JP2009023468A - Brake hydraulic pressure controller for vehicle - Google Patents

Brake hydraulic pressure controller for vehicle Download PDF

Info

Publication number
JP2009023468A
JP2009023468A JP2007187674A JP2007187674A JP2009023468A JP 2009023468 A JP2009023468 A JP 2009023468A JP 2007187674 A JP2007187674 A JP 2007187674A JP 2007187674 A JP2007187674 A JP 2007187674A JP 2009023468 A JP2009023468 A JP 2009023468A
Authority
JP
Japan
Prior art keywords
current value
pressure
gradient
hydraulic pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007187674A
Other languages
Japanese (ja)
Other versions
JP4897599B2 (en
Inventor
Masashi Kobayashi
正史 小林
Tetsuhiro Narita
哲博 成田
Tomonori Hirose
友規 廣瀬
Tomoaki Sekiya
智明 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP2007187674A priority Critical patent/JP4897599B2/en
Publication of JP2009023468A publication Critical patent/JP2009023468A/en
Application granted granted Critical
Publication of JP4897599B2 publication Critical patent/JP4897599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brake hydraulic pressure controller for vehicle, capable of improving efficiency of braking control by using high caliper pressure immediately before a wheel is locked for a comparatively long period of time. <P>SOLUTION: A control means (control section 20) includes: an initial current value calculation means 22 which calculates an initial current value at which a normally closed proportional solenoid valve (inlet vale 1) starts to open, when transferring from a depressurized condition or a holding condition to a boosting condition; a first means 25 for adjusting the amount of valve opened, which reduces a power distribution rate at a first gradient from the initial current value toward a break point current value; and a second means 26 for adjusting the amount of valve opened, which reduces the power distribution rate at a second gradient lower than the first gradient from the break point current value toward a target current value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、入口弁として常開型比例電磁弁を用いた車両用ブレーキ液圧制御装置に関する。   The present invention relates to a vehicle brake hydraulic pressure control device using a normally open proportional solenoid valve as an inlet valve.

一般に、運転者の踏力に応じて液圧を発生するマスタシリンダと、車輪に制動力を与える車輪ブレーキとの間に配置されて、車輪ブレーキによる制動力を制御する車両用ブレーキ液圧制御装置が知られている。このような車両用ブレーキ液圧制御装置は、主に、マスタシリンダ側から車輪ブレーキへのブレーキ液圧の伝達を許容する常開型の入口弁と、車輪ブレーキ内の液圧(以下、キャリパ圧ともいう)を逃がす常閉型の出口弁と、出口弁の開放により逃がされたブレーキ液圧を吸収するリザーバ等を主に備えている。そして、この車両用ブレーキ液圧装置では、例えば車輪がロックしそうになった(スリップ率が所定値以上になった)と判断したときに、入口弁を閉じ、出口弁を開放することで、キャリパ圧をリザーバに逃がして車輪のロックを防止する、いわゆるアンチロックブレーキ制御(以下、ABS制御という)を行うことが可能となっている。   Generally, a vehicular brake hydraulic pressure control device that is disposed between a master cylinder that generates hydraulic pressure according to a driver's pedaling force and a wheel brake that applies braking force to a wheel and that controls the braking force by the wheel brake is provided. Are known. Such a vehicle brake fluid pressure control device mainly includes a normally-open inlet valve that allows transmission of brake fluid pressure from the master cylinder side to the wheel brake, and fluid pressure in the wheel brake (hereinafter referred to as caliper pressure). A normally-closed outlet valve that releases the brake fluid pressure, and a reservoir that absorbs the brake fluid pressure released by opening the outlet valve. In this vehicle brake hydraulic device, for example, when it is determined that the wheel is likely to be locked (the slip ratio is equal to or higher than a predetermined value), the inlet valve is closed and the outlet valve is opened. It is possible to perform so-called anti-lock brake control (hereinafter referred to as ABS control) that releases the pressure to the reservoir and prevents the wheels from being locked.

このような車両用ブレーキ液圧制御装置としては、従来、通電量に応じて開弁量を任意に変更可能な常開型比例電磁弁(リニアソレノイドバルブ)を入口弁として採用したものが知られている(特許文献1参照)。この技術では、図7に示すように、スリップ率(車体速度と車輪速度の比)が所定値以上になったときに(時刻T1)、常時開放されている入口弁に高めの電流値αとなる電流が供給され、入口弁が一気に閉じられるとともに、出口弁が開放されてキャリパ圧が減圧される。そして、このABS制御中において、スリップ率が所定値未満になったとき(車輪の接地状態が正常な状態に回復したとき;時刻T2)には、出口弁を閉じるとともに、入口弁に供給する電流を制御して、入口弁を所定の開弁量で開弁する。詳しくは、閉弁状態に対応した所定の電流値αから通電量を初期電流値βまで一気に下げた後(時刻T2)、その通電量を徐々に所定の勾配で下げていくことで、増圧制御の開始(時刻T2)と略同時にキャリパ圧の増加を可能としている。そして、所定の勾配で下げていく途中で、再びスリップ率が所定値以上になると(時刻T3)、入口弁に電流値αの電流が供給されて再び入口弁が一気に閉じられ、増圧制御が終了する。   As such a vehicle brake hydraulic pressure control device, there has been conventionally known a normally open proportional solenoid valve (linear solenoid valve) that can arbitrarily change the valve opening amount according to the energization amount as an inlet valve. (See Patent Document 1). In this technique, as shown in FIG. 7, when the slip ratio (ratio between the vehicle body speed and the wheel speed) becomes equal to or higher than a predetermined value (time T1), a high current value α is applied to the always-open inlet valve. Is supplied, the inlet valve is closed at once, and the outlet valve is opened to reduce the caliper pressure. During the ABS control, when the slip ratio becomes less than a predetermined value (when the grounding state of the wheel is restored to a normal state; time T2), the outlet valve is closed and the current supplied to the inlet valve And the inlet valve is opened with a predetermined opening amount. Specifically, after the energization amount is lowered from the predetermined current value α corresponding to the valve closing state to the initial current value β all at once (time T2), the energization amount is gradually decreased with a predetermined gradient to increase the pressure. The caliper pressure can be increased almost simultaneously with the start of control (time T2). Then, when the slip ratio becomes equal to or higher than the predetermined value again while lowering at a predetermined gradient (time T3), the current of the current value α is supplied to the inlet valve, the inlet valve is closed again at once, and the pressure increase control is performed. finish.

特開2003−19952号公報JP 2003-19952 A

しかしながら、従来技術では、入口弁への通電量を初期電流値βから所定の勾配で下げることにより、キャリパ圧も所定の勾配で上がっていくので、車輪がロックする直前(時刻T3の直前)の高いキャリパ圧を僅かな時間しか利用できなかった。なお、このような高いキャリパ圧を利用することは制動制御の効率を向上させるため、できる限り長い時間利用することが望まれていた。   However, in the prior art, the caliper pressure also increases with a predetermined gradient by lowering the energization amount to the inlet valve with a predetermined gradient from the initial current value β, so that the wheel just before locking (immediately before time T3) High caliper pressure was available for only a short time. It should be noted that the use of such a high caliper pressure has been desired to be used for as long as possible in order to improve the efficiency of braking control.

そこで、本発明は、車輪がロックする直前の高いキャリパ圧を比較的長い時間利用可能とすることで、制動制御の効率を向上させることができる車両用ブレーキ液圧制御装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a vehicle brake hydraulic pressure control device capable of improving the efficiency of braking control by making it possible to use a high caliper pressure immediately before a wheel is locked for a relatively long time. And

前記課題を解決する本発明は、液圧源で発生した液圧を制御して車輪ブレーキに伝える車両用ブレーキ液圧制御装置であって、前記液圧源側から前記車輪ブレーキへの液圧の伝達を許容し、通電量によって開弁量が調整可能な常開型比例電磁弁と、前記車輪ブレーキ内の液圧を逃がす常閉型電磁弁と、前記常開型比例電磁弁および前記常閉型電磁弁への通電量を制御することで、前記車輪ブレーキ内の液圧を増圧状態、保持状態または減圧状態に切り替える制御を行う制御手段と、を備え、前記制御手段は、前記減圧状態または前記保持状態から前記増圧状態へと移行する場合に、前記常開型比例電磁弁を開弁させる初期電流値を算出する初期電流値算出手段と、前記初期電流値から、前記初期電流値よりも低く、かつ、前記増圧状態が終了すると予測される目標電流値よりも高く設定される折れ点電流値へ向けて第1の勾配で前記通電量を低下させる第1開弁量調整手段と、前記折れ点電流値から前記目標電流値へ向けて前記第1の勾配よりも緩やかな第2の勾配で前記通電量を低下させる第2開弁量調整手段と、を備えていることを特徴とする。   The present invention that solves the above-mentioned problems is a vehicle brake hydraulic pressure control device that controls a hydraulic pressure generated by a hydraulic pressure source and transmits the hydraulic pressure to a wheel brake, and controls the hydraulic pressure from the hydraulic pressure source side to the wheel brake. A normally-open proportional solenoid valve that allows transmission and the valve opening amount can be adjusted by the energization amount; a normally-closed solenoid valve that releases the hydraulic pressure in the wheel brake; the normally-open proportional solenoid valve and the normally-closed solenoid valve; Control means for performing control to switch the hydraulic pressure in the wheel brake to a pressure-increasing state, a holding state, or a pressure-reducing state by controlling an energization amount to the electromagnetic valve, and the control means includes the pressure-reducing state Or an initial current value calculating means for calculating an initial current value for opening the normally open proportional solenoid valve when the holding state is shifted to the pressure increasing state, and the initial current value from the initial current value. Lower and the pressure increase state ends A first valve opening amount adjusting means for reducing the energization amount with a first gradient toward a breakpoint current value set higher than a predicted target current value; and the target current from the breakpoint current value. And a second valve opening amount adjusting means for reducing the energization amount with a second gradient that is gentler than the first gradient toward the value.

本発明によれば、減圧状態または保持状態から増圧状態へと移行すると、初期電流値算出手段によって初期電流値が算出される。その後、第1開弁量調整手段は、初期電流値から折れ点電流値へ向けて、第2の勾配よりも急な第1の勾配で通電量を低下させる。そして、通電量が折れ点電流値へ到達した後は、第2開弁量調整手段が、折れ点電流値から目標電流値へ向けて、第1の勾配よりも緩やかな第2の勾配で通電量を低下させる。そのため、折れ点電流値、すなわち増圧状態が終了しないと予測される電流値までは、素早く車輪ブレーキの増圧を行うことができ、増圧状態が終了すると予測される目標電流値までは緩やかな傾斜で長い時間増圧し続けることができる。すなわち、車輪がロックする直前の高いキャリパ圧を比較的長い時間利用することができるので、制動制御の効率を向上させることができる。   According to the present invention, the initial current value is calculated by the initial current value calculating means when the reduced pressure state or the holding state is shifted to the increased pressure state. Thereafter, the first valve opening amount adjusting means decreases the energization amount with a first gradient that is steeper than the second gradient from the initial current value to the breakpoint current value. Then, after the energization amount reaches the breakpoint current value, the second valve opening amount adjusting means energizes with a second gradient that is gentler than the first gradient from the breakpoint current value to the target current value. Reduce the amount. Therefore, it is possible to quickly increase the wheel brake pressure until the breakpoint current value, that is, the current value at which the pressure increasing state is predicted not to end, and to the target current value at which the pressure increasing state is predicted to end gradually. The pressure can continue to increase for a long time with a gentle slope. That is, since the high caliper pressure immediately before the wheels are locked can be used for a relatively long time, the efficiency of the braking control can be improved.

また、前記第2開弁量調整手段は、前記通電量が前記目標電流値となった後、さらに前記通電量の低下を続行するように構成されていてもよい。   Further, the second valve opening amount adjusting means may be configured to further continue the decrease of the energization amount after the energization amount reaches the target current value.

これによれば、第2開弁量調整手段は、通電量が目標電流値となった後も通電量を低下させ続けるので、例えば運転者による制動操作の変化や路面状態の変化などの外乱の影響があったとしても、安定して増圧制御を行うことができる。   According to this, since the second valve opening amount adjusting means continues to decrease the energization amount even after the energization amount reaches the target current value, for example, a disturbance such as a change in braking operation or a change in road surface condition by the driver is detected. Even if there is an influence, the pressure increase control can be performed stably.

また、前記第1開弁量調整手段は、前記初期電流値から前記折れ点電流値に到達するまでの時間が第1の規定時間となるように、前記第1の勾配を算出し、前記第2開弁量調整手段は、前記折れ点電流値から前記目標電流値に到達するまでの時間が、前記第1の規定時間よりも長い第2の規定時間となるように、前記第2の勾配を算出するように構成されていてもよい。   Further, the first valve opening amount adjusting means calculates the first gradient so that the time from the initial current value to the breakpoint current value becomes a first specified time, 2 valve opening amount adjustment means, the second gradient so that the time from the break point current value to the target current value is a second specified time longer than the first specified time. May be configured to calculate.

これによれば、第1の勾配で通電量を低下させる時間が、第2の規定時間よりも短い第1の規定時間となっているので、折れ点電流値まで迅速に増圧することができ、増圧遅れを抑えることができる。さらに、緩やかな第2の勾配で通電量を低下させる時間が、第1の規定時間よりも長い第2の規定時間となっているので、車輪がロックする直前の高いキャリパ圧をより長い時間利用することができる。   According to this, since the time for reducing the energization amount at the first gradient is the first specified time shorter than the second specified time, the pressure can be quickly increased to the break point current value, The pressure increase delay can be suppressed. Furthermore, since the time for reducing the energization amount with the gentle second gradient is the second specified time that is longer than the first specified time, the high caliper pressure immediately before the wheel locks is used for a longer time. can do.

また、本発明に係る車両用ブレーキ液圧制御装置は、前記目標電流値を、前回の増圧サイクル以前の増圧終了時の電流値に基づいて設定する目標電流値設定手段をさらに備えていてもよい。   In addition, the vehicle brake hydraulic pressure control device according to the present invention further includes target current value setting means for setting the target current value based on a current value at the end of pressure increase before the previous pressure increase cycle. Also good.

これによれば、目標電流値が前回の増圧サイクル以前の増圧終了時の電流値に基づいて設定されるので、目標電流値をより高精度に設定することができ、より確実に制動制御の向上を図ることができる。   According to this, since the target current value is set based on the current value at the end of the pressure increase before the previous pressure increase cycle, the target current value can be set with higher accuracy, and braking control is performed more reliably. Can be improved.

また、本発明に係る車両用ブレーキ液圧制御装置は、前記初期電流値から前記目標電流値を引いた値を所定の割合で乗じた値に基づいて、前記折れ点電流値を算出する折れ点電流値算出手段をさらに備えていてもよい。   Further, the vehicle brake hydraulic pressure control device according to the present invention calculates a breakpoint current value based on a value obtained by multiplying the initial current value by subtracting the target current value at a predetermined ratio. Current value calculation means may be further provided.

これによれば、初期電流値と目標電流値の間に、確実に折れ点電流値を設定することができる。   According to this, it is possible to reliably set the breakpoint current value between the initial current value and the target current value.

本発明によれば、初期電流値から折れ点電流値へ向けて第1の勾配で通電量を低下させ、折れ点電流値から目標電流値へ向けて第1の勾配よりも緩やかな第2の勾配で通電量を低下させるので、車輪がロックする直前の高いキャリパ圧を比較的長い時間利用することができ、制動制御の効率を向上させることができる。   According to the present invention, the energization amount is decreased at the first gradient from the initial current value to the breakpoint current value, and the second current that is gentler than the first gradient from the breakpoint current value to the target current value. Since the energization amount is reduced by the gradient, the high caliper pressure immediately before the wheels are locked can be used for a relatively long time, and the efficiency of the braking control can be improved.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
参照する図面において、図1は本発明の一実施形態に係る車両用ブレーキ液圧制御装置を備えた車両の構成図であり、図2は車両用ブレーキ液圧装置の構成を示す構成図である。
Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
In the drawings to be referred to, FIG. 1 is a configuration diagram of a vehicle including a vehicle brake hydraulic pressure control device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram showing a configuration of the vehicle brake hydraulic pressure device. .

図1に示すように、車両用ブレーキ液圧制御装置100は、車両CRの各車輪Tに付与する制動力を適宜制御する装置である。車両用ブレーキ液圧制御装置100は、油路や各種部品が設けられる液圧ユニット10と、液圧ユニット10内の各種部品を適宜制御するための制御部20とを主に備えている。   As shown in FIG. 1, the vehicle brake fluid pressure control device 100 is a device that appropriately controls the braking force applied to each wheel T of the vehicle CR. The vehicle brake hydraulic pressure control device 100 mainly includes a hydraulic unit 10 provided with an oil passage and various parts, and a control unit 20 for appropriately controlling various parts in the hydraulic unit 10.

各車輪Tには、それぞれ車輪ブレーキFL,RR,RL,FRが備えられ、各車輪ブレーキFL,RR,RL,FRには、液圧源の一例としてのマスタシリンダMから供給される液圧により制動力を発生するホイールシリンダWが備えられている。マスタシリンダMとホイールシリンダWとは、それぞれ液圧ユニット10に接続されている。そして、ブレーキペダルPの踏力(運転者の制動操作)に応じてマスタシリンダMで発生したブレーキ液圧が、制御部20および液圧ユニット10で制御された上でホイールシリンダWに供給されている。   Each wheel T is provided with a wheel brake FL, RR, RL, FR, and each wheel brake FL, RR, RL, FR is supplied with a hydraulic pressure supplied from a master cylinder M as an example of a hydraulic pressure source. A wheel cylinder W that generates a braking force is provided. The master cylinder M and the wheel cylinder W are each connected to the hydraulic unit 10. The brake hydraulic pressure generated in the master cylinder M in response to the depression force of the brake pedal P (the driver's braking operation) is supplied to the wheel cylinder W after being controlled by the control unit 20 and the hydraulic pressure unit 10. .

制御部20には、マスタシリンダM内の液圧を検出する圧力センサ91と、各車輪Tの車輪速度を検出する車輪速センサ92とが接続されている。そして、この制御部20は、例えば、CPU、RAM、ROMおよび入出力回路を備えており、圧力センサ91および車輪速センサ92からの入力と、ROMに記憶されたプログラムやデータに基づいて各種演算処理を行うことによって、制御を実行する。なお、制御部20の詳細は、後述することとする。   A pressure sensor 91 that detects the hydraulic pressure in the master cylinder M and a wheel speed sensor 92 that detects the wheel speed of each wheel T are connected to the control unit 20. The control unit 20 includes, for example, a CPU, a RAM, a ROM, and an input / output circuit, and performs various calculations based on inputs from the pressure sensor 91 and the wheel speed sensor 92 and programs and data stored in the ROM. Control is executed by performing processing. Details of the control unit 20 will be described later.

図2に示すように、液圧ユニット10は、マスタシリンダMと車輪ブレーキFL,RR,RL,FRとの間に配置されている。マスタシリンダMの二つの出力ポートM1,M2は、液圧ユニット10の入口ポート121に接続され、出口ポート122が、各車輪ブレーキFL,RR,RL,FRに接続されている。そして、通常時は液圧ユニット10内の入口ポート121から出口ポート122までが連通した油路となっていることで、ブレーキペダルPの踏力が各車輪ブレーキFL,RR,RL,FRに伝達されるようになっている。   As shown in FIG. 2, the hydraulic unit 10 is disposed between the master cylinder M and the wheel brakes FL, RR, RL, FR. The two output ports M1, M2 of the master cylinder M are connected to the inlet port 121 of the hydraulic unit 10, and the outlet port 122 is connected to each wheel brake FL, RR, RL, FR. Further, since the oil passage is normally connected from the inlet port 121 to the outlet port 122 in the hydraulic pressure unit 10, the depression force of the brake pedal P is transmitted to each wheel brake FL, RR, RL, FR. It has become so.

液圧ユニット10には、各車輪ブレーキFL,RR,RL,FRに対応して四つの入口弁1、四つの出口弁2、および四つのチェック弁1aが設けられている。また、出力ポートM1,M2に対応した各出力液圧路81,82に対応して二つのリザーバ3、二つのポンプ4、二つのダンパ5、二つのオリフィス5aが設けられ、二つのポンプ4を駆動するための電動モータ6を備えている。   The hydraulic pressure unit 10 is provided with four inlet valves 1, four outlet valves 2, and four check valves 1a corresponding to the wheel brakes FL, RR, RL, FR. In addition, two reservoirs 3, two pumps 4, two dampers 5, and two orifices 5a are provided corresponding to the output hydraulic pressure paths 81 and 82 corresponding to the output ports M1 and M2, respectively. An electric motor 6 for driving is provided.

入口弁1は、各車輪ブレーキFL,RR,RL,FRとマスタシリンダMとの間(各車輪ブレーキFL,RR,RL,FRの上流側)に配置された常開型比例電磁弁である。入口弁1は、前記した制御部20からの通電量によって、その開弁量が調整可能となっている。入口弁1は、通常時に開いていることで、マスタシリンダMから各車輪ブレーキFL,RR,RL,FRへブレーキ液圧が伝達するのを許容している。また、入口弁1は、車輪Tがロックしそうになったときに制御部20により閉塞されることで、ブレーキペダルPから各車輪ブレーキFL,RR,RL,FRに伝達する液圧を遮断する。さらに、入口弁1は、制御部20によって所定の閉弁力(開弁量)となるように制御されることで、各車輪ブレーキFL,RR,RL,FR内の液圧を所定の傾きで増加させる。   The inlet valve 1 is a normally open proportional solenoid valve disposed between each wheel brake FL, RR, RL, FR and the master cylinder M (upstream side of each wheel brake FL, RR, RL, FR). The opening amount of the inlet valve 1 can be adjusted by the energization amount from the control unit 20 described above. The inlet valve 1 is normally open to allow the brake hydraulic pressure to be transmitted from the master cylinder M to the wheel brakes FL, RR, RL, FR. Further, the inlet valve 1 is blocked by the control unit 20 when the wheel T is about to be locked, thereby blocking the hydraulic pressure transmitted from the brake pedal P to each wheel brake FL, RR, RL, FR. Further, the inlet valve 1 is controlled by the control unit 20 so as to have a predetermined valve closing force (valve opening amount), so that the hydraulic pressure in each wheel brake FL, RR, RL, FR is increased with a predetermined inclination. increase.

出口弁2は、各車輪ブレーキFL,RR,RL,FRと各リザーバ3との間(入口弁1のホイールシリンダW側の液圧路からリザーバ3およびポンプ4に通じる液圧路上)に配置された常閉型の電磁弁である。出口弁2は、通常時に閉塞されているが、車輪Tがロックしそうになったときに制御部20により開放されることで、各車輪ブレーキFL,RR,RL,FRに加わる液圧を各リザーバ3に逃がす。   The outlet valve 2 is disposed between each wheel brake FL, RR, RL, FR and each reservoir 3 (on the hydraulic pressure path leading from the hydraulic pressure path on the wheel cylinder W side of the inlet valve 1 to the reservoir 3 and the pump 4). It is a normally closed solenoid valve. Although the outlet valve 2 is normally closed, the hydraulic pressure applied to each wheel brake FL, RR, RL, FR is supplied to each reservoir by being opened by the control unit 20 when the wheel T is likely to be locked. Escape to 3.

チェック弁1aは、各入口弁1に並列に接続されている。このチェック弁1aは、各車輪ブレーキFL,RR,RL,FR側からマスタシリンダM側へのブレーキ液の流入のみを許容する弁であり、ブレーキペダルPからの入力が解除された場合に入口弁1を閉じた状態にしたときにおいても、各車輪ブレーキFL,RR,RL,FR側からマスタシリンダM側へのブレーキ液の流れを許容する。   The check valve 1a is connected to each inlet valve 1 in parallel. This check valve 1a is a valve that allows only the flow of brake fluid from each wheel brake FL, RR, RL, FR side to the master cylinder M side, and an inlet valve when the input from the brake pedal P is released. Even when 1 is closed, the flow of brake fluid from each wheel brake FL, RR, RL, FR side to the master cylinder M side is allowed.

リザーバ3は、各出口弁2が開放されることによって逃がされるブレーキ液を吸収する機能を有している。
ポンプ4は、リザーバ3で吸収されているブレーキ液を吸入し、そのブレーキ液をダンパ5やオリフィス5aを介してマスタシリンダMへ戻す機能を有している。これにより、リザーバ3によるブレーキ液圧の吸収によって減圧された各出力液圧路81,82の圧力状態が回復される。
The reservoir 3 has a function of absorbing brake fluid that is released when each outlet valve 2 is opened.
The pump 4 has a function of sucking the brake fluid absorbed in the reservoir 3 and returning the brake fluid to the master cylinder M via the damper 5 and the orifice 5a. As a result, the pressure state of each of the output hydraulic pressure paths 81 and 82 reduced by the absorption of the brake hydraulic pressure by the reservoir 3 is recovered.

入口弁1および出口弁2は、制御部20により開閉状態が制御されることで、各車輪ブレーキFL,RR,RL,FRのホイールシリンダWにおける液圧(以下、「キャリパ圧」ともいう。)を制御する。例えば、入口弁1が開、出口弁2が閉となる通常状態では、ブレーキペダルPを踏んでいれば、マスタシリンダMからの液圧がそのままホイールシリンダWへ伝達して増圧状態となり、入口弁1が閉、出口弁2が開となれば、ホイールシリンダWからリザーバ3側へブレーキ液が流出して減圧状態となり、入口弁1と出口弁2が共に閉となれば、キャリパ圧(ホイールシリンダWの液圧)が保持される保持状態となる。また、入口弁1を所定の開弁量で開弁させた状態では、ホイールシリンダW内が所定の傾きで徐々に増圧する増圧状態となる。そして、制御部20は、各ホイールシリンダWで目標とするブレーキ液圧に応じて、前記した増圧状態、減圧状態、保持状態を切り換えるべく、各入口弁1や各出口弁2に所定量の電流または制御信号を出力する。   The opening and closing states of the inlet valve 1 and the outlet valve 2 are controlled by the control unit 20 so that the hydraulic pressure in the wheel cylinder W of each wheel brake FL, RR, RL, FR (hereinafter also referred to as “caliper pressure”). To control. For example, in a normal state in which the inlet valve 1 is open and the outlet valve 2 is closed, if the brake pedal P is depressed, the hydraulic pressure from the master cylinder M is transmitted to the wheel cylinder W as it is to increase the pressure. When the valve 1 is closed and the outlet valve 2 is opened, the brake fluid flows out from the wheel cylinder W to the reservoir 3 side to be in a decompressed state. When both the inlet valve 1 and the outlet valve 2 are closed, the caliper pressure (wheel A holding state in which the hydraulic pressure of the cylinder W is held is obtained. Further, when the inlet valve 1 is opened with a predetermined valve opening amount, the inside of the wheel cylinder W is in a pressure increasing state in which the pressure is gradually increased with a predetermined inclination. The control unit 20 then applies a predetermined amount to each inlet valve 1 or each outlet valve 2 in order to switch between the above-described pressure increasing state, pressure reducing state, and holding state according to the target brake fluid pressure in each wheel cylinder W. Output current or control signal.

次に、制御部20の詳細について説明する。参照する図面において、図3は制御部の構成を示すブロック図であり、図4は制御部による入口弁の開弁制御を示すフローチャートである。また、図5は、車輪速度および車体速度と、入口弁への通電量と、キャリパ圧との関係を示すタイムチャートである。   Next, details of the control unit 20 will be described. In the drawings to be referred to, FIG. 3 is a block diagram showing the configuration of the control unit, and FIG. 4 is a flowchart showing valve opening control of the inlet valve by the control unit. FIG. 5 is a time chart showing the relationship among the wheel speed and the vehicle body speed, the energization amount to the inlet valve, and the caliper pressure.

図3に示すように、制御部20は、制御圧決定手段21、初期電流値算出手段22、目標電流値設定手段23、折れ点電流値算出手段24、第1開弁量調整手段25および第2開弁量調整手段26を備えて構成されている。   As shown in FIG. 3, the control unit 20 includes a control pressure determining unit 21, an initial current value calculating unit 22, a target current value setting unit 23, a break point current value calculating unit 24, a first valve opening amount adjusting unit 25, and a first valve opening amount adjusting unit 25. 2 includes a valve opening amount adjusting means 26.

制御圧決定手段21は、車両の状態に応じて、キャリパ圧を増圧状態、減圧状態、保持状態のいずれにするのかを決定する機能を有している。具体的には、例えば、制御圧決定手段21は、車輪速センサ92で検出される車輪速度と、4つの車輪Tの車輪速度に基づいて推定される車体速度との速度比(スリップ率)が、所定値以上になり、かつ、車輪加速度が0以下であるときに車輪Tがロックしそうになったと判定して、キャリパ圧を減圧状態にすることを決定する。ここで、車輪加速度は、例えば車輪速度から算出される。また、制御圧決定手段21は、車輪加速度が0よりも大きいときに、キャリパ圧を保持状態にすることを決定する。さらに、制御圧決定手段21は、スリップ率が所定値未満となり、かつ、車輪加速度が0以下であるときに、キャリパ圧を増圧状態にすることを決定する。   The control pressure determining means 21 has a function of determining whether to set the caliper pressure to a pressure increasing state, a pressure decreasing state, or a holding state according to the state of the vehicle. Specifically, for example, the control pressure determining means 21 has a speed ratio (slip rate) between the wheel speed detected by the wheel speed sensor 92 and the vehicle body speed estimated based on the wheel speeds of the four wheels T. It is determined that the wheel T is about to be locked when the wheel acceleration is equal to or greater than a predetermined value and the wheel acceleration is 0 or less, and the caliper pressure is determined to be reduced. Here, the wheel acceleration is calculated from the wheel speed, for example. Further, the control pressure determining means 21 determines to set the caliper pressure in the holding state when the wheel acceleration is larger than zero. Further, the control pressure determining means 21 determines that the caliper pressure is to be increased when the slip ratio is less than a predetermined value and the wheel acceleration is 0 or less.

そして、この制御圧決定手段21は、キャリパ圧を増圧状態にすることを決定した場合(すなわち、減圧状態または保持状態から増圧状態に移行した場合)に、増圧開始信号を初期電流値算出手段22および目標電流値設定手段23に出力する。また、この制御圧決定手段21は、キャリパ圧を減圧状態にすることを決定した場合、減圧開始信号を第1開弁量調整手段25および第2開弁量調整手段26に出力する。   When the control pressure determining means 21 determines to set the caliper pressure to the increased pressure state (that is, when the reduced pressure state or the holding state is shifted to the increased pressure state), the control pressure determining means 21 outputs the pressure increase start signal to the initial current value. Output to the calculation means 22 and the target current value setting means 23. Further, when it is determined that the caliper pressure is to be reduced, the control pressure determining means 21 outputs a pressure reduction start signal to the first valve opening amount adjusting means 25 and the second valve opening amount adjusting means 26.

初期電流値算出手段22は、制御圧決定手段21からの増圧開始信号を受けると、推定キャリパ圧と、圧力センサ91で検出したマスタシリンダ圧との差(入口弁1の上下流の圧力差)に基づいて、入口弁1を開弁させる初期電流値を算出する機能を有している。ここで、「推定キャリパ圧」は、公知の手法で算出されるキャリパ圧であり、例えば、圧力センサ91で検出したマスタシリンダ圧と、入口弁1や出口弁2の開閉状態に基づいて算出(推定)されるキャリパ圧である。また、「入口弁1を開弁させる初期電流値」は、一例を挙げれば、開弁し始める電流値、すなわち、入口弁1の上下流の差圧およびスプリングにより弁体を開方向に押す力と、入口弁1への通電により弁体に発生する閉弁力とが釣り合うような電流値である。なお、このような開弁し始める電流値に限らず、例えば、開弁し始める電流値よりも僅かに低いまたは高い電流値を、初期電流値としてもよい。また、この初期電流値の算出には、例えば、ROMやRAM等の記憶手段に記憶してある、初期電流値と入口弁1の上下流の差圧との関係を示すテーブルなどを用いればよい。そして、この初期電流値算出手段22は、初期電流値を算出すると、この初期電流値を折れ点電流値算出手段24に出力する。   When the initial current value calculation means 22 receives the pressure increase start signal from the control pressure determination means 21, the difference between the estimated caliper pressure and the master cylinder pressure detected by the pressure sensor 91 (the pressure difference between the upstream and downstream of the inlet valve 1). ) To calculate the initial current value for opening the inlet valve 1. Here, the “estimated caliper pressure” is a caliper pressure calculated by a known method, and is calculated based on, for example, the master cylinder pressure detected by the pressure sensor 91 and the opening / closing states of the inlet valve 1 and the outlet valve 2 ( This is the estimated caliper pressure. Further, the “initial current value for opening the inlet valve 1” is, for example, a current value at which valve opening starts, that is, a force that pushes the valve body in the opening direction by the upstream and downstream differential pressures and springs. And a current value that balances the valve closing force generated in the valve body by energization of the inlet valve 1. The initial current value may be a current value slightly lower or higher than the current value at which the valve starts to be opened, for example. For calculating the initial current value, for example, a table indicating the relationship between the initial current value and the upstream / downstream differential pressure stored in a storage unit such as a ROM or RAM may be used. . Then, when the initial current value calculating unit 22 calculates the initial current value, the initial current value calculating unit 22 outputs the initial current value to the break point current value calculating unit 24.

目標電流値設定手段23は、制御圧決定手段21からの増圧開始信号を受けると、前回の増圧サイクル以前の増圧終了時の電流値に基づいて、目標電流値(増圧状態が終了すると予測される電流値)を設定する機能を有している。具体的に、本実施形態においては、目標電流値設定手段23は、図5に示すように、前回の増圧サイクルの増圧終了時(時刻t1)の電流値A2を、目標電流値A3として設定する。なお、増圧サイクルが前に一度もなされていない場合(ABS制御が開始されてから1回目の増圧制御時)には、目標電流値設定手段23は、例えば、ROMやRAM等の記憶手段に記憶してある、目標電流値A3の初期値を読み込み、それを目標電流値A3として設定する。そして、この目標電流値設定手段23は、目標電流値A3を設定すると、この目標電流値A3を折れ点電流値算出手段24に出力する。   When the target current value setting means 23 receives the pressure increase start signal from the control pressure determining means 21, the target current value setting means 23 finishes the target current value (the pressure increase state ends) based on the current value at the end of the pressure increase before the previous pressure increase cycle. Then, it has a function of setting a predicted current value). Specifically, in the present embodiment, as shown in FIG. 5, the target current value setting means 23 uses the current value A2 at the end of the pressure increase in the previous pressure increase cycle (time t1) as the target current value A3. Set. When the pressure increasing cycle has not been performed before (at the time of the first pressure increasing control after the ABS control is started), the target current value setting means 23 is, for example, a storage means such as a ROM or a RAM. Is read and the initial value of the target current value A3 is read and set as the target current value A3. When the target current value setting means 23 sets the target current value A3, the target current value setting means 23 outputs the target current value A3 to the break current value calculation means 24.

折れ点電流値算出手段24は、初期電流値算出手段22から出力されてくる初期電流値A1と、目標電流値設定手段23から出力されてくる目標電流値A3とを受けると、これらの各電流値A1,A3に基づいて折れ点電流値A4(増圧状態が終了しないと予測される電流値)を算出する機能を有している。具体的に、この折れ点電流値算出手段24は、初期電流値A1から目標電流値A3を引いた値に所定の割合を乗じ、この乗算により算出された値を初期電流値A1から減算することで折れ点電流値A4を算出する。そして、この折れ点電流値算出手段24は、折れ点電流値A4を算出すると、この折れ点電流値A4と、初期電流値A1とを第1開弁量調整手段25に出力するとともに、折れ点電流値A4と、目標電流値A3とを第2開弁量調整手段26に出力する。   Upon receiving the initial current value A1 output from the initial current value calculation means 22 and the target current value A3 output from the target current value setting means 23, the breakpoint current value calculation means 24 receives each of these currents. Based on the values A1 and A3, it has a function of calculating a breakpoint current value A4 (current value predicted that the pressure increasing state will not end). Specifically, the break point current value calculation means 24 multiplies the value obtained by subtracting the target current value A3 from the initial current value A1 by a predetermined ratio, and subtracts the value calculated by this multiplication from the initial current value A1. To calculate the breakpoint current value A4. Then, when the breakpoint current value calculating means 24 calculates the breakpoint current value A4, the breakpoint current value A4 and the initial current value A1 are output to the first valve opening amount adjusting means 25 and the breakpoint current value A4 is output. The current value A4 and the target current value A3 are output to the second valve opening amount adjusting means 26.

第1開弁量調整手段25は、折れ点電流値算出手段24から前記した折れ点電流値A4および初期電流値A1を受けると、図5に示すように、通電量を閉弁時の電流値A5から初期電流値A1へ一気に低下させた後、初期電流値A1から折れ点電流値A4へ向けて第1の勾配G1で、通電量を低下させる機能を有している。具体的に、この第1開弁量調整手段25は、初期電流値A1から折れ点電流値A4に到達するまでの時間(t3−t2)が第1の規定時間Bとなるように、第1の勾配G1を算出する。すなわち、第1開弁量調整手段25は、以下の式で第1の勾配G1を算出する。
第1の勾配G1=(折れ点電流値A4−初期電流値A1)/第1の規定時間B
When the first valve opening amount adjusting means 25 receives the breakpoint current value A4 and the initial current value A1 from the breakpoint current value calculating means 24, as shown in FIG. It has a function of reducing the energization amount at a first gradient G1 from the initial current value A1 to the breakpoint current value A4 after it is reduced from A5 to the initial current value A1. Specifically, the first valve opening amount adjusting means 25 is configured so that the time from the initial current value A1 to the breakpoint current value A4 (t3−t2) becomes the first specified time B. The gradient G1 is calculated. That is, the first valve opening amount adjusting means 25 calculates the first gradient G1 by the following equation.
1st gradient G1 = (bending point current value A4−initial current value A1) / first specified time B

そして、第1開弁量調整手段25は、算出した第1の勾配G1で通電量を初期電流値A1から折れ点電流値A4へ低下させる。そして、この第1開弁量調整手段25は、折れ点電流値A4まで通電量を低下させると、終了信号を第2開弁量調整手段26に出力する。   Then, the first valve opening amount adjusting means 25 reduces the energization amount from the initial current value A1 to the breakpoint current value A4 with the calculated first gradient G1. The first valve opening amount adjusting means 25 outputs an end signal to the second valve opening amount adjusting means 26 when the energization amount is reduced to the breakpoint current value A4.

第2開弁量調整手段26は、折れ点電流値算出手段24から前記した折れ点電流値A4および目標電流値A3を受けるとともに、前記第1開弁量調整手段25から終了信号を受けると、折れ点電流値A4から目標電流値A3へ向けて第1の勾配G1よりも緩やかな第2の勾配G2で通電量を低下させる機能を有している。具体的に、この第2開弁量調整手段26は、折れ点電流値A4から目標電流値A3に到達するまでの時間(t4−t3)が、第1の規定時間Bよりも長い第2の規定時間Cとなるように、第2の勾配G2を算出する。すなわち、第2開弁量調整手段26は、以下の式で第2の勾配G2を算出する。
第2の勾配G2=(目標電流値A3−折れ点電流値A4)/第2の規定時間C
When the second valve opening amount adjusting means 26 receives the break point current value A4 and the target current value A3 from the break point current value calculating means 24, and receives the end signal from the first valve opening amount adjusting means 25, It has a function of reducing the energization amount with a second gradient G2 that is gentler than the first gradient G1 from the breakpoint current value A4 to the target current value A3. Specifically, the second valve opening amount adjusting means 26 has a second time (t4-t3) from the breakpoint current value A4 to the target current value A3 that is longer than the first specified time B. The second gradient G2 is calculated so that the specified time C is reached. That is, the second valve opening amount adjusting means 26 calculates the second gradient G2 by the following equation.
2nd gradient G2 = (target current value A3-breaking point current value A4) / second specified time C

そして、第2開弁量調整手段26は、算出した第2の勾配G2で通電量を折れ点電流値A4から目標電流値A3へ低下させる。また、第2開弁量調整手段26は、通電量が目標電流値A3となった後であっても、制御圧決定手段21からの減圧開始信号を受けるまでは、さらに通電量の低下を続行する。そして、この第2開弁量調整手段26と前述した第1開弁量調整手段25は、制御圧決定手段21から減圧開始信号を受けると、所定の勾配で低下させている通電量を、閉弁時の電流値A5へと一気に増加させることで、入口弁1を閉弁させる(図5;時刻t1,t5)。   Then, the second valve opening amount adjusting means 26 reduces the energization amount from the break point current value A4 to the target current value A3 with the calculated second gradient G2. Further, even after the energization amount reaches the target current value A3, the second valve opening amount adjusting means 26 continues to further decrease the energization amount until receiving the pressure reduction start signal from the control pressure determining means 21. To do. When the second valve opening amount adjusting means 26 and the first valve opening amount adjusting means 25 receive the pressure reduction start signal from the control pressure determining means 21, the second valve opening amount adjusting means 25 closes the energization amount that has been reduced at a predetermined gradient. The inlet valve 1 is closed by increasing it to the current value A5 at the time of the valve (FIG. 5; times t1, t5).

以上のように構成される制御部20は、図4に示すフローチャートに基づいて入口弁1の開弁制御(増圧制御)を行う。以下に、制御部20による入口弁1の開弁制御について説明する。なお、この図4に示す増圧制御は、制御圧決定手段21が増圧状態にすることを決定した場合に開始される。また、制御圧決定手段21が減圧状態または保持状態を決定した場合には、制御部20は、公知の減圧制御または保持制御を実行する。   The control unit 20 configured as described above performs valve opening control (pressure increase control) of the inlet valve 1 based on the flowchart shown in FIG. Below, the valve opening control of the inlet valve 1 by the control part 20 is demonstrated. Note that the pressure increase control shown in FIG. 4 is started when the control pressure determination means 21 determines to set the pressure increase state. Moreover, when the control pressure determination means 21 determines a pressure reduction state or a holding state, the control unit 20 executes a known pressure reduction control or holding control.

図4に示すように、制御部20は、まず、制御圧決定手段21がキャリパ圧を減圧状態または保持状態から増圧状態にすることを決定したか否か、すなわち減圧状態または保持状態から増圧状態に移行したか否かを判断する(S1)。ここで、移行の判断は、例えば、制御圧決定手段21が決定するキャリパ圧の状態の前回値が減圧状態または保持状態であり、今回値が増圧状態である場合に、移行したと判断し(S1;Yes)、前回値と今回値がともに増圧状態である場合には、移行していないと判断する(S1;No)。ステップS1において、増圧状態に移行したと判断した場合(Yes)、制御部20は、初期電流値A1の算出(S2)、目標電流値A3の設定(S3)、折れ点電流値A4の算出(S4)、第1の勾配G1の算出(S5)、第2の勾配G2の算出(S6)を順次行う。なお、ステップS1において増圧状態に移行したと判断された場合には、前回の増圧制御において算出されている初期電流値A1等をリセットするとともに、後述するフラグをゼロに戻すようになっている。   As shown in FIG. 4, the controller 20 first determines whether or not the control pressure determining means 21 has decided to change the caliper pressure from the reduced pressure state or the holding state to the increased pressure state, that is, from the reduced pressure state or the holding state. It is determined whether or not the pressure state has been shifted (S1). Here, the determination of the transition is made, for example, when the previous value of the caliper pressure state determined by the control pressure determining means 21 is the reduced pressure state or the holding state and the current value is the increased pressure state, it is determined that the transition has occurred. (S1; Yes), when both the previous value and the current value are in the pressure increasing state, it is determined that the transition has not been made (S1; No). If it is determined in step S1 that the pressure has increased (Yes), the control unit 20 calculates the initial current value A1 (S2), sets the target current value A3 (S3), and calculates the breakpoint current value A4. (S4) The calculation of the first gradient G1 (S5) and the calculation of the second gradient G2 (S6) are sequentially performed. If it is determined in step S1 that the pressure increasing state has been entered, the initial current value A1 calculated in the previous pressure increasing control is reset, and a later-described flag is returned to zero. Yes.

その後、制御部20は、入口弁1への通電量を初期電流値A1に変更し(S11)、現在の電流値が折れ点電流値A4未満となったか否かを判断する(S12)。ステップS12において、折れ点電流値A4未満となっていないと判断した場合(No)、制御部20は、そのままステップS1の処理に戻る。また、ステップS12において、折れ点電流値A4未満になったと判断した場合(Yes)、制御部20は、フラグを「1」として(S13)、ステップS1の処理に戻る。   Thereafter, the control unit 20 changes the energization amount to the inlet valve 1 to the initial current value A1 (S11), and determines whether or not the current current value is less than the breakpoint current value A4 (S12). If it is determined in step S12 that the current is not less than the breakpoint current value A4 (No), the control unit 20 directly returns to the process of step S1. If it is determined in step S12 that the current value is less than the breakpoint current value A4 (Yes), the control unit 20 sets the flag to “1” (S13) and returns to the process of step S1.

ステップS1において、増圧状態に移行していない、すなわち増圧状態のままであると判断した場合(No)、制御部20は、フラグが「0」であるか否かを判断する(S7)。ステップS7において、フラグが「0」であると判断した場合には(Yes)、現在の電流値が折れ点電流値A4未満となっていないので、制御部20は、第1の勾配G1を取得し(S8)、この第1の勾配G1や現在の電流値等に基づいて次の電流値(現在の電流値から第1の勾配G1に沿って減少した電流値)を算出する(S10)。その後、制御部20は、ステップS11において、入口弁1への通電量をステップS10で算出した次の電流値に変更する。そして、以後、ステップS12;No→ステップS1;No→ステップS7;Yes→ステップS8→ステップS10→ステップS11→…の処理を繰り返すことによって、入口弁1の通電量が第1の勾配G1に沿って低下する。   If it is determined in step S1 that the pressure increasing state has not been reached, that is, the pressure increasing state is maintained (No), the control unit 20 determines whether or not the flag is “0” (S7). . If it is determined in step S7 that the flag is “0” (Yes), since the current value is not less than the breakpoint current value A4, the control unit 20 acquires the first gradient G1. Then, the next current value (current value decreased along the first gradient G1 from the current current value) is calculated based on the first gradient G1 and the current value (S10). Thereafter, in step S11, the control unit 20 changes the energization amount to the inlet valve 1 to the next current value calculated in step S10. Then, by repeating the process of step S12; No → Step S1; No → Step S7; Yes → Step S8 → Step S10 → Step S11 →..., The energization amount of the inlet valve 1 follows the first gradient G1. Will drop.

入口弁1の通電量が第1の勾配G1に沿って低下していき、その電流値が折れ点電流値A4未満となると、制御部20は、ステップS12においてYesと判断し、フラグを「1」に変更する(S13)。このようにフラグが「1」に変更されると、制御部20は、ステップS1でNoと判断した後、ステップS7においてNoと判断する。これにより、制御部20は、ステップS9で第2の勾配G2を取得し、ステップS10において第2の勾配G2等に基づいて次の電流値を算出する。そして、以後、ステップS11→ステップS12;Yes→ステップS13→ステップS1;No→ステップS7;No→ステップS9→ステップS10→…の処理を繰り返すことによって、入口弁1の通電量が第2の勾配G2に沿って低下する。   When the energization amount of the inlet valve 1 decreases along the first gradient G1 and the current value becomes less than the breakpoint current value A4, the control unit 20 determines Yes in step S12 and sets the flag to “1”. (S13). When the flag is changed to “1” in this way, the control unit 20 determines No in step S1 and then determines No in step S7. Thereby, the control unit 20 acquires the second gradient G2 in step S9, and calculates the next current value based on the second gradient G2 and the like in step S10. Thereafter, the process of step S11 → step S12; Yes → step S13 → step S1; No → step S7; No → step S9 → step S10 →... Decrease along G2.

次に、制御部20の一連の動作について図5を参照して説明する。
図5に示すように、制御部20は、時刻t1において、スリップ率(車輪速度と車体速度の比)が所定値以上となったと判断すると、入口弁1への通電量を電流値A5まで一気に上げて入口弁1を閉弁させる。また、制御部20は、入口弁1の閉弁に伴って、出口弁2に所定のパルス信号を出力することで出口弁2を開放させる。これにより、車輪Tに加わる制動力が減少して、車輪Tのロックが防止される。ロックが防止された車輪Tの車輪速度は路面との接触により徐々に上昇していき、車輪速度と車体速度とが徐々に一致していく(スリップ率が所定値に近付いていく)。そして、制御部20は、スリップ率が所定値未満となった後、所定のタイミング(時刻t2)で増圧制御に入り、入口弁1への通電量を初期電流値A1まで一気に下げる。
Next, a series of operations of the control unit 20 will be described with reference to FIG.
As shown in FIG. 5, when the control unit 20 determines that the slip ratio (ratio between the wheel speed and the vehicle body speed) is equal to or greater than a predetermined value at time t1, the controller 20 reduces the energization amount to the inlet valve 1 to the current value A5 all at once. Then, the inlet valve 1 is closed. The control unit 20 opens the outlet valve 2 by outputting a predetermined pulse signal to the outlet valve 2 when the inlet valve 1 is closed. Thereby, the braking force applied to the wheel T is reduced, and the locking of the wheel T is prevented. The wheel speed of the wheel T, which is prevented from being locked, gradually increases due to contact with the road surface, and the wheel speed and the vehicle body speed gradually coincide with each other (the slip ratio approaches a predetermined value). Then, after the slip ratio becomes less than the predetermined value, the control unit 20 enters pressure increase control at a predetermined timing (time t2), and reduces the energization amount to the inlet valve 1 to the initial current value A1 all at once.

その後、制御部20は、初期電流値A1から折れ点電流値A4まで第2の勾配G2よりも急な第1の勾配G1で通電量を低下させる。また、通電量が折れ点電流値A4に到達すると(時刻t3)、制御部20は、折れ点電流値A4から目標電流値A3へ向けて第1の勾配G1よりも緩やかな第2の勾配G2で通電量を低下させる。その後、制御部20は、時刻t5において、スリップ率が所定値以上になったと判断すると、再び入口弁1への通電量を電流値A5まで一気に上げて入口弁1を閉弁させる。そして、このように制御部20が通電量を制御することで、キャリパ圧は、時刻t2〜t3の間で車輪Tのロックが発生しない程度の高い圧力まで迅速に上昇し、その後、車輪Tがロックしそうになるまで(時刻t5まで)高い圧力に保持(緩やかに上昇)される。   Thereafter, the control unit 20 decreases the energization amount at the first gradient G1 that is steeper than the second gradient G2 from the initial current value A1 to the breakpoint current value A4. When the energization amount reaches the breakpoint current value A4 (time t3), the control unit 20 causes the second gradient G2 that is gentler than the first gradient G1 from the breakpoint current value A4 toward the target current value A3. Decrease the energization amount. Thereafter, when the control unit 20 determines that the slip ratio has become equal to or greater than a predetermined value at time t5, the controller 20 increases the energization amount to the inlet valve 1 again to the current value A5 and closes the inlet valve 1 again. Then, the control unit 20 controls the energization amount in this way, so that the caliper pressure quickly rises to a high pressure that does not cause the wheel T to be locked between the times t2 and t3. The pressure is kept high (slowly increased) until it is likely to lock (until time t5).

ここで、図5の通電量およびキャリパ圧のグラフに示す2点鎖線は、従来の通電制御とキャリパ圧を表している。この従来技術と本実施形態を比較すると、本実施形態において第1の勾配G1で通電制御することで、キャリパ圧を従来よりも迅速に立ち上げることが可能となっている。また、本実施形態において第2の勾配G2で通電制御することで、キャリパ圧がロック液圧LP(ロックしそうになるキャリパ圧)に到達するまでの時間を、従来よりも長くすることが可能となっている。   Here, the two-dot chain line shown in the graph of the energization amount and caliper pressure in FIG. 5 represents the conventional energization control and caliper pressure. When this prior art is compared with the present embodiment, the caliper pressure can be raised more quickly than in the prior art by controlling the energization with the first gradient G1 in the present embodiment. Further, in the present embodiment, by controlling the energization with the second gradient G2, it is possible to make the time until the caliper pressure reaches the lock hydraulic pressure LP (the caliper pressure that is likely to be locked) longer than before. It has become.

以上によれば、本実施形態において以下のような効果を得ることができる。
初期電流値A1から折れ点電流値A4へ向けて第1の勾配G1で通電量を低下させ、折れ点電流値A4から目標電流値A3へ向けて第1の勾配G1よりも緩やかな第2の勾配G2で通電量を低下させるので、車輪Tがロックする直前の高いキャリパ圧を比較的長い時間利用することができ、制動制御の効率を向上させることができる。
According to the above, the following effects can be obtained in the present embodiment.
The energization amount is decreased at the first gradient G1 from the initial current value A1 to the break current value A4, and the second current that is gentler than the first gradient G1 from the break current value A4 to the target current value A3. Since the energization amount is decreased at the gradient G2, the high caliper pressure immediately before the wheels T are locked can be used for a relatively long time, and the efficiency of the braking control can be improved.

第2開弁量調整手段26によって、通電量が目標電流値A3となった後も通電量の低下が続行されるので、例えば運転者による制動操作の変化や路面状態の変化などの外乱の影響があったとしても、安定して増圧制御を行うことができる。
第1の勾配G1で通電量を低下させる時間が、第2の規定時間Cよりも短い第1の規定時間Bとなっているので、折れ点電流値A4まで迅速に増圧することができ、増圧遅れを抑えることができる。さらに、緩やかな第2の勾配G2で通電量を低下させる時間が、第1の規定時間Bよりも長い第2の規定時間Cとなっているので、車輪Tがロックする直前の高いキャリパ圧をより長い時間利用することができる。
Since the decrease in energization amount is continued even after the energization amount reaches the target current value A3 by the second valve opening amount adjusting means 26, for example, the influence of disturbance such as a change in braking operation or a change in road surface condition by the driver. Even if there is, pressure increase control can be performed stably.
Since the time for reducing the energization amount at the first gradient G1 is the first specified time B shorter than the second specified time C, the pressure can be quickly increased to the breakpoint current value A4. Pressure lag can be suppressed. Furthermore, since the time for reducing the energization amount at the gentle second gradient G2 is the second specified time C that is longer than the first specified time B, the high caliper pressure immediately before the wheel T is locked is increased. It can be used for a longer time.

目標電流値A3が前回の増圧サイクルの増圧終了時の電流値A2に基づいて設定されるので、目標電流値A3をより高精度に設定することができ、より確実に制動制御の向上を図ることができる。
初期電流値A1から目標電流値A3を引いた値を所定の割合で乗じることで、折れ点電流値A4を算出したので、初期電流値A1と目標電流値A3の間に確実に折れ点電流値A4を設定することができる。
Since the target current value A3 is set based on the current value A2 at the end of boosting in the previous boosting cycle, the target current value A3 can be set with higher accuracy, and the braking control can be improved more reliably. Can be planned.
Since the breakpoint current value A4 is calculated by multiplying the initial current value A1 by subtracting the target current value A3 at a predetermined ratio, the breakpoint current value is reliably between the initial current value A1 and the target current value A3. A4 can be set.

なお、本発明は前記実施形態に限定されることなく、以下に例示するように様々な形態で利用できる。
前記実施形態では、折れ点電流値A4および目標電流値A3を制御部20によって適宜修正したが、本発明はこれに限定されず、例えば予め実験やシミュレーション等によって定めた固定値を用いてもよい。また、折れ点電流値A4の算出には、他の方法を用いてもよく、例えば、予め設定された所定値(初期電流値と目標電流値A3との差よりも低い所定値)を、単に、目標電流値A3に足すことで算出してもよい。
In addition, this invention is not limited to the said embodiment, It can utilize with various forms so that it may illustrate below.
In the above-described embodiment, the break point current value A4 and the target current value A3 are appropriately corrected by the control unit 20, but the present invention is not limited to this, and for example, fixed values determined in advance through experiments or simulations may be used. . In addition, another method may be used to calculate the breakpoint current value A4. For example, a predetermined value set in advance (a predetermined value lower than the difference between the initial current value and the target current value A3) is simply used. It may be calculated by adding to the target current value A3.

前記実施形態では、目標電流値A3として前回の増圧サイクルの増圧終了時の電流値A2を採用したが、本発明はこれに限定されるものではない。例えば、前回の増圧サイクルの増圧終了時の電流値と、目標電流値の前回値との平均値を、目標電流値としてもよい。   In the above embodiment, the current value A2 at the end of the pressure increase in the previous pressure increasing cycle is adopted as the target current value A3, but the present invention is not limited to this. For example, an average value of the current value at the end of the pressure increase in the previous pressure increasing cycle and the previous value of the target current value may be set as the target current value.

前記実施形態では、通電量が目標電流値A3に到達した後も、車輪Tがロックしそうな状態にならない限り、通電量を低下させ続けたが、本発明はこれに限定されず、目標電流値になったら入口弁を閉めて増圧終了としてもよい。
前記実施形態では、目標電流値A3を過ぎた後の勾配を第2の勾配G2と同様の勾配としたが、本発明はこれに限定されるものではない。例えば、図6に示すように、通電量が目標電流値A3に到達してから所定時間Dが経過したか否かを判断し、経過したと判断した場合には、摩擦係数が高い路面(高μ路)に移ったと判断して、勾配を第2の勾配G2よりも急激に傾けてもよい。また、公知の路面摩擦係数(路面μ)判定機能を用いて、路面μが所定値以上となったときに高μ路に移ったと判定して、勾配を急な勾配に変化させてもよい。以上によれば、低μ路から高μ路に移った際には、より高い制動力を得ることができる。
In the above embodiment, even after the energization amount reaches the target current value A3, the energization amount is continuously reduced unless the wheel T is likely to be locked. However, the present invention is not limited to this, and the target current value is not limited thereto. Then, the inlet valve may be closed to end the pressure increase.
In the above-described embodiment, the gradient after the target current value A3 is the same as the second gradient G2, but the present invention is not limited to this. For example, as shown in FIG. 6, it is determined whether or not a predetermined time D has elapsed since the energization amount has reached the target current value A3. The slope may be inclined more rapidly than the second slope G2 when it is determined that the path has shifted to the μ path). Alternatively, it may be determined that the road surface μ has shifted to a high μ road when the road surface μ becomes a predetermined value or more by using a known road surface friction coefficient (road surface μ) determination function, and the gradient may be changed to a steep gradient. According to the above, a higher braking force can be obtained when moving from a low μ road to a high μ road.

前記実施形態では、第1の勾配G1を所定値に固定しているが、本発明はこれに限定されず、例えば第1の勾配G1を路面μに応じて変えてもよい。すなわち、前記したように公知の路面μ判定機能を用いて、路面μが低くなればなる程、第1の勾配G1の傾斜を緩やかにするように変更してもよい。これによれば、路面μに応じて、折れ点電流値までのキャリパ圧の増加速度を変えることができる。そのため、例えば高μ路においては、迅速にキャリパ圧を高めて制動力を迅速に上げることができ、また、低μ路においては、緩やかにキャリパ圧を高めて車輪ロックの発生を抑制することができる。   In the embodiment, the first gradient G1 is fixed to a predetermined value. However, the present invention is not limited to this, and for example, the first gradient G1 may be changed according to the road surface μ. That is, as described above, the known road surface μ determination function may be used to change the slope of the first gradient G1 to be gentler as the road surface μ becomes lower. According to this, the caliper pressure increasing speed up to the break point current value can be changed according to the road surface μ. For this reason, for example, on a high μ road, the caliper pressure can be quickly increased to quickly increase the braking force, and on a low μ road, the caliper pressure can be increased gradually to suppress the occurrence of wheel lock. it can.

前記実施形態では、ABS制御が開始されてから1回目の増圧制御に、2つの勾配G1,G2を利用したが、本発明はこれに限定されず、1回目の増圧制御は1つの勾配だけで行ってもよい。具体的には、例えば、図3に示す目標電流値設定手段23が、前回の増圧サイクルの増圧終了時の電流値A2を取得できない場合には、そのことを示すエラー信号を折れ点電流値算出手段24に出力する。折れ点電流値算出手段24では、エラー信号を受けると、折れ点電流値を算出せずに、エラー信号と初期電流値A1を第1開弁量調整手段25に出力する。第1開弁量調整手段25では、エラー信号を受けると、通電量を初期電流値A1へ一気に低下させた後、ROMやRAM等の記憶手段に記憶されている初期勾配を取得して、この初期勾配で通電量を低下させていく。第1開弁量調整手段25は、制御圧決定手段21から減圧開始信号を受けると、通電量を電流値A5へ一気に増加させる。以上により、1回目の増圧制御終了時の電流値を得ることができ、その後は、前記実施形態と同様の制御が行うことができる。   In the embodiment, the two gradients G1 and G2 are used for the first pressure increase control after the ABS control is started. However, the present invention is not limited to this, and the first pressure increase control is performed by one gradient increase control. You may go alone. Specifically, for example, when the target current value setting unit 23 shown in FIG. 3 cannot acquire the current value A2 at the end of the pressure increase in the previous pressure increase cycle, an error signal indicating that is displayed as a breakpoint current. It outputs to the value calculation means 24. When receiving the error signal, the break point current value calculating unit 24 outputs the error signal and the initial current value A1 to the first valve opening amount adjusting unit 25 without calculating the break point current value. When the first valve opening amount adjusting means 25 receives the error signal, it reduces the energization amount to the initial current value A1 at once, and then acquires the initial gradient stored in the storage means such as ROM or RAM, The energization amount is reduced at the initial gradient. When receiving the pressure reduction start signal from the control pressure determining means 21, the first valve opening amount adjusting means 25 increases the energization amount to the current value A5 at once. As described above, the current value at the end of the first pressure increase control can be obtained, and thereafter, the same control as in the above embodiment can be performed.

前記実施形態では、初期電流値を入口弁1の上下流の圧力差から算出したが、本発明はこれに限定されるものではない。例えば、従来技術(特開2003−19952号公報)のように、1回目の増圧制御時に入口弁1を所定の勾配で徐々に開けていき、実際にキャリパ圧が増加した時点(入口弁1が開いた時点)で入口弁1に供給されている通電量を記憶しておき、2回目以降の増圧制御時に、記憶した通電量を初期電流値として利用してもよい。   In the above embodiment, the initial current value is calculated from the pressure difference between the upstream and downstream of the inlet valve 1, but the present invention is not limited to this. For example, as in the prior art (Japanese Patent Laid-Open No. 2003-19952), the inlet valve 1 is gradually opened at a predetermined gradient during the first pressure increase control, and the caliper pressure actually increases (inlet valve 1 The energization amount supplied to the inlet valve 1 at the time of opening) may be stored, and the stored energization amount may be used as the initial current value during the second and subsequent pressure increase control.

前記実施形態では、キャリパ圧として、マスタシリンダ圧から推定した推定キャリパ圧を利用したが、本発明はこれに限定されず、各ホイールシリンダWに圧力センサを設け、各圧力センサで検出した値をキャリパ圧として利用してもよい。   In the above embodiment, the estimated caliper pressure estimated from the master cylinder pressure is used as the caliper pressure. However, the present invention is not limited to this, and a pressure sensor is provided in each wheel cylinder W, and a value detected by each pressure sensor is used. It may be used as a caliper pressure.

本発明の一実施形態に係る車両用ブレーキ液圧制御装置を備えた車両の構成図である。1 is a configuration diagram of a vehicle including a vehicle brake hydraulic pressure control device according to an embodiment of the present invention. 車両用ブレーキ液圧装置の構成を示す構成図である。It is a block diagram which shows the structure of the brake fluid pressure apparatus for vehicles. 制御部の構成を示すブロック図である。It is a block diagram which shows the structure of a control part. 制御部による入口弁の開弁制御を示すフローチャートである。It is a flowchart which shows valve opening control of the inlet valve by a control part. 車輪速度および車体速度と、入口弁への通電量と、キャリパ圧との関係を示すタイムチャートである。It is a time chart which shows the relationship between wheel speed and vehicle body speed, the energization amount to an inlet valve, and a caliper pressure. 目標電流値を過ぎた後の勾配を急にする形態を示すタイムチャートである。It is a time chart which shows the form which makes the gradient after passing target current value abrupt. 従来の増圧制御時における、車輪速度および車体速度と、入口弁への通電量と、キャリパ圧との関係を示すタイムチャートである。It is a time chart which shows the relationship between the wheel speed and vehicle body speed at the time of the conventional pressure increase control, the energization amount to an inlet valve, and a caliper pressure.

符号の説明Explanation of symbols

1 入口弁
2 出口弁
10 液圧ユニット
20 制御部
21 制御圧決定手段
22 初期電流値算出手段
23 目標電流値設定手段
24 折れ点電流値算出手段
25 第1開弁量調整手段
26 第2開弁量調整手段
100 車両用ブレーキ液圧制御装置
A1 初期電流値
A3 目標電流値
A4 折れ点電流値
FL 車輪ブレーキ
G1 第1の勾配
G2 第2の勾配
M マスタシリンダ
T 車輪
DESCRIPTION OF SYMBOLS 1 Inlet valve 2 Outlet valve 10 Hydraulic unit 20 Control part 21 Control pressure determination means 22 Initial current value calculation means 23 Target current value setting means 24 Break point current value calculation means 25 1st valve opening amount adjustment means 26 2nd valve opening Quantity adjusting means 100 Brake fluid pressure control device for vehicle A1 Initial current value A3 Target current value A4 Breakpoint current value FL Wheel brake G1 First gradient G2 Second gradient M Master cylinder T Wheel

Claims (5)

液圧源で発生した液圧を制御して車輪ブレーキに伝える車両用ブレーキ液圧制御装置であって、
前記液圧源側から前記車輪ブレーキへの液圧の伝達を許容し、通電量によって開弁量が調整可能な常開型比例電磁弁と、
前記車輪ブレーキ内の液圧を逃がす常閉型電磁弁と、
前記常開型比例電磁弁および前記常閉型電磁弁への通電量を制御することで、前記車輪ブレーキ内の液圧を増圧状態、保持状態または減圧状態に切り替える制御を行う制御手段と、を備え、
前記制御手段は、
前記減圧状態または前記保持状態から前記増圧状態へと移行する場合に、前記常開型比例電磁弁を開弁させる初期電流値を算出する初期電流値算出手段と、
前記初期電流値から、前記初期電流値よりも低く、かつ、前記増圧状態が終了すると予測される目標電流値よりも高く設定される折れ点電流値へ向けて第1の勾配で前記通電量を低下させる第1開弁量調整手段と、
前記折れ点電流値から前記目標電流値へ向けて前記第1の勾配よりも緩やかな第2の勾配で前記通電量を低下させる第2開弁量調整手段と、を備えていることを特徴とする車両用ブレーキ液圧制御装置。
A vehicle brake hydraulic pressure control device that controls the hydraulic pressure generated by a hydraulic pressure source and transmits the hydraulic pressure to a wheel brake,
A normally open proportional solenoid valve that allows the hydraulic pressure to be transmitted from the hydraulic pressure source to the wheel brake, and the valve opening amount can be adjusted by the energization amount;
A normally closed solenoid valve for releasing the hydraulic pressure in the wheel brake;
Control means for controlling the hydraulic pressure in the wheel brake to be in a pressure increasing state, a holding state, or a pressure reducing state by controlling an energization amount to the normally open proportional solenoid valve and the normally closed solenoid valve; With
The control means includes
An initial current value calculating means for calculating an initial current value for opening the normally open proportional solenoid valve when the pressure reducing state or the holding state is shifted to the pressure increasing state;
The energization amount at a first gradient from the initial current value toward a breakpoint current value that is lower than the initial current value and higher than a target current value that is predicted to end the pressure-increasing state. First valve opening amount adjusting means for lowering
And a second valve opening amount adjusting means for reducing the energization amount with a second gradient that is gentler than the first gradient from the breakpoint current value toward the target current value. A brake fluid pressure control device for a vehicle.
前記第2開弁量調整手段は、前記通電量が前記目標電流値となった後、さらに前記通電量の低下を続行することを特徴とする請求項1に記載の車両用ブレーキ液圧制御装置。   2. The vehicular brake hydraulic pressure control device according to claim 1, wherein the second valve opening amount adjusting means further continues to decrease the energization amount after the energization amount reaches the target current value. . 前記第1開弁量調整手段は、前記初期電流値から前記折れ点電流値に到達するまでの時間が第1の規定時間となるように、前記第1の勾配を算出し、
前記第2開弁量調整手段は、前記折れ点電流値から前記目標電流値に到達するまでの時間が、前記第1の規定時間よりも長い第2の規定時間となるように、前記第2の勾配を算出することを特徴とする請求項1または請求項2に記載の車両用ブレーキ液圧制御装置。
The first valve opening amount adjusting means calculates the first gradient so that the time from the initial current value to the breakpoint current value becomes a first specified time,
The second valve opening amount adjusting means is configured so that the time until the target current value is reached from the breakpoint current value is a second specified time longer than the first specified time. The vehicle brake hydraulic pressure control device according to claim 1 or 2, wherein the gradient of the vehicle is calculated.
前記目標電流値を、前回の増圧サイクル以前の増圧終了時の電流値に基づいて設定する目標電流値設定手段をさらに備えることを特徴とする請求項1〜請求項3のいずれか1項に記載の車両用ブレーキ液圧制御装置。   The target current value setting means for setting the target current value based on a current value at the end of pressure increase before the previous pressure increase cycle is further provided. The brake fluid pressure control device for vehicles described in 1. 前記初期電流値から前記目標電流値を引いた値を所定の割合で乗じた値に基づいて、前記折れ点電流値を算出する折れ点電流値算出手段をさらに備えることを特徴とする請求項1〜請求項4のいずれか1項に記載の車両用ブレーキ液圧制御装置。

2. A break point current value calculating means for calculating the break point current value based on a value obtained by multiplying a value obtained by subtracting the target current value from the initial current value at a predetermined ratio. The vehicle brake hydraulic pressure control device according to any one of claims 4 to 5.

JP2007187674A 2007-07-18 2007-07-18 Brake hydraulic pressure control device for vehicles Active JP4897599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187674A JP4897599B2 (en) 2007-07-18 2007-07-18 Brake hydraulic pressure control device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187674A JP4897599B2 (en) 2007-07-18 2007-07-18 Brake hydraulic pressure control device for vehicles

Publications (2)

Publication Number Publication Date
JP2009023468A true JP2009023468A (en) 2009-02-05
JP4897599B2 JP4897599B2 (en) 2012-03-14

Family

ID=40395712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187674A Active JP4897599B2 (en) 2007-07-18 2007-07-18 Brake hydraulic pressure control device for vehicles

Country Status (1)

Country Link
JP (1) JP4897599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005899A (en) * 2009-06-24 2011-01-13 Hitachi Automotive Systems Ltd Brake control device
US20110089756A1 (en) * 2009-10-19 2011-04-21 Nissin Kogyo Co., Ltd. Brake hydraulic pressure control device for vehicle
CN103171538A (en) * 2011-12-22 2013-06-26 日信工业株式会社 Vehicle brake fluid pressure controller
JP2016179788A (en) * 2015-03-25 2016-10-13 オートリブ日信ブレーキシステムジャパン株式会社 Brake fluid pressure control device for vehicle
JP2016193652A (en) * 2015-03-31 2016-11-17 オートリブ日信ブレーキシステムジャパン株式会社 Brake fluid pressure control device for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240451A (en) * 1996-03-07 1997-09-16 Honda Motor Co Ltd Brakae control device for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240451A (en) * 1996-03-07 1997-09-16 Honda Motor Co Ltd Brakae control device for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005899A (en) * 2009-06-24 2011-01-13 Hitachi Automotive Systems Ltd Brake control device
US20110089756A1 (en) * 2009-10-19 2011-04-21 Nissin Kogyo Co., Ltd. Brake hydraulic pressure control device for vehicle
JP2011084243A (en) * 2009-10-19 2011-04-28 Nissin Kogyo Co Ltd Brake hydraulic pressure controller for vehicle
US8668281B2 (en) 2009-10-19 2014-03-11 Nissin Kogyo Co., Ltd. Brake hydraulic pressure control device for vehicle
CN103171538A (en) * 2011-12-22 2013-06-26 日信工业株式会社 Vehicle brake fluid pressure controller
US8977466B2 (en) 2011-12-22 2015-03-10 Nissin Kogyo Co., Ltd. Vehicle brake fluid pressure controller
JP2016179788A (en) * 2015-03-25 2016-10-13 オートリブ日信ブレーキシステムジャパン株式会社 Brake fluid pressure control device for vehicle
JP2016193652A (en) * 2015-03-31 2016-11-17 オートリブ日信ブレーキシステムジャパン株式会社 Brake fluid pressure control device for vehicle

Also Published As

Publication number Publication date
JP4897599B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4473894B2 (en) Brake hydraulic pressure control device for vehicles
JP5123917B2 (en) Brake hydraulic pressure control device for vehicles
JP4473898B2 (en) Brake hydraulic pressure control device for vehicles
CN112512878B (en) Brake hydraulic pressure control device, straddle-type vehicle, and brake hydraulic pressure control method
JP4897599B2 (en) Brake hydraulic pressure control device for vehicles
JP5160527B2 (en) Brake hydraulic pressure control device for vehicles
JP3955208B2 (en) Braking pressure estimation device
JP6393600B2 (en) Brake control device for bar handle vehicle
JP5215279B2 (en) Brake pressure control device for vehicle
JP4921269B2 (en) Brake hydraulic pressure control device for vehicles
JP4998194B2 (en) Anti-skid control device
JP4921270B2 (en) Brake hydraulic pressure control device for vehicles
JP4897598B2 (en) Brake hydraulic pressure control device for vehicles
JP5568053B2 (en) Brake hydraulic pressure control device for vehicles
JP5209589B2 (en) Brake hydraulic pressure control device for vehicles
JP4887230B2 (en) Brake hydraulic pressure control device for vehicles
WO2022004442A1 (en) Vehicle brake fluid pressure control device
JP2010260488A (en) Braking control device for vehicle
US10737670B2 (en) Vehicle brake hydraulic control device
JP2009023463A (en) Brake hydraulic pressure controller for vehicle
JP6613188B2 (en) Brake hydraulic pressure control device for vehicles
JP6669562B2 (en) Vehicle brake fluid pressure control device
JP6613038B2 (en) Brake hydraulic pressure control device for vehicles
JP2015209047A (en) Brake apparatus
JP6091266B2 (en) Brake hydraulic pressure control device for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4897599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250