JP2009025274A - Raindrop quantity detector - Google Patents

Raindrop quantity detector Download PDF

Info

Publication number
JP2009025274A
JP2009025274A JP2007191763A JP2007191763A JP2009025274A JP 2009025274 A JP2009025274 A JP 2009025274A JP 2007191763 A JP2007191763 A JP 2007191763A JP 2007191763 A JP2007191763 A JP 2007191763A JP 2009025274 A JP2009025274 A JP 2009025274A
Authority
JP
Japan
Prior art keywords
light
amount
raindrop
prism
extraneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007191763A
Other languages
Japanese (ja)
Inventor
Tsutomu Tamaki
勉 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNION SYSTEM KK
Original Assignee
UNION SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNION SYSTEM KK filed Critical UNION SYSTEM KK
Priority to JP2007191763A priority Critical patent/JP2009025274A/en
Publication of JP2009025274A publication Critical patent/JP2009025274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and low-cost raindrop quantity detector for inhibiting an effect due to an external light, such as a sunlight, properly detecting the raindrop quantity attached on a windshield, and preventing a view of a driver from being blocked since a wiper is intermittently controlled, in response to the raindrop quantity. <P>SOLUTION: A light-emitting section 2 consists of a light-emitting element 21, and a light-emitting prism 22. A light-receiving section 3 consists of a light-receiving element 31, and a light-receiving prism 32. The light-emitting section 2 and the light-receiving section 3 are arrayed horizontally (laterally) on the windshield 5 at an upper part within a vehicle so as to prevent the view of the driver from being blocked. The raindrop quantity detector 1 is mounted and has a small longitudinal dimension. In order to reduce the effects due to the external light, a shape of the light-receiving prism 32 is formed at an angle that is less apt to transmit sunlight, the external light is inhibited by causing only the light-receiving element 31 to receive the light emitted from the light-emitting element 21, and an external light correcting light-emitting element 33 is disposed on the surface of the light-receiving prism 32. Accordingly, the effects due to the external light are eliminated in the light-receiving element 32. The quantity of the light irradiated, scattered and attenuated by the raindrops, attached to the windshield 5, can be detected accurately. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は車両フロントガラスの車内面に装着し、フロントガラスの車外面に付着した雨滴量を太陽光などの外来光に影響されず的確に検出してワイパ間歇駆動を制御し、かつ運転者視野を阻害しない形状で簡易な回路構成で小型軽量な光学式の雨滴量検出装置に関する。 The present invention is mounted on the inner surface of a vehicle windshield, accurately detects the amount of raindrops adhering to the outer surface of the windshield without being influenced by external light such as sunlight, controls the wiper intermittent drive, and The present invention relates to a small and lightweight optical raindrop amount detection device having a simple circuit configuration and a shape that does not impede.

従来の光学式雨滴量検出装置7は、図1に示すように発光部2と受光部3とで構成し、前記発光部2は発光ダイオード(LED)などの発光素子とこの発光ビームをフロントガラス5に投光する投光用プリズムからなり、前記受光部は前記フロントガラス5内を通って来る前記発光ビームを集光する受光用プリズムと前記受光用プリズムから受光するホトダイオード(PD)などの受光素子からなる。前記検出装置では、前記発光部と前記受光部とを前記フロントガラス5の車内面に一定間隔で配置して導光経路4を形成し、前記フロントガラス5の車外面に付着した雨滴により前記導光経路4で起こる光散乱で発生する前記光ビームの減衰量を受光部3で検出し、前記減衰量から付着雨滴量を算出し、フロントガラス5上のワイパ駆動を制御している。 As shown in FIG. 1, a conventional optical raindrop amount detection device 7 includes a light emitting unit 2 and a light receiving unit 3, and the light emitting unit 2 uses a light emitting element such as a light emitting diode (LED) and the emitted light beam as a windshield. The light receiving unit receives light from a light receiving prism that collects the emitted light beam passing through the windshield 5 and a photodiode (PD) that receives light from the light receiving prism. It consists of elements. In the detection device, the light emitting unit and the light receiving unit are arranged on the vehicle inner surface of the windshield 5 at regular intervals to form a light guide path 4, and the light guide is formed by raindrops attached to the vehicle outer surface of the windshield 5. The light receiving unit 3 detects the attenuation amount of the light beam generated by light scattering occurring in the light path 4, calculates the amount of attached raindrops from the attenuation amount, and controls the wiper drive on the windshield 5.

従来の光学式雨滴量検出装置7は雨滴検出がしやすくかつ車両の上前方の方向から来る太陽光などの外来光の影響を小さくするため、図1のように、前記フロントガラス5のワイパ作動範囲の最上部に当たる車内側位置に、前記発光部1と前記受光部2とを上下方向に一定間隔で配置し前記導光経路3を縦方向に形成している。このような縦配置方法では前記検出装置形状が縦方向に大きくなるため、運転者視界を阻害する欠点が生じている。 The conventional optical raindrop amount detection device 7 is easy to detect raindrops and reduces the influence of extraneous light such as sunlight coming from the front and front of the vehicle. The light emitting part 1 and the light receiving part 2 are arranged at regular intervals in the vertical direction at the vehicle inner side position corresponding to the uppermost part of the range, and the light guide path 3 is formed in the vertical direction. In such a vertical arrangement method, since the shape of the detection device is increased in the vertical direction, there is a disadvantage that obstructs the driver's view.

また光学式雨滴量検出方法では、図3(a)のように発光部2の前記発光素子を高速の矩形波時系列電圧で駆動し、図3(b)のように発光させ前記投光用プリズムで集光した矩形波時系列の光ビームを前記フロンガラス5に投光する。受光部3では前記導光経路4で付着雨滴による散乱で減衰された前記光ビームを前記受光用プリズムで集光して前記受光素子に受光させ、図3(c)のような矩形波時系列出力信号を得る。前記出力信号の振幅レベルは、図3(a)の前記発光素子が発光せず受光が無い区間fでは電源電圧Vccに近くなり、前記発光素子が発光し受光した区間nでは受光量に応じて出力振幅レベルが低下する矩形波波形になる。前記光ビームの減衰量は前記雨滴付着量に対応して変動するから、前記出力振幅レベルの変動量から前記付着雨滴量が算出できる。図3(c)の前記受光素子出力の矩形波発振数に比べて極めて変動の低い外来光受光信号をフィルタで分離し、前記受光素子出力を検出し前記付着雨滴による減衰量を算出する回路構成にしているため、検出回路素子が増加し検出回路を簡易に構成できず、検出装置形状も大きくなるなどの欠点があった。 Further, in the optical raindrop amount detection method, the light emitting element of the light emitting unit 2 is driven by a high-speed rectangular wave time-series voltage as shown in FIG. 3A to emit light as shown in FIG. A rectangular wave time-series light beam collected by the prism is projected onto the fluorocarbon glass 5. In the light receiving unit 3, the light beam attenuated by scattering by the attached raindrops in the light guide path 4 is collected by the light receiving prism and received by the light receiving element, and a rectangular wave time series as shown in FIG. Get the output signal. The amplitude level of the output signal is close to the power supply voltage Vcc in the section f where the light emitting element in FIG. 3A does not emit light and does not receive light, and in the section n in which the light emitting element emits light and receives light, it depends on the amount of light received. A rectangular waveform with a reduced output amplitude level is obtained. Since the attenuation amount of the light beam fluctuates corresponding to the raindrop adhesion amount, the adhesion raindrop amount can be calculated from the fluctuation amount of the output amplitude level. 3C is a circuit configuration for separating an external light receiving signal whose fluctuation is extremely low as compared with the rectangular wave oscillation number of the light receiving element output of FIG. 3C by a filter, detecting the light receiving element output, and calculating an attenuation amount due to the attached raindrops. Therefore, the number of detection circuit elements is increased, the detection circuit cannot be simply configured, and the shape of the detection device is increased.

従来の検出装置7では図1に示したように前記導光経路をフロントガラス上下方向に形成する構成にしているため、前記検出装置7の縦寸法が大きくなり運転者視界を阻害する欠点がある。
本発明では図2に示すように、前記発光部2と前記受光部3とを前記フロントガラス5の車内面上部に横方向に設置する構成とし、前記導光経路4を横方向に形成している。これにより前記検出装置1の縦寸法を短くでき、運転者視界を阻害することがなくなる。前記導光経路4を横方向にとると、前記受光部3では車両上前方向から照射される前記外来光を受けやすくなり受光量が増加するため、前記外来光の受光阻止手法や出力補正処理が必要になる。
As shown in FIG. 1, the conventional detection device 7 has a configuration in which the light guide path is formed in the vertical direction of the windshield. Therefore, the vertical size of the detection device 7 is increased, which hinders the driver's view. .
In the present invention, as shown in FIG. 2, the light emitting unit 2 and the light receiving unit 3 are configured to be installed in the lateral direction on the inner surface of the windshield 5 and the light guide path 4 is formed in the lateral direction. Yes. Thereby, the vertical dimension of the detection apparatus 1 can be shortened, and the driver's view is not obstructed. If the light guide path 4 is taken in the lateral direction, the light receiving unit 3 is likely to receive the extraneous light emitted from the front direction on the vehicle and the amount of received light increases. Is required.

これらの課題を解決する本発明の方法を説明する。
(1)請求項1に記載している雨滴量検出装置では、図2に示すように前記発光部2と前記受光部3とをワイパ作動範囲の最上点位置になるフロントガラス5の車内側に横方向に一定間隔で対向して接着設置し、前記導光経路4を水平方向に形成する。これにより前記雨滴量検出装置1の縦寸法を小さくでき、運転者視界を阻害することはなくなる。
The method of the present invention for solving these problems will be described.
(1) In the raindrop amount detecting device described in claim 1, as shown in FIG. 2, the light emitting unit 2 and the light receiving unit 3 are arranged on the vehicle interior side of the windshield 5 which is the uppermost position of the wiper operating range. The light guide paths 4 are formed in the horizontal direction by being adhered and installed facing each other at a constant interval in the horizontal direction. Thereby, the vertical dimension of the raindrop amount detection device 1 can be reduced, and the driver's view is not obstructed.

反面、このように前記導光経路を水平方向に形成すると、前記外来光の受光量が増大するため、外来光受光を抑止する必要がある。
(2)本発明は請求項2に記載した外来光を防止する雨滴量検出装置として図4に示す構成にしており、図4に示すような形状のプリズム構成を用いることにより、前記付着雨滴量検出信号と前記外来光受光信号とを分離するフィルタ回路を使用する必要がないようにし、検出回路構成の簡易化と前記検出装置の小型軽量化と低廉化をはかっている。図4に示すように、発光部2の発光素子21から投光用プリズム22を介して図3(b)に示す矩形波時系列の光ビームをフロントガラス5に投射する。受光部3まで到達する前記フロントガラス5の内部で導光経路3における反射回数を最大にして雨滴量検出精度を高めるため、前記フロントガラス5への投光入射角度が45度から55度の範囲になるように前記投射用プリズム22の形状を形成する。
On the other hand, when the light guide path is formed in the horizontal direction in this way, the amount of the extraneous light received increases, and it is necessary to suppress the extraneous light reception.
(2) The present invention has the structure shown in FIG. 4 as the raindrop amount detection device for preventing extraneous light according to claim 2, and the amount of attached raindrop is obtained by using a prism configuration having a shape as shown in FIG. There is no need to use a filter circuit for separating the detection signal and the external light receiving signal, thereby simplifying the configuration of the detection circuit and reducing the size, weight and cost of the detection device. As shown in FIG. 4, a rectangular wave time-series light beam shown in FIG. 3B is projected onto the windshield 5 from the light emitting element 21 of the light emitting unit 2 through the projection prism 22. In order to increase the number of reflections in the light guide path 3 within the windshield 5 reaching the light receiving unit 3 and to increase the accuracy of raindrop detection, the incident angle of light incident on the windshield 5 is in the range of 45 degrees to 55 degrees. The shape of the projection prism 22 is formed so that

受光部3の受光用プリズム32は、図4に示すように外来光の受光が最小になるように、プリズム放出角度を65度から75度の範囲に形成し、このプリズム面に接して受光素子31を設置する。このようなプリズム構成により前記受光素子31における外来光受光量を減少でき、前記発光部2からの前記投射光ビーム受光量比率が増大するため、分離用のフィルタを用いなくても付着雨滴量の検出精度を向上することができる。 As shown in FIG. 4, the light receiving prism 32 of the light receiving unit 3 is formed with a prism emission angle in the range of 65 degrees to 75 degrees so as to minimize the reception of extraneous light. Install 31. With such a prism configuration, the amount of extraneous light received by the light receiving element 31 can be reduced, and the ratio of the amount of received light from the light emitting unit 2 can be increased. Therefore, the amount of attached raindrops can be reduced without using a separation filter. Detection accuracy can be improved.

(3)前記受光用プリズム32の形状だけでは防止できない外来光に対しては、本発明は請求項3に記載した外来光を補正する雨滴量検出装置としており、図5に示す補正方法の構成にしている。図5は図4と同様のプリズム構成であるが、図5に示すように前記受光用素子31と前記受光用プリズム32を挟む面に外来光補正用発光素子33を設置し前記受光素子31に投光する。 (3) For extraneous light that cannot be prevented only by the shape of the light-receiving prism 32, the present invention is a raindrop amount detection device for correcting extraneous light as set forth in claim 3, and the configuration of the correction method shown in FIG. I have to. FIG. 5 shows a prism configuration similar to that of FIG. 4, except that an extraneous light correcting light emitting element 33 is installed on the surface sandwiching the light receiving element 31 and the light receiving prism 32 as shown in FIG. Flood light.

この構成による外来光補正動作を図6を用いて説明する。外来光が無い場合には前記受光素子31の出力は図6(b)のように変動のない矩形波時系列信号になっているが、図6(c)のように照度が変動する外来光を受光すると図6(d)のように前記光ビーム受光量に前記外来光受光量が重畳され、振幅レベルが変動した矩形波時系列信号になって出力されてしまう。なお前記光ビーム矩形波時系列の発振周波数を前記外来光の照度変動に比べて極めて高速に設定するので、図6では前記外来光照度変動を直線で示している。 The extraneous light correction operation with this configuration will be described with reference to FIG. When there is no extraneous light, the output of the light receiving element 31 is a rectangular wave time-series signal having no fluctuation as shown in FIG. 6B, but the extraneous light whose illuminance fluctuates as shown in FIG. 6C. As shown in FIG. 6D, the external light reception amount is superimposed on the light beam reception amount and output as a rectangular wave time-series signal with a varying amplitude level. Since the oscillation frequency of the light beam rectangular wave time series is set at a very high speed compared to the illuminance fluctuation of the external light, the external light illuminance fluctuation is shown by a straight line in FIG.

このような前記外来光に起因する振幅レベル変動を打消す補正処理は次のように行う。図6(a)で前記発光素子21が発光しない区間nでは図6(d)の前記受光素子32の振幅レベルは前記外来光受光量であるから、区間nで前記受光素子32の振幅レベルを記憶保持し次の区間fで前記補正用発光素子33を駆動し図6(e)に示す光度の光ビームを生成し、前記受光用プリズム32を介して前記受光素子31に投射する。このときの前記光ビーム光度は図6(c)に示した前記外来光の照度と反比例した強さになっているから、前記受光素子33の出力は図6(f)に示すように前記外来光による振幅変動が打消されるように補正された矩形波時系列信号になる。このような補正処理で前記外来光に起因するレベル変動を消去した矩形波時系列信号が得られ前記付着雨滴量を的確に算出できるようになる。 The correction process for canceling the amplitude level fluctuation caused by the extraneous light is performed as follows. 6A, in the section n where the light emitting element 21 does not emit light, the amplitude level of the light receiving element 32 in FIG. 6D is the amount of received extraneous light, so the amplitude level of the light receiving element 32 is adjusted in the section n. The correction light emitting element 33 is driven in the next section f to generate a light beam having the luminous intensity shown in FIG. 6 (e), and is projected onto the light receiving element 31 through the light receiving prism 32. Since the light beam intensity at this time has an intensity inversely proportional to the illuminance of the external light shown in FIG. 6 (c), the output of the light receiving element 33 is the external light as shown in FIG. 6 (f). The rectangular wave time-series signal is corrected so as to cancel the amplitude fluctuation due to light. By such correction processing, a rectangular wave time-series signal in which level fluctuations caused by the extraneous light are eliminated can be obtained, and the amount of attached raindrop can be accurately calculated.

(4)車両走行方向変化によって前記フロントガラスへの前記外来光照射方向が変化することにより、前記補正方法では前記検出レベル変動が補正できない場合は、本発明は請求項4に記載した雨滴量検出装置としており図7に示す構成としている。図7では、図5に示した検出装置1の発光部2と受光部3とをそれぞれ左右対称に配置した検出装置11と検出装置12の2個の検出装置を並べて設置し、両者の前記レベル変動量を比較し変動量の少ないほうの検出装置出力を切替器6で選択する構成とし、前記外来光の照射方向変化の影響を抑止する。 (4) When the correction method cannot correct the detection level variation due to a change in the direction of the external light irradiation on the windshield caused by a change in the vehicle traveling direction, the present invention provides raindrop amount detection according to claim 4. The apparatus is configured as shown in FIG. In FIG. 7, two detection devices, a detection device 11 and a detection device 12, in which the light emitting unit 2 and the light receiving unit 3 of the detection device 1 shown in FIG. The change amount is compared, and the detection device output with the smaller change amount is selected by the switch 6 to suppress the influence of the irradiation direction change of the external light.

本発明により運転者視野を阻害せず、簡易な回路構成で外来光の影響を抑止して付着雨滴量を的確に検出できる小型軽量で安価な光学式雨滴検出装置が得られる。 According to the present invention, a small, light and inexpensive optical raindrop detection apparatus capable of accurately detecting the amount of attached raindrops without inhibiting the driver's field of view and suppressing the influence of extraneous light with a simple circuit configuration can be obtained.

本発明の実施例を説明する。 Examples of the present invention will be described.

図8のブロック図に図5で説明した光学式雨滴量検出装置の構成を示す。
前記検出装置1のすべての演算制御処理は図8のCPU11(演算処理装置LSI)で行っており、必要な電力は車両搭載の電池から供給するものとする。図8の構成図と図9のフローチャート図を用いて前記検出装置1の制御手順を示す。
前記検出装置1が起動し制御がスタートすると、初期設定で最大値Lとこれの2/3に基準値Hを設定する。次に発光素子21(以下LED21と記す)が駆動ONで発光区間nか駆動OFFで非発光区間fかを判定しそれぞれ次の該当する区間の処理に入る。
The block diagram of FIG. 8 shows the configuration of the optical raindrop amount detection apparatus described in FIG.
All calculation control processing of the detection device 1 is performed by the CPU 11 (calculation processing device LSI) in FIG. 8, and necessary power is supplied from a battery mounted on the vehicle. A control procedure of the detection apparatus 1 will be described with reference to the configuration diagram of FIG. 8 and the flowchart of FIG.
When the detection apparatus 1 is activated and the control is started, the reference value H is set to the maximum value L and 2/3 of the maximum value L in the initial setting. Next, it is determined whether the light emitting element 21 (hereinafter referred to as the LED 21) is in the light emission section n when the drive is ON or in the non-light emission section f when the drive is OFF, and enters the processing of the next corresponding section.

(1)前記LED21が発光していない区間fにはいると以下の処理を行う。受光素子31(以下PD31と記す)の出力振幅をAD変換器35(以下ADC35と記す)でデジタル値Pに変換し既に設定している基準値Hより大きいときは発光素子33(以下LED33と記す)を駆動電圧値Vで発光させ受光用プリズム32を介してPD31に受光させ前記標準値Hに前記P1を近づける。前期振幅デジタル値Pの平均値M1を算出しこの時の前記駆動電圧値Vと共に前記メモリ12内に格納する。 (1) The following processing is performed when the LED 21 enters the section f where light is not emitted. When the output amplitude of the light receiving element 31 (hereinafter referred to as PD31) is converted into a digital value P by an AD converter 35 (hereinafter referred to as ADC35) and is larger than the preset reference value H, the light emitting element 33 (hereinafter referred to as LED33). ) At a driving voltage value V, light is received by the PD 31 via the light receiving prism 32, and P1 is brought close to the standard value H. An average value M1 of the previous amplitude digital value P is calculated and stored in the memory 12 together with the driving voltage value V at this time.

(2)前記LED21が発光区間nに入ると次の処理を行う。
この区間中では発光終了時点か否かを判定し、終了時点でないときは次の処理を行う。前記平均値M1と前記基準値Hを比較し、前記M1と同値の時は前記補正用LED33の前記駆動電圧Vを保持発光する。この状態で(1)と同様に前記PD31の前記出力デジタル値Pを得てこれの平均値M2を算出し前記メモリ12内に記憶格納する。
(2) When the LED 21 enters the light emission section n, the following processing is performed.
In this section, it is determined whether or not it is the end time of light emission. If it is not the end time, the following processing is performed. The average value M1 is compared with the reference value H, and when the value is the same as M1, the driving voltage V of the correction LED 33 is held and emitted. In this state, similarly to (1), the output digital value P of the PD 31 is obtained, and an average value M2 thereof is calculated and stored in the memory 12.

前記LED21が発光終了時点になったときは、前記平均値M2と前記最大値Lとを比較し前記平均値M2が前記最大値Lより小さいときは最大値Lを前記平均値M2と同値に設定し、(1)に述べた処理に入る。
前記平均値M2が前記最大値Lより大きい場合は雨滴があると判定しワイパ拭払い動作指示をワイパ駆動部に送信し、(1)に述べた処理に移る。
When the LED 21 reaches the end of light emission, the average value M2 is compared with the maximum value L. When the average value M2 is smaller than the maximum value L, the maximum value L is set to the same value as the average value M2. Then, the process described in (1) is entered.
When the average value M2 is larger than the maximum value L, it is determined that there is a raindrop, and a wiper wiping operation instruction is transmitted to the wiper driving unit, and the process proceeds to (1).

本発明は運転者の視野を妨げず、外来光の影響を無くし確実に装着雨滴量を検出する方法を提供し、構成部品が少なく構成し小型軽量で廉価な雨滴検出装置の実現に寄与するものであり、雨天時にワイパ間歇動作切換えを運転者手動による煩雑さを無くしたワイパ自動制御装置に適用できる。 The present invention provides a method for reliably detecting the amount of attached raindrops without obstructing the driver's field of view, eliminating the influence of extraneous light, and contributing to the realization of a small, lightweight, and inexpensive raindrop detection device that has fewer components. Thus, the wiper intermittent operation switching can be applied to a wiper automatic control device that eliminates the trouble of manual driving by a driver in rainy weather.

従来の雨滴検出路Conventional raindrop detection path 本発明の雨滴検出路Raindrop detection path of the present invention 発光信号と受光信号波形図Light emission signal and light reception signal waveform diagram 雨滴量検出装置Raindrop detection device 外来光補正付き検出装置Detector with extraneous light correction 外来光補正処理External light correction processing 検出切換え装置Detection switching device 雨滴検出装置ブロック図Raindrop detector block diagram 雨滴検出処理フロー図Raindrop detection process flow chart

符号の説明Explanation of symbols

1 検出装置
11 CPU(演算処理部)
12 内蔵メモリ部
2 発光部
21 発光素子(LED)
22 投光用プリズム
23 駆動回路
3 受光部
31 受光素子(PD)
32 受光用プリズム
33 補正用発光素子(LED)
34 受光回路
35 AD変換器
36 駆動回路
4 導光経路
5 フロントガラス
6 切換え
1 Detection device
11 CPU (arithmetic processing unit)
12 Built-in memory part 2 Light emitting part
21 Light Emitting Element (LED)
22 Projection prism
23 Drive circuit 3 Receiver
31 Light receiving element (PD)
32 Light receiving prism
33 Light emitting element for correction (LED)
34 Receiver circuit
35 AD converter
36 Drive circuit 4 Light guide path 5 Windshield 6 Switching

Claims (4)

車両フロントガラスのワイパ拭払い最上部位置の車内面に発光素子と投射用プリズムからなる発光部および受光用プリズムと受光素子とからなる受光部とを水平方向(横方向)に一定間隔で対向装着し、前記発光部と前記受光部の間で前記フロントガラス内に導光経路を水平方向(横方向)に形成し、前記発光素子をパルス状電圧で駆動してパルス発光させて光ビームを生成し、前記導光経路での反射回数を最大にする入射角度を持つ前記投射用プリズムを介して前記フロントガラスに前記光ビームを投射し、前記フロントガラス車外面に付着した雨滴により散乱して減衰して来る前記光ビームを前記受光用プリズムを介して前記受光素子で受光し、前記光ビームの減衰量を検出して前記フロントガラスに付着した雨滴量を算出する運転者視野を妨害しないように縦寸法を短くした雨滴量検出装置。 Wipe wiper wiper on vehicle windshield The light emitting part consisting of light emitting element and projection prism and the light receiving part consisting of light receiving prism and light receiving element are mounted facing each other at regular intervals in the horizontal direction (lateral direction). Then, a light guide path is formed in the windshield in the horizontal direction (lateral direction) between the light emitting unit and the light receiving unit, and the light emitting element is driven with a pulse voltage to emit light and generate a light beam. The light beam is projected onto the windshield through the projection prism having an incident angle that maximizes the number of reflections on the light guide path, and is scattered and attenuated by raindrops attached to the outer surface of the windshield. The driver's field of view of the light beam received by the light receiving element through the light receiving prism, and the amount of raindrops attached to the windshield is calculated by detecting the attenuation amount of the light beam Shortened raindrop amount detecting apparatus of the vertical dimension so as not to interfere. 水平方向に設置されるため、前記受光素子で増大する前記外来光受光量により正確な雨滴量の検出が妨害されないように、前記受光部の前記受光用プリズムを前記外来光が入光しにくい受光角度にプリズム面を形成して前記外来光の影響を抑止し、付着雨滴により減衰してくる前記ビーム光と前記外来光との分離用フィルタ使用しなくとも付着雨滴量を的確に検出できるようにし、簡易な回路構成により小型で低廉にできる請求項1に記載の雨滴量検出装置。 Since it is installed in the horizontal direction, the light receiving element of the light receiving unit is less likely to receive the extraneous light so that accurate detection of the amount of raindrops is not hindered by the extraneous light received by the light receiving element. A prism surface is formed at an angle to suppress the influence of the extraneous light so that the amount of attached raindrop can be accurately detected without using a filter for separating the beam light and the extraneous light attenuated by the attached raindrop. The raindrop amount detection device according to claim 1, which can be made small and inexpensive with a simple circuit configuration. 前記受光用プリズムだけでは抑止できない前記外来光受光の影響を補正するため、前記受光部において前記受光素子の設置面とは反対側の前記受光用プリズム面に接して外来光補正用発光素子を設置し、前記発光素子が発光していない区間で前記受光素子の出力振幅値を前記外来光の受光量として検出記憶し、前記発光素子の次の発光区間で前記記憶量に応じた強度で前記外来光補正用発光素子を発光させ、前記受光素子に受光させることで、前記外来光の受光量に応じた出力信号補正を行い、外来光分離用フィルタを使用せずに前記外来光の影響を補正した信号を生成し、前記付着雨滴量を的確に検出できるようにした請求項2に記載の雨滴量検出装置。 In order to correct the influence of the extraneous light reception that cannot be suppressed only by the light-receiving prism, an extraneous light correction light-emitting element is installed in contact with the light-receiving prism surface opposite to the installation surface of the light-receiving element in the light-receiving unit. The output amplitude value of the light receiving element is detected and stored as the amount of received extraneous light in the section where the light emitting element is not emitting light, and the external intensity is detected according to the stored amount in the next light emitting section of the light emitting element. The light correction light emitting element emits light, and the light receiving element receives the light to correct the output signal according to the amount of received extraneous light, and correct the influence of the extraneous light without using the extraneous light separation filter. The raindrop amount detection device according to claim 2, wherein the signal is generated so that the amount of the attached raindrop can be accurately detected. 前記雨滴量検出装置の前記発光部と前記受光部の組合せをそれぞれ左右反対に2組設置し、前記外来光の照射方向に対応して前記外来光の影響の少ないほうの組合せに切換えて、前記外来光の影響を補正し前記付着雨滴量を的確に検出できるようにした請求項3に記載の雨滴量検出装置。

Two combinations of the light emitting unit and the light receiving unit of the raindrop amount detection device are installed opposite to each other in the right and left direction, and switched to the combination with less influence of the external light corresponding to the irradiation direction of the external light, The raindrop amount detection device according to claim 3, wherein the amount of attached raindrops can be accurately detected by correcting the influence of extraneous light.

JP2007191763A 2007-07-24 2007-07-24 Raindrop quantity detector Pending JP2009025274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191763A JP2009025274A (en) 2007-07-24 2007-07-24 Raindrop quantity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191763A JP2009025274A (en) 2007-07-24 2007-07-24 Raindrop quantity detector

Publications (1)

Publication Number Publication Date
JP2009025274A true JP2009025274A (en) 2009-02-05

Family

ID=40397201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191763A Pending JP2009025274A (en) 2007-07-24 2007-07-24 Raindrop quantity detector

Country Status (1)

Country Link
JP (1) JP2009025274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768809A (en) * 2013-01-11 2015-07-08 康蒂-特米克微电子有限公司 Illumination for the detection of raindrops on a window by means of a camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768809A (en) * 2013-01-11 2015-07-08 康蒂-特米克微电子有限公司 Illumination for the detection of raindrops on a window by means of a camera

Similar Documents

Publication Publication Date Title
US5229602A (en) Contamination sensor for transparent elements having a reflection light barrier and a working voltage controller
US9519841B2 (en) Attached matter detector and vehicle equipment control apparatus
US20110128543A1 (en) Rain sensor using light scattering
US20160341848A1 (en) Object detection apparatus, object removement control system, object detection method, and storage medium storing object detection program
US20030160158A1 (en) Raindrop/light beam detecting sensor and auto-wiper device
JPH06199208A (en) Method of controlling windshield glass wiper system
JP4678536B2 (en) Illuminance sensor
KR20170004533A (en) One body type rain sensor with reflection type sensor for detecting the external object
JP5525976B2 (en) Wiper control device
JP6451283B2 (en) Optical sensor
CN111051855B (en) Water content sensor and road surface state detection device
JP2009025274A (en) Raindrop quantity detector
JP2001318146A (en) Body information detecting device
JP2009085920A (en) Laser radar system for vehicle and judging method of stain of same
KR100880248B1 (en) Rain sensing apparatus
JP2007163511A (en) Raindrop detecting apparatus
JP2004294101A (en) Raindrop detecting apparatus
KR101004477B1 (en) Multi-functional Rain Sensor with Prism
JP2009042156A (en) Photosensor device
JPS5924278A (en) Obstackle detecting apparatus for vehicle
KR100981196B1 (en) Prism mediated type rain sensor
JP2013071518A (en) Raindrop detecting device
JP2004198399A (en) Rain sensor and method for compensating infrared-ray transmittance of the same
JP2011153985A (en) Contamination detecting apparatus of projector-type headlamp
KR20090020914A (en) Defogging system using light emitting device for a vehicle and control method thereof