This will cause a detection error of the rotation angle.

そこで、この実施例2は、上記の不具合を解決するために、それぞれが2つの磁石6a、7aによって構成される磁束付与磁石6および磁束吸引磁石7のそれぞれの回転方向に沿う厚みを、図5(a)に示すように、回転方向の中央B1 が厚く、回転方向の端B2 側が薄くなるように設けている。即ち、磁束付与磁石6および磁束吸引磁石7の内周面とホール素子2との距離が、回転方向の端B2 に向かうにつれて次第に大きくなるように構成されている。それぞれが2つの磁石6a、7aによって構成される磁束付与磁石6および磁束吸引磁石7の厚みの変化は、ホール素子2の設置位置がX軸方向へずれるのに応じて変化するホール素子2を通過する磁束密度の変化幅に基づいて設定される。つまり、ホール素子2の設置位置がX軸方向へずれても、ホール素子2を通過する磁束密度が変化しないように設定される。   Therefore, in this second embodiment, in order to solve the above-described problem, the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 each constituted by two magnets 6a and 7a are respectively shown in FIG. As shown in (a), the center B1 in the rotational direction is thick and the end B2 side in the rotational direction is thin. That is, the distance between the inner peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 and the Hall element 2 is configured to gradually increase toward the end B2 in the rotational direction. Changes in the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 each composed of two magnets 6a and 7a pass through the Hall element 2 that changes in accordance with the installation position of the Hall element 2 being shifted in the X-axis direction. It is set based on the change width of the magnetic flux density. That is, the magnetic flux density passing through the Hall element 2 is set so as not to change even if the installation position of the Hall element 2 is shifted in the X-axis direction.

本実施例の回転角度検出装置は、上記のように設けられることにより、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置が磁束付与磁石6および磁束吸引磁石7の中心からX軸方向へずれても、ずれた方向に薄くなった磁束付与磁石6および磁束吸引磁石7によって、ずれによるホール素子2を通過する磁束密度の増加をなくすことができる。具体的には、上記実施例1で示した図3の実線Aのように、ホール素子2の設置位置が中央からX軸方向へずれても磁束密度は増加せず、ほぼ理想の磁束密度を得ることができる。
即ち、実施例1と同様、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置がX軸方向へずれても磁束密度は低下しないため、回転角度の検出誤差の発生を防ぐことができる。
The rotation angle detection device of the present embodiment is provided as described above, so that the installation position of the Hall element 2 is X from the center of the magnetic flux applying magnet 6 and the magnetic flux attraction magnet 7 due to an assembly error of the rotation angle detection device. Even if it shifts in the axial direction, the magnetic flux application magnet 6 and the magnetic flux attracting magnet 7 that are thin in the shifted direction can eliminate the increase in the magnetic flux density that passes through the Hall element 2 due to the shift. Specifically, as shown by the solid line A in FIG. 3 shown in the first embodiment, the magnetic flux density does not increase even if the installation position of the Hall element 2 is shifted from the center in the X-axis direction. Obtainable.
That is, as in the first embodiment, the magnetic flux density does not decrease even if the installation position of the Hall element 2 is shifted in the X-axis direction due to an assembly error of the rotational angle detection device, etc., thus preventing the rotational angle detection error from occurring. Can do.

なお、この実施例2では、それぞれが2つの磁石6a、7aによって構成される磁束付与磁石6および磁束吸引磁石7の回転方向の端B2 側を薄くする手段として、磁束付与磁石6および磁束吸引磁石7の内周面を削った形状(内面を窪ませた形状)に設けた例を示したが、逆に、磁束付与磁石6および磁束吸引磁石7の外周面を削った形状(外面を窪ませた形状)に設けても良い。
また、この実施例2では、磁束付与磁石6と磁束吸引磁石7の両方の厚みを変化させる例を示したが、図6に示すように、磁束付与磁石6または磁束吸引磁石7の一方のみの厚みを変化させても良い。
なお、図6では、一例として磁束付与磁石6のみの厚みを変化させる例を示したが、磁束吸引磁石7のみの厚みを変化させても良い。
In the second embodiment, the magnetic flux applying magnet 6 and the magnetic flux attracting magnet are used as means for thinning the end B2 in the rotational direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 each composed of two magnets 6a and 7a. 7 shows an example in which the inner peripheral surface of the magnet 7 is cut (shape with the inner surface recessed), but conversely, the outer peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are shaved (the outer surface is recessed). May also be provided.
In the second embodiment, the thickness of both the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is changed. However, as shown in FIG. 6, only one of the magnetic flux applying magnet 6 or the magnetic flux attracting magnet 7 is used. The thickness may be changed.
In addition, in FIG. 6, although the example which changes only the thickness of the magnetic flux provision magnet 6 was shown as an example, you may change the thickness of only the magnetic flux attraction magnet 7. FIG.

図7、図8を用いて実施例3を説明する。なお、図7(a)は回転角度検出装置をZ軸方向から見た図であり、図7(b)は回転角度検出装置のZ軸方向に沿う断面図である。 上記第1、実施例2では、Z軸方向から見て磁束付与磁石6および磁束吸引磁石7が円弧状を呈する例を示した。これに対し、この実施例3は、Z軸方向から見て磁束付与磁石6および磁束吸引磁石7が平行に配置されるものである。   Embodiment 3 will be described with reference to FIGS. 7A is a view of the rotation angle detection device viewed from the Z-axis direction, and FIG. 7B is a cross-sectional view of the rotation angle detection device along the Z-axis direction. In the said 1st, Example 2, the magnetic flux provision magnet 6 and the magnetic flux attraction magnet 7 showed the example which exhibits circular arc shape seeing from a Z-axis direction. On the other hand, in the third embodiment, the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are arranged in parallel when viewed from the Z-axis direction.

背景技術の項の(3)でも説明したように、磁束付与磁石6および磁束吸引磁石7のそれぞれを平板磁石で構成して、Z軸方向から見て平行に配置する場合、磁束付与磁石6および磁束吸引磁石7のX軸方向の両端側は漏れ磁束が大きいため、ホール素子2の設置位置がX軸方向にずれると、図8の実線B’に示すように、そのズレ量が大きくなるに従って、ホール素子2を通過する磁束密度が低下する。すると、ホール素子2から所定の出力が得られなくなり、回転角度の検出誤差を招いてしまう。   As described in (3) of the background art section, when each of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is configured by a flat plate magnet and arranged in parallel when viewed from the Z-axis direction, the magnetic flux applying magnet 6 and Since the leakage flux is large at both ends of the magnetic flux attracting magnet 7 in the X-axis direction, when the installation position of the Hall element 2 is shifted in the X-axis direction, as shown in the solid line B ′ in FIG. The density of magnetic flux passing through the Hall element 2 is reduced. As a result, a predetermined output cannot be obtained from the Hall element 2, which causes a rotation angle detection error.

そこで、この実施例3では、上記の不具合を解決するために、磁束付与磁石6および磁束吸引磁石7の厚みを、図7(a)に示すように、Z軸方向から見た場合、中央B1 が薄く、端B2 側が厚くなるように設けている。即ち、磁束付与磁石6および磁束吸引磁石7の内周面と、ホール素子2との距離が、端B2 に向かうにつれて次第に小さくなるように構成されている。この磁束付与磁石6および磁束吸引磁石7の厚みの変化は、ホール素子2の設置位置がX軸方向へずれるのに応じて変化するホール素子2を通過する磁束密度の変化幅に基づいて設定される。つまり、ホール素子2の設置位置がX軸方向へずれても、ホール素子2を通過する磁束密度が変化しないように設定される。   Therefore, in this third embodiment, in order to solve the above problems, when the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are viewed from the Z-axis direction as shown in FIG. Is so thin that the end B2 side is thick. That is, the distance between the inner peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 and the Hall element 2 is configured to gradually decrease toward the end B2. The change in the thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is set based on the change width of the magnetic flux density passing through the Hall element 2 that changes according to the installation position of the Hall element 2 being shifted in the X-axis direction. The That is, the magnetic flux density passing through the Hall element 2 is set so as not to change even if the installation position of the Hall element 2 is shifted in the X-axis direction.

本実施例の回転角度検出装置は、上記のように設けられることにより、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置が磁束付与磁石6および磁束吸引磁石7の中心からX軸方向へずれても、ずれた方向に厚くなった磁束付与磁石6および磁束吸引磁石7によって、ずれによるホール素子2を通過する磁束密度の低下をなくすことができる。具体的には、図8の実線Bに示されるように、ホール素子2の設置位置が中央からX軸方向へずれても磁束密度は低下せず、ほぼ理想の磁束密度を得ることができる。
即ち、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置がX軸方向へずれても磁束密度は低下しないため、回転角度の検出誤差の発生を防ぐことができる。
The rotation angle detection device of the present embodiment is provided as described above, so that the installation position of the Hall element 2 is X from the center of the magnetic flux applying magnet 6 and the magnetic flux attraction magnet 7 due to an assembly error of the rotation angle detection device. Even if it deviates in the axial direction, the magnetic flux application magnet 6 and the magnetic flux attracting magnet 7 that are thick in the deviating direction can eliminate the decrease in the magnetic flux density that passes through the Hall element 2 due to the deviation. Specifically, as shown by a solid line B in FIG. 8, even if the installation position of the Hall element 2 is shifted from the center in the X-axis direction, the magnetic flux density does not decrease, and an almost ideal magnetic flux density can be obtained.
That is, because the magnetic flux density does not decrease even if the installation position of the Hall element 2 is shifted in the X-axis direction due to an assembly error of the rotation angle detection device, the occurrence of a rotation angle detection error can be prevented.

なお、この実施例3では、磁束付与磁石6と磁束吸引磁石7の中央B1 を薄くする手段として、磁束付与磁石6および磁束吸引磁石7の内周面を削った形状(内面を窪ませた形状)に設けた例を示したが、逆に、磁束付与磁石6および磁束吸引磁石7の外周面を削った形状(外面を窪ませた形状)に設けても、実施例3と同様の効果を得ることができる。   In Example 3, as a means for thinning the center B1 of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7, the shape obtained by cutting the inner peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 (the shape in which the inner surface is recessed). However, conversely, the same effect as in the third embodiment can be obtained even if the outer peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are formed in a shape (a shape in which the outer surface is recessed). Obtainable.

また、この実施例3では、磁束付与磁石6と磁束吸引磁石7の両方の厚みを変化させる例を示したが、図9に示すように、磁束付与磁石6および磁束吸引磁石7の一方のみの厚みを変化させても良い。即ち、磁束付与磁石6および磁束吸引磁石7の一方の中央B1 を薄く、端B2 側を厚く設けて、磁束付与磁石6および磁束吸引磁石7の他方の厚みを一定に設けても良い。このように設けても、実施例3と同様の効果を得ることができる。
なお、図9では、一例として磁束付与磁石6のみの厚みを変化させる例を示したが、磁束吸引磁石7のみの厚みを変化させても良い。
Moreover, in this Example 3, although the example which changes the thickness of both the magnetic flux provision magnet 6 and the magnetic flux attraction magnet 7 was shown, as shown in FIG. 9, only one of the magnetic flux provision magnet 6 and the magnetic flux attraction magnet 7 is shown. The thickness may be changed. That is, the center B1 of one of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 may be thin and the end B2 side thick, and the other thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 may be provided constant. Even if it provides in this way, the same effect as Example 3 can be acquired.
In FIG. 9, as an example, the thickness of only the magnetic flux applying magnet 6 is changed, but the thickness of only the magnetic flux attracting magnet 7 may be changed.

図10、図11を用いて実施例4を説明する。なお、図10(a)は回転角度検出置をZ軸方向から見た図であり、図10(b)は回転角度検出装置のZ軸方向に沿う断面図である。
背景技術の項の(4)でも説明したように、磁束付与磁石6と磁束吸引磁石7のZ軸方向の両端A2 側は、漏れ磁束が大きくなる特性がある。
このため、ホール素子2が磁束付与磁石6および磁束吸引磁石7のZ軸方向の中央に設置される回転角度検出装置では、ホール素子2の設置位置がZ軸方向にずれた場合、図11の実線C’に示すように、そのズレ量が大きくなるに従い、ホール素子2を通過する磁束密度が低下する。すると、ホール素子2から所定の出力が得られなくなり、回転角度の検出誤差を招いてしまう。
A fourth embodiment will be described with reference to FIGS. 10 and 11. 10A is a view of the rotation angle detection device as viewed from the Z-axis direction, and FIG. 10B is a cross-sectional view of the rotation angle detection device along the Z-axis direction.
As described in (4) of the background art section, both ends A2 in the Z-axis direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 have a characteristic of increasing the leakage magnetic flux.
Therefore, in the rotation angle detection device in which the Hall element 2 is installed at the center in the Z-axis direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7, when the installation position of the Hall element 2 is shifted in the Z-axis direction, FIG. As indicated by the solid line C ′, the density of magnetic flux passing through the Hall element 2 decreases as the amount of deviation increases. As a result, a predetermined output cannot be obtained from the Hall element 2, which causes a rotation angle detection error.

そこでこの実施例では、上記の不具合を解決するために、磁束付与磁石6と磁束吸引磁石7のZ軸方向に沿うそれぞれの厚みが、ホール素子2の設定位置の周囲が薄く、ホール素子2の設定位置より離れる側が厚くなるように設けられている。
具体的には、この実施例のように、ホール素子2の設置位置が、磁束付与磁石6および磁束吸引磁石7のZ軸方向の中央にある場合、図10(b)に示されるように、磁束付与磁石6および磁束吸引磁石7のZ軸方向の中央A1 が薄く、Z軸方向の両端A2 側が厚くなるように設けられる。磁束付与磁石6および磁束吸引磁石7の厚みの変化は、ホール素子2の設置位置がZ軸方向へずれるのに応じて変化するホール素子2を通過する磁束密度の変化幅に基づいて設定される。即ち、ホール素子2の設置位置がZ軸方向へずれても、ホール素子2を通過する磁束密度が変化しないように設定される。
なお、この実施例4では、磁束付与磁石6および磁束吸引磁石7の内周面のZ軸方向に円弧を描く内向窪みαを設けることで磁束付与磁石6および磁束吸引磁石7の厚みに変化を持たせている。
Therefore, in this embodiment, in order to solve the above-described problems, the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 along the Z-axis direction are thin around the set position of the Hall element 2. The side away from the set position is provided to be thick.
Specifically, as shown in FIG. 10B, when the installation position of the Hall element 2 is in the center in the Z-axis direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as in this embodiment, The magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are provided such that the center A1 in the Z-axis direction is thin and the both ends A2 side in the Z-axis direction are thick. Changes in the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are set based on the change width of the magnetic flux density passing through the Hall element 2 that changes according to the installation position of the Hall element 2 being shifted in the Z-axis direction. . That is, the magnetic flux density passing through the Hall element 2 is set so as not to change even if the installation position of the Hall element 2 is shifted in the Z-axis direction.
In the fourth embodiment, the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are changed by providing an inward recess α that draws an arc in the Z-axis direction on the inner peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7. I have it.

本実施例の回転角度検出装置は、上記のように設けられることにより、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置がZ軸方向へずれても、ずれた方向に厚くなった磁束付与磁石6および磁束吸引磁石7によって、ずれによるホール素子2を通過する磁束密度の低下をなくすことができる。具体的には、図11の実線Cに示されるように、ホール素子2の設置位置が中央からZ軸方向へずれても磁束密度は低下せず、ほぼ理想の磁束密度を得ることができる。   By providing the rotation angle detection device of the present embodiment as described above, even if the installation position of the Hall element 2 is shifted in the Z-axis direction due to an assembly error of the rotation angle detection device or the like, the rotation angle detection device is thicker in the shifted direction. The reduced magnetic flux application magnet 6 and the magnetic flux attracting magnet 7 can eliminate a decrease in magnetic flux density that passes through the Hall element 2 due to deviation. Specifically, as indicated by a solid line C in FIG. 11, the magnetic flux density does not decrease even when the installation position of the Hall element 2 is shifted from the center in the Z-axis direction, and an almost ideal magnetic flux density can be obtained.

即ち、上述した実施例3にこの実施例4の技術を組み合せることで、次の効果が得られる。
回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置がZ軸方向へずれても磁束密度は低下せず、またホール素子2の設置位置がX軸方向へずれても磁束密度は低下しない。このため、回転角度検出装置の組付け誤差等によって、ホール素子2の設置位置がZ軸方向へずれても、X軸方向へずれても磁束密度は低下しないため、回転角度の検出誤差の発生を防ぐことができる。
That is, the following effects can be obtained by combining the technique of the fourth embodiment with the third embodiment.
The magnetic flux density does not decrease even if the installation position of the Hall element 2 is shifted in the Z-axis direction due to an assembly error of the rotation angle detection device, and the magnetic flux density is not changed even if the installation position of the Hall element 2 is shifted in the X-axis direction. It will not decline. For this reason, even if the installation position of the Hall element 2 is shifted in the Z-axis direction or the X-axis direction due to an assembly error of the rotation angle detection device, the magnetic flux density does not decrease. Can be prevented.

図12を用いて実施例5を説明する。なお、図12は回転角度検出装置のZ軸方向に沿う断面図である。
上記の実施例4では、磁束付与磁石6と磁束吸引磁石7の内周面に内向窪みαを設けることで磁束付与磁石6と磁束吸引磁石7のZ軸方向の厚みに変化を持たせた。これに対し、この実施例5は、磁束付与磁石6と磁束吸引磁石7の外周面に外向窪みβを設けて磁束付与磁石6と磁束吸引磁石7のZ軸方向の厚みに変化を持たせたものである。
このように設けても、実施例4と同様の作用効果が得られる。
Example 5 will be described with reference to FIG. FIG. 12 is a cross-sectional view of the rotation angle detection device along the Z-axis direction.
In Example 4 described above, the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 in the Z-axis direction are changed by providing inward depressions α on the inner peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7. On the other hand, this Example 5 provided the outward hollow (beta) in the outer peripheral surface of the magnetic flux provision magnet 6 and the magnetic flux attraction magnet 7, and made the thickness of the magnetic flux provision magnet 6 and the magnetic flux attraction magnet 7 change in the Z-axis direction. Is.
Even if it provides in this way, the same effect as Example 4 is acquired.

図13を用いて実施例6を説明する。なお、図13は回転角度検出装置のZ軸方向に沿う断面図である。
上記の実施例4では、磁束付与磁石6と磁束吸引磁石7の両方の内周面に内向窪みαを設ける例を示した。これに対し、この実施例6は、磁束付与磁石6または磁束吸引磁石7の一方のみに、内向窪みαを設けたものである。
このように設けても、実施例4と同様の作用効果が得られる。
なお、図13では、一例として磁束付与磁石6のみに内向窪みαを設ける例を示すが、もちろん磁束吸引磁石7のみに内向窪みαを設けても良い。
Example 6 will be described with reference to FIG. FIG. 13 is a cross-sectional view of the rotation angle detection device along the Z-axis direction.
In the fourth embodiment, an example in which the inward depression α is provided on the inner peripheral surfaces of both the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 has been described. On the other hand, in the sixth embodiment, only one of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is provided with an inward depression α.
Even if it provides in this way, the same effect as Example 4 is acquired.
FIG. 13 shows an example in which the inward depression α is provided only in the magnetic flux application magnet 6 as an example, but the inward depression α may be provided only in the magnetic flux attracting magnet 7.

図14を用いて実施例7を説明する。なお、図14は回転角度検出装置のZ軸方向に沿う断面図である。
上記の実施例5では、磁束付与磁石6と磁束吸引磁石7の両方の外周面に外向窪みβを設ける例を示した。これに対し、この実施例7は、磁束付与磁石6または磁束吸引磁石7の一方のみに、外向窪みβを設けたものである。
このように設けても、実施例4と同様の作用効果が得られる。
なお、図14では、一例として磁束付与磁石6のみに外向窪みβを設ける例を示すが、もちろん磁束吸引磁石7のみに外向窪みβを設けても良い。
Example 7 will be described with reference to FIG. FIG. 14 is a cross-sectional view of the rotation angle detection device along the Z-axis direction.
In the fifth embodiment, the example in which the outward depression β is provided on the outer peripheral surfaces of both the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 has been described. On the other hand, in the seventh embodiment, only one of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is provided with the outward recess β.
Even if it provides in this way, the same effect as Example 4 is acquired.
FIG. 14 shows an example in which the outward depression β is provided only in the magnetic flux application magnet 6 as an example, but the outward depression β may be provided only in the magnetic flux attracting magnet 7 as a matter of course.

図15を用いて実施例8を説明する。なお、図15は回転角度検出装置のZ軸方向に沿う断面図である。
上記の実施例4では、Z軸方向の比較的広い範囲に亘って磁束付与磁石6および磁束吸引磁石7の厚みを変化させた例を示した。これに対し、この実施例8は、Z軸方向の中央A1 のみが薄くなるように厚みの変化を設けたものである。具体的にこの実施例8では、磁束付与磁石6および磁束吸引磁石7の内周面のZ軸方向の中央A1 のみに内向窪みαを設けるものである。
組付け誤差の比較的少ない回転角度検出装置では、ホール素子2のZ軸方向へのずれ量も少ない。このため、この実施例8のように、磁束付与磁石6および磁束吸引磁石7のZ軸方向の中央A1 のみを薄く設けることで、実施例4と同様の作用効果が得られる。
Example 8 will be described with reference to FIG. FIG. 15 is a sectional view taken along the Z-axis direction of the rotation angle detection device.
In Example 4 described above, an example in which the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are changed over a relatively wide range in the Z-axis direction has been described. On the other hand, in the eighth embodiment, the thickness is changed so that only the center A1 in the Z-axis direction becomes thin. Specifically, in Example 8, the inward depression α is provided only at the center A1 in the Z-axis direction of the inner peripheral surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7.
In the rotation angle detection device with a relatively small assembly error, the amount of displacement of the Hall element 2 in the Z-axis direction is small. For this reason, as in the eighth embodiment, by providing only the center A1 in the Z-axis direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7, the same effect as that of the fourth embodiment can be obtained.

なお、この実施例8では、磁束付与磁石6と磁束吸引磁石7の両方の内周面の中央A1 に内向窪みαを設けたが、実施例8のように磁束付与磁石6と磁束吸引磁石7の外周面の中央A1 に外向窪みβを設けても良く、また実施例6のように磁束付与磁石6または磁束吸引磁石7の一方の内周面のみの中央A1 に内向窪みαを設けても良く、さらに実施例7のように磁束付与磁石6または磁束吸引磁石7の一方の外周面のみの中央A1 に外向窪みβを設けても良い。   In the eighth embodiment, the inward depression α is provided at the center A1 of the inner peripheral surfaces of both the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7. However, as in the eighth embodiment, the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are provided. An outward recess β may be provided at the center A1 of the outer peripheral surface of the outer peripheral surface, or an inward recess α may be provided at the center A1 of only one inner peripheral surface of the magnetic flux applying magnet 6 or the magnetic flux attracting magnet 7 as in the sixth embodiment. Further, as in the seventh embodiment, an outward recess β may be provided at the center A1 of only one outer peripheral surface of the magnetic flux applying magnet 6 or the magnetic flux attracting magnet 7.

図16を用いて実施例9を説明する。なお、図16(a)は回転角度検出装置をZ軸方向から見た図であり、図16(a)中に示す破線は最も窪んだ磁石の内面を示すものである。
(回転角度検出装置をZ軸方向から見た磁石形状の説明)
背景技術の項の(1)でも説明したように、ロータ1の回転角度90°の状態で、ホール素子2の設置位置がX軸方向へずれた場合、磁束付与磁石6および磁束吸引磁石7と、ホール素子2との距離が接近するため、ホール素子2を通過する磁束密度が増加する{図16(b)の破線A’参照}。このため、組付け時の誤差等によって、ホール素子2の設定位置がX軸方向にずれると、ホール素子2を通過する磁束密度が増加して、ホール素子2から所定以上の出力が発生し、回転角度の検出誤差を招いてしまう。
Example 9 will be described with reference to FIG. FIG. 16A is a view of the rotation angle detection device as viewed from the Z-axis direction, and the broken line shown in FIG. 16A indicates the innermost surface of the most depressed magnet.
(Description of the magnet shape when the rotation angle detector is viewed from the Z-axis direction)
As described in (1) of the background art section, when the installation position of the Hall element 2 is shifted in the X-axis direction in a state where the rotation angle of the rotor 1 is 90 °, the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 As the distance to the Hall element 2 approaches, the magnetic flux density passing through the Hall element 2 increases {see the broken line A ′ in FIG. 16B}. For this reason, when the setting position of the Hall element 2 is shifted in the X-axis direction due to an error during assembly, the magnetic flux density passing through the Hall element 2 is increased, and an output of a predetermined level or more is generated from the Hall element 2. This will cause a detection error of the rotation angle.

そこで、上記の実施例1では、磁束付与磁石6と磁束吸引磁石7のZ軸方向から見た厚みを、中央B1 が厚く、端B2 側が薄くなるように設けている。ここで、(A)磁束付与磁石6および磁束吸引磁石7の厚みの変化は、ホール素子2の設置位置がX軸方向へずれるのに応じて変化するホール素子2を通過する磁束密度の変化幅に基づいて設定される。これによって、ホール素子2の設置位置がX軸方向へずれても、ホール素子2を通過する磁束密度が変化しないように設定される。   Therefore, in the first embodiment, the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 viewed from the Z-axis direction are provided so that the center B1 is thick and the end B2 side is thin. Here, (A) The change in the thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is a change width of the magnetic flux density passing through the Hall element 2 that changes in accordance with the installation position of the Hall element 2 being shifted in the X-axis direction. Is set based on Thereby, even if the installation position of the Hall element 2 is shifted in the X-axis direction, the magnetic flux density passing through the Hall element 2 is set so as not to change.

上記(A)を具体的に説明する。磁束付与磁石6と磁束吸引磁石7のZ軸方向から見た内面形状、外面形状を、単純な円弧(一定の半径で描かれる円弧、楕円の円弧)で描く場合、着磁方向のバラツキ、磁石を形成する磁性体密度のバラツキ、あるいはヨーク4を用いずに磁石のみで磁気回路を構成する場合等により、X軸に付与される磁束分布が変化する場合がある。そのような変化が生じた場合、ホール素子2の設置位置がX軸方向へずれると、ホール素子2を通過する磁束密度が僅かながら変化してしまう{図16(b)の破線A”参照}。
磁束付与磁石6、磁束吸引磁石7をZ軸方向から見た厚みが、中央B1 に対して左右対称形状である場合、X軸に付与される磁束分布は、回転中心(本実施例ではホール素子2の基準設定位置)を頂点とした多次曲線で近似させることができる。この規則性を利用して磁束付与磁石6、磁束吸引磁石7の内面、外面の少なくとも一方の磁石形状を回転中心(ホール素子2の基準設定位置)を頂点とした多次曲線(曲率)を持つ磁石形状にすることで、ホール素子2の設置位置が所定の範囲内でX軸方向へずれても、ホール素子2を通過する磁束密度を変化させなくすることができる。
The above (A) will be specifically described. When the inner surface shape and outer surface shape of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as viewed from the Z-axis direction are drawn with simple arcs (arcs drawn with a constant radius, elliptical arcs), variations in magnetization direction, magnets In some cases, the magnetic flux distribution applied to the X-axis may change due to variations in the density of the magnetic material forming the magnetic field or the case where the magnetic circuit is configured only by the magnet without using the yoke 4. When such a change occurs, if the installation position of the Hall element 2 is shifted in the X-axis direction, the magnetic flux density passing through the Hall element 2 changes slightly (see the broken line A "in FIG. 16B). .
When the thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 viewed from the Z-axis direction is symmetrical with respect to the center B1, the magnetic flux distribution applied to the X-axis is the rotation center (in the present embodiment, the Hall element). It is possible to approximate it with a multi-order curve having the reference position (2) as a vertex. By utilizing this regularity, the magnet shape has at least one of the inner and outer surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 and has a multi-order curve (curvature) with the rotation center (reference setting position of the Hall element 2) as the apex. By adopting a magnet shape, the magnetic flux density passing through the Hall element 2 can be prevented from changing even if the installation position of the Hall element 2 is shifted in the X-axis direction within a predetermined range.

具体的に、この実施例では、着磁方向のバラツキ等によるX軸に付与される磁束分布の変化を考慮して、磁束付与磁石6と磁束吸引磁石7のZ軸方向から見た外面形状の曲率A、内面形状の曲率Bを次式で表される曲率として、ホール素子2の設置位置の範囲内でX軸に付与される磁束分布を略一定にしている{図16(b)の実線A参照}。
A=a1 n +b1 n-1 ・・・c1
B=a2 n +b2 n-1 ・・・c2
なお、c1、c2式の変数Xは、磁石のX軸方向の長さを示すものである。
このように、この実施例では、磁束付与磁石6、磁束吸引磁石7の内面、外面の磁石形状を多次曲線(曲率)を持つ磁石形状にすることで、着磁方向のバラツキ、磁石を形成する磁性体密度のバラツキ、あるいはヨーク4を用いずに磁石のみで磁気回路を構成する場合等により、X軸に付与される磁束分布の変化を相殺することができ、ホール素子2の設置位置が所定の範囲内でX軸方向へずれても、ホール素子2を通過する磁束密度を変化させなくすることができる。
Specifically, in this embodiment, the outer surface shape of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as viewed from the Z-axis direction is considered in consideration of the change in the magnetic flux distribution applied to the X axis due to variations in the magnetization direction. The curvature A and the curvature B of the inner surface shape are represented by the following equations, and the distribution of magnetic flux applied to the X axis within the range of the installation position of the Hall element 2 is made substantially constant {the solid line in FIG. 16 (b) See A}.
A = a 1 X n + b 1 X n−1 ... C 1
B = a 2 X n + b 2 X n−1 ... C 2
Note that the variable X in the equations c 1 and c 2 indicates the length of the magnet in the X-axis direction.
As described above, in this embodiment, the inner and outer surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are magnets having a multi-order curve (curvature), thereby forming variations in the magnetization direction and forming a magnet. The variation in the magnetic material density or the case where the magnetic circuit is constituted by only the magnet without using the yoke 4 can cancel the change in the magnetic flux distribution applied to the X axis, and the installation position of the Hall element 2 can be reduced. Even if it deviates in the X-axis direction within a predetermined range, the magnetic flux density passing through the Hall element 2 can be kept unchanged.

なお、この実施例では、Z軸方向から見た磁束付与磁石6、磁束吸引磁石7の内面、外面の磁石形状を多次曲線(曲率)を持つ磁石形状にした例を示したが、磁束付与磁石6、磁束吸引磁石7の内面または外面の一方だけを多次曲線(曲率)を持つ磁石形状にしても良い。   In this embodiment, an example is shown in which the inner and outer surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 viewed from the Z-axis direction are magnets having a multi-order curve (curvature). Only one of the inner surface and the outer surface of the magnet 6 and the magnetic flux attracting magnet 7 may have a magnet shape having a multi-degree curve (curvature).

図17を用いて実施例10を説明する。なお、図17(a)は回転角度検出装置のZ軸方向に沿う断面図である。
(回転角度検出装置のZ軸方向に沿う磁石形状の説明)
背景技術の項の(4)でも説明したように、磁束付与磁石6と磁束吸引磁石7のZ軸方向の両端A2 側は、漏れ磁束が大きくなる特性がある。
このため、ホール素子2が磁束付与磁石6および磁束吸引磁石7のZ軸方向の中央に設置される回転角度検出装置では、ホール素子2の設置位置がZ軸方向にずれた場合、そのずれ量が大きくなるに従い、ホール素子2を通過する磁束密度が低下する{図17(b)の破線C’参照}。すると、ホール素子2から所定の出力が得られなくなり、回転角度の検出誤差を招いてしまう。
Example 10 will be described with reference to FIG. FIG. 17A is a cross-sectional view of the rotation angle detection device along the Z-axis direction.
(Description of magnet shape along the Z-axis direction of the rotation angle detector)
As described in (4) of the background art section, both ends A2 in the Z-axis direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 have a characteristic of increasing the leakage magnetic flux.
For this reason, in the rotation angle detection device in which the Hall element 2 is installed at the center in the Z-axis direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7, when the installation position of the Hall element 2 is shifted in the Z-axis direction, As the value increases, the magnetic flux density passing through the Hall element 2 decreases {see the broken line C ′ in FIG. 17B}. As a result, a predetermined output cannot be obtained from the Hall element 2, which causes a rotation angle detection error.

そこで、上記の実施例4〜8では、磁束付与磁石6と磁束吸引磁石7のZ軸方向に沿うそれぞれの厚みが、ホール素子2の設定位置の周囲が薄く、ホール素子2の設定位置より離れる側が厚くなるように設けている。ここで、(B)磁束付与磁石6および磁束吸引磁石7の厚みの変化は、ホール素子2の設置位置がZ軸方向へずれるのに応じて変化するホール素子2を通過する磁束密度の変化幅に基づいて設定される。これによって、ホール素子2の設置位置がZ軸方向へずれても、ホール素子2を通過する磁束密度が変化しないように設定される。   Therefore, in Examples 4 to 8 described above, the thicknesses of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 along the Z-axis direction are thin around the setting position of the Hall element 2 and are separated from the setting position of the Hall element 2. It is provided so that the side is thick. Here, (B) the change in the thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is a change width of the magnetic flux density passing through the Hall element 2 that changes according to the installation position of the Hall element 2 being shifted in the Z-axis direction. Is set based on Thereby, even if the installation position of the Hall element 2 is shifted in the Z-axis direction, the magnetic flux density passing through the Hall element 2 is set so as not to change.

上記(B)を具体的に説明する。磁束付与磁石6と磁束吸引磁石7のX軸方向から見た内面形状、外面形状を、単純な円弧(一定の半径で描かれる円弧、楕円の円弧)で描く場合、着磁方向のバラツキ、磁石を形成する磁性体密度のバラツキ、あるいはヨーク4を用いずに磁石のみで磁気回路を構成する場合等により、Z軸に付与される磁束分布が変化する場合がある。そのような変化が生じた場合、ホール素子2の設置位置がZ軸方向へずれると、ホール素子2を通過する磁束密度が僅かながら変化してしまう{図17(b)の破線C”参照}。
磁束付与磁石6、磁束吸引磁石7をX軸方向から見た厚みが、中央A1 に対して左右対称形状である場合、Z軸に付与される磁束分布は、ホール素子2の基準設定位置を頂点とした多次曲線で近似させることができる。この規則性を利用して磁束付与磁石6、磁束吸引磁石7の内面、外面の少なくとも一方の磁石形状を、ホール素子2の基準設定位置を頂点とした多次曲線(曲率)を持つ磁石形状にすることで、ホール素子2の設置位置が所定の範囲内でZ軸方向へずれても、ホール素子2を通過する磁束密度を変化させなくすることができる。
The above (B) will be specifically described. When the inner surface shape and outer surface shape of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 viewed from the X-axis direction are drawn with simple arcs (arcs drawn with a constant radius, elliptical arcs), variations in magnetization direction, magnets In some cases, the magnetic flux distribution applied to the Z-axis may change due to variations in the density of the magnetic material forming the magnetic field or the case where the magnetic circuit is configured by only the magnet without using the yoke 4. When such a change occurs, if the installation position of the Hall element 2 is shifted in the Z-axis direction, the magnetic flux density passing through the Hall element 2 changes slightly (see the broken line C ″ in FIG. 17B). .
When the thickness of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as viewed from the X-axis direction is symmetrical with respect to the center A1, the magnetic flux distribution applied to the Z-axis is the apex of the reference set position of the Hall element 2 Can be approximated by a multi-order curve. By utilizing this regularity, the magnet shape of at least one of the inner surface and outer surface of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is changed to a magnet shape having a multi-order curve (curvature) with the reference set position of the Hall element 2 as a vertex. Thus, even if the installation position of the Hall element 2 is shifted in the Z-axis direction within a predetermined range, the magnetic flux density passing through the Hall element 2 can be prevented from changing.

具体的に、この実施例では、着磁方向のバラツキ等によるZ軸に付与される磁束分布の変化を考慮して、磁束付与磁石6と磁束吸引磁石7のX軸方向から見た外面形状の曲率C、内面形状の曲率Dを次式で表される曲率として、ホール素子2の設置位置の範囲内でZ軸に付与される磁束分布を略一定にしている{図17(b)の実線C参照}。
C=a3 n +b3 n-1 ・・・c3
D=a4 n +b4 n-1 ・・・c4
なお、c3 、c4 式の変数Zは、磁石のZ軸方向の長さを示すものである。
このように、この実施例では、磁束付与磁石6、磁束吸引磁石7の内面、外面の磁石形状を多次曲線(曲率)を持つ磁石形状にすることで、着磁方向のバラツキ、磁石を形成する磁性体密度のバラツキ、あるいはヨーク4を用いずに磁石のみで磁気回路を構成する場合等により、Z軸に付与される磁束分布の変化を相殺することができ、ホール素子2の設置位置が所定の範囲内でZ軸方向へずれても、ホール素子2を通過する磁束密度を変化させなくすることができる。
Specifically, in this embodiment, the outer surface shape of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as viewed from the X axis direction is considered in consideration of the change in the magnetic flux distribution applied to the Z axis due to variations in the magnetization direction. The curvature C and the curvature D of the inner surface shape are represented by the following equations, and the distribution of magnetic flux applied to the Z axis within the range of the installation position of the Hall element 2 is made substantially constant {the solid line in FIG. 17 (b) See C}.
C = a 3 Z n + b 3 Z n-1 ... C 3
D = a 4 Z n + b 4 Z n-1 ··· c 4
Note that the variable Z in the c 3 and c 4 equations indicates the length of the magnet in the Z-axis direction.
As described above, in this embodiment, the inner and outer surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are magnets having a multi-order curve (curvature), thereby forming variations in the magnetization direction and forming a magnet. The variation in magnetic flux density applied to the Z-axis can be offset by the variation in the density of the magnetic material or the case where the magnetic circuit is constituted by only the magnet without using the yoke 4. Even if it deviates in the Z-axis direction within a predetermined range, the magnetic flux density passing through the Hall element 2 can be prevented from changing.

なお、この実施例では、Z軸方向に沿う磁束付与磁石6、磁束吸引磁石7の内面、外面の磁石形状を多次曲線(曲率)を持つ磁石形状にした例を示したが、磁束付与磁石6、磁束吸引磁石7の内面または外面の一方だけを多次曲線(曲率)を持つ磁石形状にしても良い。   In this embodiment, an example is shown in which the inner and outer surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 along the Z-axis are magnets having a multi-order curve (curvature). 6. Only one of the inner surface and the outer surface of the magnetic flux attracting magnet 7 may have a magnet shape having a multi-degree curve (curvature).

図18を用いて実施例11を説明する。なお、図18は回転角度検出装置をZ軸方向から見た図であり、図中に示す破線は最も窪んだ磁石の内面を示すものである。
(回転角度検出装置をZ軸方向から見た磁石形状の説明)
上記の実施例9では、Z軸方向から見た磁束付与磁石6、磁束吸引磁石7の外面の磁石形状を1つの多次曲線(曲率)を持つ磁石形状にし、磁束付与磁石6、磁束吸引磁石7の内面の磁石形状も1つの多次曲線(曲率)を持つ磁石形状にした例を示した。
これに対し、この実施例は、図18に示すように、磁束付与磁石6、磁束吸引磁石7をZ軸方向から見て、中央B1 に対して左側の外面の磁石形状の曲率E(多次曲線)と、右側の外面の磁石形状の曲率F(多次曲線)とを異ならせるとともに、中央B1 に対して左側の内面の磁石形状の曲率G(多次曲線)と、右側の内面の磁石形状の曲率H(多次曲線)とを異ならせるものである。
E=a5 n +b5 n-1 ・・・c5
F=a6 n +b6 n-1 ・・・c6
G=a7 n +b7 n-1 ・・・c7
H=a8 n +b8 n-1 ・・・c8
なお、c5 、c6 、c7 、c8 式の変数Xは、磁石のX軸方向の長さを示すものである。
このように、Z軸方向から見た磁束付与磁石6、磁束吸引磁石7の内外面の磁石形状の曲率を、左右で異ならせることにより、着磁方向のバラツキ、磁石を形成する磁性体密度のバラツキ、あるいはヨーク4を用いずに磁石のみで磁気回路を構成する場合等により、X軸に付与される磁束分布の変化を相殺することができ、X軸に付与される磁束分布を高精度で均一化できる。
Example 11 will be described with reference to FIG. FIG. 18 is a view of the rotation angle detection device as viewed from the Z-axis direction, and the broken line shown in the drawing indicates the inner surface of the most depressed magnet.
(Description of the magnet shape when the rotation angle detector is viewed from the Z-axis direction)
In the ninth embodiment, the outer surface of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as viewed from the Z-axis direction is changed to a magnet shape having one multi-order curve (curvature). 7 shows an example in which the magnet shape of the inner surface 7 is also a magnet shape having one multi-order curve (curvature).
On the other hand, in this embodiment, as shown in FIG. 18, when the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are viewed from the Z-axis direction, the curvature E of the magnet shape on the left outer surface with respect to the center B1 Curve) and the curvature F (multi-order curve) of the magnet shape on the right outer surface, and the curvature G (multi-order curve) of the magnet shape on the left inner surface with respect to the center B1, and the magnet on the right inner surface The curvature H (multiple curve) of the shape is made different.
E = a 5 X n + b 5 X n-1 ··· c 5
F = a 6 X n + b 6 X n−1 ... C 6
G = a 7 X n + b 7 X n−1 ... C 7
H = a 8 X n + b 8 X n-1 ··· c 8
Incidentally, c 5, c 6, c 7, c 8 Expression of the variable X shows the length in the X-axis direction of the magnet.
In this way, by varying the curvature of the magnet shape of the inner and outer surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as seen from the Z-axis direction, the variation in the magnetization direction and the density of the magnetic material forming the magnet can be reduced. The variation in the magnetic flux distribution applied to the X-axis can be canceled out by the variation or the case where the magnetic circuit is constituted by only the magnet without using the yoke 4, and the magnetic flux distribution applied to the X-axis can be accurately obtained. It can be made uniform.

なお、この実施例では、Z軸方向から見た磁束付与磁石6、磁束吸引磁石7の内面、外面の両方の左右の曲率を変えた例を示したが、磁束付与磁石6、磁束吸引磁石7の内面または外面の一方だけを左右異なる曲率にしても良い。   In this embodiment, an example is shown in which the left and right curvatures of both the inner surface and the outer surface of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as viewed from the Z-axis direction are changed. Only one of the inner surface and the outer surface may be made to have different curvatures.

図19を用いて実施例12を説明する。なお、図19は回転角度検出装置のZ軸方向に沿う断面図である。
(回転角度検出装置のZ軸方向に沿う磁石形状の説明)
上記の実施例10では、磁束付与磁石6、磁束吸引磁石7のZ軸方向に沿う外面の磁石形状を1つの多次曲線(曲率)を持つ磁石形状にし、磁束付与磁石6、磁束吸引磁石7の内面の磁石形状も1つの多次曲線(曲率)を持つ磁石形状にした例を示した。
これに対し、この実施例は、図19に示すように、磁束付与磁石6、磁束吸引磁石7をX軸方向から見て、中央A1 に対して左側の外面の磁石形状の曲率I(多次曲線)と、右側の外面の磁石形状の曲率J(多次曲線)とを異ならせるとともに、中央A1 に対して左側の内面の磁石形状の曲率K(多次曲線)と、右側の内面の磁石形状の曲率L(多次曲線)とを異ならせるものである。
I=a9 n +b9 n-1 ・・・c9
J=a10n +b10n-1 ・・・c10
K=a11n +b11n-1 ・・・c11
L=a12n +b12n-1 ・・・c12
なお、c9 、c10、c11、c12式の変数Zは、磁石のZ軸方向の長さを示すものである。
このように、X軸方向から見た磁束付与磁石6、磁束吸引磁石7の内外面の磁石形状の曲率を、左右で異ならせることにより、着磁方向のバラツキ、磁石を形成する磁性体密度のバラツキ、あるいはヨーク4を用いずに磁石のみで磁気回路を構成する場合等により、Z軸に付与される磁束分布の変化を相殺することができ、Z軸に付与される磁束分布を高精度で均一化できる。
Example 12 will be described with reference to FIG. FIG. 19 is a cross-sectional view of the rotation angle detection device along the Z-axis direction.
(Description of magnet shape along the Z-axis direction of the rotation angle detector)
In the tenth embodiment, the magnetic shapes of the outer surfaces along the Z-axis direction of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are changed to magnet shapes having one multi-order curve (curvature). The example in which the magnet shape of the inner surface of the magnet is also a magnet shape having one multi-order curve (curvature) is shown.
On the other hand, in this embodiment, as shown in FIG. 19, when the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 are viewed from the X-axis direction, the curvature I of the magnet shape on the left outer surface with respect to the center A1 Curve) and the curvature J (multi-order curve) of the magnet shape on the right outer surface, the curvature K (multi-order curve) of the magnet shape on the left inner surface with respect to the center A1, and the magnet on the right inner surface The shape curvature L (multiple curve) is made different.
I = a 9 Z n + b 9 Z n-1 ··· c 9
J = a 10 Z n + b 10 Z n-1 ··· c 10
K = a 11 Z n + b 11 Z n-1 ··· c 11
L = a 12 Z n + b 12 Z n-1 ··· c 12
Note that the variable Z in the expressions c 9 , c 10 , c 11 , and c 12 indicates the length of the magnet in the Z-axis direction.
In this way, by varying the curvature of the magnet shape of the inner and outer surfaces of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 as seen from the X-axis direction, the variation in the magnetization direction and the density of the magnetic material forming the magnet can be reduced. The variation in the magnetic flux distribution applied to the Z-axis can be canceled by variation or when the magnetic circuit is configured by only the magnet without using the yoke 4, and the magnetic flux distribution applied to the Z-axis can be obtained with high accuracy. It can be made uniform.

なお、この実施例では、Z軸方向に沿う磁束付与磁石6、磁束吸引磁石7の内面、外面の両方の左右の曲率を変えた例を示したが、磁束付与磁石6、磁束吸引磁石7の内面または外面の一方だけを左右異なる曲率にしても良い。   In this embodiment, the left and right curvatures of both the inner surface and the outer surface of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 along the Z-axis direction are shown. Only one of the inner surface and the outer surface may have different left and right curvatures.

〔変形例〕
上記の実施例では、固定部材を固定し、ロータ1を回転させた例を示したが、逆にロータ1に相当する部材を固定し、磁気検出素子(実施例ではホール素子2を内蔵するホールIC3)を支持する部材を回転させる構造を採用しても良い。言い換えれば、磁気検出素子を回転させ、磁束付与磁石6および磁束吸引磁石7を固定して磁気検出素子の出力から回転角度を検出しても良い。
[Modification]
In the above embodiment, the fixing member is fixed and the rotor 1 is rotated. However, on the contrary, the member corresponding to the rotor 1 is fixed and the magnetic detection element (in the embodiment, the hall in which the Hall element 2 is incorporated) is fixed. A structure in which a member supporting IC3) is rotated may be employed. In other words, the rotation angle may be detected from the output of the magnetic detection element by rotating the magnetic detection element and fixing the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7.

上記の実施例では、磁気検出素子(実施例ではホール素子2を内蔵するホールIC3)を1つ搭載した例を示したが、複数個配置しても良い。また、ホールIC3を構成するホール素子2のみを磁束発生手段5(磁束付与磁石6と磁束吸引磁石7)の内部に配置し、信号処理回路を磁束発生手段5の外部に配置しても良い。つまり、例えば、ホール素子2の信号処理回路を回転角度検出装置から離れた制御装置内に設けても良い。
上記の実施例では、回転角度検出装置の具体的な一例としてスロットルバルブの開度を検出する例を示したが、産業ロボットのアーム部の回転角度等、他の回転角度を検出するように設けても良い。
上記の実施例では、磁束付与磁石6と磁束吸引磁石7の外側周囲にヨーク4を設置した例を示したが、ヨーク4をなくした構成でも良い。
In the above-described embodiment, an example in which one magnetic detection element (in the embodiment, the Hall IC 3 including the Hall element 2) is mounted is shown, but a plurality of magnetic detection elements may be arranged. Alternatively, only the Hall element 2 constituting the Hall IC 3 may be disposed inside the magnetic flux generating means 5 (the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7), and the signal processing circuit may be disposed outside the magnetic flux generating means 5. That is, for example, the signal processing circuit of the Hall element 2 may be provided in a control device separated from the rotation angle detection device.
In the above embodiment, an example of detecting the opening of the throttle valve is shown as a specific example of the rotation angle detection device. However, the rotation angle detection device is provided so as to detect other rotation angles such as the rotation angle of the arm portion of the industrial robot. May be.
In the above embodiment, the example in which the yoke 4 is provided around the outer sides of the magnetic flux applying magnet 6 and the magnetic flux attracting magnet 7 is shown, but a configuration in which the yoke 4 is omitted may be used.

回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(実施例1)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction, and sectional drawing in alignment with a Z-axis direction (Example 1). 磁束密度と回転角度の関係を示すグラフである(実施例1)。It is a graph which shows the relationship between magnetic flux density and a rotation angle (Example 1). 磁気検出素子のX軸方向ずれ量と磁束密度の関係を示すグラフである(実施例1)。7 is a graph showing a relationship between a deviation amount of a magnetic detection element in an X-axis direction and a magnetic flux density (Example 1). 回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(実施例1の変形例)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction, and sectional drawing in alignment with a Z-axis direction (modified example of Example 1). 回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(実施例2)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction, and sectional drawing in alignment with a Z-axis direction (Example 2). 回転角度検出装置をZ軸方向から見た図である(実施例2の変形例)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction (the modification of Example 2). 回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(実施例3)。FIG. 6 is a view of the rotation angle detection device viewed from the Z-axis direction and a cross-sectional view along the Z-axis direction (Example 3). 磁気検出素子のX軸方向ずれ量と磁束密度の関係を示すグラフである(実施例3)。12 is a graph showing the relationship between the amount of deviation in the X-axis direction of the magnetic detection element and the magnetic flux density (Example 3). 回転角度検出装置をZ軸方向から見た図である(実施例3の変形例)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction (modified example of Example 3). 回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(実施例4)。FIG. 6 is a view of the rotation angle detection device viewed from the Z-axis direction and a cross-sectional view along the Z-axis direction (Example 4). 磁気検出素子のZ軸方向ずれ量と磁束密度の関係を示すグラフである(実施例4)。10 is a graph showing the relationship between the amount of deviation of the magnetic detection element in the Z-axis direction and the magnetic flux density (Example 4). 回転角度検出装置のZ軸方向に沿う断面図である(実施例5)。(Example 5) which is sectional drawing in alignment with the Z-axis direction of a rotation angle detection apparatus. 回転角度検出装置のZ軸方向に沿う断面図である(実施例6)。(Example 6) which is sectional drawing which follows the Z-axis direction of a rotation angle detection apparatus. 回転角度検出装置のZ軸方向に沿う断面図である(実施例7)。(Example 7) which is sectional drawing in alignment with the Z-axis direction of a rotation angle detection apparatus. 回転角度検出装置のZ軸方向に沿う断面図である(実施例8)。(Example 8) which is sectional drawing in alignment with the Z-axis direction of a rotation angle detection apparatus. 回転角度検出装置をZ軸方向から見た図および磁気検出素子のX軸方向ずれ量と磁束密度の関係を示すグラフである(実施例9)。FIG. 10 is a diagram of a rotation angle detection device as viewed from the Z-axis direction and a graph showing the relationship between the amount of deviation of the magnetic detection element in the X-axis direction and the magnetic flux density (Example 9). 回転角度検出装置のZ軸方向に沿う断面図および磁気検出素子のZ軸方向ずれ量と磁束密度の関係を示すグラフである(実施例10)。FIG. 10 is a cross-sectional view along the Z-axis direction of the rotation angle detection device and a graph showing the relationship between the Z-axis direction deviation amount of the magnetic detection element and the magnetic flux density (Example 10). 回転角度検出装置をZ軸方向から見た図である(実施例11)。(Example 11) which was the figure which looked at the rotation angle detection apparatus from the Z-axis direction. 回転角度検出装置のZ軸方向に沿う断面図である(実施例12)。ある(実施例12)。(Example 12) which is sectional drawing which follows the Z-axis direction of a rotation angle detection apparatus. Yes (Example 12). 回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(従来例)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction, and sectional drawing in alignment with a Z-axis direction (conventional example). ロータの回転角度の説明図である(従来例)。It is explanatory drawing of the rotation angle of a rotor (conventional example). 磁束密度と回転角度の関係を示すグラフである(従来例)。It is a graph which shows the relationship between magnetic flux density and a rotation angle (conventional example). 磁気検出素子のX軸方向ずれ量と磁束密度の関係を示すグラフである(従来例)。It is a graph which shows the relationship between the deviation | shift amount of a X direction of a magnetic detection element, and magnetic flux density (conventional example). 回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(従来例)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction, and sectional drawing in alignment with a Z-axis direction (conventional example). 回転角度検出装置をZ軸方向から見た図およびZ軸方向に沿う断面図である(従来例)。It is the figure which looked at the rotation angle detection apparatus from the Z-axis direction, and sectional drawing in alignment with a Z-axis direction (conventional example). 磁気検出素子のX軸方向ずれ量と磁束密度の関係を示すグラフである(従来例)。It is a graph which shows the relationship between the deviation | shift amount of a X direction of a magnetic detection element, and magnetic flux density (conventional example). 磁気検出素子のZ軸方向ずれ量と磁束密度の関係を示すグラフである(従来例)。It is a graph which shows the relationship between the Z-axis direction deviation | shift amount of a magnetic detection element, and magnetic flux density (conventional example).

符号の説明Explanation of symbols

1 ロータ
2 ホール素子(磁気検出素子)
3 ホールIC
4 ヨーク
5 磁束発生手段
6 磁束付与磁石
7 磁束吸引磁石
A1 磁束付与磁石および磁束吸引磁石のZ軸方向の中央
A2 磁束付与磁石および磁束吸引磁石のZ軸方向の端
B1 Z軸方向から見た磁束付与磁石および磁束吸引磁石の中央
B2 Z軸方向から見た磁束付与磁石および磁束吸引磁石の端
1 Rotor 2 Hall element (Magnetic detection element)
3 Hall IC
4 yoke 5 magnetic flux generating means 6 magnetic flux applying magnet 7 magnetic flux attracting magnet A1 center A2 in the Z-axis direction of the magnetic flux applying magnet and the magnetic flux attracting magnet B1 end of the Z-axis direction of the magnetic flux applying magnet and the magnetic flux attracting magnet B1 magnetic flux viewed from the Z-axis direction The center of the magnetic flux applying magnet and the magnetic flux attracting magnet B2 End of the magnetic flux applying magnet and the magnetic flux attracting magnet as viewed from the Z-axis direction

Claims (19)

回転軸上に配置された磁気検出素子と、
この磁気検出素子の両側に距離を隔てて対向配置され、前記磁気検出素子に向けて磁束を与える磁束付与磁石、およびこの磁束付与磁石から前記磁気検出素子に向けて与えられた磁束を吸引する磁束吸引磁石を備える磁束発生手段と、を具備し、
前記磁気検出素子と前記磁束発生手段の相対回転角度の変化を、前記磁気検出素子を通過する磁束密度によって検出する回転角度検出装置において、
前記磁束付与磁石と前記磁束吸引磁石が、回転軸方向から見て回転方向に沿う円弧状を呈する場合、
前記磁束付与磁石および前記磁束吸引磁石の少なくとも一方は、回転軸方向から見た厚みが、中央が厚く、端側が薄く設けられることを特徴とする回転角度検出装置。
A magnetic sensing element disposed on the rotation axis;
A magnetic flux application magnet that is disposed opposite to both sides of the magnetic detection element at a distance and applies a magnetic flux toward the magnetic detection element, and a magnetic flux that attracts the magnetic flux applied from the magnetic flux application magnet toward the magnetic detection element A magnetic flux generation means comprising an attraction magnet,
In the rotation angle detection device that detects a change in relative rotation angle between the magnetic detection element and the magnetic flux generation means by a magnetic flux density passing through the magnetic detection element,
When the magnetic flux applying magnet and the magnetic flux attracting magnet exhibit an arc shape along the rotation direction when viewed from the rotation axis direction,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet is provided with a thickness as viewed from the direction of the rotation axis that is thick at the center and thin at the end side.
回転軸上に配置された磁気検出素子と、
この磁気検出素子の両側に距離を隔てて対向配置され、前記磁気検出素子に向けて磁束を与える磁束付与磁石、およびこの磁束付与磁石から前記磁気検出素子に向けて与えられた磁束を吸引する磁束吸引磁石を備える磁束発生手段と、を具備し、
前記磁気検出素子と前記磁束発生手段の相対回転角度の変化を、前記磁気検出素子を通過する磁束密度によって検出する回転角度検出装置において、
前記磁束付与磁石と前記磁束吸引磁石が、回転軸方向から見て平行に配置される場合、 前記磁束付与磁石および前記磁束吸引磁石の少なくとも一方は、回転軸方向から見た厚みが、中央が薄く、端側が厚く設けられることを特徴とする回転角度検出装置。
A magnetic sensing element disposed on the rotation axis;
A magnetic flux application magnet that is disposed opposite to both sides of the magnetic detection element at a distance and applies a magnetic flux toward the magnetic detection element, and a magnetic flux that attracts the magnetic flux applied from the magnetic flux application magnet toward the magnetic detection element A magnetic flux generation means comprising an attraction magnet,
In the rotation angle detection device that detects a change in relative rotation angle between the magnetic detection element and the magnetic flux generation means by a magnetic flux density passing through the magnetic detection element,
When the magnetic flux applying magnet and the magnetic flux attracting magnet are arranged in parallel when viewed from the rotational axis direction, at least one of the magnetic flux applying magnet and the magnetic flux attracting magnet has a thin thickness when viewed from the rotational axis direction, and the center is thin. The rotation angle detecting device is characterized in that the end side is thickly provided.
回転軸上に配置された磁気検出素子と、
この磁気検出素子の両側に距離を隔てて対向配置され、前記磁気検出素子に向けて磁束を与える磁束付与磁石、およびこの磁束付与磁石から前記磁気検出素子に向けて与えられた磁束を吸引する磁束吸引磁石を備える磁束発生手段と、を具備し、
前記磁気検出素子と前記磁束発生手段の相対回転角度の変化を、前記磁気検出素子を通過する磁束密度によって検出する回転角度検出装置において、
前記磁束付与磁石と前記磁束吸引磁石が、回転軸と平行に配置され、且つ回転軸方向から見て平行に配置される場合、
前記磁束付与磁石および前記磁束吸引磁石の少なくとも一方は、回転軸方向に沿う厚みが、前記磁気検出素子の設定位置の周囲が薄く、前記磁気検出素子の設定位置より離れる側が厚く設けられるとともに、
前記磁束付与磁石および前記磁束吸引磁石の少なくとも一方は、回転軸方向から見た厚みが、中央が薄く、端側が厚く設けられることを特徴とする回転角度検出装置。
A magnetic sensing element disposed on the rotation axis;
A magnetic flux application magnet that is disposed opposite to both sides of the magnetic detection element at a distance and applies a magnetic flux toward the magnetic detection element, and a magnetic flux that attracts the magnetic flux applied from the magnetic flux application magnet toward the magnetic detection element A magnetic flux generation means comprising an attraction magnet,
In the rotation angle detection device that detects a change in relative rotation angle between the magnetic detection element and the magnetic flux generation means by a magnetic flux density passing through the magnetic detection element,
When the magnetic flux applying magnet and the magnetic flux attracting magnet are arranged parallel to the rotation axis and arranged parallel to the rotation axis direction,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet has a thickness along the rotation axis direction, the periphery of the setting position of the magnetic detection element is thin, and the side away from the setting position of the magnetic detection element is provided thick,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet is provided with a thickness as viewed from the direction of the rotation axis that is thin at the center and thick at the end side.
請求項1に記載の回転角度検出装置において、
前記磁束付与磁石および前記磁束吸引磁石は、それぞれ半円筒形状を呈する1つの磁石によって構成され、前記磁束付与磁石と前記磁束吸引磁石で直径方向に分割された略円筒形状を呈することを特徴とする回転角度検出装置。
The rotation angle detection device according to claim 1,
The magnetic flux applying magnet and the magnetic flux attracting magnet are each constituted by a single magnet having a semi-cylindrical shape, and have a substantially cylindrical shape divided in the diameter direction by the magnetic flux applying magnet and the magnetic flux attracting magnet. Rotation angle detection device.
請求項1に記載の回転角度検出装置において、
前記磁束付与磁石および前記磁束吸引磁石は、それぞれ複数の磁石が回転軸方向から見て回転方向へ円弧状に並んで配置されることによって構成されることを特徴とする回転角度検出装置。
The rotation angle detection device according to claim 1,
The magnetic flux applying magnet and the magnetic flux attracting magnet are each configured by arranging a plurality of magnets arranged in an arc shape in the rotational direction when viewed from the rotational axis direction.
請求項2または請求項3に記載の回転角度検出装置において、
前記磁束付与磁石および前記磁束吸引磁石は、それぞれ1つの磁石によって構成され、回転軸と平行に配置され、且つ回転軸方向から見て平行に配置されることを特徴とする回転角度検出装置。
In the rotation angle detection device according to claim 2 or 3,
The magnetic flux applying magnet and the magnetic flux attracting magnet are each constituted by one magnet, arranged in parallel with the rotation axis, and arranged in parallel when viewed from the direction of the rotation axis.
請求項3に記載の回転角度検出装置において、
前記磁束発生手段の回転軸方向の中央に前記磁気検出素子が設置される場合、
前記磁束付与磁石および前記磁束吸引磁石の少なくとも一方の回転軸方向に沿う厚みは、回転軸方向の中央が薄く、回転軸方向の両端側が厚く設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to claim 3,
When the magnetic detection element is installed in the center of the rotation axis direction of the magnetic flux generation means,
The rotation angle detection device according to claim 1, wherein the thickness along the rotation axis direction of at least one of the magnetic flux applying magnet and the magnetic flux attracting magnet is provided such that the center in the rotation axis direction is thin and both ends in the rotation axis direction are thick.
請求項7に記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の回転軸方向に沿う厚みの変化は、回転軸方向の中央部分のみに設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to claim 7,
The rotation angle detection device characterized in that the change in thickness along the rotation axis direction of the magnetic flux applying magnet and the magnetic flux attracting magnet is provided only in a central portion in the rotation axis direction.
請求項1〜請求項8のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の厚みの変化は、前記磁気検出素子の設置位置がずれるのに応じて変化する前記磁気検出素子を通過する磁束密度の変化幅に基づいて設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 8,
The change in thickness of the magnetic flux applying magnet and the magnetic flux attracting magnet is provided based on the change width of the magnetic flux density passing through the magnetic detection element that changes in accordance with the installation position of the magnetic detection element. A rotation angle detection device.
請求項1〜請求項9のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の厚みの変化は、前記磁気検出素子が配置される側の内面を窪ませて設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 9,
The rotation angle detecting device is characterized in that the change in thickness of the magnetic flux applying magnet and the magnetic flux attracting magnet is provided by recessing the inner surface on the side where the magnetic detection element is arranged.
請求項1〜請求項9のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の厚みの変化は、前記磁気検出素子が配置される側とは異なった側の外面を窪ませて設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 9,
The rotation angle detecting device according to claim 1, wherein the thickness of the magnetic flux applying magnet and the magnetic flux attracting magnet is provided by recessing an outer surface on a side different from a side where the magnetic detecting element is arranged.
請求項1〜請求項11のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の少なくとも一方は、回転軸方向から見て前記磁気検出素子が配置される側の内面が、多次曲線を有する曲面に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 11,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet has an inner surface on the side where the magnetic detection element is disposed as viewed from the direction of the rotation axis, provided on a curved surface having a multi-order curve. apparatus.
請求項1〜請求項11のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の少なくとも一方は、回転軸方向から見て前記磁気検出素子が配置される側とは異なった側の外面が、多次曲線を有する曲面に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 11,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet has an outer surface on a side different from a side on which the magnetic detection element is disposed when viewed from the rotation axis direction, provided on a curved surface having a multi-order curve. A rotation angle detection device.
請求項1〜請求項11のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の少なくとも一方は、
回転軸方向から見て前記磁気検出素子が配置される側の内面が、多次曲線を有する曲面に設けられるとともに、
回転軸方向から見て前記磁気検出素子が配置される側とは異なった側の外面が、多次曲線を有する曲面に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 11,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet is:
The inner surface on the side where the magnetic detection element is arranged as viewed from the direction of the rotation axis is provided on a curved surface having a multi-order curve,
A rotation angle detection device, wherein an outer surface on a side different from a side on which the magnetic detection element is arranged when viewed from the rotation axis direction is provided on a curved surface having a multi-order curve.
請求項12〜請求項14のいずれかに記載の回転角度検出装置において、
回転軸方向から見た内面、外面の少なくとも一方の多次曲線は、回転軸方向から見た左右の曲率変化が異なり、左右非対称に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 12 to 14,
A rotation angle detection device characterized in that at least one of the multi-order curves of the inner surface and the outer surface viewed from the rotation axis direction is provided asymmetrically in the left and right curvatures as viewed from the rotation axis direction.
請求項1〜請求項11のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の少なくとも一方は、回転軸方向に沿う前記磁気検出素子が配置される側の内面が、多次曲線を有する曲面に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 11,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet has an inner surface on the side where the magnetic detection element is disposed along the rotation axis direction provided on a curved surface having a multi-order curve. .
請求項1〜請求項11のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の少なくとも一方は、回転軸方向に沿う前記磁気検出素子が配置される側とは異なった側の外面が、多次曲線を有する曲面に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 11,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet has an outer surface on a side different from a side on which the magnetic detection element is disposed along a rotation axis direction provided on a curved surface having a multi-order curve. Rotation angle detection device.
請求項1〜請求項11のいずれかに記載の回転角度検出装置において、
前記磁束付与磁石、前記磁束吸引磁石の少なくとも一方は、
回転軸方向に沿う前記磁気検出素子が配置される側の内面が、多次曲線を有する曲面に設けられるとともに、
回転軸方向に沿う前記磁気検出素子が配置される側とは異なった側の外面が、多次曲線を有する曲面に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 1 to 11,
At least one of the magnetic flux applying magnet and the magnetic flux attracting magnet is:
The inner surface on the side where the magnetic detection element along the rotation axis direction is disposed is provided on a curved surface having a multi-order curve,
A rotation angle detection device, wherein an outer surface on a side different from a side on which the magnetic detection element is disposed along a rotation axis direction is provided on a curved surface having a multi-order curve.
請求項16〜請求項18のいずれかに記載の回転角度検出装置において、
回転軸方向に沿う内面、外面の少なくとも一方の多次曲線は、回転軸に直交する方向から見た前記磁気検出素子の設定位置の左右の曲率変化が異なり、回転軸に直交する方向から見た前記磁気検出素子の設定位置を基準にした左右非対称に設けられることを特徴とする回転角度検出装置。
In the rotation angle detection device according to any one of claims 16 to 18,
At least one of the inner and outer curved lines along the rotation axis direction has different curvature changes on the left and right of the set position of the magnetic sensing element as viewed from the direction orthogonal to the rotation axis, and is viewed from the direction orthogonal to the rotation axis. A rotation angle detection device, wherein the rotation angle detection device is provided asymmetrically with respect to a set position of the magnetic detection element.
JP2008283246A 2003-03-31 2008-11-04 Rotation angle detector Expired - Fee Related JP4321665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283246A JP4321665B2 (en) 2003-03-31 2008-11-04 Rotation angle detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003096737 2003-03-31
JP2008283246A JP4321665B2 (en) 2003-03-31 2008-11-04 Rotation angle detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004028085A Division JP4269961B2 (en) 2003-03-31 2004-02-04 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2009025317A true JP2009025317A (en) 2009-02-05
JP4321665B2 JP4321665B2 (en) 2009-08-26

Family

ID=40397213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283246A Expired - Fee Related JP4321665B2 (en) 2003-03-31 2008-11-04 Rotation angle detector

Country Status (1)

Country Link
JP (1) JP4321665B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080788A (en) * 2009-10-05 2011-04-21 Denso Corp Rotation angle detection device
JP2016099133A (en) * 2014-11-18 2016-05-30 株式会社デンソー Liquid level detection device
CN109863364A (en) * 2016-10-25 2019-06-07 克诺尔商用车系统(日本)有限公司 Rotation detection device, switch unit and transmission system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105266B2 (en) 2010-06-02 2012-12-26 株式会社デンソー Rotation angle detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085312A (en) * 1994-06-23 1996-01-12 Nippondenso Co Ltd Semiconductor rotary angle sensor
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor
JP2002022485A (en) * 2000-07-12 2002-01-23 Kayaba Ind Co Ltd Rotation angle sensor
JP2002310722A (en) * 2001-04-19 2002-10-23 Aisin Seiki Co Ltd Angle sensor
JP2003084007A (en) * 2001-09-14 2003-03-19 Takechi Kogyo Gomu Co Ltd Rotation direction detecting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085312A (en) * 1994-06-23 1996-01-12 Nippondenso Co Ltd Semiconductor rotary angle sensor
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor
JP2002022485A (en) * 2000-07-12 2002-01-23 Kayaba Ind Co Ltd Rotation angle sensor
JP2002310722A (en) * 2001-04-19 2002-10-23 Aisin Seiki Co Ltd Angle sensor
JP2003084007A (en) * 2001-09-14 2003-03-19 Takechi Kogyo Gomu Co Ltd Rotation direction detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080788A (en) * 2009-10-05 2011-04-21 Denso Corp Rotation angle detection device
JP2016099133A (en) * 2014-11-18 2016-05-30 株式会社デンソー Liquid level detection device
CN109863364A (en) * 2016-10-25 2019-06-07 克诺尔商用车系统(日本)有限公司 Rotation detection device, switch unit and transmission system

Also Published As

Publication number Publication date
JP4321665B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4269961B2 (en) Rotation angle detector
US7030606B2 (en) Angular sensor with a magneto-electric transducer and a magnetic deflection device
JP4720233B2 (en) Rotation angle detector
US6879150B2 (en) Magnetic position sensor
US7154262B2 (en) Rotation angle detecting device
JP4079043B2 (en) Rotation angle detector
JP4543932B2 (en) Rotation angle detector
JP4204294B2 (en) Rotation angle detector
JP2007263585A (en) Rotation angle detector
JP4321665B2 (en) Rotation angle detector
JPWO2008050581A1 (en) Rotation angle detector
JPH11344394A (en) Torque sensor
EP3626970A1 (en) Vacuum pump, magnetic bearing device for use with vacuum pump, and annularly-arranged electromagnets
JP2022079329A (en) Encoder
JP2018151159A (en) Relative position detecting device, accelerator position sensor and vehicle
JP4233920B2 (en) Rotation angle detector
JP2001050400A (en) Magnetic fluid sealing device
JP6213536B2 (en) Magnetic field detection device and rotation detection device
JP2008139108A (en) Potentiometer
US20170310168A1 (en) Rotating electrical machine comprising stator core, and machine tool comprising the same
JP4219826B2 (en) Rotation angle detector
WO2024166621A1 (en) Power generation device, rotation angle detector, and method for manufacturing power generation device
JP2008128752A (en) Noncontact type angle sensor
JP2005091013A (en) Magnetic type rotary position sensor
JP2009236722A (en) Rotating angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees