JP2009025124A - Electrode for isfet sensor - Google Patents

Electrode for isfet sensor Download PDF

Info

Publication number
JP2009025124A
JP2009025124A JP2007188045A JP2007188045A JP2009025124A JP 2009025124 A JP2009025124 A JP 2009025124A JP 2007188045 A JP2007188045 A JP 2007188045A JP 2007188045 A JP2007188045 A JP 2007188045A JP 2009025124 A JP2009025124 A JP 2009025124A
Authority
JP
Japan
Prior art keywords
electrode
ion
thin film
isfet
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188045A
Other languages
Japanese (ja)
Inventor
Tomoyuki Nishio
友志 西尾
Yoshikazu Iwamoto
恵和 岩本
Yasushi Ueda
康史 上田
Manabu Shibata
学 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2007188045A priority Critical patent/JP2009025124A/en
Publication of JP2009025124A publication Critical patent/JP2009025124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for an ISFET sensor capable of achieving an increase in response speed and the stabilization of an indication value even when a non-aqueous solvent solution such as oil or the like is set as a measuring target and capable of easily and certainly washing off residue or a contaminant to stably keep measuring precision. <P>SOLUTION: The electrode 9 for the ISFET sensor is constituted by coating the surface of the gate part of a gate insulating type FET 4 with an ion-sensitive membrane 8 comprising tantalum pentoxide (Ta<SB>2</SB>O<SB>5</SB>) or the like. A porous titanium oxide (TiO<SB>2</SB>) is applied to and formed on at least the part corresponding to the gate part on the ion-sensitive membrane 8 of the electrode 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被検液中のイオン濃度を測定するイオンセンサやpHを測定するpHセンサなどのように、ゲート絶縁型FET(電界効果トランジスター)を用いてなるISFET(ion sensitive FET)センサ用電極に関する。   The present invention relates to an electrode for an ISFET (ion sensitive FET) sensor using a gate insulating FET (field effect transistor), such as an ion sensor for measuring an ion concentration in a test liquid or a pH sensor for measuring pH. About.

この種のISFETセンサ用電極として、従来、抵抗が大きく、機械的強度が低いガラス電極に代えて、ゲート絶縁型FETのゲート部表面に窒化シリコン(Si23 )や五酸化タンタル(Ta25 )、アルミナ(Al23 )等を含む無機物のイオン感応性薄膜を被覆してなるものが知られている(例えば、特許文献1、特許文献2参照)。 As this type of ISFET sensor electrode, silicon nitride (Si 2 N 3 ) or tantalum pentoxide (Ta 2 ) is used on the surface of the gate portion of the gate insulating FET instead of a glass electrode having high resistance and low mechanical strength. Oxide sensitive thin films containing inorganic substances including O 5 ), alumina (Al 2 O 3 ), and the like are known (see, for example, Patent Document 1 and Patent Document 2).

特公昭58−25221号公報Japanese Patent Publication No. 58-25221 特開平9−178697号公報Japanese Patent Laid-Open No. 9-178697

上記特許文献1や2で知られている従来のISFETセンサ用電極の場合は、ガラス電極に比べて機械的強度に優れ、かつ、抵抗も小さくて微小電極として有用であるのみならず、ゲート部表面を窒化シリコン(Si23 )等の無機物のイオン感応性薄膜で被覆させることにより、膜の特性に応じて、pHやpNa、pNH3 等の種々の化学的特性の測定に使用することが可能である。 In the case of the conventional ISFET sensor electrode known in Patent Documents 1 and 2, the gate portion is not only useful as a microelectrode because it is superior in mechanical strength and has low resistance compared to a glass electrode. By covering the surface with an inorganic ion-sensitive thin film such as silicon nitride (Si 2 N 3 ), it can be used to measure various chemical properties such as pH, pNa, and pNH 3 depending on the properties of the film. Is possible.

しかしながら、上記従来のISFETセンサ用電極では、オイルやアルコールなどの水分が非常に少ない非水溶媒溶液を測定対象とする場合、溶液と電極表面のイオン感応性薄膜との摩擦によって帯電しやすくて流動電位を生じ、それが原因で応答速度が遅く、指示値が安定しにくい。また、酵素活性度等の微量測定に用いる場合、溶液、特に蛋白が表面に残留しやすい上に繰り返し使用による汚れの影響もあり、これら残留物や汚れは洗浄しても容易に落ちず、その結果、測定精度の経時的な低下は避けられないという問題があった。   However, in the case of the above-mentioned conventional ISFET sensor electrode, when a non-aqueous solvent solution such as oil or alcohol having a very small amount of water is used as a measurement target, it is easy to be charged due to friction between the solution and the ion-sensitive thin film on the surface of the electrode. An electric potential is generated, the response speed is slow due to this, and the indicated value is difficult to stabilize. In addition, when used for micro-measurement of enzyme activity, etc., the solution, especially protein, is likely to remain on the surface, and there is also the effect of dirt due to repeated use. As a result, there has been a problem that a decrease in measurement accuracy over time is unavoidable.

本発明は上述の実情に鑑みてなされたもので、その目的は、オイルやアルコール等の非水溶媒溶液を測定対象とする場合でも応答速度の向上及び指示値の安定化を図れるとともに、残留物や汚れを容易、確実に洗浄して高い測定精度を安定維持することができるISFETセンサ用電極を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to improve the response speed and stabilize the indicated value even when a non-aqueous solvent solution such as oil or alcohol is used as a measurement object, and to provide a residue. It is an object of the present invention to provide an ISFET sensor electrode that can easily and reliably clean and maintain high measurement accuracy.

上記目的を達成するために、本発明に係るISFETセンサ用電極は、ゲート絶縁型FETのゲート部表面に、窒化シリコン、五酸化タンタル、アルミナを含むイオン感応性薄膜を被覆してなるISFETセンサ用電極において、前記イオン感応性薄膜上で少なくとも前記ゲート部に対応する部分に、多孔性の酸化チタン膜を被覆していることを特徴としている。   In order to achieve the above object, an ISFET sensor electrode according to the present invention is for an ISFET sensor in which a gate portion surface of a gate insulating FET is coated with an ion sensitive thin film containing silicon nitride, tantalum pentoxide, and alumina. The electrode is characterized in that a porous titanium oxide film is coated on at least a portion corresponding to the gate portion on the ion-sensitive thin film.

上記のような特徴構成、すなわち、FETの少なくともゲート部に対応するイオン感応性薄膜部分を酸化チタン(TiO2 )膜で被覆させている本発明によれば、オイルやアルコールなど水分の非常に少ない非水溶媒溶液を測定対象とする場合でも、電極表面が表面張力の小さい親水性に優れているものであるために、微量の水分を凝集させることが可能であり、溶液とイオン感応性薄膜との摩擦によって生じる流動電位を軽減することができ、応答速度の向上及び指示値の安定化を図ることができる。しかも、酵素活性度等の微量測定に用いる場合でも、酸化チタン(TiO2 )膜の光触媒能によるセルフクリーニング機能により溶液の付着残留を非常に少なくすることができるとともに、酵素などの蛋白が一部残留したとしても、また、繰り返し使用に伴い汚れが生じたとしても、それらを水洗などのごく簡単な洗浄により容易、確実に除去することができる。したがって、非水溶媒溶液や酵素活性度等の微量測定も含めてイオンやpHなど所定の化学的物性の測定対象範囲、つまり、用途を拡大することができるだけでなく、ゲート部表面の残留物や汚れに起因するコンタミなどを防いで、長期に亘る繰り返し使用においても高い測定精度を安定よく維持することができるという効果を奏する。 According to the present invention in which the ion-sensitive thin film portion corresponding to at least the gate portion of the FET is coated with a titanium oxide (TiO 2 ) film, the moisture content such as oil and alcohol is very small. Even when a non-aqueous solvent solution is a measurement object, a small amount of water can be agglomerated because the electrode surface is excellent in hydrophilicity with a small surface tension. The flow potential generated by the friction can be reduced, the response speed can be improved, and the indicated value can be stabilized. Moreover, even when it is used for micro-measurement of enzyme activity and the like, the self-cleaning function by the photocatalytic ability of the titanium oxide (TiO 2 ) film can greatly reduce the residual adhesion of the solution, and some proteins such as enzymes Even if it remains, or even if it becomes dirty with repeated use, it can be easily and reliably removed by simple washing such as washing with water. Therefore, it is possible not only to expand the measurement target range of predetermined chemical physical properties such as ions and pH, including trace measurement such as non-aqueous solvent solution and enzyme activity, that is, not only can the application be expanded, There is an effect that contamination due to dirt is prevented, and high measurement accuracy can be stably maintained even in repeated use over a long period of time.

本発明において、前記多孔性の酸化チタン(TiO2 )膜は、ゲート部表面に対応する部分にのみ形成されていればよいが、請求項2に記載のように、多孔性の酸化チタン(TiO2 )膜を前記イオン感応性薄膜上の表面全域に被覆することが望ましい。この場合は、製造、すなわち、多孔性酸化チタン(TiO2 )膜の成膜が容易であるとともに、この酸化チタン(TiO2 )膜によるセルフクリーニング機能の破壊や機能低下を極力抑制して高測定精度の維持効果を一層向上することができる。 In the present invention, the porous titanium oxide (TiO 2 ) film may be formed only in a portion corresponding to the surface of the gate portion. However, as described in claim 2, the porous titanium oxide (TiO 2 ) is formed. 2 ) It is desirable to coat the membrane over the entire surface of the ion sensitive thin film. In this case, it is easy to manufacture, that is, to form a porous titanium oxide (TiO 2 ) film, and at the same time, the self-cleaning function is destroyed and reduced by the titanium oxide (TiO 2 ) film as much as possible. The effect of maintaining accuracy can be further improved.

また、本発明は、測定用FETのみを有するISFETセンサ用電極に適用してもよいが、特に、請求項3に記載のように、前記ゲート絶縁型FETが、被測定対象に同時に接触して両者の検知電圧差を検出するように一つの基板上に並び成形された測定用FETと参照用FETの二つを備え、そのうち測定用FETのゲート部表面には前記イオン感応性薄いが被膜されているとともに、参照用FETのゲート部表面にはイオン非感応性またはイオン感応度の低い薄膜が被覆され、かつ、前記測定用FETの少なくともゲート部表面に対応するイオン感応性薄膜部分上には、多孔性の酸化チタン膜が被覆されているとともに、前記参照用FETの少なくともゲート部表面に対応するイオン非感応性またはイオン感応度の低い薄膜部分上には、非多孔性の酸化チタン膜が被覆されているものに適用することが望ましい。   In addition, the present invention may be applied to an ISFET sensor electrode having only a measurement FET. In particular, as described in claim 3, the gate-insulated FET is in contact with an object to be measured simultaneously. Two FETs, a measurement FET and a reference FET, arranged side by side on a single substrate so as to detect the difference between the detection voltages of the two, are provided with the ion sensitive thin film on the surface of the gate portion of the measurement FET. In addition, the surface of the gate portion of the reference FET is coated with a thin film having no ion sensitivity or low ion sensitivity, and at least on the ion sensitive thin film portion corresponding to the surface of the gate portion of the measurement FET. In addition, a porous titanium oxide film is coated, and on the thin film portion having low ion insensitivity or low ion sensitivity corresponding to at least the gate portion surface of the reference FET, It is desirable that the porous titanium oxide film is applied to what is covered.

この場合は、測定用電極及び参照用電極の両方共にゲート絶縁型FETを用いて両者の検知電圧差を検出することにより、例えば銀/塩化銀電極等の金属電極を組み合わせたものに比べて、電位の経時的ドリフト特性、各種誘導ノイズに対する感受性及び温度特性を相殺して測定感度及び測定精度のより一層の向上が図れると同時に、それら両電極のセルフクリーニング機能の働きによって長期繰り返し使用時の高測定精度の維持効果を十分に確保することができる。   In this case, both the measurement electrode and the reference electrode use a gate insulation type FET to detect the detection voltage difference between them, for example, compared to a combination of metal electrodes such as a silver / silver chloride electrode, It is possible to further improve the measurement sensitivity and measurement accuracy by offsetting the drift characteristics of the potential over time, the sensitivity to various induced noises, and the temperature characteristics. A sufficient maintenance effect of measurement accuracy can be ensured.

以下、本発明の実施の形態を、図面を参照しながら説明する。図1,図2は、測定用FETと参照用FETの二つを備えたISFETセンサ用の電極に適用した場合の要部の縦断面図及び要部の拡大縦断面である。このISFETセンサ1は、高絶縁性のワンチップ基板であるシリコン(Si)ウェハ2に二つのn型(またはp型)領域3,3を作製するとともに、このn型領域3,3それぞれにp型(またはn型)チャンネルFET4,4を作り込み、各ドレインとソース間に亘ってアルミ配線5,6した後、全体をSiO2 などの酸化(絶縁)膜7で覆うことにより、同一特性を持つ測定用ISFET電極9と参照用ISFET電極10を、ワンチップのシリコンウェハ2上に横並び配置して形成している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 are a longitudinal sectional view of an essential part and an enlarged longitudinal sectional view of an essential part when applied to an electrode for an ISFET sensor having two FETs for measurement and a reference FET. The ISFET sensor 1 has two n-type (or p-type) regions 3 and 3 formed on a silicon (Si) wafer 2 which is a highly insulating one-chip substrate, and each of the n-type regions 3 and 3 has p. After forming the type (or n-type) channel FETs 4 and 4 and forming the aluminum wirings 5 and 6 between the respective drains and sources, the whole is covered with an oxide (insulating) film 7 such as SiO 2 so that the same characteristics are obtained. The measuring ISFET electrode 9 and the reference ISFET electrode 10 are formed side by side on the one-chip silicon wafer 2.

前記二つのFET4,4のうち、測定用ISFET電極9のゲート部表面には、五酸化タンタル(Ta25 )、窒化シリコン(Si23 )、アルミナ(Al23 )などのイオン感応性薄膜8Aを堆積し成膜しているとともに、参照用ISFET電極10のゲート部表面には、有機単分子膜や有機膜などのイオン非感応性またはイオン感応度の低い薄膜8Bが被覆されている。また、前記シリコンウェハ2上に横並び配置された前記測定用ISFET電極9と参照用ISFET電極10との中間位置に対応する薄膜上には、例えばプラチナ(Pt)膜よりなる擬似比較電極11が形成されている。 Of the two FETs 4 and 4, ions such as tantalum pentoxide (Ta 2 O 5 ), silicon nitride (Si 2 N 3 ), and alumina (Al 2 O 3 ) are formed on the surface of the measurement ISFET electrode 9. The sensitive thin film 8A is deposited to form a film, and the surface of the gate portion of the reference ISFET electrode 10 is coated with a thin film 8B having low ion sensitivity, such as an organic monomolecular film or an organic film. ing. Further, a pseudo comparison electrode 11 made of, for example, a platinum (Pt) film is formed on a thin film corresponding to an intermediate position between the measurement ISFET electrode 9 and the reference ISFET electrode 10 arranged side by side on the silicon wafer 2. Has been.

そして、前記測定用ISFET電極9のゲート部表面に対応するイオン感応性薄膜8A上には、多孔性の酸化チタン(TiO2 )膜12Aがディップコート法やCVD法などにより被覆形成されているとともに、前記参照用ISFET電極10のゲート部表面に対応する前記イオン非感応性またはイオン感応度の低い薄膜8B上には、非多孔性の酸化チタン(TiO2 )膜12Bが、ディップコート法やCVD法などにより被覆形成されている。 A porous titanium oxide (TiO 2 ) film 12A is formed on the ion-sensitive thin film 8A corresponding to the gate surface of the measurement ISFET electrode 9 by dip coating or CVD. On the thin film 8B corresponding to the surface of the gate portion of the reference ISFET electrode 10, the non-porous titanium oxide (TiO 2 ) film 12B is formed by dip coating or CVD. The coating is formed by the method.

図3は、上記構造を持つISFETセンサ1の動作回路例の構成を示すもので、前記測定用ISFET電極9及び参照用ISFET電極10は各別の駆動源13A,13Bにて駆動されるべく構成されており、これら両ISFET電極9,10と擬似比較電極11との間の電位を検出する演算増幅器14A,14Bと、これら演算増幅器14A,14Bによる検出電位の差を差動増幅式に検出する差動アンプ15と、その出力をAD変換するAD変換器(ADC)16と、AD変換された両検出電位差を演算処理する演算処理部(MPU)17と、演算処理結果であるイオン濃度やpHなどの化学的特性値を出力表示する表示部18とを具備して構成されている。   FIG. 3 shows the configuration of an operation circuit example of the ISFET sensor 1 having the above-described structure. The measurement ISFET electrode 9 and the reference ISFET electrode 10 are configured to be driven by separate drive sources 13A and 13B. The operational amplifiers 14A and 14B for detecting the potential between the ISFET electrodes 9 and 10 and the pseudo comparison electrode 11 and the difference between the detected potentials of the operational amplifiers 14A and 14B are detected in a differential amplification manner. The differential amplifier 15, an AD converter (ADC) 16 that performs AD conversion on the output thereof, an arithmetic processing unit (MPU) 17 that performs arithmetic processing on both detected potential differences after AD conversion, and an ion concentration or pH that is the result of the arithmetic processing And a display unit 18 for outputting and displaying chemical characteristic values.

上記のように構成されたISFETセンサ1は、前記測定用ISFET電極9、参照用ISFET電極10の各ゲート部及び擬似比較電極11が被検液等の被測定対象に同時に接触するように用いられる。そして、それら各電極9,10と擬似比較電極11との間の電位が演算増幅器14A,14Bにより検出されるとともに、それら両検出電位の差が差動アンプ15で検出され、かつ、この差動アンプ15の出力(両検出電位の差)がADC16でディジタル化されてMPU17に取り込まれ、ここでの演算処理によりイオン濃度やpHなどの化学的特性値が求められ、表示部18に表示されることになる。   The ISFET sensor 1 configured as described above is used so that the measurement ISFET electrode 9, each gate portion of the reference ISFET electrode 10, and the pseudo comparison electrode 11 are simultaneously in contact with a measurement target such as a test solution. . The potential between the electrodes 9 and 10 and the pseudo comparison electrode 11 is detected by the operational amplifiers 14A and 14B, and the difference between the detected potentials is detected by the differential amplifier 15. The output of the amplifier 15 (difference between both detection potentials) is digitized by the ADC 16 and taken into the MPU 17, and the chemical characteristic values such as ion concentration and pH are obtained by the arithmetic processing here and displayed on the display unit 18. It will be.

このようにしてイオン濃度等の化学的物性値が測定され表示されるISFETセンサ1において、前記測定用ISFET電極9のゲート部表面に対応するイオン感応性薄膜8A及び参照用ISFET電極10のゲート部表面に対応するイオン非感応性またはイオン感応度の低い薄膜8B上が酸化チタン(TiO2 )膜12A,12Bで被覆されているので、例えばオイルやアルコールなど水分の非常に少ない非水溶媒溶液を測定する場合、測定用ISFET電極9のゲート部表面が表面張力の小さい親水性に優れているものであるために、微量の水分を凝集可能で、溶液とイオン感応性薄膜8Aとの摩擦によって生じる流動電位は非常に少なく、これによって、応答速度を向上し、指示値の安定化を図ることができる。 In the ISFET sensor 1 in which chemical property values such as ion concentration are measured and displayed in this way, the ion sensitive thin film 8A corresponding to the surface of the gate portion of the measurement ISFET electrode 9 and the gate portion of the reference ISFET electrode 10 are displayed. Since the thin film 8B corresponding to the surface has low ion sensitivity or low ion sensitivity is covered with the titanium oxide (TiO 2 ) films 12A and 12B, a non-aqueous solvent solution with very little water such as oil or alcohol is used. When measuring, since the surface of the gate portion of the ISFET electrode 9 for measurement is excellent in hydrophilicity with a small surface tension, it is possible to agglomerate a minute amount of water, and is generated by friction between the solution and the ion sensitive thin film 8A. The streaming potential is very small, thereby improving the response speed and stabilizing the indicated value.

また、酵素活性度等の微量測定に用いる場合でも、酸化チタン(TiO2 )膜12A,12Bの光触媒能によるセルフクリーニング機能により溶液の付着残留を非常に少なくすることができるとともに、酵素などの蛋白が表面に残留したとしても、また、繰り返し使用に伴い表面に汚れが生じたとしても、水洗などのごく簡単な洗浄により容易、確実に除去することができる。したがって、非水溶媒溶液や酵素活性度等の微量測定も含めてイオンやpHなど所定の化学的物性の測定対象範囲、つまり、用途の拡大を図ることができるだけでなく、ゲート部表面の残留物や汚れに起因するコンタミなどを防いで、長期に亘る繰り返し使用においても高い測定精度を安定よく維持することができる。 In addition, even when used for trace measurement of enzyme activity and the like, the self-cleaning function based on the photocatalytic ability of the titanium oxide (TiO 2 ) films 12A and 12B can greatly reduce the residual adhesion of the solution as well as proteins such as enzymes. Even if it remains on the surface, or even if the surface becomes dirty with repeated use, it can be easily and reliably removed by simple washing such as washing with water. Therefore, it is possible not only to expand the measurement target range of predetermined chemical properties such as ions and pH, including trace measurements such as non-aqueous solvent solution and enzyme activity, that is, to expand the application, but also residue on the gate surface Contamination caused by dirt and dirt can be prevented, and high measurement accuracy can be stably maintained even during repeated use over a long period of time.

なお、上記実施の形態では、同一特性を持つ測定用ISFET電極9と参照用ISFET電極10を、ワンチップのシリコンウェハ2上に横並び配置して形成したISFETセンサ1の電極9,10に適用したものについて説明したが、測定用ISFET電極9と比較電極のみを有するISFETセンサの測定用ISFET電極(図2参照)に適用しても上記したと同様な効果を奏することが可能である。   In the above embodiment, the measurement ISFET electrode 9 and the reference ISFET electrode 10 having the same characteristics are applied to the electrodes 9 and 10 of the ISFET sensor 1 formed side by side on the one-chip silicon wafer 2. Although described above, the same effects as described above can be obtained even when applied to the measurement ISFET electrode (see FIG. 2) of the ISFET sensor having only the measurement ISFET electrode 9 and the comparison electrode.

また、上記実施の形態では、比較電極として、擬似比較電極を用いたが、これに代えて、金や白金などの固体金属電極を用いてもよく、また、測定用ISFET電極9と参照用ISFET電極10の配置関係は、横並びに限らず、両電極9,10を対向配置させたり、任意の角度に配置したりしてもよい。   Further, in the above embodiment, the pseudo comparison electrode is used as the comparison electrode. Instead, a solid metal electrode such as gold or platinum may be used, and the measurement ISFET electrode 9 and the reference ISFET. The arrangement relationship of the electrodes 10 is not limited to the horizontal arrangement, and both the electrodes 9 and 10 may be arranged opposite to each other or arranged at an arbitrary angle.

本発明に係るISFETセンサとして、測定用FET電極と参照用FET電極の二つを備えたISFETセンサに適用した場合の要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part at the time of applying to the ISFET sensor provided with two FET electrodes for a measurement, and a reference FET electrode as an ISFET sensor which concerns on this invention. 同上ISFETセンサ用電極の拡大縦断面である。It is an expansion vertical cross section of the electrode for ISFET sensors same as the above. 同上ISFETセンサの動作回路例の構成図である。It is a block diagram of the example of an operation circuit of an ISFET sensor same as the above.

符号の説明Explanation of symbols

1 ISFETセンサ
2 シリコンウェハ(基板の例)
8A イオン感応性薄膜
8B イオン非感応性またはイオン感応度の低い薄膜
9 測定用ISFET電極
10 参照用ISFET電極
11 擬似比較電極(比較電極)
12A 多孔性の酸化チタン(TiO2 )膜
12B 非多孔性の酸化チタン(TiO2 )膜
1 ISFET sensor 2 Silicon wafer (example of substrate)
8A Ion sensitive thin film 8B Ion insensitive or low ion sensitive thin film 9 ISFET electrode for measurement 10 ISFET electrode for reference 11 Pseudo comparison electrode (comparison electrode)
12A Porous titanium oxide (TiO 2 ) film 12B Non-porous titanium oxide (TiO 2 ) film

Claims (3)

ゲート絶縁型FETのゲート部表面に、窒化シリコン、五酸化タンタル、アルミナを含むイオン感応性薄膜を被覆してなるISFETセンサ用電極において、
前記イオン感応性薄膜上で少なくとも前記ゲート部に対応する部分に、多孔性の酸化チタン膜を被覆していることを特徴とするISFETセンサ用電極。
In the electrode for ISFET sensor formed by coating the surface of the gate part of the gate insulating FET with an ion sensitive thin film containing silicon nitride, tantalum pentoxide, and alumina
An electrode for ISFET sensor, wherein a porous titanium oxide film is coated on at least a portion corresponding to the gate portion on the ion-sensitive thin film.
前記多孔性の酸化チタン膜が、前記イオン感応性薄膜上の表面全域に被覆されている請求項1に記載のISFETセンサ用電極。   The ISFET sensor electrode according to claim 1, wherein the porous titanium oxide film is coated on the entire surface of the ion-sensitive thin film. 前記ゲート絶縁型FETが、被測定対象に同時に接触して両者の検知電圧差を検出するように一つの基板上に並び成形された測定用FETと参照用FETの二つを備え、そのうち測定用FETのゲート部表面には前記イオン感応性薄いが被膜されているとともに、参照用FETのゲート部表面にはイオン非感応性またはイオン感応度の低い薄膜が被覆され、かつ、前記測定用FETの少なくともゲート部表面に対応するイオン感応性薄膜部分上には、多孔性の酸化チタン膜が被覆されているとともに、前記参照用FETの少なくともゲート部表面に対応するイオン非感応性またはイオン感応度の低い薄膜部分上には、非多孔性の酸化チタン膜が被覆されている請求項1または2に記載のISFETセンサ用電極。   The gate-insulated FET comprises two measuring FETs and a reference FET, which are formed side by side on a single substrate so as to detect the difference in detection voltage between the two objects to be measured simultaneously. The surface of the gate part of the FET is coated with the ion sensitive thin film, and the surface of the gate part of the reference FET is coated with a thin film having no ion sensitivity or low ion sensitivity. A porous titanium oxide film is coated on at least the ion sensitive thin film portion corresponding to the surface of the gate portion, and the ion insensitivity or ion sensitivity corresponding to at least the surface of the gate portion of the reference FET. 3. The ISFET sensor electrode according to claim 1, wherein a non-porous titanium oxide film is coated on the low thin film portion.
JP2007188045A 2007-07-19 2007-07-19 Electrode for isfet sensor Pending JP2009025124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188045A JP2009025124A (en) 2007-07-19 2007-07-19 Electrode for isfet sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188045A JP2009025124A (en) 2007-07-19 2007-07-19 Electrode for isfet sensor

Publications (1)

Publication Number Publication Date
JP2009025124A true JP2009025124A (en) 2009-02-05

Family

ID=40397068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188045A Pending JP2009025124A (en) 2007-07-19 2007-07-19 Electrode for isfet sensor

Country Status (1)

Country Link
JP (1) JP2009025124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084675A1 (en) * 2007-12-27 2009-07-09 Horiba, Ltd. Method for measurement of content of water or organic acid in polar organic solvent, and apparatus for the method
KR20150004254A (en) * 2013-07-02 2015-01-12 전자부품연구원 Fet ion detector and system by using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084675A1 (en) * 2007-12-27 2009-07-09 Horiba, Ltd. Method for measurement of content of water or organic acid in polar organic solvent, and apparatus for the method
US8436622B2 (en) 2007-12-27 2013-05-07 Horiba, Ltd. Method for measurement of content of water or organic acid in polar organic solvent, and apparatus for the method
KR20150004254A (en) * 2013-07-02 2015-01-12 전자부품연구원 Fet ion detector and system by using the same
WO2015156475A1 (en) * 2013-07-02 2015-10-15 전자부품연구원 Field effect transistor ion sensor and system using same
KR101616959B1 (en) * 2013-07-02 2016-04-29 전자부품연구원 Fet ion detector and system by using the same

Similar Documents

Publication Publication Date Title
Schöning et al. CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure
Poghossian et al. An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime
Park et al. ISFET glucose sensor system with fast recovery characteristics by employing electrolysis
US7582500B2 (en) Reference pH sensor, preparation and application thereof
Reddy et al. Porous silicon based potentiometric triglyceride biosensor
US7686929B2 (en) Sensing apparatus and method
US7946153B2 (en) Method for measuring gases and/or minimizing cross sensitivity in FET-based gas sensors
Diallo et al. Development of pH-based ElecFET biosensors for lactate ion detection
Poghossian Determination of the pHpzc of insulators surface from capacitance–voltage characteristics of MIS and EIS structures
US20110248698A1 (en) Biosensor and detection method of target substance
CN107024522A (en) Biology sensor and detection means
Bhalla et al. Protein phosphorylation analysis based on proton release detection: Potential tools for drug discovery
Nguyen et al. Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing
Poghossian et al. Field-effect sensors for monitoring the layer-by-layer adsorption of charged macromolecules
Myers et al. Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode
TWI279538B (en) Drift calibration method and device for the potentiometric sensor
Tarasov et al. Gold-coated graphene field-effect transistors for quantitative analysis of protein–antibody interactions
JP2006275788A (en) Biomolecule detector, and biomolecule detection method using the same
JP2008134255A (en) Biomolecule detector, and biomolecule detection method using the same
Stoop et al. Competing surface reactions limiting the performance of ion-sensitive field-effect transistors
Reddy et al. Estimation of triglycerides by a porous silicon based potentiometric biosensor
Poghossian et al. Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk
Truong et al. Reduced graphene oxide field-effect transistor with indium tin oxide extended gate for proton sensing
US20090078026A1 (en) Gas Sensor
JP2009025124A (en) Electrode for isfet sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100217