JP2009023874A - Heat-resistant easily-dispersible organic clay and method for producing the same - Google Patents

Heat-resistant easily-dispersible organic clay and method for producing the same Download PDF

Info

Publication number
JP2009023874A
JP2009023874A JP2007188541A JP2007188541A JP2009023874A JP 2009023874 A JP2009023874 A JP 2009023874A JP 2007188541 A JP2007188541 A JP 2007188541A JP 2007188541 A JP2007188541 A JP 2007188541A JP 2009023874 A JP2009023874 A JP 2009023874A
Authority
JP
Japan
Prior art keywords
organic
silane compound
clay
heat
organic clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188541A
Other languages
Japanese (ja)
Inventor
Masanobu Onigata
正伸 鬼形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hojo Co Ltd
Hojun Co Ltd
Original Assignee
Hojo Co Ltd
Hojun Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hojo Co Ltd, Hojun Co Ltd filed Critical Hojo Co Ltd
Priority to JP2007188541A priority Critical patent/JP2009023874A/en
Publication of JP2009023874A publication Critical patent/JP2009023874A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heat-resistant easily-dispersible organic clay by reacting a cristobalite-containing organic clay (bentonite) with a silane compound (silane coupling agent) to fix the silane compound on a crystal surface and end face. <P>SOLUTION: A half-dried cristobalite-containing organic clay is mixed with a silane compound optionally dissolved in an organic solvent such as methanol, ethanol or acetone, and a prepared mixture is dried and pulverized. Alternatively, a cristobalite-containing aqueous clay dispersion is mixed with an organic cation, and a silane compound preliminarily dissolved in an organic solvent, and a prepared mixture is dried and pulverized to produce the objective heat-resistant white easily-dispersible organic clay. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、耐熱性、易分散性に優れた耐熱性白色易分散性有機粘土及びその製造方法に関する。   The present invention relates to a heat-resistant white easily dispersible organoclay excellent in heat resistance and easy dispersibility, and a method for producing the same.

粘土の結晶表面を有機カチオンで修飾して生成される有機粘土を、各種樹脂中でその有機粘土の層状結晶構造をナノサイズレベルに一枚一枚、剥離、分散させることにより、樹脂の強度、弾性率、熱変形温度等の機械的特性の向上、難燃性、ガスバリア性の向上を目的とした機能性フィラー剤として有機粘土は、近年、注目されている。。   The organic clay produced by modifying the crystal surface of the clay with an organic cation is peeled and dispersed one layer at a time in the nano-sized layered crystal structure of the organic clay in various resins. In recent years, organic clay has attracted attention as a functional filler agent for the purpose of improving mechanical properties such as elastic modulus and heat distortion temperature, flame retardancy, and gas barrier properties. .

しかし、この有機粘土を150℃程度以上の加熱溶融した樹脂中で混練すると有機粘土の結晶表面に吸着している有機カチオンである第4級アンモニウムの長鎖アルキル基が熱分解して変色し、その結果、樹脂が着色したり、樹脂中での有機粘土の分散性が低下するため樹脂の機械的特性等の向上が見られず、このため、有機粘土を含有する樹脂の用途が制限され、また、その有機粘土が使用できる樹脂は、溶融温度が150℃程度以下の樹脂に限定されるという問題があった。   However, when this organoclay is kneaded in a heat-melted resin at about 150 ° C. or higher, the long-chain alkyl group of the quaternary ammonium that is an organic cation adsorbed on the crystal surface of the organoclay is thermally decomposed and discolored. As a result, the resin is colored or the dispersibility of the organic clay in the resin is reduced, so the mechanical properties of the resin are not improved, and therefore, the use of the resin containing the organic clay is limited, Moreover, the resin which can use the organoclay has a problem that the melting temperature is limited to a resin having a melting temperature of about 150 ° C. or less.

そこで、本発明者らは、上記課題を解決すべく鋭意研究し、特許文献1に示す技術を先に提案している。   Therefore, the present inventors have intensively studied to solve the above problems, and have previously proposed the technique shown in Patent Document 1.

特開2004−155644号公報JP 2004-155644 A

この先に提案した技術は、有機粘土の結晶同士の間隔である層間距離が90Å以上に広がっている脱水工程の後、つまり乾燥工程の前に、予め有機溶剤に溶解した酸化防止剤を添加交合混合し、酸化防止剤を有機粘土の結晶層間に挿入(インターカレート)し、乾燥、粉砕することで、又は、粘土水分散液に有機カチオンと有機溶剤に溶解した酸化防止剤の混合物を添加、混合して有機カチオンと酸化防止剤を粘土の結晶層間にインターカレートし、乾燥、粉砕し、することで、有機粘土に耐熱性を付与することができ、さらには、上記乾燥工程の前に、シラン系化合物を直接、または、メタノール、エタノール、イソプロピルアルコールのようなアルコールやアセトンのような有機溶剤に溶解したシラン系化合物を添加、混合し、乾燥、粉砕することで、有機粘土に易分散性を付与することができる有機粘土及びその製造方法に係り、有機粘土の結晶層間距離が十分に広がっている状態のときに、酸化防止剤やシラン系化合物を添加、混合そし、乾燥、粉砕することで、150℃以上の高温で樹脂と混練しても変色せず、耐熱性が向上し、かつ、易分散性を付与しようとするものである。   The previously proposed technique is to add and mix an antioxidant previously dissolved in an organic solvent after the dehydration process, in which the interlayer distance, which is the distance between the organic clay crystals, has spread to 90 mm or more, that is, before the drying process. Then, an antioxidant is inserted between the crystal layers of the organic clay (intercalated), dried, pulverized, or a mixture of an antioxidant dissolved in an organic cation and an organic solvent is added to the clay water dispersion, By mixing, intercalating the organic cation and antioxidant between the crystal layers of the clay, drying, pulverizing, and adding heat resistance to the organic clay, further, before the drying step Add silane compound dissolved in organic solvent such as methanol, ethanol, isopropyl alcohol or organic solvent such as acetone, mix, dry, powder Thus, the present invention relates to an organic clay capable of imparting easy dispersibility to the organic clay and a method for producing the same, and in a state where the distance between crystal layers of the organic clay is sufficiently widened, an antioxidant and a silane compound are added. By adding, mixing, drying, and pulverizing, even if kneaded with a resin at a high temperature of 150 ° C. or higher, the color does not change, heat resistance is improved, and easy dispersibility is to be imparted.

しかしながら、この先に提案した技術にあっては、上記、酸化防止剤及びシラン系化合物を添加・、混合処理を施した有機粘土と、樹脂とを溶融混練した場合、酸化防止剤が有機粘土の結晶層間から外部へと飛散して、酸化防止剤が結晶層間に定着せず、有機粘土の結晶表面に吸着している有機カチオンである第4級アンモニウムの熱分解を防ぐことが十分ではないが効果的に白色化しない、という問題が判明した。   However, in the previously proposed technique, when the above-mentioned antioxidant and silane compound are added and mixed with the organic clay and the resin are melt-kneaded, the antioxidant is an organic clay crystal. Although it is not enough to prevent thermal decomposition of quaternary ammonium, which is an organic cation adsorbed on the crystal surface of the organic clay, the antioxidant is not fixed between the crystal layers by scattering from the interlayer to the outside. The problem of not whitening automatically.

そこで、本発明者は、鋭意研究をしたところ、原料としてクリストバーライト(Cristobalite)を含む粘土を有機カチオンで修飾した有機粘土のクリストバーライトとシラン系化合物(シランカップリング)とを反応させて有機粘土の結晶層間表面及び端面にシラン系化合物を中に定着させることで、酸化防止剤を用いることなく第4級アンモニウム塩の熱による劣化を防止することができて耐熱性が向上し、かつ、有機粘土と樹脂を溶融混練してもシランカップリングが有機粘土粒子外結晶層間から外部へとでて行かず、また、有機溶剤にも膨潤する耐熱性白色易分散性有機粘土及びその製造方法を提供しようとするものである。   Therefore, the present inventor conducted intensive research and reacted a clay containing cristobalite as a raw material with an organic cation and a silane compound (silane coupling). By fixing the silane compound in the crystal interlayer surface and end face of the organic clay, it is possible to prevent the quaternary ammonium salt from being deteriorated by heat without using an antioxidant, and the heat resistance is improved, and Heat-resistant white easily dispersible organic clay in which silane coupling does not go out from the outer crystal layer of the organic clay particles to the outside even when the organic clay and resin are melt-kneaded, and also swells in an organic solvent, and a method for producing the same Is to provide.

即ち、本発明者らは、上記課題を解決すべく鋭意研究したところ、クリストバーライトを含む有機粘土(ベントナイト)とシラン系化合物(シランカップリング)とを反応させてシラン系化合物を有機粘土の結晶層間結晶表面及び端面に定着させることにより、耐熱性白色易分散性有機粘土が得られること、及びシランカップリングは、クリストバライトを含んでいない有機粘土ではの結晶両端端面のみにしか反応定着せず、易分散性を付与することはできても、結晶表面に吸着している有機カチオンの熱による劣化を防ぐことはできず耐熱性の向上がみられないことからしないことから、クリストバライトを含んでいる有機粘土を用いることにより、確実にシランカップリングが有機粘土の結晶表面に定着することを見いだして本発明を完成した。   That is, the present inventors have intensively studied to solve the above problems, and as a result, an organic clay containing cristobalite (bentonite) and a silane compound (silane coupling) are reacted to convert the silane compound into an organic clay. Heat-resistant white easily dispersible organoclay can be obtained by fixing to the crystal interlayer crystal surface and the end face, and silane coupling can be reactive and fixed only on the end face of the crystal in the case of organoclay not containing cristobalite. Even though it can impart easy dispersibility, it cannot prevent deterioration of the organic cation adsorbed on the crystal surface due to heat and does not show improvement in heat resistance, so cristobalite is included. By using the organic clay, it was found that the silane coupling was firmly fixed on the crystal surface of the organic clay, thereby completing the present invention. It was.

即ち、本発明は、半乾燥状態のクリストバーライトを含む有機粘土にシラン系化合物を直接、または、予めメタノール、エタノール、アセトンのような有機溶剤に溶解したシラン系化合物を添加して混合し、乾燥、粉砕することにより、または、クリストバライトを含む粘土水分散液に有機カチオンと、シラン系化合物を直接、または、予め有機溶剤に溶解させたシラン系化合物を添加して混合し、乾燥、粉砕することにより、樹脂と摂氏150℃以上の高温で混練しても変色しない耐熱性白色易分散性有機粘土を得ること、及び上記乾燥工程の前の半乾燥状態の有機粘土に、シラン系化合物を直接、または、メタノール、エタノール、イソプロピルアルコールのようなアルコールやアセトンのような有機溶剤に溶解したシラン系化合物を添加、混合し、乾燥、粉砕することにより耐熱性白色有機粘土を得るものである。   That is, in the present invention, a silane compound is directly added to an organic clay containing cristobalite in a semi-dry state, or a silane compound previously dissolved in an organic solvent such as methanol, ethanol, acetone is added and mixed, Dry and pulverize, or add and mix organic cation and silane compound dissolved in organic solvent directly into clay aqueous dispersion containing cristobalite, and dry and pulverize By obtaining a heat-resistant white easily dispersible organic clay that does not change color even when kneaded with a resin at a high temperature of 150 ° C. or higher, and directly adding a silane compound to the semi-dried organic clay before the drying step Or, add silane compound dissolved in alcohol such as methanol, ethanol, isopropyl alcohol or organic solvent such as acetone. , Mixed and dried, thereby obtaining a heat-resistant white organoclay by grinding.

それ故、この発明に係る耐熱性易分散性有機粘土は、クリストバライトを含む半乾燥状態の有機粘土に、シラン系化合物を直接、または、予めメタノール、エタノール、アセトンのような有機溶剤に溶解したシラン系化合物を添加して混合し、乾燥、粉砕することにより耐熱性有機粘土を得ることができる。   Therefore, the heat-resistant and easily dispersible organic clay according to the present invention is a silane obtained by dissolving a silane compound directly or in advance in an organic solvent such as methanol, ethanol or acetone in a semi-dry organic clay containing cristobalite. A heat-resistant organoclay can be obtained by adding a system compound, mixing, drying, and pulverizing.

さらに、クリストバライトを含む半乾燥状態の有機粘土にシラン系化合物を、直接、または、予めメタノール、エタノールやアセトンのような有機溶剤に溶解したシラン系化合物を添加、混合し、乾燥、粉砕することによって、樹脂や有機溶剤等の有機系中でシラン系化合物処理有機粘土の分散性が向上して粒子径が減少し、耐熱性易分散性有機粘土を得ることができ、有機溶剤レオロジーコントロール剤、樹脂の機能性フィラー剤等の用途を大幅に拡張することができる等、幾多の非常に優れた効果が得られる。 Furthermore, by adding, mixing, drying and pulverizing the silane compound to the semi-dried organic clay containing cristobalite, directly, or adding the silane compound previously dissolved in an organic solvent such as methanol, ethanol and acetone. Dispersibility of silane compound-treated organoclays in organic systems such as resins and organic solvents improves particle size and reduces heat-resistant and easily dispersible organoclays. Organic solvent rheology control agent, resin A number of very excellent effects can be obtained, for example, the application of the functional filler can be greatly expanded.

以下に示す発明の実施の一形態例に基づいてこの発明を詳細に説明する。   The present invention will be described in detail based on an embodiment of the invention shown below.

本発明の実施に当たっては、まず、定法により原料としてクリストバーライトを含む粘土を水中で十分に剥離、分散させ、その後、水またはアルコールに溶解した有機カチオンを粘土の陽イオン交換容量に対して0.5〜2.0倍量添加し、粘土の結晶表面に吸着しているナトリウムイオンと有機カチオンとをイオン交換することにより粘土表面に有機カチオンが吸着し、結晶表面が疎水性を示す有機粘土を生成する。次に、このクリストバライトを含んだ有機粘土を洗浄、脱水し、残存ナトリウムイオンや水分を除去し、得られた半乾燥状態の有機粘土にメタノール、エタノール、アセトンのような有機溶剤に溶解したシラン系化合物を有機粘土の固形分量に対して、0.01〜50.0重量%添加して混合し、乾燥、粉砕することにより、粘土結晶表面に固着して含有しているクリストバライトの水酸基及び粘土結晶端面に存在する水酸基にシランカップリングを反応定着させ、耐熱性白色易分散性ベントナイト有機粘土を生成する。   In practicing the present invention, first, clay containing cristobalite as a raw material is sufficiently peeled and dispersed in water by a conventional method, and then the organic cation dissolved in water or alcohol is reduced to 0 to the cation exchange capacity of the clay. Organic clay in which organic cations are adsorbed on the clay surface by adding 5 to 2.0 times the amount and ion exchange of sodium ions and organic cations adsorbed on the clay crystal surface, and the crystal surface is hydrophobic Is generated. Next, this cristobalite-containing organic clay is washed and dehydrated, residual sodium ions and moisture are removed, and the resulting semi-dried organic clay is dissolved in an organic solvent such as methanol, ethanol or acetone. The compound is mixed with 0.01 to 50.0 wt% of the solid content of the organic clay, mixed, dried, and pulverized, so that the hydroxyl group and clay crystal of cristobalite are fixed and contained on the surface of the clay crystal. Silane coupling is reactively fixed to the hydroxyl group present on the end face to produce heat-resistant white easily dispersible bentonite organoclay.

また、この発明にあっては、原料としてクリストバライトを含んだ粘土水分散液に、上述した量の有機カチオンと、シラン系化合物を直接、または、メタノール、エタノール、イソプロピルアルコールのようなアルコールやアセトンのような有機溶剤に溶解したシラン系化合物を添加、混合し、乾燥、粉砕しても同様の耐熱性易分散性有機粘土を得ることができる。   In the present invention, the above-mentioned amount of the organic cation and the silane compound are directly added to the clay aqueous dispersion containing cristobalite as a raw material, or alcohol such as methanol, ethanol, isopropyl alcohol, or acetone. A similar heat-resistant and easily dispersible organic clay can be obtained by adding, mixing, drying and pulverizing a silane compound dissolved in such an organic solvent.

ここで、本発明に使用できる粘土としては、クリストバーライトを含む有機粘土であればモンモリロナイト、バイデライト、へクトライト、サポナイト、スチブンサイト、ソーコナイト、ノントロナイト等のスメクタイト系粘土のほか、バーミキュライト、ハロイサイト、膨潤性マイカなど、天然及び合成粘土及びこれらの混合物があげられる。クリストバライトは粘土結晶表面に固着した状態で天然に含有しており、水簸による湿式分級処理によっても粘土と分離することはできない。   Here, the clay that can be used in the present invention is an organic clay containing cristobalite, in addition to smectite clay such as montmorillonite, beidellite, hectorite, saponite, stevensite, soconite, nontronite, vermiculite, halloysite, Natural and synthetic clays such as swellable mica and mixtures thereof. Cristobalite is naturally contained in a state of being fixed on the surface of the clay crystal, and cannot be separated from the clay even by a wet classification treatment with water tank.

尚、この発明にあっては、クリストバライトを含んだ有機粘土に、上記シラン系化合物を添加し、混合させることで、有機粘土結晶表面に存在するクリストバライトにシラン系化合物が反応し、このシラン化合物が、結晶表面に吸着している第4級アンモニウムの熱による劣化を防ぐとともに、シラン系化合物が有機粘土結晶端面にも反応して有機粘土の耐熱性白色有機粘土に、易分散性能を付与することができる。   In this invention, the silane compound is reacted with cristobalite existing on the surface of the organic clay crystal by adding the silane compound to the organic clay containing cristobalite and mixing the silane compound. In addition to preventing deterioration of the quaternary ammonium adsorbed on the crystal surface due to heat, the silane compound also reacts with the end surface of the organic clay crystal to impart easy dispersion performance to the heat-resistant white organic clay of the organic clay. Can do.

即ち、上記洗浄、脱水し残存ナトリウムイオン残存カチオンや水分を除去し、得られた半乾燥状態の有機粘土に、シラン系化合物を直接、または、メタノール、エタノール、イソプロピルアルコールのようなアルコールやアセトンのような有機溶剤に溶解したシラン系化合物を有機粘土の固形分量に対して0.01〜50.0重量%を添加、混合し、乾燥、粉砕してシラン系化合物処理有機粘土を得る。   That is, after washing and dehydration to remove residual sodium ion residual cations and moisture, the obtained semi-dried organoclay is directly mixed with a silane compound, or alcohol such as methanol, ethanol, isopropyl alcohol, or acetone. The silane compound dissolved in such an organic solvent is added in an amount of 0.01 to 50.0% by weight based on the solid content of the organic clay, mixed, dried and pulverized to obtain a silane compound treated organoclay.

また、本発明に使用できるシラン系化合物としては、一般式
〔YSiX3〕
で表され、Yは炭素数が1から25の炭化水素基である。炭素数1から25の炭化水素基と置喚基を有する場合の有機官能基とは、例えば、ビニル基、クロル基、アミノ基、アミド基、カルボキシル基、水酸基、メルカプト基、エポキシ基、ニトロ基、ニトロソ基、ニトリル基、ネタクリロキシ基、フェニル基等である。特に、耐熱性の向上には、フェニル基を付加したシラン化合物が有効である。Xは加水分解基又は水酸基であり、例えば、クロル基、アルコキシ基または水酸基である。
Moreover, as a silane type compound which can be used for this invention, general formula [YSiX3]
Y is a hydrocarbon group having 1 to 25 carbon atoms. Examples of the organic functional group having a hydrocarbon group having 1 to 25 carbon atoms and a locating group include a vinyl group, a chloro group, an amino group, an amide group, a carboxyl group, a hydroxyl group, a mercapto group, an epoxy group, and a nitro group. Nitroso group, nitrile group, netacryloxy group, phenyl group and the like. In particular, a silane compound added with a phenyl group is effective for improving heat resistance. X is a hydrolyzable group or a hydroxyl group, for example, a chloro group, an alkoxy group or a hydroxyl group.

そして、本発明において、前記シラン系化合物の添加量は、有機粘土に対して0.01〜50.0重量%、好ましくは、0.1〜15.0重量%程度が望ましい。0.01重量%以下では、有機粘土の耐熱性及び分散性は変化せず、50.0重量%以上では耐熱性及び分散性は逆に低下する。   And in this invention, the addition amount of the said silane type compound is 0.01-50.0 weight% with respect to organoclay, Preferably, about 0.1-15.0 weight% is desirable. If it is 0.01% by weight or less, the heat resistance and dispersibility of the organoclay are not changed, and if it is 50.0% by weight or more, the heat resistance and dispersibility are adversely decreased.

勿論、この発明にあっては、シラン系化合物を単独で、半乾燥状態のクリストバライトを含有していない半乾燥状態の有機粘土に添加し、混合した場合には、耐熱性能を得ることはできないが、易分散性能は得ることができる。   Of course, in the present invention, when a silane compound is added alone to a semi-dry organic clay containing no semi-dry cristobalite and mixed, heat resistance cannot be obtained. Easy dispersion performance can be obtained.

また、本発明に使用できる有機カチオンとしては、第4級アンモニウム塩、ホスホニウム塩、スルホニウム塩、及びそれらの混合物からなる有機カチオンがあげられる。   Examples of the organic cation that can be used in the present invention include organic cations composed of a quaternary ammonium salt, a phosphonium salt, a sulfonium salt, and a mixture thereof.

第4級アンモニウム塩としては、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ベンジルジメチルドデシルアンモニウム、ベンジルジメチルオクタデシルアンモニウム、ベンサルコニウムなどのベンジルトリアルキルアンモニウムイオンやトリメチルオクチルアンモニウム、トリメチルドデシルアンモニウム、トリメチルオクタデシルアンモニウムなどのアルキルトリメチルアンモニウムイオン、さらにジメチルジオクチルアンモニウム、ジメチルジドデシルアンモニウム、ジメチルジオクタデシルアンモニウムなどのジメチルジアルキルアンモニウムイオン、さらにトリオクチルメチルアンモニウム、トリドデシルメチルアンモニウムなどのトリアルキルメチルアンモニウムイオン、ベンゼン環を2個有するベンゼトニウムイオンがあげられる。   Quaternary ammonium salts include benzyltrialkylammonium ions such as benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, benzyldimethyldodecylammonium, benzyldimethyloctadecylammonium, benzalkonium, trimethyloctylammonium, trimethyldodecylammonium, trimethyl. Alkyltrimethylammonium ions such as octadecylammonium, dimethyldialkylammonium ions such as dimethyldioctylammonium, dimethyldidodecylammonium and dimethyldioctadecylammonium, and trialkylmethylammonium ions such as trioctylmethylammonium and tridodecylmethylammonium. , Benzethonium ion having two benzene ring.

〔実施例1〕
クリストバーライトを含むモンモリロナイト((株)ホージュン製、ベンゲルFW、図1にそのX線チャートを示す。A)2.0重量%濃度水分散液にモンモリロナイトの陽イオン交換容量(94meq76.6meq/100g)の1.4倍量1.25倍量のジメチルジオクタデシルアンモニウム(固形分濃度76.395.0重量%)を添加、混合し、洗浄、脱水後の半乾燥状態の有機粘土を作製した。その水分は59.272.9重量%であった。この半乾燥状態の有機粘土にフェニルトリヘキシルトリメエトキシシラン(HTS−M)(チッソ信越化学工業(株)製、KBE−103)を有機粘土の固形分量に対して、0.5重量%、1.0重量%、3.0重量%、5.0重量%、8.0重量%を10倍量のメタノールで希釈して添加、混合し、その後、乾燥、粉砕してフェニルトリエトキシシランヘキシルトリメトキシシラン処理有機粘土(図2にフェニルトリエトキシシラン0重量%処理のX線チャートを示す。)を作製した。
[Example 1]
Montmorillonite containing cristobalite (manufactured by Hojun Co., Ltd., Bengel FW, its X-ray chart is shown in FIG. 1) A) Cation exchange capacity of montmorillonite (94 meq 76.6 meq / 100 g in a 2.0 wt% aqueous dispersion. Dimethyldioctadecylammonium (solid content concentration 76.395.0% by weight) of 1.4 times the amount of) was added, mixed, washed and dehydrated to produce a semi-dry organic clay. Its water content was 59.272.9% by weight. To this semi-dried organic clay, phenyltrihexyltrimeethoxysilane (HTS-M) (manufactured by Chisso Shin-Etsu Chemical Co., Ltd., KBE-103) is added in an amount of 0.5% by weight to the solid content of the organic clay. 0.0 wt%, 3.0 wt%, 5.0 wt%, 8.0 wt% diluted with 10 times the amount of methanol, added, mixed, then dried and ground to phenyltriethoxysilane hexyltri A methoxysilane-treated organoclay (an X-ray chart of phenyltriethoxysilane treated with 0% by weight is shown in FIG. 2) was prepared.

〔実施例2〕
クリストバライトを含むモンモリロナイト((株)ホージュン製、ベンゲルFW)2.0重量%濃度水分散液にモンモリロナイトの陽イオン交換容量(76.6meq/100g)の1.25倍量のジメチルステアリルベンジルアンモニウム(固形分濃度76.3重量%)を添加、混合し、洗浄、脱水後の半乾燥状態の有機粘土を作製した。その水分は84.1重量%であった。この有機粘土にフェニルトリエトキシシラン(信越化学工業(株)製、KBE−103)を有機粘土の固形分量に対して、0重量%、1.0重量%、3.0重量%、5.0重量%、8.0重量%を10倍量のメタノールで希釈して添加、混合し、その後、乾燥、粉砕してフェニルトリエトキシシラン処理有機粘土を作製した。
[Example 2]
Montmorillonite containing cristobalite (manufactured by Hojun Co., Ltd., Bengel FW) in a 2.0% by weight concentration aqueous dispersion of dimethylstearylbenzylammonium (solid) 1.25 times the cation exchange capacity (76.6 meq / 100 g) of montmorillonite A semi-dried organoclay after washing and dehydration was prepared by adding, mixing, washing and dehydrating. Its water content was 84.1% by weight. Phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-103) was added to this organic clay with respect to the solid content of the organic clay, 0% by weight, 1.0% by weight, 3.0% by weight, 5.0%. Weight% and 8.0 weight% were diluted with 10 times the amount of methanol, added and mixed, then dried and ground to prepare phenyltriethoxysilane-treated organoclay.

〔比較例1〕
クリストバライトを含まないモンモリロナイト((株)ホージュン製、ベンゲルA、図3にそのX線チャートを示す。)2.0重量%濃度水分散液にモンモリロナイトの陽イオン交換容量(94meq/100g)の1.25倍量のジメチルジオクタデシルアンモニウム(固形分濃度95.0重量%)を添加、混合し、洗浄、脱水後の半乾燥状態の有機粘土を作製した。その水分は51.4重量%であった。この有機粘土にフェニルトリエトキシシラン(信越化学工業(株)製、KBE−103)を有機粘土の固形分量に対して、0重量%、1.0重量%、3.0重量%、5.0重量%、8.0重量%を10倍量のメタノールで希釈して添加、混合し、その後、乾燥、粉砕してフェニルトリエトキシシラン処理有機粘土(図4にフェニルトリエトキシシラン0重量%処理のX線チャートを示す。)を作製した。
[Comparative Example 1]
Montmorillonite containing no cristobalite (Hogel Co., Ltd., Bengel A, the X-ray chart of which is shown in FIG. 3) of montmorillonite cation exchange capacity (94 meq / 100 g) in a 2.0 wt% aqueous dispersion. A 25-fold amount of dimethyldioctadecylammonium (solid content concentration: 95.0% by weight) was added, mixed, washed, and semi-dried organoclay after dehydration was prepared. Its water content was 51.4% by weight. Phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-103) was added to this organic clay with respect to the solid content of the organic clay, 0% by weight, 1.0% by weight, 3.0% by weight, 5.0%. % And 8.0% by weight diluted with 10 times the amount of methanol, added, mixed, then dried and crushed and treated with phenyltriethoxysilane treated organoclay (Fig. 4 shows phenyltriethoxysilane treated with 0% by weight). An X-ray chart is shown.).

〔比較例2〕
クリストバライトを含まないモンモリロナイト((株)ホージュン製、ベンゲル2A)に.0重量%濃度水分散液にモンモリロナイトの陽イオン交換容量(94meq/100g)の1.25倍量のジメチルステアリルベンジルアンモニウム(固形分濃度76.3重量%)を添加、混合し、洗浄、脱水後の半乾燥状態の有機粘土を作製した。その水分は68.8重量%であった。この有機粘土にフェニルトリエトキシシラン(KBE−103)((信越化学工業(株)製))を有機粘土の固形分量に対して、0重量%、1.0重量%、3.0重量%、5.0重量%、8.0重量%を10倍量のメタノールで希釈して添加、混合し、その後、乾燥、粉砕してフェニルトリエトキシシラン処理有機粘土を作製した。
[Comparative Example 2]
To montmorillonite containing no cristobalite (Hogel Co., Ltd., Bengel 2A). After adding 1.25% dimethylstearylbenzylammonium (solid content concentration: 76.3% by weight) cation exchange capacity (94 meq / 100 g) of montmorillonite to a 0% by weight aqueous dispersion, mixing, washing, and dehydration A semi-dry organic clay was prepared. Its water content was 68.8% by weight. Phenyltriethoxysilane (KBE-103) ((Shin-Etsu Chemical Co., Ltd.)) was added to this organoclay with respect to the solid content of the organoclay, 0 wt%, 1.0 wt%, 3.0 wt%, 5.0 wt% and 8.0 wt% were diluted with 10 times the amount of methanol, added and mixed, then dried and ground to prepare phenyltriethoxysilane-treated organoclay.

〔評価方法〕
実施例で作製したクリストバーライトを含む有機粘土、比較例のクリストバーライトを含まない有機粘土を用いて、大気雰囲気中の電気炉中で250℃、5分間30分間加熱後、1分間冷却し、再び250℃にて5分間加熱を繰り返し、合計で60分間加熱処理した前後の有機粘土のハンター白色度およびその低下率を次式1に基づき求めた。その結果を表1に示す。
〔Evaluation methods〕
Using the organic clay containing cristobalite prepared in the examples and the organic clay not containing cristobalite of the comparative example, heating at 250 ° C. for 5 minutes and 30 minutes in an electric furnace in an air atmosphere, and then cooling for 1 minute. Then, the heating was repeated again at 250 ° C. for 5 minutes, and the hunter whiteness of the organic clay before and after the heat treatment for 60 minutes in total and the decrease rate thereof were determined based on the following formula 1. The results are shown in Table 1.

Figure 2009023874
Figure 2009023874

Figure 2009023874
Figure 2009023874

表1からも明らかなように、実施例のクリストバーライトを含む有機粘土は、比較例のクリストバーライトを含まない有機粘土と比較してシラン化合物の添加重量の増加と共に加熱処理後のハンター白色度が高い値を示し、白色度低下率は低くなり、熱による変色の影響を抑えることが出来たできた。   As can be seen from Table 1, the organoclay containing cristobalite of the example is a hunter white after heat treatment as the added weight of the silane compound is increased as compared with the organoclay not containing cristobalite of the comparative example. The degree of brightness was high, the rate of decrease in whiteness was low, and the influence of discoloration due to heat could be suppressed.

クリストバライトを含むモンモリロナイトのX線チャートである。It is an X-ray chart of montmorillonite containing cristobalite. フェニルトリエトキシシラン処理有機粘土のフェニルトリエトキシシラン0重量%処理のX線チャートである。It is an X-ray chart of phenyltriethoxysilane treated with 0% by weight of phenyltriethoxysilane-treated organoclay. クリストバライトを含まないモンモリロナイトのX線チャートである。It is an X-ray chart of montmorillonite which does not contain cristobalite. フェニルトリエトキシシラン処理有機粘土のフェニルトリエトキシシラン0重量%処理のX線チャートである。It is an X-ray chart of phenyltriethoxysilane treated with 0% by weight of phenyltriethoxysilane-treated organoclay.

Claims (5)

有機粘土に含まれるクリストバーライトとシラン系化合物とを反応させて有機粘土の結晶層間結晶表面及び端面にシラン系化合物を定着させたことを特徴とする耐熱性白色易分散性有機粘土。   A heat-resistant white easily dispersible organic clay characterized in that cristobalite contained in an organic clay and a silane compound are reacted to fix the silane compound on the crystal interlayer crystal surface and end face of the organic clay. シラン系化合物が下記一般式
〔YSiX3〕
〔ここで、Yは炭素数が1から25の炭化水素基、炭素数1から25の炭化水素基と置喚基から構成される有機官能基であり、Xは加水分解基または水酸基〕で表される群からなる請求項1に記載の耐熱性白色易分散性有機粘土。
Silane compounds are represented by the following general formula
[YSiX3]
[Wherein Y is a hydrocarbon group having 1 to 25 carbon atoms, an organic functional group composed of a hydrocarbon group having 1 to 25 carbon atoms and an anchoring group, and X is a hydrolyzable group or a hydroxyl group] The heat-resistant white easily dispersible organoclay according to claim 1, comprising the group of
半乾燥状態のクリストバーライトを含む半乾燥状態の有機粘土にシラン系化合物を直接、または、予めメタノール、エタノール、アセトンのような有機溶剤に溶解したシラン系化合物を添加して混合し、乾燥、粉砕することを特徴とする耐熱性白色易分散性有機粘土の製造方法。   Silane compound directly into semi-dry state organic clay containing semi-dry state cristobalite, or silane compound dissolved in organic solvent such as methanol, ethanol, acetone in advance and mixed, dried, A method for producing a heat-resistant white easily dispersible organic clay characterized by pulverizing. クリストバライトを含む粘土水分散液に有機カチオンと、シラン系化合物を直接、または、予め有機溶剤に溶解させたシラン系化合物を添加して混合し、乾燥、粉砕することを特徴とする耐熱性易分散性有機粘土の製造方法。   Heat-resistant and easy-dispersion characterized by adding an organic cation and a silane compound directly to a clay water dispersion containing cristobalite, or by adding a silane compound previously dissolved in an organic solvent, mixing, drying, and grinding. Method for producing organic organoclay. シラン系化合物の添加が有機粘土に対して、0.01〜50.0重量%添加することを特徴とする請求項3又は、請求項4のいずれかに記載の耐熱性白色易分散性有機粘土の製造方法。   The heat-resistant white easily dispersible organoclay according to claim 3 or 4, wherein the addition of the silane compound is 0.01 to 50.0% by weight with respect to the organoclay. Manufacturing method.
JP2007188541A 2007-07-19 2007-07-19 Heat-resistant easily-dispersible organic clay and method for producing the same Pending JP2009023874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188541A JP2009023874A (en) 2007-07-19 2007-07-19 Heat-resistant easily-dispersible organic clay and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188541A JP2009023874A (en) 2007-07-19 2007-07-19 Heat-resistant easily-dispersible organic clay and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009023874A true JP2009023874A (en) 2009-02-05

Family

ID=40396037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188541A Pending JP2009023874A (en) 2007-07-19 2007-07-19 Heat-resistant easily-dispersible organic clay and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009023874A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137833A (en) * 2007-11-13 2009-06-25 Tomoegawa Paper Co Ltd Clay dispersion liquid, its manufacturing method, and clay thin film
US11291357B2 (en) 2011-12-13 2022-04-05 Endochoice, Inc. Removable tip endoscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167214A (en) * 1986-01-17 1987-07-23 Mizusawa Ind Chem Ltd Production of high-purity organic smectites clay
JPH04305005A (en) * 1991-03-29 1992-10-28 Nippon Paint Co Ltd Hydrolyzable organometallic compound intercalated composition
JPH05254823A (en) * 1992-03-09 1993-10-05 Houjiyun Kogyo Kk Modified bentonite
JPH09295809A (en) * 1996-02-26 1997-11-18 Kanegafuchi Chem Ind Co Ltd Clay compound and its production
JP2004155644A (en) * 2002-03-29 2004-06-03 Hojun:Kk Heat-resistant easily dispersible organic clay and its manufacturing method
JP2005097027A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Organic denatured phyllosilicate, and composition thereof
JP2005097028A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Organic denatured phyllosilicate, and composition thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167214A (en) * 1986-01-17 1987-07-23 Mizusawa Ind Chem Ltd Production of high-purity organic smectites clay
JPH04305005A (en) * 1991-03-29 1992-10-28 Nippon Paint Co Ltd Hydrolyzable organometallic compound intercalated composition
JPH05254823A (en) * 1992-03-09 1993-10-05 Houjiyun Kogyo Kk Modified bentonite
JPH09295809A (en) * 1996-02-26 1997-11-18 Kanegafuchi Chem Ind Co Ltd Clay compound and its production
JP2004155644A (en) * 2002-03-29 2004-06-03 Hojun:Kk Heat-resistant easily dispersible organic clay and its manufacturing method
JP2005097027A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Organic denatured phyllosilicate, and composition thereof
JP2005097028A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Organic denatured phyllosilicate, and composition thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137833A (en) * 2007-11-13 2009-06-25 Tomoegawa Paper Co Ltd Clay dispersion liquid, its manufacturing method, and clay thin film
US11291357B2 (en) 2011-12-13 2022-04-05 Endochoice, Inc. Removable tip endoscope

Similar Documents

Publication Publication Date Title
DK3245172T3 (en) EXPANDABLE VINYLAROMATIC POLYMER GRANULATE AND EXPANDED VINYLAROMATIC POLYMER FOAM COMPREHENSIVE GEOPOLYMER COMPOSITE AND ITS USE THEREOF
JP4145956B2 (en) Gel composition containing carbonaceous compound
Lu et al. A review on flame retardant technology in China. Part II: flame retardant polymeric nanocomposites and coatings
JP5042498B2 (en) Flame retardant and flame retardant resin composition
García-López et al. Influence of clay modification process in PA6-layered silicate nanocomposite properties
US6710111B2 (en) Polymer nanocomposites and the process of preparing the same
KR101840206B1 (en) Organic nanoclay-polymer composite and preparing method of the same
Choudhury et al. Effect of different nanoparticles on thermal, mechanical and dynamic mechanical properties of hydrogenated nitrile butadiene rubber nanocomposites
CN114085421A (en) Additive composition, preparation method and application thereof
Xu et al. Combination of double‐modified clay and polypropylene‐graft‐maleic anhydride for the simultaneously improved thermal and mechanical properties of polypropylene
JP2009023874A (en) Heat-resistant easily-dispersible organic clay and method for producing the same
Effenberger et al. Synthesis and characterization of some polyacrylate/montmorillonite nanocomposites by in situ emulsion polymerization using redox initiation system
Mao et al. Magadiite/styrene‐butadiene rubber composites for tire tread applications: effects of varying layer spacing and alternate inorganic fillers
JP4206482B2 (en) Production method of organic clay
Hajibeygi et al. Plasticized polyvinyl chloride/melamine‐cyanurate modified Mg (OH) 2@ bentonite nanocomposites; mechanical, thermal, and flame retardant properties
Shimpi et al. Property investigation of surface-modified MMT on mechanical and photo-oxidative degradation of viton rubber composites
JP4257501B2 (en) Method for producing heat-resistant and easily dispersible organoclay
Fang et al. Preparation and investigation of ethylene–vinyl acetate copolymer/silicone rubber/clay nanocomposites
BR112014005337B1 (en) fire retardant material and method of preparing it
Abdullah et al. Effect of trihexyltetradecylphosphonium on thermal degradation properties of low linear density polyethylene/montmorillonite nanocomposites
Tsai et al. Synthesis and properties of epoxy/layered zirconium phosphonate (Zr-P) nanocomposites
CN104744801A (en) Mesoporous-silica nano composite flame-retardant sheath material and preparation method thereof
KR20100012725A (en) Fabrication method of organoclay using sonication and fabrication method of polymer nanocomposite using the same
JP6890826B2 (en) Smectite slurry
Quan et al. Network transformations of highly dispersed MMT/SBR nanocomposites during processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100625

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20100820

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20120517

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121022